JP2006320791A - Coating method and manufacturing method of electrophotographic photoreceptor - Google Patents

Coating method and manufacturing method of electrophotographic photoreceptor Download PDF

Info

Publication number
JP2006320791A
JP2006320791A JP2005144070A JP2005144070A JP2006320791A JP 2006320791 A JP2006320791 A JP 2006320791A JP 2005144070 A JP2005144070 A JP 2005144070A JP 2005144070 A JP2005144070 A JP 2005144070A JP 2006320791 A JP2006320791 A JP 2006320791A
Authority
JP
Japan
Prior art keywords
coating
tank
coating liquid
liquid
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005144070A
Other languages
Japanese (ja)
Other versions
JP4856892B2 (en
JP2006320791A5 (en
Inventor
Akira Shimada
明 島田
Ryozo Fukuda
良三 福田
Keisuke Nishimura
啓介 西村
Hiroaki Takahashi
宏昭 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005144070A priority Critical patent/JP4856892B2/en
Publication of JP2006320791A publication Critical patent/JP2006320791A/en
Publication of JP2006320791A5 publication Critical patent/JP2006320791A5/ja
Application granted granted Critical
Publication of JP4856892B2 publication Critical patent/JP4856892B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating method in which no pulse derived from a pump occurs in a coating liquid inside a coating tank, and a uniform coat layer can be obtained stably also in a continuous coating production by a stabilization in a current speed of the coating liquid in the coating tank. <P>SOLUTION: In the coating method in which a coating film is formed on a coating workpiece by immersing the coating workpiece in the coating liquid and pulling up it, a coating device is used. The coating device has the coating tank immersing the coating workpiece, a recovery tank receiving the coating liquid overflowing the upper end edge of a sidewall of the coating tank, and a reservoir receiving the coating liquid sent from the recovery tank through piping having a liquid sending means. The coating liquid in the reservoir overflows the upper end edge of a reservoir sidewall full-time while the coating workpiece is immersed and pulled up, and a flooded surface of the coating liquid in the reservoir holds a higher position than a flooded surface of the coating liquid in the coating tank, by which an inflow of the coating liquid from a lower position compared to the coating liquid flooded surface of the reservoir to the coating tank circulates the coating liquid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、浸漬塗布方法に関し、特に電子写真感光体の製造における連続浸漬塗布に関する。   The present invention relates to a dip coating method, and more particularly to continuous dip coating in the production of an electrophotographic photoreceptor.

電子写真感光体の製造において、導電性支持体上に感光層、下引層、表面保護層等のコート層を形成する方法として、ロールコーター法、スプレー法、静電塗装法、浸漬塗布法等が挙げられる。このうち浸漬塗布法は、円筒体、シームレスベルト等の立体形状を有する感光体を製造する上で有利な方法であるため広く実施されている。この方法は塗布液の入っている塗布槽、及び被塗布体の保持と昇降をさせる装置を用い、被塗布体を塗布槽中に浸し、次いで適当な速さで引上げることにより、被塗布体の表面にコート層を形成させるものである。   In the production of an electrophotographic photosensitive member, a roll coater method, a spray method, an electrostatic coating method, a dip coating method, etc. as a method for forming a coating layer such as a photosensitive layer, an undercoat layer, and a surface protective layer on a conductive support. Is mentioned. Among these, the dip coating method is widely practiced because it is an advantageous method for producing a three-dimensional photoreceptor such as a cylindrical body or a seamless belt. This method uses a coating tank containing a coating liquid and a device for holding and lifting the coated body, immersing the coated body in the coating tank, and then pulling up the coated body at an appropriate speed. A coat layer is formed on the surface of the film.

この浸漬塗布法では、塗布液の粘度、固形分、引上げ速度などの塗布条件を被塗布物に応じて適宜設定することによって所望の膜厚が得られる。しかし、浸漬塗布法において被塗布物を塗布槽中に単に浸漬し、引上げるだけでは被塗布物の排除体積により塗布液の液面が低下する。それによって塗布部上端の寸法精度が低下するばかりでなく、塗布液面は空気と接触しているため塗布槽上部の内部に塗布液が被膜として付着し、やがてそれが剥れて塗布液中に再混入することで塗布液が汚染される。さらに、塗布槽の液面では溶剤の揮発による濃度変化が著しく、塗布槽の上下方向に濃度勾配が生じ感光体の塗布ムラとなる。このように静置した塗布液を用いる浸漬塗布法では、上に示すような不都合が生じ、さらに大量生産の際にはこの不都合がより顕著にあらわれる。   In this dip coating method, a desired film thickness can be obtained by appropriately setting coating conditions such as the viscosity, solid content, and pulling speed of the coating solution according to the object to be coated. However, in the dip coating method, the surface of the coating liquid is lowered by simply immersing the object to be coated in the coating tank and pulling it up, due to the excluded volume of the object to be coated. This not only reduces the dimensional accuracy of the upper end of the coating part, but also the coating liquid surface is in contact with air, so the coating liquid adheres as a film inside the upper part of the coating tank and eventually peels off and enters the coating liquid. By re-mixing, the coating solution is contaminated. Further, the concentration change due to the volatilization of the solvent is significant on the liquid level in the coating tank, and a concentration gradient occurs in the vertical direction of the coating tank, resulting in uneven application of the photoreceptor. In the dip coating method using the coating solution that has been allowed to stand in this way, the above-mentioned disadvantages occur, and this disadvantage appears more prominently during mass production.

そこで、塗布槽とは別に設けられた回収タンクとの間で塗布液を連続的に循環させた状態で塗布する方法が考案され用いられてきた(特許文献1参照)。この方法は図1に示すように、液送手段103を用いて、塗布液を回収タンク102から塗布槽101の下部へ送液し、塗布槽の容量を越える塗布液はオーバーフローさせて回収タンクに循環される仕組みになっている。これにより塗布槽における液面の高さが一定に保たれ、さらに、塗布槽内の塗布液の濃度が均一となる。液送手段としては、フィルター104による圧力抵抗の影響を受けることなく、安定した塗布液の流速を維持するため、通常ダイヤフラムポンプ等の送液圧力の強いポンプが用いられる。   In view of this, a method has been devised and used in which a coating solution is continuously circulated between a collection tank provided separately from a coating tank (see Patent Document 1). As shown in FIG. 1, this method uses a liquid feeding means 103 to feed the coating liquid from the recovery tank 102 to the lower part of the coating tank 101, and overflows the coating liquid exceeding the capacity of the coating tank to the recovery tank. It is a mechanism to circulate. Thereby, the height of the liquid level in the coating tank is kept constant, and the concentration of the coating liquid in the coating tank becomes uniform. As the liquid feeding means, in order to maintain a stable flow rate of the coating liquid without being affected by the pressure resistance by the filter 104, a pump having a high liquid feeding pressure such as a diaphragm pump is usually used.

しかし、このような液送手段には、塗布液の流れにおいて脈動を生じさせるという欠点があり、結果として塗布槽内の塗布液の流速が不安定なものとなる。浸漬塗布におけるコート層の膜厚は、塗布液に対する被塗布体の相対引上げ速度によって決定されるため、塗布槽における塗布液流速の乱れは、被塗布体表面に形成されるコート層におけるムラなどの欠陥原因となる。従って、図1に示した方法では均一な感光層が得られにくいという問題があった。   However, such a liquid feeding means has a drawback of causing pulsation in the flow of the coating liquid, and as a result, the flow rate of the coating liquid in the coating tank becomes unstable. Since the film thickness of the coating layer in the dip coating is determined by the relative pulling speed of the coated body with respect to the coating liquid, the disturbance of the coating liquid flow rate in the coating tank is caused by unevenness in the coating layer formed on the coated body surface. Causes defects. Therefore, the method shown in FIG. 1 has a problem that it is difficult to obtain a uniform photosensitive layer.

また、この欠点を改善する方法として、図2に示すように、塗布槽201より高い位置に第三の槽である貯留槽205を設け、液送手段による脈動が塗布槽まで伝播されないよう、塗布液が貯留槽内に送られる際に一度大気圧下に開放させ、加圧状態を解除する方法が提案されている(特許文献2参照)。この方法では、貯留槽から塗布槽への送液にはポンプ等の動力源を用いず、サイホンの原理に基づいた塗布液の重力のみを利用した送液方法とすることで、塗布槽における塗布液の脈動を防止している。この方式は、ポンプによる脈動が塗布槽内には及ばないという長所があるが、反面次の欠点がある。第一に塗布槽内の塗布液の流速を一定に維持することが困難である。すなわち、塗布槽内の塗布液の流速は塗布槽と貯留槽との液面高さの差によって影響を受け、塗布槽の液面206が常時オーバーフローし一定である限りにおいては、貯留槽の液面高さ207を安定させることが塗布液の流速を安定させる必要条件となる。しかし、図2に挙げた方法の場合、被塗布物を浸漬した際に被塗布物による排除体積分の塗布液が一時に回収タンクに送り込まれるため、被塗布物引上げ直後は、貯留槽における液面は浸漬前に比べて下がってしまう。また、連続塗布による塗布液の消費や補充、さらには、塗布液の粘度調整に伴う希釈溶媒の補充等による塗布液総量の増減も、貯留槽の液面高さを不安定にする要因となり、従って、連続塗布において貯留槽の液面高さを一定に維持して塗布槽内の塗布液流速を一定に維持するのは実質的に困難となる。そのために連続塗布生産においては、得られる膜厚の値に変動を生じやすくなる。   Further, as a method for improving this defect, as shown in FIG. 2, a storage tank 205 as a third tank is provided at a position higher than the coating tank 201 so that the pulsation by the liquid feeding means is not propagated to the coating tank. When the liquid is sent into the storage tank, a method has been proposed in which the liquid is once released under atmospheric pressure to release the pressurized state (see Patent Document 2). In this method, the liquid supply from the storage tank to the application tank is not performed using a power source such as a pump, and the liquid supply method uses only the gravity of the application liquid based on the principle of the siphon. Prevents fluid pulsation. This method has the advantage that pulsation by the pump does not reach the coating tank, but has the following disadvantages. First, it is difficult to keep the flow rate of the coating solution in the coating tank constant. That is, the flow rate of the coating liquid in the coating tank is affected by the difference in liquid level between the coating tank and the storage tank, and as long as the liquid level 206 of the coating tank always overflows and remains constant, the liquid in the storage tank Stabilizing the surface height 207 is a necessary condition for stabilizing the flow rate of the coating solution. However, in the case of the method illustrated in FIG. 2, when the coating object is immersed, the volume of coating liquid removed by the coating object is sent to the recovery tank at a time, so that the liquid in the storage tank is immediately after the coating object is pulled up. The surface will be lower than before immersion. In addition, consumption and replenishment of the coating liquid by continuous coating, and also increase / decrease of the total amount of coating liquid by replenishment of the dilution solvent accompanying adjustment of the viscosity of the coating liquid are factors that make the liquid level of the storage tank unstable, Accordingly, it is substantially difficult to keep the liquid level height of the storage tank constant and maintain the coating liquid flow rate in the coating tank constant during continuous application. Therefore, in continuous coating production, the value of the obtained film thickness tends to vary.

図2の方法における第二の欠点として、塗布液が貯留槽に入る前に加圧状態から大気圧下に解放される構成をとっているために、この部分で塗料がエアを巻き込み、気泡が生じやすくなる。気泡は塗布槽に送られて被塗布物に付着する可能性があり、塗工欠陥の要因となる。   The second disadvantage of the method of FIG. 2 is that the coating liquid is released from the pressurized state to the atmospheric pressure before entering the storage tank. It tends to occur. The bubbles may be sent to the coating tank and adhere to the object to be coated, which causes a coating defect.

また、図2同様に貯留槽が塗布槽より高所に位置しながら、図2と異なり塗布液が貯留槽に送られる際に大気圧下に開放されない構成の装置が提案されている(特許文献3参照)。この方法においても、図2の方法同様に貯留槽の液面高さを一定に維持するのは困難であり、塗布槽における塗布液の流速安定性の観点からは充分とはいえない。
特開昭59−90667号公報 特開平09−122551号公報 特開平02−140751号公報
Further, unlike FIG. 2, an apparatus has been proposed in which the storage tank is positioned higher than the application tank, unlike FIG. 2, but is not opened to atmospheric pressure when the coating liquid is sent to the storage tank (Patent Document). 3). Also in this method, it is difficult to keep the liquid level of the storage tank constant as in the method of FIG. 2, and it is not sufficient from the viewpoint of the flow rate stability of the coating liquid in the coating tank.
JP 59-90667 A Japanese Unexamined Patent Publication No. 09-122551 Japanese Patent Laid-Open No. 02-140751

本発明の目的は、浸漬塗布における塗布液循環方法において従来問題となっている、塗布槽内の塗布液におけるポンプ由来の脈動がなく、かつ、塗布槽内の塗布液の流速を安定させることにより、連続塗布生産においても均一なコート層が安定して得られる塗布方法、及び該塗布方法を用いた電子写真感光体の製造方法を提供することにある。   An object of the present invention is to eliminate the pulsation derived from the pump in the coating liquid in the coating tank, which has been a problem in the coating liquid circulation method in dip coating, and to stabilize the flow rate of the coating liquid in the coating tank. Another object of the present invention is to provide a coating method capable of stably obtaining a uniform coat layer even in continuous coating production, and a method for producing an electrophotographic photoreceptor using the coating method.

本発明は、塗布液に被塗布体を浸漬し引上げることによって該被塗布体に塗膜を形成する塗布方法において、
該被塗布体を浸漬する塗布槽と、該塗布槽側壁の上端縁を越えて溢流した塗布液を受ける回収タンクと、液送手段を有する配管を通して該回収タンクから送られた塗布液を受ける貯留槽とを有する塗布装置を用い、
該貯留槽における塗布液は被塗布体を浸漬し引上げる間常時該貯留槽側壁の上端縁を越えて溢流しており、該貯留槽の塗布液溢流面は該塗布槽の塗布液溢流面よりも高い位置を保持し、該貯留槽の塗布液溢流面より低い位置から該塗布槽へ塗布液を流入させることによって、塗布液を循環させることを特徴とする塗布方法である。
The present invention provides a coating method in which a coating film is formed on a coated body by immersing the coated body in a coating solution and pulling it up.
A coating tank for immersing the object to be coated, a recovery tank for receiving a coating liquid overflowing over the upper edge of the side wall of the coating tank, and a coating liquid sent from the recovery tank through a pipe having a liquid feeding means Using a coating device having a storage tank,
The coating liquid in the storage tank always overflows beyond the upper edge of the side wall of the storage tank while the substrate is immersed and pulled up, and the coating liquid overflow surface of the storage tank overflows the coating liquid in the coating tank. The coating method is characterized in that the coating liquid is circulated by holding the position higher than the surface and allowing the coating liquid to flow into the coating tank from a position lower than the coating liquid overflow surface of the storage tank.

また本発明は、上記塗布方法を用いたことを特徴とする電子写真感光体の製造方法である。   The present invention also provides a method for producing an electrophotographic photosensitive member using the coating method.

本発明によれば、浸漬塗布における塗布液循環方法において従来問題となっている、塗布槽内の塗布液におけるポンプ由来の脈動がなく、かつ、塗布槽内の塗布液の流速を安定させることにより、連続塗布生産においても均一なコート層が安定して得られる塗布方法、及び該塗布方法を用いた電子写真感光体の製造方法を提供することができる。   According to the present invention, there is no pulsation derived from the pump in the coating liquid in the coating tank, which is a conventional problem in the coating liquid circulation method in the dip coating, and the flow rate of the coating liquid in the coating tank is stabilized. Further, it is possible to provide a coating method in which a uniform coat layer can be stably obtained even in continuous coating production, and a method for producing an electrophotographic photosensitive member using the coating method.

本発明による塗布方法に用いる浸漬塗布装置を図3に示す。以下図3に従って説明する。300は被塗布物であり、その上部は不図示の昇降装置によって接続されている。301は被塗布物を浸漬塗布するための塗布槽である。塗布槽を常時オーバーフローしている塗布液は、配管を経て回収タンク302に移動する。回収タンクの塗布液は、液送手段303によって貯留槽305に送られる。液送手段としては、ダイヤフラムポンプ、マグネットポンプなどが挙げられる。貯留槽においては、塗布槽同様、塗布液が常時オーバーフローしている。また、貯留槽の塗布液溢流面307は塗布槽の塗布液溢流面306よりも高い位置になるよう、両槽を配置する。貯留槽の塗布液は、塗布液溢流面307より低い位置に設けられた流出口309から重力によって塗布槽に送られる。塗布液の流速を決定する2つの溢流面306及び307は、いずれも常時オーバーフローしているため、両者は常に一定の高さ差を維持し、従って塗布槽における塗布液の流速は一定の値を維持することが可能となる。また、貯留槽において塗布液をオーバーフローさせることにより、液送手段による塗布液の脈動は貯留槽のオーバーフロー側に吸収され、塗布槽には伝達されずにすむ。さらに、貯留槽における塗布液の流入口308を塗布液溢流面307よりも低い位置に設けることにより、塗布液流入時におけるエアのまき込みや塗布液溢流面307の揺れを防ぐことができる。また、貯留槽からオーバーフローした塗布液は、直接塗布槽には送られず、再度液送手段によってフィルター304を経由するように配管を構成してある。従って、貯留槽において塗布液にゴミ・ホコリ等の異物が混入した場合、これらは直接塗布槽には送られず、貯留槽におけるオーバーフローにより排出され、フィルターにより異物がろ過されたのち再度貯留槽に流入する。   A dip coating apparatus used in the coating method according to the present invention is shown in FIG. This will be described with reference to FIG. Reference numeral 300 denotes an object to be coated, and the upper part thereof is connected by a lifting device (not shown). Reference numeral 301 denotes an application tank for dip-coating an object to be coated. The coating liquid that always overflows the coating tank moves to the recovery tank 302 via the pipe. The coating liquid in the recovery tank is sent to the storage tank 305 by the liquid feeding means 303. Examples of the liquid feeding means include a diaphragm pump and a magnet pump. In the storage tank, like the coating tank, the coating liquid always overflows. Further, both tanks are arranged so that the coating liquid overflow surface 307 of the storage tank is positioned higher than the coating liquid overflow surface 306 of the coating tank. The coating liquid in the storage tank is sent to the coating tank by gravity from an outlet 309 provided at a position lower than the coating liquid overflow surface 307. Since the two overflow surfaces 306 and 307 that determine the flow rate of the coating liquid always overflow, they always maintain a constant height difference, and thus the flow rate of the coating liquid in the coating tank is a constant value. Can be maintained. Further, by causing the coating liquid to overflow in the storage tank, the pulsation of the coating liquid by the liquid feeding means is absorbed on the overflow side of the storage tank and is not transmitted to the coating tank. Furthermore, by providing the coating liquid inlet 308 in the storage tank at a position lower than the coating liquid overflow surface 307, it is possible to prevent air entrainment and shaking of the coating liquid overflow surface 307 when the coating liquid flows in. . In addition, the coating liquid overflowing from the storage tank is not sent directly to the coating tank, and the piping is configured so that it again passes through the filter 304 by the liquid feeding means. Therefore, if foreign matter such as dust or dust is mixed in the coating liquid in the storage tank, these are not sent directly to the coating tank, but are discharged by overflow in the storage tank. Inflow.

次に、本発明による塗布方法に用いる浸漬塗布装置の別の実施形態を図4に示す。貯留槽405における塗布液流入口408と流出口409を結ぶ直線の間に、仕切り板等の遮蔽物410が設けてあり、流入口から流出口への塗布液のショートパスを防止している。また、塗布槽401における塗布液の流速を、塗布液の種類や性質、若しくは所望膜厚等に応じて調整できるよう、貯留槽の高さ位置を高さ調整手段411によって可変とすることで、塗布槽−貯留槽各々の塗布液溢流面406と407の高さ差を調整可能な仕組みにしてある。ここで、塗布槽と貯留槽における各溢流面高さの差は、好ましくは10〜1000mm、より好ましくは10〜400mmの間で調整可能となるような構成とする。塗布槽における塗布液流速の別の調整手段として、貯留槽と塗布槽の間に流量調整用のバルブ412を配置してもよい。塗布槽における塗布液の流速としては、好ましくは50〜600mm/min、より好ましくは100〜500mm/minの範囲である。ここで流速は、塗布槽における塗布液の液面を塗布槽の下部に一度下げた後、塗布液が塗布槽内を上昇する距離と時間の測定値から算出した値である。塗布槽における流速が小さ過ぎると、塗布液に濃度勾配を生じやすく、過剰に大きいと塗布に乱れを生じやすくなる。本発明による塗布方法では、貯留槽から塗布槽への送液は重力のみによるため、送液の圧力は弱い範囲でしか制御できない。両槽の間の配管が、特に水平に配置されている箇所415においては、気泡が配管内に滞留する場合があり、メンテナンスの際に気泡を強制的に塗布槽側に排出させるエア抜き循環を行うにあたって、重力による送液だけでは、圧力が不足することがある。従って、液送手段の圧力を利用した強制的な気泡排出メンテナンスを可能とするために、液送手段403の二次側から貯留槽を経由せずに直接塗布槽側に通じるバルブ416を有した分岐配管413、及びバルブ417、418を配置し、エア抜き循環が可能な構成としてある。   Next, another embodiment of the dip coating apparatus used in the coating method according to the present invention is shown in FIG. A shielding object 410 such as a partition plate is provided between a straight line connecting the coating liquid inlet 408 and the outlet 409 in the storage tank 405 to prevent a short path of the coating liquid from the inlet to the outlet. In addition, by making the height position of the storage tank variable by the height adjusting means 411 so that the flow rate of the coating liquid in the coating tank 401 can be adjusted according to the type and properties of the coating liquid, or the desired film thickness, The mechanism is such that the height difference between the coating liquid overflow surfaces 406 and 407 in each of the coating tank and the storage tank can be adjusted. Here, the difference in the height of each overflow surface between the coating tank and the storage tank is preferably 10 to 1000 mm, more preferably 10 to 400 mm. As another means for adjusting the flow rate of the coating solution in the coating tank, a flow rate adjusting valve 412 may be disposed between the storage tank and the coating tank. The flow rate of the coating liquid in the coating tank is preferably 50 to 600 mm / min, more preferably 100 to 500 mm / min. Here, the flow velocity is a value calculated from measured values of the distance and time that the coating liquid rises in the coating tank after the liquid level of the coating liquid in the coating tank is once lowered to the lower part of the coating tank. If the flow rate in the coating tank is too small, a concentration gradient tends to occur in the coating solution, and if it is excessively large, the coating tends to be disturbed. In the coating method according to the present invention, since the liquid feeding from the storage tank to the coating tank is based only on gravity, the liquid feeding pressure can be controlled only within a weak range. In the place 415 where the pipe between the two tanks is arranged horizontally, air bubbles may stay in the pipe, and air bleed circulation for forcibly discharging the air bubbles to the coating tank side during maintenance is performed. In doing so, the pressure may be insufficient with only liquid feeding by gravity. Therefore, in order to enable forced bubble discharge maintenance using the pressure of the liquid feeding means, a valve 416 that leads directly from the secondary side of the liquid feeding means 403 to the coating tank side without passing through the storage tank is provided. A branch pipe 413 and valves 417 and 418 are arranged so that air can be circulated.

また、回収タンクの液受け部分414にはメッシュを用いてあり、ゴミ等の異物、及び気泡をトラップできる構成となっている。   Further, a mesh is used for the liquid receiving portion 414 of the recovery tank, and it is configured to trap foreign matters such as dust and bubbles.

本発明による塗布方法は、100mPas以下、とりわけ10mPas以下の比較的低い粘度を有する塗布液に対して、特に有効に機能する。   The coating method according to the present invention works particularly effectively for a coating solution having a relatively low viscosity of 100 mPas or less, particularly 10 mPas or less.

本発明における貯留槽の容積は10〜30リットル、配管の太さは20〜60mmの範囲、また配管一箇所の長さが3000mmを越えないように構成してある。   In the present invention, the volume of the storage tank is 10 to 30 liters, the thickness of the pipe is in the range of 20 to 60 mm, and the length of one pipe does not exceed 3000 mm.

次に、本発明による塗布方法を用いた電子写真感光体の製造方法について説明する。   Next, a method for producing an electrophotographic photoreceptor using the coating method according to the present invention will be described.

本発明の電子写真感光体は、円筒状支持体上に電荷発生層及び電荷輸送層を有する、いわゆる積層型感光層を有する電子写真感光体である。積層型感光層には、支持体側から電荷発生層、電荷輸送層の順に積層した順層型感光層と、支持体側から電荷輸送層、電荷発生層の順に積層した逆層型感光層があるが、電子写真特性の観点からは順層型感光層が好ましい。   The electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor having a so-called laminated photosensitive layer having a charge generation layer and a charge transport layer on a cylindrical support. The laminated type photosensitive layer includes a normal layer type photosensitive layer laminated in the order of the charge generation layer and the charge transport layer from the support side, and a reverse layer type photosensitive layer laminated in the order of the charge transport layer and the charge generation layer from the support side. From the viewpoint of electrophotographic characteristics, a normal type photosensitive layer is preferred.

円筒状支持体(以下、単に「支持体」ともいう。)としては、導電性を有していればよく(導電性支持体)、例えば、アルミニウム、アルミニウム合金、銅、亜鉛、ステンレス、バナジウム、モリブデン、クロム、チタン、ニッケル、インジウム、金、白金などの金属製(合金製)の支持体を用いることができる。また、これら金属(合金)を真空蒸着によって被膜形成した層を有する上記金属製支持体やプラスチック(ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリエチレンテレフタレート樹脂、アクリル樹脂など)製支持体を用いることもできる。また、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子などの導電性粒子を適当な結着樹脂と共にプラスチックや紙に含浸した支持体や、導電性結着樹脂を有するプラスチック製の支持体などを用いることもできる。   As the cylindrical support (hereinafter also simply referred to as “support”), it is only necessary to have conductivity (conductive support). For example, aluminum, aluminum alloy, copper, zinc, stainless steel, vanadium, A support made of metal (made of alloy) such as molybdenum, chromium, titanium, nickel, indium, gold, or platinum can be used. In addition, the metal support having a layer formed by vacuum deposition of these metals (alloys) or a support made of plastic (polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyethylene terephthalate resin, acrylic resin, etc.) is used. You can also. In addition, a support in which conductive particles such as carbon black, tin oxide particles, titanium oxide particles, and silver particles are impregnated into plastic or paper together with an appropriate binder resin, or a plastic support having a conductive binder resin, etc. Can also be used.

また、支持体の表面は、レーザー光などの散乱による干渉縞の防止などを目的として、切削処理、粗面化処理、アルマイト処理などを施してもよい。   The surface of the support may be subjected to cutting treatment, roughening treatment, alumite treatment, etc. for the purpose of preventing interference fringes due to scattering of laser light or the like.

支持体と電荷発生層もしくは電荷輸送層または後述の中間層との間には、レーザー光などの散乱による干渉縞の防止や、支持体の傷の被覆を目的とした導電層を設けてもよい。   A conductive layer may be provided between the support and the charge generation layer or charge transport layer or an intermediate layer described later for the purpose of preventing interference fringes due to scattering of laser light or the like, or for covering scratches on the support. .

導電層は、カーボンブラック、金属粒子、金属酸化物粒子などの導電性粒子を結着樹脂に分散させて形成することができる。   The conductive layer can be formed by dispersing conductive particles such as carbon black, metal particles, and metal oxide particles in a binder resin.

導電層の膜厚は、1〜40μmであることが好ましく、特には2〜20μmであることがより好ましい。   The thickness of the conductive layer is preferably 1 to 40 μm, and more preferably 2 to 20 μm.

また、支持体または導電層と電荷発生層または電荷輸送層との間には、バリア機能や接着機能を有する中間層を設けてもよい。中間層は、感光層の接着性改良、塗工性改良、支持体からの電荷注入性改良、感光層の電気的破壊に対する保護などのために形成される。   Further, an intermediate layer having a barrier function or an adhesive function may be provided between the support or the conductive layer and the charge generation layer or the charge transport layer. The intermediate layer is formed for the purpose of improving the adhesion of the photosensitive layer, improving the coating property, improving the charge injection property from the support, and protecting the photosensitive layer from electrical breakdown.

中間層は、アクリル樹脂、アリル樹脂、アルキッド樹脂、エチルセルロース樹脂、エチレン−アクリル酸コポリマー、エポキシ樹脂、カゼイン樹脂、シリコーン樹脂、ゼラチン樹脂、フェノール樹脂、ブチラール樹脂、ポリアクリレート樹脂、ポリアセタール樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリアリルエーテル樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリスルホン樹脂、ポリビニルアルコール樹脂、ポリブタジエン樹脂、ポリプロピレン樹脂、ユリア樹脂などの樹脂や、酸化アルミニウムなどの材料を用いて形成することができる。また、中間層には、金属、合金、それらの酸化物、塩類、界面活性剤などを含有させてもよい。   The intermediate layer is acrylic resin, allyl resin, alkyd resin, ethyl cellulose resin, ethylene-acrylic acid copolymer, epoxy resin, casein resin, silicone resin, gelatin resin, phenol resin, butyral resin, polyacrylate resin, polyacetal resin, polyamideimide resin , Polyamide resin, polyallyl ether resin, polyimide resin, polyurethane resin, polyester resin, polyethylene resin, polycarbonate resin, polystyrene resin, polysulfone resin, polyvinyl alcohol resin, polybutadiene resin, polypropylene resin, urea resin, aluminum oxide, etc. It can be formed using the material. Further, the intermediate layer may contain metals, alloys, oxides thereof, salts, surfactants and the like.

中間層の膜厚は0.05〜7μmであることが好ましく、特には0.1〜2μmであることがより好ましい。   The thickness of the intermediate layer is preferably 0.05 to 7 μm, and more preferably 0.1 to 2 μm.

電荷発生層は、電荷発生物質を結着樹脂及び溶剤と共に分散して得られる電荷発生層用塗布液を塗布し、加熱及び/または放射線の照射などにより乾燥及び/または硬化することによって形成することができる。分散方法としては、ホモジナイザー、超音波分散機、ボールミル、サンドミル、ロールミル、振動ミル、アトライター、液衝突型高速分散機などを用いた方法が挙げられる。   The charge generation layer is formed by applying a charge generation layer coating solution obtained by dispersing a charge generation material together with a binder resin and a solvent, and drying and / or curing by heating and / or radiation irradiation. Can do. Examples of the dispersion method include a method using a homogenizer, an ultrasonic disperser, a ball mill, a sand mill, a roll mill, a vibration mill, an attritor, a liquid collision type high-speed disperser, and the like.

電荷発生物質としては、例えば、モノアゾ、ジスアゾ、トリスアゾなどのアゾ顔料や、金属フタロシアニン、非金属フタロシアニンなどのフタロシアニン顔料や、インジゴ、チオインジゴなどのインジゴ顔料や、ペリレン酸無水物、ペリレン酸イミドなどのペリレン顔料や、アンスラキノン、ピレンキノンなどの多環キノン顔料や、スクワリリウム色素や、ピリリウム塩及びチアピリリウム塩や、トリフェニルメタン色素や、セレン、セレン−テルル、アモルファスシリコンなどの無機物質や、キナクリドン顔料や、アズレニウム塩顔料や、シアニン染料や、キサンテン色素や、キノンイミン色素や、スチリル色素や、硫化カドミウムや、酸化亜鉛などが挙げられる。これら電荷発生物質は1種のみ用いてもよく、2種以上用いてもよい。   Examples of the charge generating material include azo pigments such as monoazo, disazo, and trisazo, phthalocyanine pigments such as metal phthalocyanine and nonmetal phthalocyanine, indigo pigments such as indigo and thioindigo, and perylene acid anhydride and perylene imide. Perylene pigments, polycyclic quinone pigments such as anthraquinone and pyrenequinone, squarylium dyes, pyrylium salts and thiapyrylium salts, triphenylmethane dyes, inorganic substances such as selenium, selenium-tellurium, amorphous silicon, quinacridone pigments, And azurenium salt pigments, cyanine dyes, xanthene dyes, quinone imine dyes, styryl dyes, cadmium sulfide, and zinc oxide. These charge generation materials may be used alone or in combination of two or more.

電荷発生層に用いる結着樹脂としては、例えば、アクリル樹脂、アリル樹脂、アルキッド樹脂、エポキシ樹脂、ジアリルフタレート樹脂、シリコーン樹脂、スチレン−ブタジエンコポリマー、フェノール樹脂、ブチラール樹脂、ベンザール樹脂、ポリアクリレート樹脂、ポリアセタール樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリアリルエーテル樹脂、ポリアリレート樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリスルホン樹脂、ポリビニルアセタール樹脂、ポリブタジエン樹脂、ポリプロピレン樹脂、メタクリル樹脂、ユリア樹脂、塩化ビニル−酢酸ビニルコポリマー、酢酸ビニル樹脂などが挙げられる。特には、ブチラール樹脂などが好ましい。これらは単独、混合または共重合体として1種または2種以上用いることができる。   Examples of the binder resin used for the charge generation layer include acrylic resins, allyl resins, alkyd resins, epoxy resins, diallyl phthalate resins, silicone resins, styrene-butadiene copolymers, phenol resins, butyral resins, benzal resins, polyacrylate resins, Polyacetal resin, polyamideimide resin, polyamide resin, polyallyl ether resin, polyarylate resin, polyimide resin, polyurethane resin, polyester resin, polyethylene resin, polycarbonate resin, polystyrene resin, polysulfone resin, polyvinyl acetal resin, polybutadiene resin, polypropylene resin, Examples include methacrylic resin, urea resin, vinyl chloride-vinyl acetate copolymer, vinyl acetate resin and the like. In particular, a butyral resin is preferable. These can be used singly or in combination of two or more as a mixture or copolymer.

電荷発生層中の結着樹脂の割合は、電荷発生層全質量に対して90質量%以下であることが好ましく、特には50質量%以下であることがより好ましい。   The ratio of the binder resin in the charge generation layer is preferably 90% by mass or less, more preferably 50% by mass or less, with respect to the total mass of the charge generation layer.

電荷発生層用塗布液に用いる溶剤は、使用する結着樹脂や電荷発生物質の溶解性や分散安定性から選択されるが、有機溶剤としてはアルコール、スルホキシド、ケトン、エーテル、エステル、脂肪族ハロゲン化炭化水素、芳香族化合物などが挙げられる。   The solvent used in the coating solution for the charge generation layer is selected from the solubility and dispersion stability of the binder resin and charge generation material used, and the organic solvents include alcohols, sulfoxides, ketones, ethers, esters, aliphatic halogens. Hydrocarbons and aromatic compounds.

電荷発生層の膜厚は0.001〜6μmであることが好ましく、特には0.01〜1μmであることがより好ましい。   The thickness of the charge generation layer is preferably 0.001 to 6 μm, and more preferably 0.01 to 1 μm.

また、電荷発生層には、種々の増感剤、酸化防止剤、紫外線吸収剤、可塑剤などを必要に応じて添加することもできる。   In addition, various sensitizers, antioxidants, ultraviolet absorbers, plasticizers, and the like can be added to the charge generation layer as necessary.

次に、電荷輸送層は、電荷輸送物質、結着樹脂を溶剤に溶解して得られる電荷輸送層用塗布液を塗布し、加熱及び/または放射線の照射などにより乾燥及び/または硬化することによって形成することができる。電荷輸送層用塗布液に含有させる電荷輸送物質としては、例えば、トリアリールアミン化合物、ヒドラゾン化合物、スチリル化合物、スチルベン化合物、ピラゾリン化合物、オキサゾール化合物、チアゾール化合物、トリアリールメタン化合物などが挙げられる。これら電荷輸送物質は1種のみ用いてもよく、2種以上用いてもよい。   Next, the charge transport layer is formed by applying a charge transport layer, a binder resin coating solution obtained by dissolving a binder resin in a solvent, and drying and / or curing by heating and / or radiation irradiation. Can be formed. Examples of the charge transport material contained in the charge transport layer coating solution include triarylamine compounds, hydrazone compounds, styryl compounds, stilbene compounds, pyrazoline compounds, oxazole compounds, thiazole compounds, and triarylmethane compounds. These charge transport materials may be used alone or in combination of two or more.

電荷輸送層中の電荷輸送物質の割合は、電荷輸送層全質量に対して20〜80質量%であることが好ましく、特には30〜70質量%であることがより好ましい。従って、電荷輸送層用塗布液には、電荷輸送層形成後の電荷輸送物質の割合が上記範囲になるように電荷輸送物質を含有させることが好ましい。   The ratio of the charge transport material in the charge transport layer is preferably 20 to 80% by weight, more preferably 30 to 70% by weight, based on the total weight of the charge transport layer. Therefore, the charge transport layer coating liquid preferably contains a charge transport material so that the ratio of the charge transport material after formation of the charge transport layer is in the above range.

電荷輸送層用塗布液に含有させる結着樹脂としては、例えば、アクリル樹脂、アクリロニトリル樹脂、アリル樹脂、アルキッド樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、フェノキシ樹脂、ブチラール樹脂、ポリアクリルアミド樹脂、ポリアセタール樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリアリルエーテル樹脂、ポリアリレート樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリスルホン樹脂、ポリビニルブチラール樹脂、ポリフェニレンオキシド樹脂、ポリブタジエン樹脂、ポリプロピレン樹脂、メタクリル樹脂、ユリア樹脂、塩化ビニル樹脂、酢酸ビニル樹脂などが挙げられる。特には、ポリアリレート樹脂、ポリカーボネート樹脂などが好ましい。これらは単独、混合または共重合体として1種または2種以上用いることができる。   Examples of the binder resin to be included in the charge transport layer coating solution include acrylic resin, acrylonitrile resin, allyl resin, alkyd resin, epoxy resin, silicone resin, phenol resin, phenoxy resin, butyral resin, polyacrylamide resin, and polyacetal resin. , Polyamideimide resin, polyamide resin, polyallyl ether resin, polyarylate resin, polyimide resin, polyurethane resin, polyester resin, polyethylene resin, polycarbonate resin, polystyrene resin, polysulfone resin, polyvinyl butyral resin, polyphenylene oxide resin, polybutadiene resin, polypropylene Examples thereof include resins, methacrylic resins, urea resins, vinyl chloride resins, and vinyl acetate resins. In particular, polyarylate resin, polycarbonate resin and the like are preferable. These can be used singly or in combination of two or more as a mixture or copolymer.

電荷輸送物質と結着樹脂との割合は、5:1〜1:5(質量比)の範囲が好ましい。   The ratio between the charge transport material and the binder resin is preferably in the range of 5: 1 to 1: 5 (mass ratio).

電荷輸送層用塗布液に用いる溶剤としては、モノクロロベンゼン、ジオキサン、トルエン、キシレン、N−メチルピロリドン、ジクロロメタン、テトラヒドロフラン、メチラールなどが挙げられる。   Examples of the solvent used in the charge transport layer coating solution include monochlorobenzene, dioxane, toluene, xylene, N-methylpyrrolidone, dichloromethane, tetrahydrofuran, and methylal.

また、電荷輸送層には、すなわち電荷輸送層用塗布液には、酸化防止剤、紫外線吸収剤、可塑剤などを必要に応じて添加することもできる。   In addition, an antioxidant, an ultraviolet absorber, a plasticizer, and the like can be added to the charge transport layer, that is, the charge transport layer coating solution, as necessary.

電荷輸送層(順層型感光層の場合)または電荷発生層(逆層型感光層の場合)上には、これを保護することを目的とした保護層を設けてもよい。保護層は、上述した各種結着樹脂を溶剤に溶解して得られる保護層用塗布液を塗布し、加熱及び/または放射線の照射などにより乾燥及び/または硬化することによって形成することができる。   A protective layer may be provided on the charge transport layer (in the case of a normal layer type photosensitive layer) or a charge generation layer (in the case of a reverse layer type photosensitive layer) for the purpose of protecting it. The protective layer can be formed by applying a protective layer coating solution obtained by dissolving the various binder resins described above in a solvent, and drying and / or curing by heating and / or radiation irradiation.

また、本発明の電子写真感光体の表面層には、潤滑剤を含有させてもよい。潤滑剤としては、例えば、ケイ素原子やフッ素原子を含むポリマー、モノマー及びオリゴマーなどが挙げられる。具体的には、N−(n−プロピル)−N−(β−アクリロキシエチル)−パーフルオロオクチルスルホン酸アミド、N−(n−プロピル)−(β−メタクリロキシエチル)−パーフルオロオクチルスルホン酸アミド、パーフルオロオクタンスルホン酸、パーフルオロカプリル酸、N−n−プロピル−n−パーフルオロオクタンスルホン酸アミド−エタノール、3−(2−パーフルオロヘキシル)エトキシ−1,2−ジヒドロキシプロパン、N−n−プロピル−N−2,3−ジヒドロキシプロピルパーフルオロオクチルスルホンアミドなどが挙げられる。また、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリジクロロジフルオロエチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−エチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体などのフッ素原子含有樹脂の粒子なども挙げられる。これらは単独または混合して1種または2種以上用いることができる。また、潤滑剤の数平均分子量は、3000〜5000000であることが好ましく、特には10000〜3000000であることが好ましい。潤滑剤が粒子である場合、その平均粒径は0.01〜10μmであることが好ましく、特には0.05〜2.0μmであることが好ましい。   Further, the surface layer of the electrophotographic photosensitive member of the present invention may contain a lubricant. Examples of the lubricant include polymers, monomers and oligomers containing silicon atoms and fluorine atoms. Specifically, N- (n-propyl) -N- (β-acryloxyethyl) -perfluorooctylsulfonic acid amide, N- (n-propyl)-(β-methacryloxyethyl) -perfluorooctylsulfone Acid amide, perfluorooctanesulfonic acid, perfluorocaprylic acid, Nn-propyl-n-perfluorooctanesulfonic acid amide-ethanol, 3- (2-perfluorohexyl) ethoxy-1,2-dihydroxypropane, N -N-propyl-N-2,3-dihydroxypropyl perfluorooctylsulfonamide and the like. Also, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polydichlorodifluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene Examples also include particles of fluorine atom-containing resins such as copolymers and tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymers. These may be used alone or in combination of two or more. Moreover, it is preferable that the number average molecular weights of a lubricant are 3000-5 million, and it is especially preferable that it is 10000-3000000. When the lubricant is a particle, the average particle diameter is preferably 0.01 to 10 μm, and particularly preferably 0.05 to 2.0 μm.

また、本発明の電子写真感光体の表面層には、抵抗調整剤を含有させてもよい。抵抗調整剤としては、例えば、SnO、ITO、カーボンブラック、銀粒子などが挙げられる。また、これらに疎水化処理を施したものを用いてもよい。抵抗調整剤を添加した場合の表面層の抵抗は10〜1014Ω・cmであることが好ましい。 The surface layer of the electrophotographic photosensitive member of the present invention may contain a resistance adjusting agent. Examples of the resistance adjuster include SnO 2 , ITO, carbon black, silver particles, and the like. Moreover, you may use what performed the hydrophobization process to these. The resistance of the surface layer when a resistance adjusting agent is added is preferably 10 9 to 10 14 Ω · cm.

なお、保護層を設ける場合は保護層が電子写真感光体の表面層であり、保護層を設けない場合であって感光層が順層型感光層の場合は電荷輸送層が電子写真感光体の表面層であり、保護層を設けない場合であって逆層型感光層の場合は電荷発生層が電子写真感光体の表面層である。   When the protective layer is provided, the protective layer is a surface layer of the electrophotographic photosensitive member, and when the protective layer is not provided and the photosensitive layer is a normal type photosensitive layer, the charge transport layer is the electrophotographic photosensitive member. In the case where the protective layer is not provided and the reverse type photosensitive layer, the charge generation layer is the surface layer of the electrophotographic photosensitive member.

図5に、本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の一例を示す。   FIG. 5 shows an example of a schematic configuration of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.

図5において、1は円筒状の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。   In FIG. 5, reference numeral 1 denotes a cylindrical electrophotographic photosensitive member, which is driven to rotate at a predetermined peripheral speed in the direction of the arrow about the shaft 2.

回転駆動される電子写真感光体1の表面は、帯電手段(一次帯電手段:帯電ローラーなど)3により、正または負の所定電位に均一に帯電され、次いで、スリット露光やレーザービーム走査露光などの露光手段(不図示)から出力される露光光(画像露光光)4を受ける。こうして電子写真感光体1の表面に、目的の画像に対応した静電潜像が順次形成されていく。   The surface of the electrophotographic photosensitive member 1 that is rotationally driven is uniformly charged to a predetermined positive or negative potential by a charging unit (primary charging unit: charging roller or the like) 3, and then subjected to slit exposure, laser beam scanning exposure, or the like. Exposure light (image exposure light) 4 output from exposure means (not shown) is received. In this way, electrostatic latent images corresponding to the target image are sequentially formed on the surface of the electrophotographic photosensitive member 1.

電子写真感光体1の表面に形成された静電潜像は、現像手段5の現像剤に含まれるトナーにより現像されてトナー像となる。次いで、電子写真感光体1の表面に形成担持されているトナー像が、転写手段(転写ローラーなど)6からの転写バイアスによって、転写材供給手段(不図示)から電子写真感光体1と転写手段6との間(当接部)に電子写真感光体1の回転と同期して取り出されて給送された転写材(紙など)Pに順次転写されていく。   The electrostatic latent image formed on the surface of the electrophotographic photoreceptor 1 is developed with toner contained in the developer of the developing means 5 to become a toner image. Next, the toner image formed and supported on the surface of the electrophotographic photoreceptor 1 is transferred from a transfer material supply means (not shown) to the electrophotographic photoreceptor 1 and the transfer means by a transfer bias from a transfer means (transfer roller or the like) 6. 6 (contact portion) is sequentially transferred onto a transfer material (paper or the like) P taken out and fed in synchronization with the rotation of the electrophotographic photosensitive member 1.

トナー像の転写を受けた転写材Pは、電子写真感光体1の表面から分離されて定着手段8へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。   The transfer material P that has received the transfer of the toner image is separated from the surface of the electrophotographic photosensitive member 1 and introduced into the fixing means 8 to receive the image fixing, and is printed out as an image formed product (print, copy). Is done.

トナー像転写後の電子写真感光体1の表面は、クリーニング手段(クリーニングブレードなど)7によって転写残りの現像剤(トナー)の除去を受けて清浄面化され、さらに前露光手段(不図示)からの前露光光(不図示)により除電処理された後、繰り返し画像形成に使用される。なお、図5に示すように、帯電手段3が帯電ローラーなどを用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。   The surface of the electrophotographic photosensitive member 1 after the transfer of the toner image is cleaned by a cleaning means (cleaning blade or the like) 7 to remove the developer (toner) remaining after transfer, and further from a pre-exposure means (not shown). After being subjected to charge removal processing by pre-exposure light (not shown), it is repeatedly used for image formation. As shown in FIG. 5, when the charging unit 3 is a contact charging unit using a charging roller or the like, pre-exposure is not necessarily required.

上述の電子写真感光体1、帯電手段3、現像手段5、転写手段6及びクリーニング手段7などの構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンターなどの電子写真装置本体に対して着脱自在に構成してもよい。図5では、電子写真感光体1と、帯電手段3、現像手段5及びクリーニング手段7とを一体に支持してカートリッジ化して、電子写真装置本体のレールなどの案内手段10を用いて電子写真装置本体に着脱自在なプロセスカートリッジ9としている。   Among the above-described components such as the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5, the transfer unit 6, and the cleaning unit 7, a plurality of components are housed in a container and integrally combined as a process cartridge. The process cartridge may be configured to be detachable from an electrophotographic apparatus main body such as a copying machine or a laser beam printer. In FIG. 5, the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5 and the cleaning unit 7 are integrally supported to form a cartridge, and the electrophotographic apparatus is used by using a guide unit 10 such as a rail of the electrophotographic apparatus main body. The process cartridge 9 is detachable from the main body.

本発明の塗布方法は、導電層、中間層、電荷発生層、電荷輸送層、及び保護層の形成における浸漬塗布に用いることが可能であり、特に材料や所望膜厚の理由から塗布液を比較的低粘度に設定することが多い中間層、電荷発生層及び保護層において特に適している。   The coating method of the present invention can be used for dip coating in the formation of a conductive layer, an intermediate layer, a charge generation layer, a charge transport layer, and a protective layer. It is particularly suitable for an intermediate layer, a charge generation layer, and a protective layer, which are often set to a low viscosity.

以下に、具体的な実施例を挙げて本発明をさらに詳細に説明する。ただし、本発明はこれらに限定されるものではない。なお、実施例中の「部」は「質量部」を意味する。   Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to these. In the examples, “part” means “part by mass”.

(実施例1)
直径30mm、長さ254mmのアルミニウムシリンダーを支持体(円筒状支持体)とした。
Example 1
An aluminum cylinder having a diameter of 30 mm and a length of 254 mm was used as a support (cylindrical support).

次に、酸化スズコート処理酸化チタン10部、酸化チタン10部、フェノール樹脂10部、シリコーンオイル0.001部、メタノール15部及びメチルセロソルブ15部をサンドミル装置で3時間分散して、導電層用塗布液を調製した。   Next, 10 parts of tin oxide-coated titanium oxide, 10 parts of titanium oxide, 10 parts of phenol resin, 0.001 part of silicone oil, 15 parts of methanol and 15 parts of methyl cellosolve are dispersed for 3 hours in a sand mill device, and applied for a conductive layer. A liquid was prepared.

この導電層用塗布液を、図1に示す塗布装置を用いて支持体上に浸漬塗布し、140℃で30分乾燥・硬化して、膜厚が15μmの導電層を形成した。   This conductive layer coating solution was dip-coated on a support using the coating apparatus shown in FIG. 1, and dried and cured at 140 ° C. for 30 minutes to form a conductive layer having a thickness of 15 μm.

次に、ポリアミド樹脂(商品名:M−4000、東レ(株)製)10部を、メタノール100部/イソプロパノール90部の混合溶剤に溶解して、8mPa・sの粘度を有する中間層用塗布液を調製した。   Next, 10 parts of polyamide resin (trade name: M-4000, manufactured by Toray Industries, Inc.) is dissolved in a mixed solvent of 100 parts of methanol / 90 parts of isopropanol, and an intermediate layer coating solution having a viscosity of 8 mPa · s. Was prepared.

この中間層用塗布液を、図4に示した本発明による塗布装置を用いて前記導電層上に浸漬塗布し、90℃で10分間乾燥して、膜厚が0.6μmの中間層を形成した。この時、塗布槽の溢流面406と貯留槽の溢流面407の高さの差は、70mmであり、塗布槽における塗布液の流速は380mm/minであった。   This intermediate layer coating solution is dip coated on the conductive layer using the coating apparatus according to the present invention shown in FIG. 4 and dried at 90 ° C. for 10 minutes to form an intermediate layer having a thickness of 0.6 μm. did. At this time, the height difference between the overflow surface 406 of the coating tank and the overflow surface 407 of the storage tank was 70 mm, and the flow rate of the coating liquid in the coating tank was 380 mm / min.

次に、CuKαのX線回折におけるブラッグ角2θの7.4°±0.2°、28.1°に強いピークを有するHOGaPc結晶9部とポリビニルブチラール(商品名:エスレックBX−1、積水化学(株)製)3部をテトラヒドロフラン100部に溶解した液を、1mmφのガラスビーズを用いたサンドミル装置で3時間分散した。これに200部の酢酸ブチルを加えて希釈した後回収して、1mPa・sの粘度を有する電荷発生層用塗布液を得た。これを、図4に示した本発明による塗布装置を用いて前記中間層上に浸漬塗布し、80℃で15分間乾燥して、膜厚が0.15μmの電荷発生層を形成した。この時、塗布槽の溢流面406と貯留槽の溢流面407の高さの差は、50mmであり、塗布槽における塗布液の流速は310mm/minであった。   Next, 9 parts of HOGaPc crystals having strong peaks at 7.4 ° ± 0.2 ° and 28.1 ° of Bragg angle 2θ in X-ray diffraction of CuKα and polyvinyl butyral (trade name: ESREC BX-1, Sekisui Chemical) A solution obtained by dissolving 3 parts in 100 parts of tetrahydrofuran was dispersed for 3 hours with a sand mill using 1 mmφ glass beads. 200 parts of butyl acetate was added thereto for dilution and then recovered to obtain a charge generation layer coating solution having a viscosity of 1 mPa · s. This was applied by dip coating on the intermediate layer using the coating apparatus according to the present invention shown in FIG. 4 and dried at 80 ° C. for 15 minutes to form a charge generation layer having a thickness of 0.15 μm. At this time, the difference in height between the overflow surface 406 of the coating tank and the overflow surface 407 of the storage tank was 50 mm, and the flow rate of the coating liquid in the coating tank was 310 mm / min.

次に、下記式で示される構造を有するスチリル化合物(電荷輸送物質)10部及び、ポリカーボネート樹脂(商品名:ユーピロンZ−400、三菱ガス化学(株)製)10部を、モノクロロベンゼン120部に溶解して、電荷輸送層用塗布液を調製した。この電荷輸送層用塗布液を、図1に示す塗布装置を用いて電荷発生層上に浸漬塗布し、120℃で60分間乾燥して、膜厚が30μmの電荷輸送層を形成した。このようにして、表面層が電荷輸送層である電子写真感光体を連続的に100本作成した。10本ごとに中間層及び電荷発生層の膜厚を確認したところ、中間層は0.6μm、電荷発生層は0.15μmの膜厚を維持し安定した状態を保った。また、中間層及び電荷発生層の塗膜における乱れ、気泡、異物等の塗膜欠陥はみられなかった。   Next, 10 parts of a styryl compound (charge transport material) having a structure represented by the following formula and 10 parts of a polycarbonate resin (trade name: Iupilon Z-400, manufactured by Mitsubishi Gas Chemical Co., Ltd.) are added to 120 parts of monochlorobenzene. It melt | dissolved and the coating liquid for charge transport layers was prepared. This charge transport layer coating solution was dip-coated on the charge generation layer using the coating apparatus shown in FIG. 1 and dried at 120 ° C. for 60 minutes to form a charge transport layer having a thickness of 30 μm. In this way, 100 electrophotographic photoreceptors whose surface layer was a charge transport layer were continuously prepared. When the film thickness of the intermediate layer and the charge generation layer was confirmed for every ten pieces, the intermediate layer maintained a stable state by maintaining a film thickness of 0.6 μm and the charge generation layer of 0.15 μm. In addition, there were no coating film defects such as turbulence, bubbles, and foreign matters in the coating film of the intermediate layer and the charge generation layer.

また、前記中間層用塗布液の塗布において、図4に示した高さ位置調整手段411を用いて塗布液溢流面406と407の落差を変化させた際の塗布槽内における塗布液流速を図6に示す。図6からわかるように、塗布液溢流面406と407の落差調整により流量は自在に制御可能となる。   Further, in the application of the intermediate layer coating solution, the flow rate of the coating solution in the coating tank when the drop between the coating solution overflow surfaces 406 and 407 is changed using the height position adjusting means 411 shown in FIG. As shown in FIG. As can be seen from FIG. 6, the flow rate can be freely controlled by adjusting the drop between the coating liquid overflow surfaces 406 and 407.

従来の浸漬塗布法を説明するための図である。It is a figure for demonstrating the conventional dip coating method. 従来の浸漬塗布法を説明するための図である。It is a figure for demonstrating the conventional dip coating method. 本発明の浸漬塗布法を説明するための図である。It is a figure for demonstrating the dip coating method of this invention. 本発明の浸漬塗布法を説明するための図である。It is a figure for demonstrating the dip coating method of this invention. 本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の一例を示す図である。1 is a diagram illustrating an example of a schematic configuration of an electrophotographic apparatus including a process cartridge having the electrophotographic photosensitive member of the present invention. 図4の塗布装置における溢流面落差と中間層用塗布液の塗布槽内流速との相関図である。FIG. 5 is a correlation diagram between the overflow surface drop in the coating apparatus of FIG. 4 and the flow velocity in the coating tank of the intermediate layer coating solution.

符号の説明Explanation of symbols

1 電子写真感光体
2 軸
3 帯電手段
4 露光光
5 現像手段
6 転写手段
7 クリーニング手段
8 定着手段
9 プロセスカートリッジ
10 案内手段
P 転写材
100、200、300、400 被塗布体
101、201、301、401 塗布槽
102、202、302、402 回収タンク
103、203、303、403 液送手段
104、204、304、404 フィルター
205、305、405 貯留槽
106、206、306、406 溢流面(塗布槽)
207、307、407 溢流面(貯留槽)
308、408 塗布液流入口(貯留槽)
309、409 塗布液流出口(貯留槽)
410 遮蔽物
411 高さ位置調整手段
412 バルブ
413 メンテナンス用分岐配管
414 液受け部(回収タンク)
415 配管水平配置部
416、417、418 バルブ

DESCRIPTION OF SYMBOLS 1 Electrophotographic photosensitive member 2 Axis 3 Charging means 4 Exposure light 5 Developing means 6 Transfer means 7 Cleaning means 8 Fixing means 9 Process cartridge 10 Guide means P Transfer material 100, 200, 300, 400 To-be-coated body 101, 201, 301, 401 Coating tank 102, 202, 302, 402 Recovery tank 103, 203, 303, 403 Liquid feeding means 104, 204, 304, 404 Filter 205, 305, 405 Storage tank 106, 206, 306, 406 Overflow surface (coating tank )
207, 307, 407 Overflow surface (storage tank)
308, 408 Coating liquid inlet (storage tank)
309, 409 Application liquid outlet (storage tank)
410 Shield 411 Height Position Adjusting Unit 412 Valve 413 Maintenance Branch Pipe 414 Liquid Receiving Portion (Recovery Tank)
415 Piping horizontal arrangement part 416, 417, 418 Valve

Claims (6)

塗布液に被塗布体を浸漬し引上げることによって該被塗布体に塗膜を形成する塗布方法において、
該被塗布体を浸漬する塗布槽と、該塗布槽側壁の上端縁を越えて溢流した塗布液を受ける回収タンクと、液送手段を有する配管を通して該回収タンクから送られた塗布液を受ける貯留槽とを有する塗布装置を用い、
該貯留槽における塗布液は被塗布体を浸漬し引上げる間常時該貯留槽側壁の上端縁を越えて溢流しており、該貯留槽の塗布液溢流面は該塗布槽の塗布液溢流面よりも高い位置を保持し、該貯留槽の塗布液溢流面より低い位置から該塗布槽へ塗布液を流入させることによって、塗布液を循環させることを特徴とする塗布方法。
In the coating method of forming a coating film on the coated body by immersing and lifting the coated body in a coating solution,
A coating tank for immersing the coated body, a recovery tank for receiving the coating liquid overflowing over the upper edge of the side wall of the coating tank, and a coating liquid sent from the recovery tank through a pipe having a liquid feeding means Using a coating device having a storage tank,
The coating liquid in the storage tank always overflows beyond the upper edge of the side wall of the storage tank while the substrate is immersed and pulled up, and the coating liquid overflow surface of the storage tank overflows the coating liquid in the coating tank. A coating method, wherein the coating liquid is circulated by holding the position higher than the surface and allowing the coating liquid to flow into the coating tank from a position lower than the coating liquid overflow surface of the storage tank.
前記回収タンクから送られた塗布液が、前記貯留槽の塗布液溢流面より低い位置から該貯留槽に流入することを特徴とする請求項1に記載の塗布方法。   The coating method according to claim 1, wherein the coating liquid sent from the recovery tank flows into the storage tank from a position lower than the coating liquid overflow surface of the storage tank. 前記貯留槽における前記回収タンク側の配管連結口と前記塗布槽側の配管連結口を結ぶ直線が、遮蔽物によって遮蔽されていることを特徴とする請求項1に記載の塗布方法。   The coating method according to claim 1, wherein a straight line connecting the pipe connection port on the collection tank side and the pipe connection port on the application tank side in the storage tank is shielded by a shielding object. 前記貯留槽及び前記塗布槽の一方または両方が、該一方または両方の高さ位置を調整する手段を有することを特徴とする請求項1に記載の塗布方法。   The coating method according to claim 1, wherein one or both of the storage tank and the coating tank have means for adjusting the height position of the one or both. 前記貯留槽で溢流した塗布液が、直接前記塗布槽には送られず、配管を経由して前記回収タンク若しくは該貯留槽に戻されることを特徴とする請求項1に記載の塗布方法。   The coating method according to claim 1, wherein the coating liquid overflowing in the storage tank is not sent directly to the coating tank, but is returned to the recovery tank or the storage tank via a pipe. 請求項1に記載の塗布方法を用いたことを特徴とする電子写真感光体の製造方法。

A method for producing an electrophotographic photosensitive member, wherein the coating method according to claim 1 is used.

JP2005144070A 2005-05-17 2005-05-17 Coating method and method for producing electrophotographic photosensitive member Expired - Fee Related JP4856892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005144070A JP4856892B2 (en) 2005-05-17 2005-05-17 Coating method and method for producing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005144070A JP4856892B2 (en) 2005-05-17 2005-05-17 Coating method and method for producing electrophotographic photosensitive member

Publications (3)

Publication Number Publication Date
JP2006320791A true JP2006320791A (en) 2006-11-30
JP2006320791A5 JP2006320791A5 (en) 2008-07-03
JP4856892B2 JP4856892B2 (en) 2012-01-18

Family

ID=37540853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005144070A Expired - Fee Related JP4856892B2 (en) 2005-05-17 2005-05-17 Coating method and method for producing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP4856892B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990667A (en) * 1982-11-16 1984-05-25 Canon Inc Coating method
JPH02140751A (en) * 1988-11-22 1990-05-30 Canon Inc Coating device for electrophotographic sensitive body
JPH06195704A (en) * 1992-12-28 1994-07-15 Matsushita Electric Ind Co Ltd Apparatus and method for manufacturing magnetic disk
JPH09122551A (en) * 1995-11-01 1997-05-13 Fuji Electric Co Ltd Coating device
JP2001334192A (en) * 2000-05-29 2001-12-04 Fujitsu Ltd Lubricant coat processing device, lubricant coat processing method and lubricant applying method on magnetic disk medium
JP2003131408A (en) * 2002-08-12 2003-05-09 Fuji Electric Co Ltd Coating applicator for electrophotographic photoreceptor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990667A (en) * 1982-11-16 1984-05-25 Canon Inc Coating method
JPH02140751A (en) * 1988-11-22 1990-05-30 Canon Inc Coating device for electrophotographic sensitive body
JPH06195704A (en) * 1992-12-28 1994-07-15 Matsushita Electric Ind Co Ltd Apparatus and method for manufacturing magnetic disk
JPH09122551A (en) * 1995-11-01 1997-05-13 Fuji Electric Co Ltd Coating device
JP2001334192A (en) * 2000-05-29 2001-12-04 Fujitsu Ltd Lubricant coat processing device, lubricant coat processing method and lubricant applying method on magnetic disk medium
JP2003131408A (en) * 2002-08-12 2003-05-09 Fuji Electric Co Ltd Coating applicator for electrophotographic photoreceptor

Also Published As

Publication number Publication date
JP4856892B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
US9280072B2 (en) Process for producing electrophotographic photosensitive member
EP2349590B1 (en) Dip-coating process
JP4856892B2 (en) Coating method and method for producing electrophotographic photosensitive member
JP6945989B2 (en) Immersion coating device and method for manufacturing electrophotographic photosensitive member
JP2013205479A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2007286132A (en) Layer forming apparatus for electrophotographic photoreceptor
JP5274628B2 (en) Coating apparatus, method for producing electrophotographic photosensitive member, and method for mass production of electrophotographic photosensitive member
JP5534796B2 (en) Method for producing electrophotographic photosensitive member
JP2006337926A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP5341450B2 (en) Coating apparatus and method for producing electrophotographic photosensitive member
JP2014178365A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP2013134490A (en) Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor manufactured by manufacturing method
JP4342750B2 (en) A coating apparatus for forming an electrophotographic photoreceptor coating film, a coating method, and a method for producing an electrophotographic photoreceptor.
JP5424755B2 (en) Method for cleaning substrate for electrophotography, method for producing electrophotographic photoreceptor
JP2003076042A (en) Method for manufacturing electrophotographic photoreceptor
JP2014233689A (en) Manufacturing apparatus for electrophotographic photosensitive body, manufacturing method for electrophotographic photosensitive body using the same, electrophotographic photosensitive body manufactured by the same, and image formation apparatus with the same
JP2006133303A (en) Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor manufactured by the manufacturing method and image forming apparatus with the electrophotographic photoreceptor
JP2005266071A (en) Method for manufacturing electrophotographic photoreceptor
JPH01119365A (en) Coating applicator
JP3266952B2 (en) Manufacturing method of cylindrical coated body
JP2006337759A (en) Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor employing the same
JP2006047695A (en) Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor manufactured by the method, and image forming apparatus equipped with the electrophotographic photoreceptor
JP2001083721A (en) Method for manufacturing electrophotographic photoreceptor
JPH0889879A (en) Manufacture of coated cylinder
JP2015221417A (en) Washing apparatus and washing method for electrically conductive substrate

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4856892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees