JP2005145767A - Black silica glass molding and method for producing the same - Google Patents

Black silica glass molding and method for producing the same Download PDF

Info

Publication number
JP2005145767A
JP2005145767A JP2003386763A JP2003386763A JP2005145767A JP 2005145767 A JP2005145767 A JP 2005145767A JP 2003386763 A JP2003386763 A JP 2003386763A JP 2003386763 A JP2003386763 A JP 2003386763A JP 2005145767 A JP2005145767 A JP 2005145767A
Authority
JP
Japan
Prior art keywords
silica glass
molded body
glass molded
black
black silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003386763A
Other languages
Japanese (ja)
Other versions
JP4452062B2 (en
Inventor
Hironari Osada
裕也 長田
Masayuki Kudo
正行 工藤
Toru Tsuyoshi
徹 津吉
Shigeo Kimura
木村  茂雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Tosoh Corp
Original Assignee
Tosoh Quartz Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp, Tosoh Corp filed Critical Tosoh Quartz Corp
Priority to JP2003386763A priority Critical patent/JP4452062B2/en
Publication of JP2005145767A publication Critical patent/JP2005145767A/en
Application granted granted Critical
Publication of JP4452062B2 publication Critical patent/JP4452062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a black silica glass molding excellent in surface smoothness and light shielding properties and capable of markedly shortening a polishing time even when its polishing is necessary and to provide a method for producing the same. <P>SOLUTION: The molding has a linear transmittance of at most 5% to 200 to 5,000 nm light at a thickness of 1 mm, an apparent density of 2.10 to 2.20 g/cm<SP>3</SP>, a total content of Na, K, Mg, and Ca elements of at most 200 ppm, and having a surface roughness Ra of 0.05 to 1 μm on at least one surface. The black silica glass molding is obtained by kneading a silica glass powder comprising spherical particles of a particle diameter of 0.01 to 20 μm and contains 5 to 70 wt.% of 0.2 μm or smaller particles with an organic binder in a weight ratio of 70:30 to 90:10, injection-molding the mixture, degreasing the molding by heating in a non-oxidizing atmosphere at 0.1 to 5 atm, and vacuum-sintering the degreased molding at 1,200-1.400°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば光学機器の部品等に用いられる複雑形状でなおかつ寸法精度が要求される遮光性の黒色シリカガラス成形体及びその製造方法に関し、詳しくは平滑な表面を有し、後加工として研磨加工が不要、もしくは必要であっても加工時間が極めて短いため研磨加工の負担が軽微な、比較的小型の黒色シリカガラス成形体及びその製造方法に関するものである。   The present invention relates to a light-shielding black silica glass molded body that has a complicated shape and is required for dimensional accuracy, for example, used for parts of optical equipment and the like, and a method for producing the same. The present invention relates to a relatively small black silica glass molded body in which the processing time is extremely short even if processing is unnecessary or is necessary, and the burden of polishing processing is light, and a method for manufacturing the same.

近年、光産業を中心に、低熱膨張、高耐熱性のシリカガラス成形体を各種の装置、機器の小型部品として使用したいというニーズが高まっている。その一例としてプロジェクタ用光源ランプのリフレクタ基材が挙げられる。しかしながら、従来の透明なシリカガラスによるリフレクタ基材では、ランプの光は、リフレクタ(リフレクタ基材に反射膜を蒸着して得る)によって全反射されることはなく、数%の漏洩光がある。この漏洩光は、人間の肉眼に対しては有害であること、またプロジェクタ内部の電子部品に悪影響を及ぼすことが指摘されており、遮光性の高いシリカガラスのリフレクタ基材が望まれている。   In recent years, there has been an increasing need to use a low thermal expansion and high heat-resistant silica glass molded body as a small component of various apparatuses and devices, mainly in the optical industry. One example is a reflector substrate for a light source lamp for a projector. However, in a reflector substrate made of a conventional transparent silica glass, lamp light is not totally reflected by the reflector (obtained by depositing a reflective film on the reflector substrate), and there is a leakage light of several percent. It has been pointed out that the leaked light is harmful to the human naked eye and has an adverse effect on the electronic components inside the projector, and a silica glass reflector base material with high light shielding properties is desired.

上述したプロジェクタ用ランプのリフレクタ基材に限らず、各種装置、機器の部品として遮光性の高い黒色シリカガラス成形体は広く求められており、加えてその形状も小型化、複雑化、精密化してきている。従って、このような黒色シリカガラス成形体、及びそれを生産性良くかつ安価に製造できる技術が待望されている。   In addition to the projector lamp reflector substrate described above, a highly light-shielding black silica glass molded body is widely required as a component of various devices and equipment, and in addition, its shape has been reduced in size, complexity, and precision. ing. Therefore, such a black silica glass molded body and a technology capable of producing it with high productivity and low cost are desired.

これを解決する手段として、微細な炭素、炭化珪素、シリコン等の黒色微粒子を分散することにより遮光性を付与する手法が提案されている(特許文献1参照)。
その他、腐食性ガスに対して優れた耐食性を有する黒色シリカガラスの製造方法の手法として、シリカガラス粉末に有機バインダーを添加し、加熱して有機バインダーを分解して炭素を生成させ、焼結する方法が提案されている。(特許文献2参照)。
As means for solving this problem, a method of providing light shielding properties by dispersing fine black particles such as carbon, silicon carbide, and silicon has been proposed (see Patent Document 1).
In addition, as a method of manufacturing a black silica glass having excellent corrosion resistance against corrosive gas, an organic binder is added to silica glass powder, and the organic binder is decomposed by heating to generate carbon, followed by sintering. A method has been proposed. (See Patent Document 2).

特開2003−146676号公報(第17欄)JP 2003-146676 A (column 17)

特開2000−281430号公報(特許請求の範囲第2項)Japanese Unexamined Patent Publication No. 2000-281430 (claim 2)

上述の特許文献1においては、炭素等の黒色微粒子粉末をシリカガラス粉末と混合し、成形し、1000〜1700℃にて焼結する方法、あるいはシリカガラス粉末成形体もしくは多孔質な仮焼結体に、フェノール等の有機溶液を含浸にして1000〜1700℃の温度で焼結する方法が提案されている。しかしながら、前者の手法においてはシリカガラス粉末と黒色微粒子粉末を均一に混合することは困難であること、また後者の手法においては有機溶液を均一にシリカガラス粉末成形体や仮焼結体に含浸させることが困難であることから、得られるシリカガラス成形体は黒色ではあるが透光性を示す箇所が生じてしまう問題がある。   In the above-mentioned Patent Document 1, black fine particle powder such as carbon is mixed with silica glass powder, molded, and sintered at 1000 to 1700 ° C., or a silica glass powder molded body or a porous temporary sintered body. In addition, a method of impregnating an organic solution such as phenol and sintering at a temperature of 1000 to 1700 ° C. has been proposed. However, in the former method, it is difficult to mix the silica glass powder and the black fine particle powder uniformly, and in the latter method, the silica glass powder molded body and the preliminary sintered body are uniformly impregnated with the organic solution. However, the obtained silica glass molded body is black, but there is a problem that a portion showing translucency is generated.

また特許文献2においては、酸化雰囲気にて有機バインダーを分解して炭素を生成して黒色化するが、酸化雰囲気では成形体内部に有機バインダーの分解の程度にむらが生じやすく、場所場所で生成する炭素量が不均一になり、やはり透光
性を示す箇所が生じてしまう問題がある。
Further, in Patent Document 2, the organic binder is decomposed in an oxidizing atmosphere to generate carbon and blackened. However, in the oxidizing atmosphere, the degree of decomposition of the organic binder tends to be uneven, and the carbon is generated in a place. There is a problem that the amount of carbon to be produced becomes non-uniform, and a portion showing translucency is also generated.

さらにいずれの手法においても所望の寸法精度を得るのは困難であり、特に滑らかな表面を得るのは困難であり、各種部品として必要な表面粗さを得るには、焼結後、多大な研磨工程を経なければならない問題がある。   Furthermore, it is difficult to obtain the desired dimensional accuracy in any of the methods, and in particular, it is difficult to obtain a smooth surface. To obtain the surface roughness required for various parts, a large amount of polishing is required after sintering. There is a problem that has to go through the process.

本発明は、比較的小型の、黒色シリカガラス成形体で、表面平滑性、遮光性に優れ、また用途によって研磨加工が必要であっても研磨加工時間を大幅に短縮できる、黒色シリカガラス成形体及びその製造方法を提供することにある。   The present invention is a relatively small, black silica glass molded body that has excellent surface smoothness and light shielding properties, and can greatly reduce the polishing time even if polishing is required depending on the application. And a manufacturing method thereof.

本発明者等は、上記問題点に関して鋭意検討を行った結果、特定の範囲の粒度を有する球状粒子であり、その粒度分布において0.2μm以下の粒子の含有率がある特定の範囲内に入るシリカガラス粉末と有機バインダーとを所定の配合で十分に混練して得た混練物を用いた射出成形と、特定の範囲に加圧した非酸化性ガス雰囲気での脱脂、及び真空焼結法を組み合わせることにより、全体に渡って黒色の度合いにむらがなく、高い遮光性を示し、滑らかな表面を有する黒色シリカガラス成形体が得られることを見出し、本発明を完成するに至ったものである。   As a result of intensive studies on the above problems, the inventors of the present invention are spherical particles having a specific range of particle sizes, and the particle size distribution is within a specific range with a particle content of 0.2 μm or less. Injection molding using a kneaded product obtained by sufficiently kneading silica glass powder and an organic binder with a predetermined composition, degreasing in a non-oxidizing gas atmosphere pressurized to a specific range, and vacuum sintering method Through the combination, the present inventors have found that a black silica glass molded body having a smooth surface and a smooth surface can be obtained with no unevenness in the degree of black throughout, resulting in the completion of the present invention. .

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の黒色シリカガラス成形体は、厚さ1mmでの光直線透過率が200nm〜5000nmの波長域で5%以下であり、好ましくは3%以下である。5%を超えると十分な遮光性が得られず用途が大幅に限定されてしまう。   The black silica glass molded body of the present invention has an optical linear transmittance at a thickness of 1 mm of 5% or less, preferably 3% or less in a wavelength region of 200 nm to 5000 nm. If it exceeds 5%, sufficient light shielding properties cannot be obtained, and the application is greatly limited.

本発明の黒色シリカガラス成形体の見掛密度は2.10〜2.20g/cmである。2.20g/cmは黒色シリカガラス成形体の真密度である。見掛密度が2.10g/cm未満では、気泡がガラスの表面に現れ易く、本発明の表面粗さを満足するものは得られ難い。密度は一般的なアルキメデス法によって測定できる。 The apparent density of the black silica glass molded body of the present invention is 2.10 to 2.20 g / cm 3 . 2.20 g / cm 3 is the true density of the black silica glass molded body. If the apparent density is less than 2.10 g / cm 3 , bubbles are likely to appear on the surface of the glass, and it is difficult to obtain one that satisfies the surface roughness of the present invention. The density can be measured by a general Archimedes method.

本発明の黒色シリカガラス成形体に含有されるNa,K,Mg及びCa元素の合計は200ppm以下であり、好ましくは、100ppm以下である。200ppmを超えると、例えばプロジェクタ用光源ランプのリフレクタ基材として使用する場合、ランプから発せられる熱線によって黒色シリカガラスが結晶化して極端にもろくなってしまうからである。   The total of Na, K, Mg and Ca elements contained in the black silica glass molded body of the present invention is 200 ppm or less, and preferably 100 ppm or less. If it exceeds 200 ppm, for example, when used as a reflector base material for a projector light source lamp, the black silica glass is crystallized by heat rays emitted from the lamp and becomes extremely brittle.

本発明の黒色シリカガラス成形体の少なくとも1つの面の表面粗さRaが0.05〜1μmである。用途によって研磨加工が必要な場合、表面粗さが1μmを超えると、それを用いて精密加工部品を得るための研磨加工に時間がかかり、研磨加工工程で欠陥、割れ、歪み、応力等が発生し、得られる部品が短寿命のものとなる。一方、研磨加工なしに表面粗さRaが0.05μm未満のものを得ることは困難である。表面粗さは、一般的な触針式の表面粗さ計で測定することができる。   The surface roughness Ra of at least one surface of the black silica glass molded body of the present invention is 0.05 to 1 μm. If polishing is required depending on the application, if the surface roughness exceeds 1 μm, it will take time to obtain precision processed parts, and defects, cracks, distortion, stress, etc. will occur in the polishing process. In addition, the obtained part has a short life. On the other hand, it is difficult to obtain a surface roughness Ra of less than 0.05 μm without polishing. The surface roughness can be measured with a general stylus type surface roughness meter.

従来、研磨加工をすることによって本発明の範囲の表面粗さをもった黒色シリカガラス製品を得ることはできるが、本発明では、その様な研磨をする前から表面粗さの小さな平滑面をもった黒色シリカガラス成形体を得ることを目的としている。そのため、本発明の黒色シリカガラス成形体は従来の研磨法によって得られるものとは異なるものである。なぜなら従来の表面粗さの大きい黒色シリカガラス成形体を用いて本発明と同レベルの表面粗さに仕上げたものは、研磨による黒色シリカガラス製品への負荷により、欠陥、割れ、ひずみ、応力が大きい。すなわち従来法による黒色シリカガラス成形体を研磨することによって本発明の表面粗さの範囲とした製品と、本発明の黒色シリカガラス成形体の違いは、製品物性(欠陥、割れ、応力、歪み)あるいはそれらに起因する製品寿命の違いである。さらに顕微鏡等による表面状態等からも違いを特定できる。本発明の黒色シリカガラス成形体は、単に研磨工程を省略できるというメリットだけでなく、物質として差別化されたものである。   Conventionally, it is possible to obtain a black silica glass product having a surface roughness within the range of the present invention by polishing, but in the present invention, a smooth surface having a small surface roughness is required before such polishing. It aims at obtaining the black silica glass molding which has. Therefore, the black silica glass molded body of the present invention is different from that obtained by the conventional polishing method. This is because a conventional black silica glass molded body having a large surface roughness and finished to the same level of surface roughness as in the present invention has defects, cracks, strains, and stress due to the load applied to the black silica glass product by polishing. large. That is, the difference between the product made the surface roughness range of the present invention by polishing the black silica glass molded body by the conventional method and the black silica glass molded body of the present invention is the product physical properties (defects, cracks, stress, distortion). Or it is the difference in the product life resulting from them. Furthermore, the difference can be identified from the surface state by a microscope or the like. The black silica glass molded body of the present invention is not only a merit that the polishing step can be omitted, but also differentiated as a substance.

本発明の黒色シリカガラス成形体は非晶質である。シリカガラスは焼結条件によって結晶質のクリストバライトが析出するが、その様な結晶相が析出すると、黒色シリカガラス成形体表面が粗くなり、本発明の表面粗さの範囲に入らない。また結晶化相が黒色シリカガラス成形体内に生成すると、そこを起点として割れが発生し易い。非晶質かどうかは、一般的なエックス線結晶構造回折で評価することができる。   The black silica glass molded body of the present invention is amorphous. In the silica glass, crystalline cristobalite is precipitated depending on the sintering conditions. However, when such a crystal phase is precipitated, the surface of the black silica glass molded body becomes rough and does not fall within the surface roughness range of the present invention. Further, when the crystallized phase is generated in the black silica glass molded body, cracks are likely to occur from that point. Whether it is amorphous or not can be evaluated by general X-ray crystal structure diffraction.

次に、本発明の黒色シリカガラス成形体の製造方法について説明する。   Next, the manufacturing method of the black silica glass molding of this invention is demonstrated.

本発明の黒色シリカガラス成形体は、シリカガラス原料粉末を、有機バインダーと混練し、当該混練物を射出成形した後、加熱脱脂、焼結する方法を用いる。本発明では、特に用いるシリカガラスの原料粉末の物性、有機バインダーとの混合比、脱脂、焼結方法に特徴を有する。   The black silica glass molded body of the present invention uses a method in which silica glass raw material powder is kneaded with an organic binder, the kneaded material is injection molded, and then heated and degreased and sintered. In this invention, it has the characteristics in the physical property of the raw material powder of the silica glass to be used, a mixing ratio with an organic binder, degreasing, and a sintering method.

本発明で用いるシリカガラス粉末は、最大径と最小径(それぞれ一次粒径)が0.01〜20μmの球状粒子からなる粉末である。最大径が20μmを超えるものを用いると、焼結時に非晶質でなく結晶質であるクリストバライトに転移し易くなる。また、最大径が20μmを超える大きな粒子を含む原料では、射出成形に使用する射出成形機や金型の表面を摩耗し、金属の削りカスが異物となって射出成形体に混入し易い。その様な異物は、単なる不純物としてだけでなく、脱脂体の焼成において結晶化の起点となるため好ましくない。一方、最小径が0.01μm未満の原料粉末を用いると、焼結活性が高すぎるため、ひずみ、内部応力の高いガラスとなり、研磨加工において割れが生じやすくなる。さらにその様な微粒子ではバインダーとの混練が困難であり、実質的に射出成形できる混練物は得られない。好ましい最大径と最小径の範囲としては、0.05〜10μmである。   The silica glass powder used in the present invention is a powder composed of spherical particles having a maximum diameter and a minimum diameter (each primary particle diameter) of 0.01 to 20 μm. When a material having a maximum diameter exceeding 20 μm is used, it becomes easy to transfer to cristobalite which is not amorphous but crystalline during sintering. In addition, a raw material containing large particles having a maximum diameter exceeding 20 μm wears the surface of an injection molding machine or a mold used for injection molding, and metal shavings are easily mixed into the injection molded body as foreign matter. Such a foreign substance is not preferable because it becomes a starting point for crystallization not only as an impurity but also in the firing of the degreased body. On the other hand, when a raw material powder having a minimum diameter of less than 0.01 μm is used, since the sintering activity is too high, it becomes a glass having high strain and internal stress, and cracking is likely to occur in polishing. Further, such fine particles are difficult to knead with a binder, and a kneaded material that can be substantially injection-molded cannot be obtained. A preferable range of the maximum diameter and the minimum diameter is 0.05 to 10 μm.

また、本発明で用いるシリカガラス粉末の一次粒子の平均粒径は、0.1〜1μmが好ましく、0.1〜0.5μmがより好ましい。平均粒径が、0.1μm未満の粉末を用いると、焼結活性が高すぎるため、ひずみ、内部応力の高いガラスとなり、研磨加工において割れが生じる場合がある。更に、そのような微粒子ではバインダーとの混練が困難であり、実質的に射出成形できる混練物を得ることが難しい場合が多い。一方、平均粒径が1μmを超える場合には、焼結時に緻密化が進行しにくい上、結晶質であるクリストバライトに転移しやすく、非晶質のガラス成形体が得られない場合がある。   Moreover, 0.1-1 micrometer is preferable and, as for the average particle diameter of the primary particle of the silica glass powder used by this invention, 0.1-0.5 micrometer is more preferable. When a powder having an average particle size of less than 0.1 μm is used, the sintering activity is too high, so that the glass has high strain and internal stress, and cracking may occur in the polishing process. Furthermore, such fine particles are difficult to knead with a binder, and it is often difficult to obtain a kneaded material that can be substantially injection molded. On the other hand, when the average particle diameter exceeds 1 μm, densification does not easily proceed during sintering, and it is likely to transfer to crystalline cristobalite, and an amorphous glass molded body may not be obtained.

また本発明で用いるシリカガラス粉末の粒子の形状は球状である。一般的なシリカガラスの原料には例えばガラスインゴットを破砕して得られる粉末等があるが、その様な原料粉末は角張った粒子からなっている。このような形状の粉末を用いると、射出成形時に射出成形機内の加熱シリンダー、スクリューといった直接混練物が接触する金属製部品の表面を削ってしまい、それらが異物として射出成形体に取り込まれてしまう。その様な異物も焼結時に結晶化の起点となるため好ましくない。   The shape of the silica glass powder particles used in the present invention is spherical. Common raw materials for silica glass include, for example, powder obtained by crushing a glass ingot, and such raw material powder is composed of angular particles. If such shaped powder is used, the surface of the metal part that is directly in contact with the kneaded material such as the heating cylinder and screw in the injection molding machine during the injection molding is scraped, and these are taken into the injection molded body as foreign matter. . Such foreign matter is not preferable because it is a starting point for crystallization during sintering.

シリカガラスの球状粒子の調製方法としては、結晶質である石英粉末を酸水素火炎中に噴霧する、或いは金属シリコン粉末を酸素気流中で燃焼させる方法が例示できる。   Examples of the method for preparing the spherical particles of silica glass include a method in which crystalline quartz powder is sprayed into an oxyhydrogen flame, or metal silicon powder is burned in an oxygen stream.

ここで本発明における球状粒子は、具体的には角張った形状でなければ良く、必ずしも完全な真球状であることを制限するものではない。例えば、丸みを帯びた饅頭型、へちま型等の変形したものが含まれていても構わない。   Here, the spherical particles in the present invention are not specifically limited to an angular shape, and are not necessarily limited to being perfectly spherical. For example, a deformed shape such as a rounded bun type or a blunt type may be included.

本発明で用いるシリカガラス粉末は、0.2μm以下の粒子が全体の5〜70重量%、好ましくは10〜50重量%である。0.2μm以下の粒子が5重量%未満の場合には、焼結時に緻密化が進行しにくい上に、結晶質であるクリストバライトに転移しやすく、非晶質のシリカガラス成形体が得られない。一方、70重量%を超える場合には、焼結活性が高すぎるため、歪み、内部応力の高いガラスとなり易く、研磨加工において割れが生じやすくなる。さらにその様な粉末ではバインダーとの混練が困難であり、実質的に射出成形できる混練物は得られない。   In the silica glass powder used in the present invention, particles of 0.2 μm or less are 5 to 70% by weight, preferably 10 to 50% by weight of the whole. If the particle size is less than 5% by weight, densification is difficult to proceed during sintering, and it is easy to transfer to crystalline cristobalite, and an amorphous silica glass molded body cannot be obtained. . On the other hand, when it exceeds 70% by weight, since the sintering activity is too high, the glass tends to be high in strain and internal stress, and cracks are likely to occur in the polishing process. Further, such powders are difficult to knead with a binder, and a kneaded material that can be substantially injection-molded cannot be obtained.

このような粒度分布のシリカガラス粉末を原料に用いることにより、本発明の範囲の表面粗さが得られる理由は以下のように考えられる。本発明の範囲に入るシリカガラス粉末を用いた射出成形体では、0.2μmを境に、大径側の粒子群が形成する粉末成形体の隙間に、小径側の粒子群が充填された緻密充填構造が形成されるため、焼結して得られる黒色シリカガラス成形体表面には凹凸がなく平滑な面が得られる。またこのような射出成形体では、脱脂後、焼結する際に内部応力、歪みが発生しにくく、また焼結工程で緻密化が進行しやすく、結晶化が起こりにくい。   The reason why the surface roughness within the range of the present invention can be obtained by using the silica glass powder having such a particle size distribution as a raw material is considered as follows. In the injection-molded article using silica glass powder that falls within the scope of the present invention, the dense particles in which the small-diameter side particle group is filled in the gaps of the powder-molded body formed by the large-diameter side particle group with 0.2 μm as a boundary. Since the filled structure is formed, the surface of the black silica glass molded body obtained by sintering has no irregularities and a smooth surface is obtained. Further, in such an injection-molded body, internal stress and distortion are less likely to occur during sintering after degreasing, and densification is likely to proceed in the sintering process, and crystallization is unlikely to occur.

またこのような射出成形体では含有される有機バインダーが均一にかつ細かく分散された状態で混合されており、さらに本発明の範囲の脱脂条件にて脱脂することにより、有機バインダーが熱分解して生成する炭素粒子は、脱脂体(脱脂工程後の射出成形体を指す)の内部に均一にかつ細かく分散される。このような脱脂体を本発明の範囲の焼結条件にて焼結することにより、むらのない黒色を呈する遮光性の高い黒色シリカガラス成形体を得ることができる。   Further, in such an injection molded body, the organic binder contained is mixed in a uniformly and finely dispersed state, and further, the organic binder is thermally decomposed by degreasing under the degreasing conditions within the scope of the present invention. The produced carbon particles are uniformly and finely dispersed inside the degreased body (referring to an injection molded body after the degreasing process). By sintering such a degreased body under the sintering conditions within the scope of the present invention, a black silica glass molded body having a high light-shielding property and exhibiting black with no unevenness can be obtained.

本発明のシリカガラス粉末の純度は高純度であることが好ましい。特に焼結中の結晶化を回避するためには、アルカリ金属元素及びアルカリ土類金属元素を少なくすることが重要であり、Na,K,Mg及びCa元素の合計が200ppm以下であり、望ましくは100ppm以下である。   The purity of the silica glass powder of the present invention is preferably high. In particular, in order to avoid crystallization during sintering, it is important to reduce alkali metal elements and alkaline earth metal elements, and the total of Na, K, Mg and Ca elements is 200 ppm or less, preferably 100 ppm or less.

本発明では、上述の粒度分布を有するシリカガラス粉末を用い、射出成形によって所望の形状、寸法精度の黒色シリカガラス成形体を得る。   In this invention, the silica glass powder which has the above-mentioned particle size distribution is used, and a black silica glass molding with a desired shape and dimensional accuracy is obtained by injection molding.

射出成形するには、シリカガラス粉末と有機バインダーとを混練して射出成形用の混練物を得る。ここで双方の混合比は重要であり、シリカガラス粉末と有機バインダーの合計重量において、シリカガラス粉末の割合が70〜90重量%となるように調製する。シリカガラス粉末の比率が90重量%を超えると、混練すること自体できず、射出成形可能な混練物を得ることができない。仮にできたとしても十分な遮光性が得られない。一方、シリカガラス粉末が70重量%未満では、見掛密度の高い黒色シリカガラス成形体を得ることができず、滑らかな表面を有するものを得ることができない。好ましくは、70〜80重量%である。   For injection molding, silica glass powder and an organic binder are kneaded to obtain a kneaded product for injection molding. Here, the mixing ratio of both is important, and it is prepared such that the ratio of the silica glass powder is 70 to 90% by weight in the total weight of the silica glass powder and the organic binder. When the ratio of the silica glass powder exceeds 90% by weight, kneading itself cannot be performed, and a kneaded product that can be injection-molded cannot be obtained. Even if it can be made, sufficient light shielding properties cannot be obtained. On the other hand, if the silica glass powder is less than 70% by weight, a black silica glass molded body having a high apparent density cannot be obtained, and a product having a smooth surface cannot be obtained. Preferably, it is 70 to 80% by weight.

用いる有機バインダーは特に限定なく、慣用のものを用いることができる。例えば、ポリメチルメタクリレート、ポリブチルメタクリレート等のアクリル系樹脂、ポリエチレン、ポリプロピレン、エチレン・酢酸ビニル共重合体、エチレン・エチルアクリレート共重合体等のオレフィン系樹脂、パラフィンワックス、マイクロクリスタリンワックス、蜜ロウ等のワックス類など広範囲の熱可塑性樹脂を使用することができる。また、シリカガラス粉末の有機バインダー中での分散性を上げると伴に、混練物の流動性を向上させるためにステアリン酸などの脂肪酸、ステアリルアルコール等の高級アルコール類等を添加して用いても良い。   The organic binder to be used is not particularly limited, and a conventional one can be used. For example, acrylic resins such as polymethyl methacrylate and polybutyl methacrylate, olefin resins such as polyethylene, polypropylene, ethylene / vinyl acetate copolymer, ethylene / ethyl acrylate copolymer, paraffin wax, microcrystalline wax, beeswax, etc. A wide range of thermoplastic resins such as waxes can be used. In addition to increasing the dispersibility of the silica glass powder in the organic binder, fatty acid such as stearic acid, higher alcohols such as stearyl alcohol, etc. may be added and used to improve the fluidity of the kneaded product. good.

シリカガラス粉末と有機バインダーの混練法も特に限定はなく、例えば汎用の加熱ニーダーを用いることができる。   The method for kneading the silica glass powder and the organic binder is not particularly limited, and for example, a general-purpose heating kneader can be used.

混練して得られた混練物はフレーク状あるいはペレット状の粒状とした後、射出成形機にて成形する。用いる射出成形機は特に限定されず、通常のプラスチック等の射出成形に用いられるもの、例えばインラインスクリュー方式の射出成形機を用いることができる。   The kneaded product obtained by kneading is formed into flake-like or pellet-like granules and then molded with an injection molding machine. The injection molding machine to be used is not particularly limited, and an ordinary plastic injection molding machine, for example, an inline screw type injection molding machine can be used.

ここで射出成形機の混練物と直接接触する箇所は、射出成形体への金属異物混入を抑制するために、窒化鋼など耐摩耗仕様であることが望ましい。さらに射出成形に用いる金型表面は仕上げ磨きをし、表面平滑性を高めたものを用いることが特に好ましい。   Here, it is desirable that the portion in direct contact with the kneaded product of the injection molding machine has wear resistance specifications such as nitrided steel in order to suppress metal foreign matter from being mixed into the injection molded body. Further, it is particularly preferable that the mold surface used for injection molding is finished and polished to improve surface smoothness.

次に射出成形で得られた射出成形体は脱脂、即ち加熱して含有する有機バインダーを分解、揮発除去するが、成形体が均一に黒色を呈するために必要な炭素量は残存させなければならない。本発明においては脱脂は極めて重要な工程である。   Next, the injection molded body obtained by injection molding is degreased, that is, heated to decompose and volatilize and remove the organic binder contained, but the carbon amount necessary for the molded body to exhibit a uniform black color must remain. . Degreasing is a very important process in the present invention.

加熱中は0.1〜5気圧、好ましくは1〜4気圧(各々ゲージ圧)に加圧した非酸化性ガス雰囲気とすればよい。非酸化性ガス雰囲気でない場合、有機バインダーの熱分解の度合いが場所場所で不均一となり、燃焼が進んだ部位では黒色化の要因である炭素の含有量が極端に少なくなってしまい、むらのある黒色を呈したり、極端な場合には全体が黒色でない不透明なシリカガラス成形体しか得られない。非酸化性ガスとしては、例えば窒素、アルゴン等をあげることができる。   A non-oxidizing gas atmosphere pressurized to 0.1 to 5 atm, preferably 1 to 4 atm (each gauge pressure) during heating may be used. If it is not a non-oxidizing gas atmosphere, the degree of thermal decomposition of the organic binder will be uneven in the place, and the carbon content that causes blackening will be extremely reduced in the part where combustion has progressed, and there is unevenness Only an opaque silica glass molded body that exhibits black color or is not entirely black in an extreme case can be obtained. Examples of the non-oxidizing gas include nitrogen and argon.

脱脂の加熱条件は用いるバインダーの種類によっても異なるが、400〜1000℃、好ましくは400〜600℃で、1〜10時間保持すると良い。脱脂中における射出成形体の割れを回避するために、昇温速度は2〜50℃/hとすることが好ましい。   The degreasing heating condition varies depending on the type of binder used, but it is good to hold at 400 to 1000 ° C., preferably 400 to 600 ° C. for 1 to 10 hours. In order to avoid cracking of the injection-molded body during degreasing, the temperature rising rate is preferably 2 to 50 ° C./h.

次に脱脂体を焼結し、本発明の目的とする黒色シリカガラス成形体を得るが、本発明では焼結を真空雰囲気下で1200〜1400℃にて焼結する。大気中で焼成すると、脱脂体の緻密化よりも結晶化の方が進行しやすい。   Next, the degreased body is sintered to obtain a black silica glass molded body of the present invention. In the present invention, the sintering is performed at 1200 to 1400 ° C. in a vacuum atmosphere. When firing in the air, crystallization is more likely to proceed than densification of the degreased body.

本発明の真空焼結の圧力は減圧状態であれば特に限定されないが、特に0.1torr以下であることが好ましい。このような範囲とすることにより、雰囲気中の残存酸素と脱脂体中の炭素が反応しないためにむらなく黒色を呈し、かつ脱脂体中の残留気孔を効率良く除去できるようになって見掛密度の高い黒色シリカガラス成形体を得ることが可能となる。   The pressure of the vacuum sintering of the present invention is not particularly limited as long as it is in a reduced pressure state, but is preferably 0.1 torr or less. By setting it in such a range, the residual oxygen in the atmosphere and the carbon in the degreased body do not react with each other, resulting in a black color, and the residual pores in the degreased body can be efficiently removed, resulting in an apparent density. It becomes possible to obtain a black silica glass molded body having a high height.

本発明の焼結温度は、1200〜1400℃とすればよい。1200℃未満では、脱脂体は十分に焼結せず滑らかな表面を有する黒色シリカガラス成形体は得られない。一方、1400℃を超えると表面から結晶化が始まり、やはり滑らかな表面を有する黒色シリカガラス成形体は得られない。好ましい焼結温度範囲としては1250〜1350℃である。   The sintering temperature of this invention should just be 1200-1400 degreeC. If it is less than 1200 degreeC, a degreased body will not fully sinter and the black silica glass molded object which has a smooth surface is not obtained. On the other hand, when the temperature exceeds 1400 ° C., crystallization starts from the surface, and a black silica glass molded body having a smooth surface is not obtained. A preferable sintering temperature range is 1250 to 1350 ° C.

焼結の保持時間は5分〜5時間であることが好ましい。保持時間が5分未満の場合、緻密化が十分でなく、滑らかな表面は得られず、5時間を超える場合には、表面から結晶化してしまい、やはり滑らかな表面を有する黒色シリカガラス成形体は得られない。   The sintering holding time is preferably 5 minutes to 5 hours. When the holding time is less than 5 minutes, the densification is not sufficient, and a smooth surface cannot be obtained. When the holding time exceeds 5 hours, crystallization occurs from the surface, and the black silica glass molded body also has a smooth surface. Cannot be obtained.

本発明によれば、高い遮光性を有し、かつ凹凸がない滑らかな表面を有する黒色シリカガラス成形体を容易に得ることができ、また、射出成形を用いるため、複雑な形状の黒色ガラス成形体を、寸法精度よく、かつ生産性よく製造することが可能となる。   According to the present invention, it is possible to easily obtain a black silica glass molded body having a high light-shielding property and having a smooth surface with no irregularities, and because of the use of injection molding, a complex-shaped black glass molding is performed. The body can be manufactured with high dimensional accuracy and high productivity.

本発明の黒色シリカガラス成形体及びその製造方法は以下の効果を有する。   The black silica glass molded body and the production method thereof of the present invention have the following effects.

むらのない黒色を呈して高い遮光性を有し、かつ凹凸がない滑らかな表面を有する。また用途によって研磨加工を実施しても、表面粗さが小さいため、研磨加工時間が短く、高歩留まりで、長寿命の研磨製品が得られる。また射出成形を用いるため、複雑な形状の黒色ガラス成形体を、寸法精度よく、かつ生産性よく製造することが可能となる。   It has an even black color, high light shielding properties, and a smooth surface with no irregularities. Even if polishing is performed depending on the application, the surface roughness is small, so that a polishing product with a short polishing time, a high yield, and a long life can be obtained. In addition, since injection molding is used, it is possible to manufacture a complex-shaped black glass molded body with high dimensional accuracy and high productivity.

以下、本発明を、実施例に基づいて詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited only to these Examples.

実施例1
最大径が8μm、最小径が0.05μm、平均粒径が0.4μmであり、0.2μm以下の粒子の含有率が30重量%の粒度分布からなる球状シリカガラス粉末(Na,K,Mg及びCa元素の含有率の合計はICP分析で60ppm)に市販のアクリル樹脂系バインダーを加え、シリカガラス粉末重量の比率が77重量%となるように混合し、加熱ニーダーを用いて140℃で1時間混練した。シリカガラス粉末の粒径は、日機装社製、商品名「レーザー回折散乱法マイクロトラックHRA Model No.9320−X100」で測定した。
Example 1
A spherical silica glass powder (Na, K, Mg) having a particle size distribution with a maximum diameter of 8 μm, a minimum diameter of 0.05 μm, an average particle diameter of 0.4 μm, and a content of particles of 0.2 μm or less of 30% by weight. And the total content of Ca element is 60 ppm by ICP analysis) and a commercially available acrylic resin-based binder is added, mixed so that the silica glass powder weight ratio is 77% by weight, and 1 at 140 ° C. using a heating kneader. Kneaded for hours. The particle diameter of the silica glass powder was measured by Nikkiso Co., Ltd., trade name “Laser Diffraction Scattering Microtrack HRA Model No. 9320-X100”.

得られた塊状の混練物をシート化し、粉砕してフレーク状とした。この混練物を射出成形機で縦40mm×横70mm×厚み5mmのプレート状に射出成形した。このようにして得られた成形体を、窒素ガスを3気圧に加圧した脱脂炉にて500℃まで10℃/hで昇温し、500℃に2時間保持して脱脂した。ついで得られた脱脂体を、0.01torrの真空雰囲気にて1300℃まで200℃/hで昇温し、1300℃に2時間保持して、反り等の変形がなく表面光沢がある、プレート状黒色シリカガラス成形体を得た。   The obtained lump kneaded material was formed into a sheet and pulverized into a flake shape. This kneaded material was injection-molded into a plate shape of 40 mm length × 70 mm width × 5 mm thickness with an injection molding machine. The molded body thus obtained was heated at 10 ° C./h up to 500 ° C. in a degreasing furnace in which nitrogen gas was pressurized to 3 atm, and degreased by holding at 500 ° C. for 2 hours. Next, the obtained degreased body was heated to 200 ° C./h up to 1300 ° C. in a vacuum atmosphere of 0.01 torr and held at 1300 ° C. for 2 hours, and there was no deformation such as warpage, and the surface was glossy. A black silica glass molded body was obtained.

このようにして得られた黒色シリカガラス成形体の見掛密度はアルキメデス法による測定で2.18g/cmであった。この黒色シリカガラス成形体の内部及び表面をX線回折で評価した結果、結晶質を含まないガラス状態であった。またこのガラス成形体を厚さ1mmに加工して、波長200〜5000nmの光を照射して直線透過率を測定したところ透過率の最大値は1%であった。このガラス成形体に含まれるNa,K,Mg及びCa元素の合計をICP分析で調べたところ、60ppmであった。 The apparent density of the black silica glass molded body thus obtained was 2.18 g / cm 3 as measured by the Archimedes method. As a result of evaluating the inside and the surface of this black silica glass molded body by X-ray diffraction, it was a glass state containing no crystalline. The glass molded body was processed to a thickness of 1 mm and irradiated with light having a wavelength of 200 to 5000 nm to measure the linear transmittance. The maximum value of the transmittance was 1%. When the total of Na, K, Mg and Ca elements contained in this glass molded body was examined by ICP analysis, it was 60 ppm.

さらに、ガラス成形体の表面粗さを触針式の表面粗さ計(東京精密社製、型式:ハンディサーフ E−35A)で測定したところ、Ra値は、0.1μmであった。   Furthermore, when the surface roughness of the glass molded body was measured with a stylus type surface roughness meter (manufactured by Tokyo Seimitsu Co., Ltd., model: Handy Surf E-35A), the Ra value was 0.1 μm.

実施例2
射出成形体の形状をプロジェクタ用光源ランプのリクレクタを模して、直径60mm、厚み5mmの半球ドーム状とした以外は、実施例1と同様の操作を行い、くぼみ等の変形がなく、表面光沢のある、半球状の黒色シリカガラス成形体を得た。
Example 2
Except that the shape of the injection-molded body is a hemispherical dome shape having a diameter of 60 mm and a thickness of 5 mm, imitating a reflector of a light source lamp for a projector, the same operation as in Example 1 is performed, and there is no deformation such as indentation, and the surface gloss A hemispherical black silica glass molded body having a thickness of 5 was obtained.

このようにして得られた黒色シリカガラス成形体の見掛密度はアルキメデス法による測定で2.18g/cmであった。この黒色シリカガラス成形体の内部及び表面をX線回折で評価した結果、結晶質を含まないガラス状態であった。 The apparent density of the black silica glass molded body thus obtained was 2.18 g / cm 3 as measured by the Archimedes method. As a result of evaluating the inside and the surface of this black silica glass molded body by X-ray diffraction, it was a glass state containing no crystalline.

またこのガラス成形体を厚さ1mmに加工して、波長200〜5000nmの光を照射して直線透過率を測定したところ透過率の最大値は2%であった。更にこのガラス成形体に含まれるNa,K,Mg及びCa元素の合計をICP分析で調べたところ、60ppmであり、ガラス成形体の表面粗さを触針式の表面粗さ計で測定したところ、Ra値は、0.2μmであった。   Further, the glass molded body was processed to a thickness of 1 mm and irradiated with light having a wavelength of 200 to 5000 nm to measure the linear transmittance. As a result, the maximum value of the transmittance was 2%. Furthermore, when the total of Na, K, Mg and Ca elements contained in this glass molded body was examined by ICP analysis, it was 60 ppm, and the surface roughness of the glass molded body was measured with a stylus type surface roughness meter. , Ra value was 0.2 μm.

実施例3
射出成形体の形状を、光ファイバー用フェルールを模して、外径3mm×内径0.1mm×長さ10mmのキャピラリー状とした以外は、実施例1と同様の操作を行い、くぼみ等の変形がなく、表面光沢のある、黒色シリカガラス成形体を得た。
Example 3
Except that the shape of the injection-molded body is a capillary shape having an outer diameter of 3 mm, an inner diameter of 0.1 mm, and a length of 10 mm, imitating an optical fiber ferrule, the same operations as in Example 1 were performed, and deformation such as indentations was observed. A black silica glass molded body having a glossy surface was obtained.

このようにして得られた黒色シリカガラス成形体の見掛密度はアルキメデス法による測定で2.18g/cmであった。この黒色シリカガラス成形体の内部及び表面をX線回折で評価した結果、結晶質を含まないガラス状態であった。またこのガラス成形体を厚さ1mmに加工して、波長200〜5000nmの光を照射して直線透過率を測定したところ透過率の最大値は2%であった。このガラス成形体に含まれるNa,K,Mg及びCa元素の合計をICP分析で調べたところ、60ppmであった。さらにガラス成形体の表面粗さを触針式の表面粗さ計で測定したところ、Ra値は、0.2μmであった。 The apparent density of the black silica glass molded body thus obtained was 2.18 g / cm 3 as measured by the Archimedes method. As a result of evaluating the inside and the surface of this black silica glass molded body by X-ray diffraction, it was a glass state containing no crystalline. The glass molded body was processed to a thickness of 1 mm and irradiated with light having a wavelength of 200 to 5000 nm to measure the linear transmittance. The maximum value of the transmittance was 2%. When the total of Na, K, Mg and Ca elements contained in this glass molded body was examined by ICP analysis, it was 60 ppm. Furthermore, when the surface roughness of the glass molded body was measured with a stylus type surface roughness meter, the Ra value was 0.2 μm.

実施例4
脱脂体を0.01torrの真空雰囲気にて1200℃まで200℃/hで昇温し、1200℃に2時間保持する以外は実施例1と同様の操作を行い、反り等の変形がなく表面光沢がある、プレート状の黒色シリカガラス成形体を得た。
Example 4
The degreased body was heated to 1200 ° C. at 200 ° C./h in a vacuum atmosphere of 0.01 torr and the same operation as in Example 1 was performed except that the temperature was maintained at 1200 ° C. for 2 hours. A plate-like black silica glass molded body was obtained.

このようにして得られた黒色シリカガラス成形体の見掛密度はアルキメデス法による測定で2.10g/cmであった。この黒色シリカガラス成形体の内部及び表面をX線回折で評価した結果、結晶質を含まないガラス状態であった。またこのガラス成形体を厚さ1mmに加工して、波長200〜5000nmの光を照射して直線透過率を測定したところ透過率の最大値は1%であった。更にこのガラス成形体に含まれるNa,K,Mg及びCa元素の合計をICP分析で調べたところ、60ppmであり、ガラス成形体の表面粗さを触針式の表面粗さ計で測定したところ、Ra値は、0.2μmであった。 The apparent density of the black silica glass molded body thus obtained was 2.10 g / cm 3 as measured by the Archimedes method. As a result of evaluating the inside and the surface of this black silica glass molded body by X-ray diffraction, it was a glass state containing no crystalline. The glass molded body was processed to a thickness of 1 mm and irradiated with light having a wavelength of 200 to 5000 nm to measure the linear transmittance. The maximum value of the transmittance was 1%. Furthermore, when the total of Na, K, Mg and Ca elements contained in this glass molded body was examined by ICP analysis, it was 60 ppm, and the surface roughness of the glass molded body was measured with a stylus type surface roughness meter. , Ra value was 0.2 μm.

比較例1
最大径が10μm、最小径が0.05μm、平均粒径が2μmであり、0.2μm以下の粒子の含有率が1重量%の粒度分布からなる球状シリカガラス粉末(Na,K,Mg及びCa元素の含有率の合計はICP分析で60ppm)を用いて実施例1と同様の操作を行い、プレート状の黒色シリカガラス成形体を得た。
Comparative Example 1
Spherical silica glass powder (Na, K, Mg and Ca) having a particle size distribution with a maximum diameter of 10 μm, a minimum diameter of 0.05 μm, an average particle diameter of 2 μm, and a content of particles of 0.2 μm or less of 1% by weight. The total content of elements was 60 ppm in ICP analysis, and the same operation as in Example 1 was performed to obtain a plate-like black silica glass molded body.

このようにして得られた黒色シリカガラス成形体の見掛密度はアルキメデス法による測定で2.05g/cmであった。この黒色シリカガラス成形体の内部及び表面をX線回折で評価した結果、結晶質を含まないガラス状態であった。またこのガラス成形体を厚さ1mmに加工して、波長200〜5000nmの光を照射して直線透過率を測定したところ透過率の最大値は1%であった。更にこのガラス成形体に含まれるNa,K,Mg及びCa元素の合計をICP分析で調べたところ、60ppmであった。しかし、シリカガラス成形体の表面粗さを触針式の表面粗さ計で測定したところ、Ra値は、5.0μmであった。 The apparent density of the black silica glass molded body thus obtained was 2.05 g / cm 3 as measured by the Archimedes method. As a result of evaluating the inside and the surface of this black silica glass molded body by X-ray diffraction, it was a glass state containing no crystalline. Moreover, when this glass molded object was processed into thickness 1mm, the light of wavelength 200-5000nm was irradiated and the linear transmittance | permeability was measured, the maximum value of the transmittance | permeability was 1%. Further, when the total of Na, K, Mg and Ca elements contained in this glass molded body was examined by ICP analysis, it was 60 ppm. However, when the surface roughness of the silica glass molded body was measured with a stylus type surface roughness meter, the Ra value was 5.0 μm.

比較例2
焼結温度を1500℃とした以外は、実施例1と同様の操作を行った。得られたプレート状の焼結体は、反りが発生し、内部は黒色であったが、表面には光沢がなく白色化していた。
Comparative Example 2
The same operation as in Example 1 was performed except that the sintering temperature was 1500 ° C. The obtained plate-like sintered body was warped and the inside was black, but the surface was not glossy and whitened.

このようにして得られた焼結体の見掛密度はアルキメデス法による測定で2.23g/cmであった。この焼結体の内部及び表面をX線回折で評価した結果、内部は結晶質を含まないガラス状態であったが、表面はクリストバライトに起因する回折ピークが確認された。またこの焼結体を厚さ1mmに加工して、波長200〜5000nmの光を照射して直線透過率を測定したところ透過率は1%であり、またこのガラス成形体に含まれるNa,K,Mg及びCa元素の合計をICP分析で調べたところ、60ppmであったが、シリカガラス成形体の表面粗さを触針式の表面粗さ計で測定したところ、Ra値は、6.0μmであった。 The apparent density of the sintered body thus obtained was 2.23 g / cm 3 as measured by the Archimedes method. As a result of evaluating the inside and the surface of this sintered body by X-ray diffraction, the inside was in a glass state containing no crystal, but a diffraction peak attributable to cristobalite was confirmed on the surface. Further, the sintered body was processed to a thickness of 1 mm, and the linear transmittance was measured by irradiating light with a wavelength of 200 to 5000 nm. The transmittance was 1%, and Na, K contained in this glass molded body When the total of Mg, Ca and Ca was examined by ICP analysis, it was 60 ppm. When the surface roughness of the silica glass molded body was measured with a stylus type surface roughness meter, the Ra value was 6.0 μm. Met.

比較例3
焼結温度を1000℃とした以外は、実施例1と同様の操作を行った。得られたプレート状の焼結体は、内部、表面とも灰白色を呈していた。
Comparative Example 3
The same operation as in Example 1 was performed except that the sintering temperature was 1000 ° C. The obtained plate-like sintered body was grayish white on both the inside and the surface.

比較例4
焼結雰囲気を大気中とした以外は、実施例1と同様の操作を行った。得られた
プレート状の焼結体は、内部、表面とも白色を呈し、無数のクラックが生じていた。
Comparative Example 4
The same operation as in Example 1 was performed except that the sintering atmosphere was in the air. The obtained plate-like sintered body was white on the inside and on the surface, and innumerable cracks were generated.

比較例5
脱脂雰囲気を大気中とした以外は、実施例1と同様の操作を行った。得られたプレート状の焼結体は、半透明であり、その内部に1mm程度の黒点が点在していた。
Comparative Example 5
The same operation as in Example 1 was performed except that the degreasing atmosphere was changed to the atmosphere. The obtained plate-like sintered body was translucent and was dotted with black spots of about 1 mm inside.

このようにして得られた焼結体の見掛密度はアルキメデス法による測定で2.20g/cmであった。この焼結体の内部及び表面をX線回折で評価した結果、結晶質を含まないガラス状態であった。またこの焼結体を厚さ1mmに加工して、波長200〜5000nmの光を照射して直線透過率を測定したところ透過率の最大値は40%であった。またこのガラス成形体に含まれるNa,K,Mg及びCa元素の合計をICP分析で調べたところ、60ppmであったが、シリカガラス成形体の表面粗さを触針式の表面粗さ計で測定したところ、Ra値は、4.0μmであった。 The apparent density of the sintered body thus obtained was 2.20 g / cm 3 as measured by the Archimedes method. As a result of evaluating the inside and the surface of this sintered body by X-ray diffraction, it was a glass state containing no crystalline. Further, when this sintered body was processed to a thickness of 1 mm and irradiated with light having a wavelength of 200 to 5000 nm and the linear transmittance was measured, the maximum value of the transmittance was 40%. Further, when the total of Na, K, Mg and Ca elements contained in this glass molded body was examined by ICP analysis, it was 60 ppm. The surface roughness of the silica glass molded body was measured with a stylus type surface roughness meter. When measured, the Ra value was 4.0 μm.

比較例6
脱脂雰囲気を窒素ガス8気圧とした以外は、実施例1と同様の操作を行い、プレート状の黒色シリカガラス成形体を得た。
Comparative Example 6
Except that the degreasing atmosphere was changed to 8 atm of nitrogen gas, the same operation as in Example 1 was performed to obtain a plate-like black silica glass molded body.

このようにして得られた焼結体の見掛密度はアルキメデス法による測定で2.00g/cmであった。この焼結体の内部及び表面をX線回折で評価した結果、結晶質を含まないガラス状態であった。またこの焼結体を厚さ1mmに加工して、波長200〜5000nmの光を照射して直線透過率を測定したところ透過率の最大値は1%であった。またこのガラス成形体に含まれるNa,K,Mg及びCa元素の合計をICP分析で調べたところ、60ppmであった。しかし、ガラス成形体の表面粗さを触針式の表面粗さ計で測定したところ、Ra値は、4.5μmであった。 The apparent density of the sintered body thus obtained was 2.00 g / cm 3 as measured by the Archimedes method. As a result of evaluating the inside and the surface of this sintered body by X-ray diffraction, it was a glass state containing no crystalline. Further, when this sintered body was processed to a thickness of 1 mm and irradiated with light having a wavelength of 200 to 5000 nm and the linear transmittance was measured, the maximum value of the transmittance was 1%. Further, when the total of Na, K, Mg and Ca elements contained in this glass molded body was examined by ICP analysis, it was 60 ppm. However, when the surface roughness of the glass molded body was measured with a stylus type surface roughness meter, the Ra value was 4.5 μm.

比較例7
脱脂雰囲気を窒素ガス大気圧とした以外は、実施例1と同様の操作を行った。得られたプレート状の焼結体は、半透明であり、その内部に1mm程度の黒点が点在していた。
Comparative Example 7
The same operation as in Example 1 was performed except that the degreasing atmosphere was changed to a nitrogen gas atmospheric pressure. The obtained plate-like sintered body was translucent and was dotted with black spots of about 1 mm inside.

このようにして得られた焼結体の見掛密度はアルキメデス法による測定で2.20g/cmであった。この焼結体の内部及び表面をX線回折で評価した結果、結晶質を含まないガラス状態であった。またこの焼結体を厚さ1mmに加工して、波長200〜5000nmの光を照射して直線透過率を測定したところ透過率の最大値は1%であり、またこのガラス成形体に含まれるNa,K,Mg及びCa元素の合計をICP分析で調べたところ、60ppmであったが、ガラス成形体の表面粗さを触針式の表面粗さ計で測定したところ、Ra値は、5.0μmであった。 The apparent density of the sintered body thus obtained was 2.20 g / cm 3 as measured by the Archimedes method. As a result of evaluating the inside and the surface of this sintered body by X-ray diffraction, it was a glass state containing no crystalline. Moreover, when this sintered body was processed to a thickness of 1 mm, and the linear transmittance was measured by irradiating light with a wavelength of 200 to 5000 nm, the maximum value of the transmittance was 1% and included in this glass molded body. When the total of Na, K, Mg and Ca elements was examined by ICP analysis, it was 60 ppm. When the surface roughness of the glass molded body was measured with a stylus type surface roughness meter, the Ra value was 5 0.0 μm.

比較例8
シリカガラス粉末と有機バインダーの混練において、シリカガラス粉末重量比率を60重量%とした以外は、実施例1と同様の操作を行い、プレート状の黒色シリカガラス成形体を得た。
Comparative Example 8
In the kneading of the silica glass powder and the organic binder, the same operation as in Example 1 was performed except that the silica glass powder weight ratio was 60% by weight, and a plate-like black silica glass molded body was obtained.

このようにして得られた黒色シリカガラス成形体の見掛密度はアルキメデス法による測定で1.95g/cmであった。この黒色シリカガラス成形体の内部及び表面をX線回折で評価した結果、結晶質を含まないガラス状態であった。またこのガラス成形体を厚さ1mmに加工して、波長200〜5000nmの光を照射して直線透過率を測定したところ透過率の最大値は1%であった。このガラス成形体に含まれるNa,K,Mg及びCa元素の合計をICP分析で調べたところ、60ppmであった。しかし、ガラス成形体の表面粗さを触針式の表面粗さ計で測定したところ、Ra値は、5.0μmであった。
比較例9
シリカガラス粉末に含まれるNa,K,Mg及びCa元素の合計を400ppmとした以外は、実施例1と同様の操作を行った。得られたプレート状の焼結体の内部は灰白色、表面は白色を呈しており、無数のクラックが生じていた。
The apparent density of the black silica glass molded body thus obtained was 1.95 g / cm 3 as measured by the Archimedes method. As a result of evaluating the inside and the surface of this black silica glass molded body by X-ray diffraction, it was a glass state containing no crystalline. The glass molded body was processed to a thickness of 1 mm and irradiated with light having a wavelength of 200 to 5000 nm to measure the linear transmittance. The maximum value of the transmittance was 1%. When the total of Na, K, Mg and Ca elements contained in this glass molded body was examined by ICP analysis, it was 60 ppm. However, when the surface roughness of the glass molded body was measured with a stylus type surface roughness meter, the Ra value was 5.0 μm.
Comparative Example 9
The same operation as in Example 1 was performed except that the total of Na, K, Mg and Ca elements contained in the silica glass powder was 400 ppm. The inside of the obtained plate-like sintered body was gray white and the surface was white, and innumerable cracks were generated.

Claims (4)

厚さ1mmでの光直線透過率が200nm〜5000nmの波長域で5%以下、見掛密度が2.10〜2.20g/cm、含有されるNa,K,Mg及びCa元素の合計が200ppm以下であって、少なくとも1つの面の表面粗さRaが0.05〜1μmである黒色シリカガラス成形体。 The linear light transmittance at a thickness of 1 mm is 5% or less in the wavelength region of 200 nm to 5000 nm, the apparent density is 2.10 to 2.20 g / cm 3 , and the total of contained Na, K, Mg and Ca elements is A black silica glass molded article having a surface roughness Ra of 0.05 to 1 μm at 200 ppm or less. 最大径と最小径が0.01〜20μmの球状粒子からなり、かつ0.2μm以下の粒子が全体の5〜70重量%であるシリカガラス粉末と、有機バインダーを重量比で70:30〜90:10の割合で混練し、当該混練物を射出成形した後、0.1〜5気圧(ゲージ圧)に加圧した非酸化性ガス雰囲気にて加熱脱脂し、次いで温度1200〜1400℃で真空焼結することを特徴とする請求項1に記載の黒色シリカガラス成形体の製造方法。 Silica glass powder, which is composed of spherical particles having a maximum diameter and a minimum diameter of 0.01 to 20 μm, and particles having a diameter of 0.2 μm or less is 5 to 70% by weight, and an organic binder in a weight ratio of 70:30 to 90. : After kneading at a ratio of 10 and injection-molding the kneaded product, heat degreasing in a non-oxidizing gas atmosphere pressurized to 0.1 to 5 atm (gauge pressure), and then vacuuming at a temperature of 1200 to 1400 ° C. The method for producing a black silica glass molded body according to claim 1, wherein sintering is performed. シリカガラス成形体がプロジェクタ用光源ランプ用部品である請求項2に記載の黒色シリカガラス成形体の製造方法。 The method for producing a black silica glass molded body according to claim 2, wherein the silica glass molded body is a component for a light source lamp for a projector. シリカガラス成形体が光ファイバー用コネクタ部品である請求項2に記載の黒色シリカガラス成形体の製造方法。
The method for producing a black silica glass molded body according to claim 2, wherein the silica glass molded body is an optical fiber connector part.
JP2003386763A 2003-11-17 2003-11-17 Method for producing black silica glass molded body Expired - Fee Related JP4452062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386763A JP4452062B2 (en) 2003-11-17 2003-11-17 Method for producing black silica glass molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386763A JP4452062B2 (en) 2003-11-17 2003-11-17 Method for producing black silica glass molded body

Publications (2)

Publication Number Publication Date
JP2005145767A true JP2005145767A (en) 2005-06-09
JP4452062B2 JP4452062B2 (en) 2010-04-21

Family

ID=34694357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386763A Expired - Fee Related JP4452062B2 (en) 2003-11-17 2003-11-17 Method for producing black silica glass molded body

Country Status (1)

Country Link
JP (1) JP4452062B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132704A (en) * 2005-11-08 2007-05-31 Tosoh Quartz Corp Microchip base plate made of glass, its manufacturing method and microchip
JP2007331962A (en) * 2006-06-13 2007-12-27 Tosoh Quartz Corp Member for microplate made of glass, method for manufacturing microplate made of glass, and microplate
JP2009242129A (en) * 2008-03-28 2009-10-22 Tosoh Quartz Corp Producing method of glass components, and glass components
CN113429118B (en) * 2021-06-17 2022-05-24 贵州航天电器股份有限公司 Glass blank powder injection molding process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132704A (en) * 2005-11-08 2007-05-31 Tosoh Quartz Corp Microchip base plate made of glass, its manufacturing method and microchip
JP2007331962A (en) * 2006-06-13 2007-12-27 Tosoh Quartz Corp Member for microplate made of glass, method for manufacturing microplate made of glass, and microplate
JP2009242129A (en) * 2008-03-28 2009-10-22 Tosoh Quartz Corp Producing method of glass components, and glass components
CN113429118B (en) * 2021-06-17 2022-05-24 贵州航天电器股份有限公司 Glass blank powder injection molding process

Also Published As

Publication number Publication date
JP4452062B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP4452059B2 (en) Method for producing opaque silica glass molded body
CN114436661A (en) Silicon nitride ceramic radome and additive manufacturing method thereof
JP4452062B2 (en) Method for producing black silica glass molded body
TW201339118A (en) Translucent alumina and method for producing translucent alumina
JP2004203639A (en) Formed blank product of silica glass, its polished product, and method of manufacturing them
JP5458552B2 (en) Highly tough and translucent colored alumina sintered body, method for producing the same, and use
CN112939608A (en) White aluminum nitride ceramic and hot-pressing sintering method and application thereof
JP4966527B2 (en) Transparent silica sintered body and method for producing the same
JP2006315910A (en) Method for manufacturing silica glass article and silica glass article obtained by the method
JP4806952B2 (en) Translucent ceramics
CN114085084A (en) High-strength silicon nitride ceramic and preparation method thereof
JP2018104247A (en) Silica sintered body and manufacturing method therefor
JP2005145766A (en) Method for producing silica glass molding
JP4473653B2 (en) Manufacturing method of high purity quartz glass
JP2003292337A (en) Plasma corrosion resisting silica glass, manufacturing method therefor and apparatus using the same
JP2018002548A (en) Method of manufacturing quartz glass member for ultraviolet led
JP2007331962A (en) Member for microplate made of glass, method for manufacturing microplate made of glass, and microplate
CN116323503A (en) Black quartz glass and method for producing same
JPH0948623A (en) Production of quartz glass
JP2004224580A (en) Mold for molding quartz glass, and its manufacturing method
WO2023167030A1 (en) Opaque quartz glass and production method therefor
TW202220940A (en) Black quartz glass and method for manufacturing same
KR20110098287A (en) High dense silicon carbide for core materials of glass lens and preparing method thereof
JP4655761B2 (en) Pretreatment method of quartz glass and molding method of quartz glass
JP2008088011A (en) Molding die for optical device and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

R150 Certificate of patent or registration of utility model

Ref document number: 4452062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees