JP2006327884A - Pretreatment method of quartz glass and method for molding quartz glass - Google Patents

Pretreatment method of quartz glass and method for molding quartz glass Download PDF

Info

Publication number
JP2006327884A
JP2006327884A JP2005154884A JP2005154884A JP2006327884A JP 2006327884 A JP2006327884 A JP 2006327884A JP 2005154884 A JP2005154884 A JP 2005154884A JP 2005154884 A JP2005154884 A JP 2005154884A JP 2006327884 A JP2006327884 A JP 2006327884A
Authority
JP
Japan
Prior art keywords
quartz glass
pretreatment
molding
bubble
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005154884A
Other languages
Japanese (ja)
Other versions
JP4655761B2 (en
JP2006327884A5 (en
Inventor
Masaaki Mochida
昌昭 持田
Tetsuya Abe
哲也 阿邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005154884A priority Critical patent/JP4655761B2/en
Publication of JP2006327884A publication Critical patent/JP2006327884A/en
Publication of JP2006327884A5 publication Critical patent/JP2006327884A5/ja
Application granted granted Critical
Publication of JP4655761B2 publication Critical patent/JP4655761B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1469Means for changing or stabilising the shape or form of the shaped article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/44Flat, parallel-faced disc or plate products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pretreatment method of quartz glass, by which a good quartz glass molded article free from the influence of a bubble after being molded can be obtained even in the case that a portion of cut surface of a bubble exists on the surface of quartz glass before being molded or a bubble exists inside the quartz glass before being molded, and also to provide a method for molding the quartz glass. <P>SOLUTION: In a method for molding the quartz glass 25 having a desired shape with nearly flat surface by accommodating pretreated quartz glass 25 in a mold and heating and pressing it, when a bubble 30 generated when synthesizing quartz glass exists inside the quartz glass 25 before being pretreated, the pretreated quartz glass 25 is obtained by cutting a part out of the quartz glass 25 before being pretreated by cutting the quartz glass 25 before being pretreated at the inner side of the quartz glass than the center of the bubble 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、石英ガラスをモールド内に収容して加熱加圧することにより、広い面積の面を有する所定形状の石英ガラスを成形するための石英ガラスの前処理方法及び石英ガラスの成形方法に関するものである。     The present invention relates to a quartz glass pretreatment method and a quartz glass molding method for molding a quartz glass of a predetermined shape having a large area by storing quartz glass in a mold and heating and pressing. is there.

一般に、i線より長波長の光源を用いた投影露光装置の照明光学系あるいは投影光学系のレンズ、ミラー、レチクル等の光学部材では、材料として石英ガラスが多用されている。この石英ガラスは、例えば、火炎加水分解により透明石英ガラスを製造する直接法などの方法で合成されている。   In general, quartz glass is frequently used as a material for an illumination optical system of a projection exposure apparatus that uses a light source having a wavelength longer than that of the i-line or an optical member such as a lens, mirror, or reticle of the projection optical system. This quartz glass is synthesized by, for example, a direct method for producing transparent quartz glass by flame hydrolysis.

この直接法では、石英ガラス製バーナにて支燃性ガス(酸素含有ガス、例えば酸素ガス)及び可燃性ガス(水素含有ガス、例えば水素ガスあるいは天然ガス)を混合・燃焼させ、前記バーナの中心部から原料ガスとして高純度のケイ素化合物(例えば四塩化ケイ素ガス)をキャリアガス(通常は酸素ガス)で希釈して噴出させ、前記原料ガスを周囲の前記酸素ガス及び水素ガスの燃焼により反応(加水分解反応)させて石英ガラス微粒子を発生させ、その前記石英ガラス微粒子を、前記バーナ下方に配置され、回転、揺動及び引下げ運動を行う不透明石英ガラス板からなるターゲット上に堆積させ、同時に前記酸素ガス及び水素ガスの燃焼熱により溶融・ガラス化して石英ガラスインゴットを得ている。   In this direct method, a combustion-supporting gas (oxygen-containing gas such as oxygen gas) and a combustible gas (hydrogen-containing gas such as hydrogen gas or natural gas) are mixed and burned in a quartz glass burner, and the center of the burner is mixed. A high-purity silicon compound (for example, silicon tetrachloride gas) is diluted with a carrier gas (usually oxygen gas) as a raw material gas and ejected from the part, and the raw material gas reacts by combustion of the surrounding oxygen gas and hydrogen gas ( Hydrolyzing reaction) to generate quartz glass fine particles, and the quartz glass fine particles are deposited on a target made of an opaque quartz glass plate disposed below the burner and performing rotation, swinging and lowering movement, Quartz glass ingots are obtained by melting and vitrification with the combustion heat of oxygen gas and hydrogen gas.

この方法によると、比較的大きな径の石英ガラスインゴットを得易いため、インゴットからブロックを切り出して所望の形状,大きさの光学部材を製造することができる。   According to this method, since it is easy to obtain a quartz glass ingot having a relatively large diameter, an optical member having a desired shape and size can be manufactured by cutting out a block from the ingot.

また、近年、大型のレンズやレチクル、或いは大型の液晶ディスプレイ等、広い面積の面を有する光学部材を得るため、予め形成されたインゴット等の石英ガラス塊を加熱加圧成形することにより扁平形状にして面積を拡大する成形方法が利用されている。   In recent years, in order to obtain an optical member having a large surface, such as a large lens or reticle, or a large liquid crystal display, a quartz glass lump such as a pre-formed ingot is formed into a flat shape by heating and pressing. Therefore, a molding method for expanding the area is used.

この成形方法では、石英ガラス塊をモールド内に収容して加熱した状態で、加圧板により加圧することにより広い面積の面を成形する。   In this molding method, a large area surface is molded by applying pressure with a pressure plate while the quartz glass block is accommodated in a mold and heated.

このような加熱加圧成形を行うものとして、例えば、グラファイト製のモールド内で、絶対圧が0.1Torr以上大気圧以下のヘリウムガス雰囲気下で、1700℃以上の温度に加熱加圧成形し、次いで、1100〜1300℃まで急冷する方法が知られている。また、石英ガラスとモールドの型材との熱膨張率差に起因する応力を緩和する構造を有するグラファイト製のモールドを用いて1600℃〜1700℃で加圧成形する方法(下記、特許文献1参照)や、そのグラファイト製のモールドが2分割以上の縦型構造である成型装置が提案されている(下記、特許文献2及び3参照)。更には、黒鉛製のモールド内面に石英粉末からなる被覆層を設けて、1550℃〜1700℃で加圧成形する方法(下記、特許文献4参照)も知られている。
特公平4−54626号公報。 特開昭56−129621号公報。 特開昭57−67031号公報。 特開2002−22020号公報。
As such a heat press molding, for example, in a graphite mold, heat press molding is performed at a temperature of 1700 ° C. or higher in a helium gas atmosphere having an absolute pressure of 0.1 Torr or more and atmospheric pressure, Next, a method of rapidly cooling to 1100 to 1300 ° C. is known. Also, a method of pressure molding at 1600 ° C. to 1700 ° C. using a graphite mold having a structure that relieves stress caused by a difference in thermal expansion coefficient between quartz glass and a mold mold (see Patent Document 1 below). There has also been proposed a molding apparatus in which the graphite mold has a vertical structure with two or more divisions (see Patent Documents 2 and 3 below). Furthermore, a method of forming a coating layer made of quartz powder on the inner surface of a graphite mold and performing pressure molding at 1550 ° C. to 1700 ° C. (see Patent Document 4 below) is also known.
Japanese Patent Publication No. 4-54626. JP-A-56-129621. JP-A-57-67031. Japanese Patent Application Laid-Open No. 2002-22020.

しかしながら、このような従来の石英ガラスの成形方法では、成形前の石英ガラス材料内部に泡が存在した場合、成形後にもこの泡が変形するのみで消滅することがない。このため、成形後の成形体から所望の光学部材を得ることができない。また、泡の部分で成形前の石英材料が切断されていた場合でも、材料内部に泡の大部分が残っている場合には成形後も成形品の表面に泡に起因する窪みが残るということを、本発明者らは見出したのである。   However, in such a conventional method for molding quartz glass, when bubbles are present inside the quartz glass material before molding, the bubbles only deform and do not disappear after molding. For this reason, a desired optical member cannot be obtained from the molded body after molding. In addition, even if the quartz material before molding is cut at the foam portion, if the majority of the foam remains inside the material, the depression due to the foam will remain on the surface of the molded product after molding. The present inventors have found out.

そこで、この発明は、成形前の石英ガラスの表面に泡の切断面の一部が存在する場合や、成形前の石英ガラスの内部に泡が存在する場合でも、成形後の石英ガラスに泡の影響がない良好な石英ガラスの成形品を得ることができる石英ガラスの前処理方法及び石英ガラスの成形方法を提供することを課題としている。   In view of this, the present invention provides a method for forming foam in a quartz glass after molding even when a part of the cut surface of the foam is present on the surface of the quartz glass before molding, or even when foam is present inside the quartz glass before molding. It is an object of the present invention to provide a quartz glass pretreatment method and a quartz glass molding method capable of obtaining a good quartz glass molded product having no influence.

本発明者らは、上記課題について鋭意検討を行った結果、以下のようにすれば解決できることを見い出し、本発明を完成するに至った。   As a result of intensive studies on the above problems, the present inventors have found that the problem can be solved as follows, and have completed the present invention.

すなわち、請求項1に記載の発明は、モールド内に前処理後石英ガラスを収容して、該前処理後石英ガラスを加熱加圧することにより、略平坦な表面をもつ所望形状の石英ガラスを成形する方法において、前記前処理前石英ガラスの内部に石英ガラス合成時に発生した泡が存在する場合、該前処理前石英ガラスを、前記泡の中心より石英ガラス内部側で切断することにより、前記前処理前石英ガラスから切り出して前記前処理後石英ガラスを得る石英ガラスの前処理方法としたことを特徴とする。   In other words, the invention according to claim 1 forms the quartz glass of a desired shape having a substantially flat surface by accommodating the quartz glass after pretreatment in the mold and heating and pressing the quartz glass after the pretreatment. In the method, when bubbles generated during the synthesis of quartz glass are present inside the pre-treated quartz glass, the pre-treated quartz glass is cut on the quartz glass inside side from the center of the bubbles, thereby It is characterized by being a quartz glass pretreatment method that is cut out from quartz glass before treatment to obtain the quartz glass after pretreatment.

請求項2に記載の発明は、モールド内に前処理後石英ガラスを収容して、該前処理後石英ガラスを加熱加圧することにより、略平坦な表面をもつ所望形状の石英ガラスを成形する方法において、前記前処理前石英ガラスの内部に石英ガラス合成時に発生した泡が存在する場合、前記前処理前石英ガラスの表面から前記泡まで貫通する貫通孔を形成することにより、前記泡を外部と連通させた前記前処理後石英ガラスを得る石英ガラスの前処理方法としたことを特徴とする。   The invention according to claim 2 is a method for forming a quartz glass of a desired shape having a substantially flat surface by accommodating the pre-treated quartz glass in a mold and heating and pressurizing the quartz glass after the pre-treatment. In the case where bubbles generated during the synthesis of quartz glass are present inside the pre-treatment quartz glass, by forming a through-hole penetrating from the surface of the quartz glass before pre-treatment to the bubbles, It is characterized by being a quartz glass pretreatment method for obtaining the communicated quartz glass after the pretreatment.

請求項3に記載の発明は、請求項1に記載の石英ガラスの前処理方法において、前記前処理後石英ガラスの表面に残存する泡の容積が、切断前の泡の容積の50%以下であることを特徴とする。   The invention according to claim 3 is the pretreatment method for quartz glass according to claim 1, wherein the volume of the foam remaining on the surface of the quartz glass after the pretreatment is 50% or less of the volume of the foam before cutting. It is characterized by being.

請求項4に記載の発明は、請求項2に記載の石英ガラスの前処理方法において、前記貫通孔の直径が前記泡の直径の50%以上であることを特徴とする。   According to a fourth aspect of the present invention, in the pretreatment method for quartz glass according to the second aspect, the diameter of the through hole is 50% or more of the diameter of the bubble.

請求項5に記載の発明は、請求項2に記載の前処理方法において、前記貫通孔の長さが前記泡の直径の2倍以下であることを特徴とする。   The invention according to claim 5 is the pretreatment method according to claim 2, wherein the length of the through hole is not more than twice the diameter of the bubble.

請求項6に記載の発明は、請求項1乃至5の何れか一つに記載の石英ガラスの前処理方法よって得られた前記前処理後石英ガラスを、真空雰囲気内で加熱加圧することにより、略平坦な表面をもつ所望形状の石英ガラスを成形する石英ガラスの成形方法としたことを特徴とする。   The invention according to claim 6 is a method of heating and pressurizing the post-treated quartz glass obtained by the pretreatment method for quartz glass according to any one of claims 1 to 5 in a vacuum atmosphere, The present invention is characterized in that a quartz glass molding method is used for molding a quartz glass of a desired shape having a substantially flat surface.

請求項7に記載の発明は、請求項1乃至5の何れか一つに記載の前処理方法よって得られた前記前処理後石英ガラスを、0.1mm/分以下の速度で加熱加圧することにより、略平坦な表面をもつ所望形状の石英ガラスを成形する石英ガラスの成形方法としたことを特徴とする。   The invention according to claim 7 is a method in which the pretreated quartz glass obtained by the pretreatment method according to any one of claims 1 to 5 is heated and pressurized at a speed of 0.1 mm / min or less. The quartz glass molding method is characterized in that a quartz glass of a desired shape having a substantially flat surface is molded.

請求項8に記載の発明は、請求項6又は7に記載の成形方法で所望形状の石英ガラスを成形した後、更に、前記モールド内に、Nガス等の不活性ガスを導入して雰囲気温度を均一にした後、更に前記石英ガラスを加熱加圧する石英ガラスの成形方法としたことを特徴とする。 According to an eighth aspect of the present invention, after molding a desired shape of quartz glass by the molding method of the sixth or seventh aspect, an inert gas such as N 2 gas is further introduced into the mold to create an atmosphere. After the temperature is made uniform, the quartz glass is formed by heating and pressurizing the quartz glass.

請求項1に記載の発明によれば、前処理前石英ガラスの内部に石英ガラス合成時に発生した泡が存在する場合、前処理前石英ガラスを、泡の中心より石英ガラス内部側で切断することにより、前処理前石英ガラスから切り出して前処理後石英ガラスを得る。その後、そのように泡の中心より石英ガラス内部側で切断された前処理後石英ガラスを加熱加圧することにより、泡に起因する窪みが発生することなく、平坦な表面をもつ所望形状の石英ガラスを成形することができる。従って、大型のレンズやレチクル、或いは大型の液晶ディスプレイ等、広い面積の面を有する光学部材を得ることができると共に、歩留まりを向上させることができる。   According to invention of Claim 1, when the bubble which generate | occur | produced at the time of quartz glass synthesis | combination exists in the inside of quartz glass before pre-processing, pre-processing quartz glass is cut | disconnected by the quartz glass inside side from the center of a bubble. Thus, the pre-treated quartz glass is cut out from the pre-treated quartz glass. Then, by applying pressure to the pre-treated quartz glass cut from the center of the foam on the quartz glass inner side, the quartz glass with a desired shape having a flat surface is formed without any depression caused by the foam. Can be molded. Therefore, an optical member having a large area, such as a large lens or reticle, or a large liquid crystal display, can be obtained, and the yield can be improved.

請求項2に記載の発明によれば、前処理前石英ガラスの内部に石英ガラス合成時に発生した泡が存在する場合、前処理前石英ガラスの表面から泡まで貫通する貫通孔を形成することにより、泡を外部と連通させた前処理後石英ガラスを得る。その後、そのように貫通孔が形成された前処理後石英ガラスを加熱加圧することにより、その貫通孔を介して泡内の気体が外部に抜けるため、成形後にはその泡が消滅し、平坦な表面をもつ所望形状の石英ガラスを成形することができる。従って、大型のレンズやレチクル、或いは大型の液晶ディスプレイ等、広い面積の面を有する光学部材を得ることができると共に、歩留まりを向上させることができる。   According to invention of Claim 2, when the bubble which generate | occur | produced at the time of quartz glass synthesis | combination exists in the inside of quartz glass before pre-processing, by forming the through-hole which penetrates from the surface of quartz glass before pre-processing to a bubble, Quartz glass is obtained after pretreatment with bubbles communicated with the outside. Then, by heating and pressurizing the pre-treated quartz glass with the through-holes formed in this way, the gas in the bubbles escapes to the outside through the through-holes, so that the bubbles disappear and become flat after molding. Quartz glass having a desired shape can be formed. Therefore, an optical member having a large area, such as a large lens or reticle, or a large liquid crystal display, can be obtained, and the yield can be improved.

請求項3に記載の発明によれば、前処理後石英ガラスの表面に残存する泡の容積が、切断前の泡の容積の50%以下であるため、より確実に泡に起因する窪みの発生を防止できる。   According to the invention described in claim 3, since the volume of the foam remaining on the surface of the quartz glass after the pretreatment is 50% or less of the volume of the foam before cutting, the generation of the depression caused by the foam more reliably. Can be prevented.

請求項4に記載の発明によれば、貫通孔の直径を泡の直径の50%以上とすることにより、泡内の気体の抜けをより確実に行うことができて、泡を有効に消滅させることができる。   According to the invention described in claim 4, by making the diameter of the through hole 50% or more of the diameter of the bubble, the gas in the bubble can be more surely removed, and the bubble is effectively extinguished. be able to.

請求項5に記載の発明によれば、貫通孔の長さが泡の直径の2倍以下とすることにより、泡内の気体の抜けをより確実に行うことができて、泡を有効に消滅させることができる。   According to the invention described in claim 5, by making the length of the through-hole not more than twice the diameter of the bubble, the gas in the bubble can be more surely removed, and the bubble is effectively extinguished. Can be made.

請求項6に記載の発明によれば、請求項1乃至5の何れか一つに記載の前処理方法よって得られた前処理後石英ガラスを、真空雰囲気で加熱加圧することにより、泡の影響が発生することなく、略平坦な表面をもつ所望形状の石英ガラスを成形することができる。   According to the invention described in claim 6, the pre-treated quartz glass obtained by the pre-treatment method according to any one of claims 1 to 5 is heated and pressurized in a vacuum atmosphere to influence the bubbles. Thus, quartz glass having a desired shape and a substantially flat surface can be formed.

請求項7に記載の発明によれば、請求項1乃至5の何れか一つに記載の前処理方法よって得られた前処理後石英ガラスを、0.1mm/分以下の速度で加熱加圧することにより、より一層泡の影響が発生することなく、極めて平坦な表面をもつ所望形状の石英ガラスを成形することができる。   According to the invention described in claim 7, the pretreated quartz glass obtained by the pretreatment method according to any one of claims 1 to 5 is heated and pressurized at a rate of 0.1 mm / min or less. Thus, quartz glass having a desired shape having a very flat surface can be formed without further influence of bubbles.

請求項8に記載の発明によれば、請求項6又は7に記載の成形方法で所望形状の石英ガラスを成形した後、更に、モールド内に、Nガス等の不活性ガスを導入して雰囲気温度を均一にした後、更に石英ガラスを加熱加圧するため、材料内の温度分布が小さくなることから、成形後の石英ガラスの形状、寸法を所望の形にすることが可能になると共に、成形後の石英ガラスの応力歪みが小さくなる。 According to the invention of claim 8, after forming the silica glass of the desired shape in the molding method according to claim 6 or 7, further into the mold, by introducing an inert gas such as N 2 gas Since the quartz glass is further heated and pressurized after the atmospheric temperature is made uniform, the temperature distribution in the material becomes small, so that the shape and dimensions of the quartz glass after molding can be made into a desired shape, The stress strain of the quartz glass after molding is reduced.

以下、この発明の実施の形態について説明する。
[発明の実施の形態1]
Embodiments of the present invention will be described below.
Embodiment 1 of the Invention

図1及び図2には、この発明の実施の形態1を示す。   1 and 2 show a first embodiment of the present invention.

図1には、この実施の形態1にかかる成形装置10を示す。   FIG. 1 shows a molding apparatus 10 according to the first embodiment.

この成形装置10は、四塩化ケイ素、シラン、有機ケイ素等のケイ素化合物を原料として製造される合成石英ガラスのインゴットやその一部、又は、Ge、Ti、B、F、Al等の屈折率を変化させる成分を添加した合成石英ガラスのインゴットやその一部等の石英ガラス塊から、例えば、大型の液晶用マスク、半導体用マスク等のレチクル(フォトマスク)用基板、結像光学系の大型のレンズ材料などのように広い面を有する板状体やその他の大型ガラスブロックを成形するための装置である。   This molding apparatus 10 has an ingot of a synthetic quartz glass manufactured using a silicon compound such as silicon tetrachloride, silane, or organosilicon as a raw material or a part thereof, or a refractive index of Ge, Ti, B, F, Al, or the like. From quartz glass ingots such as synthetic quartz glass ingots and parts thereof to which the components to be changed are added, for example, large liquid crystal masks, reticles for photomasks such as semiconductor masks, and large optical imaging systems It is an apparatus for molding a plate-like body having a wide surface such as a lens material or other large glass blocks.

この成形装置10は、金属製の真空チャンバー11の内壁に、全面にわたって設けられた断熱材12と、断熱材12の縦壁内に設けられたカーボンヒータ13とを有し、更に、真空チャンバー11内部の略中央部に、中空部21を有するグラファイト製モールド15(以下「モールド15」という)が収容されている。   The molding apparatus 10 has a heat insulating material 12 provided over the entire surface of a metal vacuum chamber 11 and a carbon heater 13 provided in a vertical wall of the heat insulating material 12. A graphite mold 15 having a hollow portion 21 (hereinafter referred to as “mold 15”) is accommodated in a substantially central portion inside.

このモールド15は、底板16及び受板17を備えた底部18と、この底部18の上側に四角筒状に形成された側壁部20とを備え、この筒状の側壁部20と底部18とにより中空部21が形成されている。   The mold 15 includes a bottom portion 18 including a bottom plate 16 and a receiving plate 17, and a side wall portion 20 formed in a square cylindrical shape above the bottom portion 18, and the cylindrical side wall portion 20 and the bottom portion 18 A hollow portion 21 is formed.

この中空部21内には、この中空部21の形状に対応する形状の天板23が配置され、この天板23の押圧面23b(上面)を、真空チャンバー11の外部に配設されたプレス装置としての油圧シリンダのシリンダロッド26で押圧することにより、この天板23がモールド15の底部18側に移動可能となっている。   A top plate 23 having a shape corresponding to the shape of the hollow portion 21 is disposed in the hollow portion 21, and a pressing surface 23 b (upper surface) of the top plate 23 is disposed outside the vacuum chamber 11. The top plate 23 can be moved to the bottom 18 side of the mold 15 by being pressed by a cylinder rod 26 of a hydraulic cylinder as an apparatus.

なお、このシリンダロッド26を備えた油圧シリンダは、外部から供給される油圧を調整することにより加圧されて移動するように構成されているが、詳細な図示は省略されている。   The hydraulic cylinder provided with the cylinder rod 26 is configured to move by being pressurized by adjusting the hydraulic pressure supplied from the outside, but detailed illustration is omitted.

これらのモールド15及び天板23は、塊状の石英ガラス25の成形時における温度及び圧力に対する耐熱性及び強度を有し、且つ、成形時に塊状の石英ガラス25と接触しても不純物を混入し難い材料から形成されており、ここでは全てグラファイトにより形成されている。   The mold 15 and the top plate 23 have heat resistance and strength against temperature and pressure at the time of forming the massive quartz glass 25, and are hardly mixed with impurities even if they contact the massive quartz glass 25 at the time of molding. It is made of a material, here all made of graphite.

そして、そのモールド15の内壁面15a及び天板23の加圧面23a(下面)には、離型層が設けられている。この離型層は、カーボン粒子を主な固形成分とする懸濁液を塗布し、乾燥後、更にSiC粒子を主な固形成分とする
懸濁液を塗布して乾燥させることにより成形されている。
A release layer is provided on the inner wall surface 15 a of the mold 15 and the pressing surface 23 a (lower surface) of the top plate 23. This release layer is formed by applying a suspension containing carbon particles as a main solid component, drying, and further applying and drying a suspension containing SiC particles as a main solid component. .

ここで、カーボン粒子やSiC粒子を懸濁液とする際の溶媒の種類は、塗布後
の乾燥や取扱い易さなどの理由で、アルコール系のものが望ましく、この実施の形態ではエチルアルコールを使用している。このエチルアルコールにカーボン粒子又はSiC粒子を分散させて刷毛で塗って塗布する。なお、SiC粒子は結晶系がβ形を使用するのが望ましい。
Here, the type of the solvent when the suspension of carbon particles or SiC particles is used is preferably an alcohol type for reasons such as drying after coating and ease of handling. In this embodiment, ethyl alcohol is used. is doing. Carbon particles or SiC particles are dispersed in this ethyl alcohol and applied with a brush. Note that it is desirable that the SiC particles have a β-type crystal system.

次に、成形装置10を用いて塊状の石英ガラス25を所定の形状の成形する場合について説明する。   Next, a case where the massive quartz glass 25 is molded into a predetermined shape using the molding apparatus 10 will be described.

まず、この成形装置10を用いて成形する前に、合成時に発生した泡が材料である前処理前石英ガラス25に存在する場合には、モールド15内に収容する前に以下のような前処理を行う。   First, in the case where bubbles generated during synthesis exist in the pre-treatment quartz glass 25 that is a material before molding using the molding apparatus 10, the following pre-treatment is performed before being accommodated in the mold 15. I do.

すなわち、図2(a)に示すように、比較的大きな泡30が発生している場合には、その泡30の中心から図2(a)中二点鎖線に示すように切断することにより、前処理前石英ガラス25から図2(b)に示すような前処理後石英ガラス25を得るようにしている。このように切断されることにより、前処理後石英ガラス25の表面に残存する泡30の容積が、切断前の泡30の容積の50%以下となっている。   That is, as shown in FIG. 2A, when a relatively large bubble 30 is generated, by cutting from the center of the bubble 30 as shown by a two-dot chain line in FIG. A pre-treated quartz glass 25 as shown in FIG. 2B is obtained from the pre-treated quartz glass 25. By being cut in this way, the volume of the foam 30 remaining on the surface of the quartz glass 25 after pretreatment is 50% or less of the volume of the foam 30 before cutting.

このように前処理された前処理後石英ガラス25をモールド15内に収容する前に、このモールド15内に離型層を形成する。これは、真空チャンバー11内に配置されたモールド15の内壁面に、カーボン粒子を主な固形成分とする懸濁液を塗布し、乾燥後、更にSiC粒子を主な固形成分とする懸濁液を塗布して乾燥させて離型層を形成する。   A release layer is formed in the mold 15 before the pre-treated quartz glass 25 thus pre-treated is accommodated in the mold 15. This is because a suspension containing carbon particles as the main solid component is applied to the inner wall surface of the mold 15 disposed in the vacuum chamber 11, and after drying, the suspension containing SiC particles as the main solid component is applied. Is applied and dried to form a release layer.

このようにカーボン粒子を主な固形成分とする懸濁液を塗布し、乾燥後、更にSiC粒子を主な固形成分とする懸濁液を塗布するようにしたため、SiC粒子を主な固形成分とする懸濁液を塗布し易い。カーボン粒子を主な固形成分とする懸濁液が未乾燥の状態で、SiC粒子を主な固形成分とする懸濁液を塗ろうとすると、部分的にカーボン粒子が剥がれる傾向がある。   Thus, since the suspension which makes a carbon particle a main solid component was apply | coated, and the suspension which makes a SiC particle a main solid component was apply | coated after drying, a SiC particle was made into a main solid component. Easy to apply suspension. If a suspension containing carbon particles as a main solid component is applied in an undried state with a suspension containing carbon particles as a main solid component, the carbon particles tend to partially peel off.

この離型層は、カーボン粒子とSiC粒子の平均粒子径がそれぞれ0.01μm〜100μmであると共に、カーボン粒子層とSiC粒子層の厚さがそれぞれ30μm〜1000μmで、二重構造に形成されている。なお、カーボン粒子とSiC粒子とが混在した層とすることもできる。   The release layer has a carbon particle and SiC particle average diameter of 0.01 μm to 100 μm, respectively, and the carbon particle layer and SiC particle layer have a thickness of 30 μm to 1000 μm, respectively, and are formed in a double structure. Yes. A layer in which carbon particles and SiC particles are mixed can also be used.

このように離型層を成形した後、モールド15内の純化処理を行う。この純化処理には、2種類あり、その一つは、真空雰囲気中で加熱(1000℃〜2000℃)して、不純物を蒸発させて除去する方法と、塩素含有ガス雰囲気中で加熱して塩素と金属不純物とを反応させて蒸発させて除去する方法がある。   After forming the release layer in this way, the purification process in the mold 15 is performed. There are two types of purification treatment, one of which is heating in a vacuum atmosphere (1000 ° C. to 2000 ° C.) to remove impurities by evaporation, and heating in a chlorine-containing gas atmosphere is chlorine. And metal impurities are reacted and evaporated to remove.

その後、モールド15の中空部21内に塊状の前処理された石英ガラス25を配置する。   Thereafter, a massive pretreated quartz glass 25 is placed in the hollow portion 21 of the mold 15.

この実施の形態では、塊状の石英ガラス25として合成石英ガラスインゴットを用いており、リードタイムの短縮化のために、モールド15の中空部21に収容する前に、予め300℃未満の温度で予熱している。   In this embodiment, a synthetic quartz glass ingot is used as the massive quartz glass 25, and in order to shorten the lead time, preheating at a temperature of less than 300 ° C. in advance before accommodating in the hollow portion 21 of the mold 15 is performed. is doing.

次いで、中空部21内に収容した塊状の石英ガラス25の上部に天板23を配置し、更に、天板23の押圧面23bに油圧シリンダのシリンダロッド26の押圧部位26aを当接させてセットする。そして、真空チャンバー11内を真空あるいは不活性ガスで置換し、真空チャンバー11内を圧力を、所定の圧力とする。   Next, the top plate 23 is disposed on the top of the massive quartz glass 25 accommodated in the hollow portion 21, and the pressing portion 26 a of the cylinder rod 26 of the hydraulic cylinder is brought into contact with the pressing surface 23 b of the top plate 23. To do. Then, the inside of the vacuum chamber 11 is replaced with a vacuum or an inert gas, and the pressure inside the vacuum chamber 11 is set to a predetermined pressure.

次に、カーボンヒータ13により、モールド15及びその中空部21に収容された塊状の石英ガラス25を加熱する。   Next, the massive quartz glass 25 accommodated in the mold 15 and the hollow portion 21 thereof is heated by the carbon heater 13.

また、この成形に際しては、塊状の石英ガラス25の全体の温度を、結晶化温度以上軟化点以下に昇温するのが好ましいが、成形の開始段階で、塊状の石英ガラス25の頂部25a付近を加圧する時点では、少なくとも頂部25a側が、成形温度に到達していればよい。   In this molding, it is preferable to raise the temperature of the bulk quartz glass 25 to a temperature not lower than the crystallization temperature and not higher than the softening point. At the time of pressurization, it is sufficient that at least the top portion 25a side reaches the molding temperature.

そして、このように塊状の石英ガラス25を加熱した状態で、油圧シリンダへの油圧を制御調整することにより、シリンダロッド26を下方へ移動させて、シリンダロッド26の押圧部位26aで天板23の押圧面23bを押圧する。これにより、天板23がモールド15の底部18側の加圧方向へ移動し、天板23の加圧面23aと底部18との間で塊状の石英ガラス25が加圧される。   Then, by controlling and adjusting the hydraulic pressure to the hydraulic cylinder in a state where the massive quartz glass 25 is heated in this way, the cylinder rod 26 is moved downward, and the top portion 23 of the top plate 23 is moved by the pressing portion 26a of the cylinder rod 26. The pressing surface 23b is pressed. As a result, the top plate 23 moves in the pressing direction on the bottom 18 side of the mold 15, and the massive quartz glass 25 is pressed between the pressing surface 23 a of the top plate 23 and the bottom 18.

石英ガラス25が所定形状に成形された段階で、天板23による加圧を終了する。真空状態でこの処理が行われた場合には、その後、モールド15内に不活性ガス(Nガス)を導入しチャンバー11内の雰囲気温度が均一になった後、もう一度天板23による加圧を行う。
その後、板状に成形された石英ガラス25を、モールド15内に配置した状態のままで冷却し、そして、モールド15から石英ガラス25を取り出すことにより成形が完了する。
When the quartz glass 25 is formed into a predetermined shape, the pressurization by the top plate 23 is finished. When this processing is performed in a vacuum state, after that, an inert gas (N 2 gas) is introduced into the mold 15 and the atmospheric temperature in the chamber 11 becomes uniform, and then the pressure by the top plate 23 is once again. I do.
Thereafter, the quartz glass 25 molded into a plate shape is cooled while being placed in the mold 15, and the quartz glass 25 is taken out from the mold 15 to complete the molding.

このように、前処理前石英ガラス25の内部に石英ガラス合成時に発生した泡30が存在する場合、前処理前石英ガラス25を、泡30の中心より石英ガラス内部側で切断することにより、前処理前石英ガラス25から切り出して前処理後石英ガラス25を得る。その後、そのように泡30の中心より石英ガラス内部側で切断された前処理後石英ガラス25を加熱加圧することにより、泡30に起因する窪みが発生することなく、平坦な表面をもつ所望形状の石英ガラス25を成形することができる。従って、大型のレンズやレチクル、或いは大型の液晶ディスプレイ等、広い面積の面を有する光学部材を得ることができると共に、歩留まりを向上させることができる。   As described above, when the bubble 30 generated during the synthesis of the quartz glass is present inside the pre-treatment quartz glass 25, the pre-treatment quartz glass 25 is cut from the center of the bubble 30 on the quartz glass inner side, thereby It cuts out from the quartz glass 25 before a process, and the quartz glass 25 after a pre process is obtained. Then, the desired shape having a flat surface without generating a dent due to the bubbles 30 by heating and pressurizing the pre-treated quartz glass 25 cut on the quartz glass inner side from the center of the bubbles 30 as described above. The quartz glass 25 can be formed. Therefore, an optical member having a large area, such as a large lens or reticle, or a large liquid crystal display, can be obtained, and the yield can be improved.

また、前処理後石英ガラス25の表面に残存する泡30の容積が、切断前の泡30の容積の50%以下であるため、より確実に泡30に起因する窪みの発生を防止できる。   In addition, since the volume of the foam 30 remaining on the surface of the quartz glass 25 after the pretreatment is 50% or less of the volume of the foam 30 before cutting, the occurrence of the depression due to the foam 30 can be prevented more reliably.

一方、以上のようにして、塊状の石英ガラス25を扁平形状に成形すれば、カーボン粒子により、離型性が向上することから、冷却時のモールド15と石英ガラス25との間に収縮量の差が発生しても、モールド15の離型層と石英ガラス25との間で相対移動を生じさせ易いことから、収縮量の差を逃がすことができる。   On the other hand, if the massive quartz glass 25 is formed into a flat shape as described above, the releasability is improved by the carbon particles. Therefore, the shrinkage amount between the mold 15 and the quartz glass 25 during cooling is reduced. Even if a difference occurs, it is easy to cause a relative movement between the release layer of the mold 15 and the quartz glass 25, so that the difference in shrinkage can be released.

従って、石英ガラス25及びモールド15に不必要な応力が加わることなく、処理した石英ガラス25のひび割れや、モールド15の破損を防止することができる。特に、屈折率を変化させるような成分を混入させ、粘性が低い場合でも、石英ガラス25のひび割れ等を効果的に防止することができる。   Therefore, it is possible to prevent cracks in the treated quartz glass 25 and damage to the mold 15 without applying unnecessary stress to the quartz glass 25 and the mold 15. In particular, even when a component that changes the refractive index is mixed and the viscosity is low, cracks and the like of the quartz glass 25 can be effectively prevented.

また、SiC粒子により、モールド15の酸化を防止でき、モールド15の汚染防止を図ることができると共に、モールド15と石英ガラス25との反応を防止することができ、石英ガラス25への浸炭防止を図り、変質層が縮小され、品質良好部分の拡大が図られる。従って、処理後の石英ガラス25は、表面に凸凹が生じることなく、亀裂の発生も防止できる。   Further, the SiC particles can prevent the mold 15 from being oxidized, prevent the mold 15 from being contaminated, prevent the mold 15 from reacting with the quartz glass 25, and prevent carburization of the quartz glass 25. As a result, the altered layer is reduced, and the portion with good quality is enlarged. Therefore, the treated quartz glass 25 can prevent the occurrence of cracks without causing irregularities on the surface.

しかも、離型層を設けることにより、石英ガラス25とモールド15とが反応して融着するのを防止できるため、モールド15や石英ガラス25の破損を防止することができる。
[発明の実施の形態2]
In addition, since the release layer is provided, it is possible to prevent the quartz glass 25 and the mold 15 from reacting and fusing, so that the mold 15 and the quartz glass 25 can be prevented from being damaged.
[Embodiment 2 of the Invention]

図3には、この発明の実施の形態2を説明する。   A second embodiment of the present invention will be described with reference to FIG.

この実施の形態2の前処理方法は、前処理前石英ガラス25の内部に図3(a)に示すように石英ガラス合成時に発生した泡30が存在する場合、前処理前石英ガラス25の表面から、その泡30まで貫通する貫通孔31を形成することにより、泡30を外部と連通させた前処理後石英ガラス25を得る。   In the pretreatment method of the second embodiment, when the bubbles 30 generated during the synthesis of the quartz glass are present inside the pretreatment quartz glass 25 as shown in FIG. Then, by forming a through-hole 31 that penetrates to the bubble 30, a pre-treated quartz glass 25 that allows the bubble 30 to communicate with the outside is obtained.

この貫通孔31の直径D1は泡30の直径D2の50%以上であると共に、貫通孔31の長さLが泡30の直径D2の2倍以下に形成されている。   The diameter D1 of the through hole 31 is 50% or more of the diameter D2 of the bubble 30 and the length L of the through hole 31 is less than twice the diameter D2 of the bubble 30.

かかる前処理後石英ガラス25をモールド15内に収容して加熱加圧すると、その貫通孔31を介して泡30内の気体が逃げるため、泡30が潰れて消滅することとなる。   When the pre-treated quartz glass 25 is accommodated in the mold 15 and heated and pressurized, the gas in the bubble 30 escapes through the through-hole 31 and the bubble 30 is crushed and disappears.

しかも、貫通孔31の直径D1を泡30の直径D2の50%以上とすることにより、泡30内の気体の抜けをより確実に行うことができて、泡30を有効に消滅させることができる。   In addition, by setting the diameter D1 of the through hole 31 to 50% or more of the diameter D2 of the bubble 30, the gas in the bubble 30 can be more surely removed and the bubble 30 can be effectively extinguished. .

また、貫通孔31の長さLを泡30の直径D2の2倍以下とすることにより、泡30内の気体の抜けをより確実に行うことができて、泡30を有効に消滅させることができる。   Moreover, by making the length L of the through-hole 31 not more than twice the diameter D2 of the bubble 30, the gas in the bubble 30 can be more surely removed and the bubble 30 can be effectively extinguished. it can.

直径50mmの泡30を1つ含む合成された石英ガラス25を表1に示す泡断面形状の円筒形状に前処理して加工した後、上記成形装置10を用いて表1乃至4の実施例1〜6に示すような条件で加熱加圧処理を行った。この際の昇温速度は600℃/hrである。また、特別な記述のない場合は、成形時の加圧速度は5mm/分である。   Example 1 in Tables 1 to 4 using the molding apparatus 10 described above after pre-processing and processing the synthesized quartz glass 25 containing one bubble 30 having a diameter of 50 mm into a cylindrical shape having a foam cross-sectional shape shown in Table 1. The heating and pressurizing treatment was performed under the conditions shown in FIG. The temperature rising rate at this time is 600 ° C./hr. Further, unless otherwise specified, the pressing speed at the time of molding is 5 mm / min.

まず、表1の実施例1、2及び比較例1、2は、泡を含む切断面を持つ石英ガラスの加熱加圧処理をしたものである。   First, Examples 1 and 2 and Comparative Examples 1 and 2 in Table 1 are obtained by subjecting quartz glass having a cut surface containing bubbles to heat and pressure treatment.

実施例1,2は、実施の形態1の実施例で、直径50mmの泡30が中心から切断されることにより、泡断面直径が50mmに形成されている。この前処理後石英ガラス25をモールド15内に収容して加熱加圧処理を行う。そのように前処理を行うことにより、成形後の泡30を含む面は、その泡30の影響がなく、凹凸のない、平坦面となった。   Examples 1 and 2 are examples of the first embodiment, and a bubble 30 having a diameter of 50 mm is formed by cutting a bubble 30 having a diameter of 50 mm from the center. After this pretreatment, the quartz glass 25 is accommodated in the mold 15 and subjected to heat and pressure treatment. By performing the pretreatment in such a manner, the surface including the foam 30 after molding was not affected by the foam 30 and became a flat surface without unevenness.

これに対して、比較例1,2は、泡30の中心より外側で切断されることにより、泡断面直径がそれぞれ35mm、25mmであり、切断前の泡30の直径50mmより小さく形成されている。この石英ガラス25をモールド15内に収容して加熱加圧処理を行う。これによれば、上記実施例1,2と異なり、成形後の泡30を含む面には、その泡30の影響により、凹みが発生した。比較例2の方が泡断面直径が比較例1より小さく25mmであるため、成形後の泡30を含む面には、その泡30の影響により、より大きな凹みが発生した。   On the other hand, Comparative Examples 1 and 2 are cut outside the center of the foam 30 so that the foam cross-sectional diameters are 35 mm and 25 mm, respectively, and are smaller than the diameter of the foam 30 before cutting. . The quartz glass 25 is accommodated in the mold 15 and subjected to heat and pressure treatment. According to this, unlike the said Examples 1 and 2, the surface containing the bubble 30 after shaping | molding generate | occur | produced the dent by the influence of the bubble 30. FIG. Since Comparative Example 2 had a foam cross-sectional diameter smaller than Comparative Example 1 and 25 mm, a larger dent was generated on the surface including the foam 30 after molding due to the influence of the foam 30.

また、表2の実施例3、4は、内部に泡30を含む石英ガラス25に貫通孔31(穿孔処理)を施し、この前処理後石英ガラス25を加熱加圧処理したものである。比較例3は、内部に泡30を含む石英ガラス25に穿孔処理せずに加熱加圧処理をしたものである。   In Examples 3 and 4 of Table 2, through-holes 31 (drilling treatment) were performed on quartz glass 25 containing bubbles 30 therein, and quartz glass 25 was subjected to heat and pressure treatment after this pretreatment. In Comparative Example 3, the quartz glass 25 including the bubbles 30 inside is subjected to heat and pressure treatment without being subjected to perforation treatment.

実施例3,4は、図3(a)に示すように、直径50mmの泡30が深さ50mmの所の底面あるいは側面側に存在しており、この泡30まで穿孔ドリル径が25mmの貫通孔31を側面から開けて前処理を行った。そして、実施例3では、その前処理後石英ガラス25をNガス雰囲気内で加熱加圧を行うことにより、その泡30内の気体がその貫通孔31を介して抜けることにより、その泡30は殆ど消滅して、成形後の泡30を含む面はほぼ平坦となった。また、実施例4ではその前処理後石英ガラス25を真空中で加熱加圧を行うことにより、その泡30は消滅して、成形後の泡30を含む面は平坦となった。 In Examples 3 and 4, as shown in FIG. 3A, a bubble 30 having a diameter of 50 mm is present on the bottom surface or the side surface of the portion having a depth of 50 mm. The hole 31 was opened from the side surface for pretreatment. In Example 3, the pre-treated quartz glass 25 is heated and pressurized in an N 2 gas atmosphere, so that the gas in the bubble 30 escapes through the through hole 31, and the bubble 30. Almost disappeared, and the surface including the foam 30 after molding became almost flat. Moreover, in Example 4, the quartz glass 25 after the pretreatment was heated and pressurized in vacuum, so that the bubbles 30 disappeared, and the surface containing the molded bubbles 30 became flat.

これに対して、比較例3は、泡30まで貫通孔31を開けることなく、泡30が存在したまま加熱加圧処理を行っているため、その泡30内の気体が外部に抜けることがないことから、その泡30はその形状がやや扁平になった程度で、消滅することなく、泡30のまま存在してしまった。   On the other hand, since the comparative example 3 performs the heating and pressurizing process with the bubbles 30 existing without opening the through holes 31 to the bubbles 30, the gas in the bubbles 30 does not escape to the outside. For this reason, the bubble 30 remained in the bubble 30 without disappearing to the extent that its shape was slightly flattened.

さらに、表3の実施例5及び比較例4は、内部に泡30を含む石英ガラス25に貫通孔31を穿孔処理した後、加圧速度を変えて加熱加圧処理をしたものである。   Further, Example 5 and Comparative Example 4 in Table 3 are obtained by subjecting the quartz glass 25 containing the bubbles 30 to the through holes 31 to be subjected to heat and pressure treatment at different pressure rates.

実施例5は、上記実施例4のように前処理した後、加圧速度を0.1mm/minとして加熱加圧した。その結果、成形後の泡30を含む面は極めて平坦となった。これに対して、比較例4は、加圧速度を20mm/minとして加熱加圧した。その結果、成形後の泡30を含む面はほぼ平坦となった。   In Example 5, after pretreatment as in Example 4 above, heating and pressurization were performed at a pressurization rate of 0.1 mm / min. As a result, the surface including the foam 30 after molding became extremely flat. On the other hand, Comparative Example 4 was heated and pressurized at a pressing speed of 20 mm / min. As a result, the surface including the foam 30 after molding became substantially flat.

また、表4の実施例6は上記実施例5の処理後、更に不活性ガスを導入し、再度、加熱加圧成形した際の形状と歪みの値である。   In addition, Example 6 in Table 4 shows the shape and strain values when an inert gas is further introduced after the treatment of Example 5 and the heat and pressure molding is performed again.

これによれば、石英ガラス25内の温度分布が小さくなるため、成形後の石英ガラス25の形状、寸法を所望の形にすることが可能になることから、成型品の角のRの大きさが、実施例5では5mmであったのに対し、実施例6では2mmとなり、実施例6の方がRが小さくなった。また、成形後の石英ガラス25の応力歪みが小さくなることから、歪み最大値は、実施例5が60nm/cmであったのに対し、実施例6では10nm/cmとなり、実施例6の方が歪み最大値が小さくなった。   According to this, since the temperature distribution in the quartz glass 25 becomes small, it becomes possible to make the shape and dimensions of the quartz glass 25 after molding into a desired shape. However, while it was 5 mm in Example 5, it was 2 mm in Example 6, and R was smaller in Example 6. Further, since the stress strain of the quartz glass 25 after molding becomes small, the maximum strain value was 60 nm / cm in Example 5, whereas it was 10 nm / cm in Example 6. However, the maximum distortion value became smaller.

Figure 2006327884
Figure 2006327884

Figure 2006327884
Figure 2006327884

Figure 2006327884
Figure 2006327884

Figure 2006327884
Figure 2006327884

この発明の実施の形態1の成形装置の一部を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows a part of shaping | molding apparatus of Embodiment 1 of this invention. 同実施の形態1の前処理行程を示す断面図である。It is sectional drawing which shows the pre-processing process of the same Embodiment 1. この発明の実施の形態2にかかる前処理行程を示す断面図である。It is sectional drawing which shows the pre-processing process concerning Embodiment 2 of this invention.

符号の説明Explanation of symbols

10 成形装置
11 真空チャンバ
13 カーボンヒータ
15 グラファイト製モールド
23 天板
25 石英ガラス
26 シリンダロッド
30 泡
31 貫通孔
10 Molding equipment
11 Vacuum chamber
13 Carbon heater
15 Graphite mold
23 Top plate
25 quartz glass
26 Cylinder rod
30 foam
31 Through hole

Claims (8)

モールド内に前処理後石英ガラスを収容して、該前処理後石英ガラスを加熱加圧することにより、略平坦な表面をもつ所望形状の石英ガラスを成形する方法において、
前記前処理前石英ガラスの内部に石英ガラス合成時に発生した泡が存在する場合、該前処理前石英ガラスを、前記泡の中心より石英ガラス内部側で切断することにより、前記前処理前石英ガラスから切り出して前記前処理後石英ガラスを得ることを特徴とする石英ガラスの前処理方法。
In a method of forming a desired shape of quartz glass having a substantially flat surface by housing the quartz glass after pretreatment in a mold and heating and pressurizing the quartz glass after pretreatment,
When bubbles generated during the synthesis of quartz glass are present inside the pretreatment quartz glass, the pretreatment quartz glass is cut by cutting the pretreatment quartz glass on the quartz glass inner side from the center of the bubbles. A quartz glass pretreatment method, characterized in that the quartz glass is obtained by cutting out the glass from the pretreatment.
モールド内に前処理後石英ガラスを収容して、該前処理後石英ガラスを加熱加圧することにより、略平坦な表面をもつ所望形状の石英ガラスを成形する方法において、
前記前処理前石英ガラスの内部に石英ガラス合成時に発生した泡が存在する場合、前記前処理前石英ガラスの表面から前記泡まで貫通する貫通孔を形成することにより、前記泡を外部と連通させた前記前処理後石英ガラスを得ることを特徴とする石英ガラスの前処理方法。
In a method of forming a desired shape of quartz glass having a substantially flat surface by housing the quartz glass after pretreatment in a mold and heating and pressurizing the quartz glass after pretreatment,
When bubbles generated during the synthesis of quartz glass are present inside the pre-treated quartz glass, the bubbles are communicated with the outside by forming a through-hole penetrating from the surface of the quartz glass before the pre-treatment to the bubbles. A method for pretreating quartz glass, characterized in that quartz glass is obtained after the pretreatment.
請求項1に記載の石英ガラスの前処理方法において、前記前処理後石英ガラスの表面に残存する泡の容積が、切断前の泡の容積の50%以下であることを特徴とする石英ガラスの前処理方法。 2. The pretreatment method for quartz glass according to claim 1, wherein the volume of bubbles remaining on the surface of the quartz glass after the pretreatment is 50% or less of the volume of bubbles before cutting. Pre-processing method. 請求項2に記載の石英ガラスの前処理方法において、前記貫通孔の直径が前記泡の直径の50%以上であることを特徴とする石英ガラスの前処理方法。 3. The pretreatment method for quartz glass according to claim 2, wherein the diameter of the through hole is 50% or more of the diameter of the bubble. 請求項2に記載の前処理方法において、前記貫通孔の長さが前記泡の直径の2倍以下であることを特徴とする石英ガラスの前処理方法。 The pretreatment method according to claim 2, wherein the length of the through hole is not more than twice the diameter of the bubble. 請求項1乃至5の何れか一つに記載の石英ガラスの前処理方法よって得られた前記前処理後石英ガラスを、真空雰囲気内で加熱加圧することにより、略平坦な表面をもつ所望形状の石英ガラスを成形することを特徴とする石英ガラスの成形方法。 The pre-treated quartz glass obtained by the quartz glass pre-treatment method according to any one of claims 1 to 5 is heated and pressed in a vacuum atmosphere to obtain a desired shape having a substantially flat surface. A method for forming quartz glass, comprising forming quartz glass. 請求項1乃至5の何れか一つに記載の前処理方法よって得られた前記前処理後石英ガラスを、0.1mm/分以下の速度で加熱加圧することにより、略平坦な表面をもつ所望形状の石英ガラスを成形することを特徴とする石英ガラスの成形方法。 A desired shape having a substantially flat surface by heating and pressurizing the pre-treated quartz glass obtained by the pre-treatment method according to claim 1 at a speed of 0.1 mm / min or less. A method for molding quartz glass, comprising molding quartz glass. 請求項6又は7に記載の成形方法で所望形状の石英ガラスを成形した後、更に、前記モールド内に、Nガス等の不活性ガスを導入して雰囲気温度を均一にした後、更に前記石英ガラスを加熱加圧することを特徴とする石英ガラスの成形方法。 After molding the desired shape quartz glass by the molding method according to claim 6 or 7, further introducing an inert gas such as N 2 gas into the mold to make the ambient temperature uniform, and further A method for forming quartz glass, comprising heating and pressurizing quartz glass.
JP2005154884A 2005-05-27 2005-05-27 Pretreatment method of quartz glass and molding method of quartz glass Expired - Fee Related JP4655761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154884A JP4655761B2 (en) 2005-05-27 2005-05-27 Pretreatment method of quartz glass and molding method of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154884A JP4655761B2 (en) 2005-05-27 2005-05-27 Pretreatment method of quartz glass and molding method of quartz glass

Publications (3)

Publication Number Publication Date
JP2006327884A true JP2006327884A (en) 2006-12-07
JP2006327884A5 JP2006327884A5 (en) 2008-05-29
JP4655761B2 JP4655761B2 (en) 2011-03-23

Family

ID=37549966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154884A Expired - Fee Related JP4655761B2 (en) 2005-05-27 2005-05-27 Pretreatment method of quartz glass and molding method of quartz glass

Country Status (1)

Country Link
JP (1) JP4655761B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162392A (en) * 2010-02-09 2011-08-25 Tosoh Quartz Corp Mold material for production of quartz glass molding and method for producing quartz glass molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558657A (en) * 1991-08-31 1993-03-09 Shinetsu Quartz Prod Co Ltd Production of synthetic silica glass molding for optical use
JPH05163026A (en) * 1991-12-12 1993-06-29 Matsushita Electric Ind Co Ltd Glass raw material for forming optical element and its production
JP2002255577A (en) * 2000-12-26 2002-09-11 Shin Etsu Chem Co Ltd Synthetic quartz glass member and method for manufacturing the same
JP2004307264A (en) * 2003-04-07 2004-11-04 Nikon Corp Method of molding quartz glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558657A (en) * 1991-08-31 1993-03-09 Shinetsu Quartz Prod Co Ltd Production of synthetic silica glass molding for optical use
JPH05163026A (en) * 1991-12-12 1993-06-29 Matsushita Electric Ind Co Ltd Glass raw material for forming optical element and its production
JP2002255577A (en) * 2000-12-26 2002-09-11 Shin Etsu Chem Co Ltd Synthetic quartz glass member and method for manufacturing the same
JP2004307264A (en) * 2003-04-07 2004-11-04 Nikon Corp Method of molding quartz glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162392A (en) * 2010-02-09 2011-08-25 Tosoh Quartz Corp Mold material for production of quartz glass molding and method for producing quartz glass molding

Also Published As

Publication number Publication date
JP4655761B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
US10843954B2 (en) Synthetic opaque quartz glass and method for producing the same
JP2009530217A (en) Production of large articles with synthetic vitreous silica
JP4341277B2 (en) Method of forming quartz glass
JP4655761B2 (en) Pretreatment method of quartz glass and molding method of quartz glass
JP2004307263A (en) Method and apparatus for molding quartz glass
JP2004307266A (en) Method and apparatus for forming quartz glass
EP1783103B1 (en) Method for forming quartz glass
TW201420532A (en) Production method for SiO2-TiO2 glass and production method for photomask substrate comprising said glass
JP2004307265A (en) Molding apparatus for quartz glass
JP2002053330A (en) Method for molding synthetic quartz glass and synthetic quartz glass
JP2004307267A (en) Molding apparatus of quartz glass
TWI552967B (en) A manufacturing method of an optical element and a manufacturing apparatus for an optical element
JP4760137B2 (en) Method of forming quartz glass
JP2000219523A (en) Forming method of quartz glass, forming device and quartz glass produced by the method
JP2011088771A (en) Method of molding quartz glass material using mold material
JP2010024084A (en) Method of molding quartz glass material using mold material
EP1127857A3 (en) Fluorine-containing synthetic quartz glass and method of production
JP5053206B2 (en) Method of forming quartz glass material using mold material
JP5763612B2 (en) Rod lens manufacturing method and manufacturing apparatus
JP6713382B2 (en) Quartz glass crucible manufacturing method and quartz glass crucible
JP4022678B2 (en) Method for producing high purity transparent silica glass
JP2007055842A (en) METHOD FOR MOLDING SILICA GLASS CONTAINING TiO2
JP2008247631A (en) Method for manufacturing titania-silica glass
JP2005145767A (en) Black silica glass molding and method for producing the same
JP2007131472A (en) MOLDING METHOD OF SILICA GLASS CONTAINING TiO2

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees