JP2006318725A - Inductively coupled plasma production device and plasma production method - Google Patents

Inductively coupled plasma production device and plasma production method Download PDF

Info

Publication number
JP2006318725A
JP2006318725A JP2005139374A JP2005139374A JP2006318725A JP 2006318725 A JP2006318725 A JP 2006318725A JP 2005139374 A JP2005139374 A JP 2005139374A JP 2005139374 A JP2005139374 A JP 2005139374A JP 2006318725 A JP2006318725 A JP 2006318725A
Authority
JP
Japan
Prior art keywords
plasma
frequency current
induction coil
chamber
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005139374A
Other languages
Japanese (ja)
Inventor
Koji Satake
宏次 佐竹
Toshiaki Shigenaka
俊明 茂中
Ryuichi Matsuda
竜一 松田
Tadashi Shimazu
正 嶋津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005139374A priority Critical patent/JP2006318725A/en
Publication of JP2006318725A publication Critical patent/JP2006318725A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inductively coupled plasma production device uniformalizing a film-forming or an etching speed in a wide area, through control of space distribution of plasma. <P>SOLUTION: The inductively coupled plasma production device turning gas supplied inside a chamber 1 to plasma, and carrying out film-forming and etching treatments against a substrate 3 with the use of the plasma, is so structured that a plurality of independent induction coils 4A, 4B are arranged concentrically inside and outside, and at the same time, phases of high-frequency current supplied to the respective induction coils 4A, 4B are to be independently controlled. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は誘導結合型プラズマ生成装置及びプラズマ生成方法に関し、特に真空容器内で所定の成膜やエッチングを行うプラズマCVD装置、エッチング装置に適用して有用なものである。   The present invention relates to an inductively coupled plasma generation apparatus and a plasma generation method, and is particularly useful when applied to a plasma CVD apparatus and an etching apparatus that perform predetermined film formation and etching in a vacuum vessel.

誘導結合型プラズマ生成装置は、誘導電界を形成するための高周波誘導コイルを真空引きしたチャンバの天井板上に配置し、その誘導コイルによる誘導電界によりチャンバ内に供給するガスのプラズマを生成し、チャンバ内に置かれた基板に対して成膜またはエッチングの処理をするためのものである。   The inductively coupled plasma generator is configured to arrange a high-frequency induction coil for forming an induction electric field on a ceiling plate of a vacuum-evacuated chamber and generate plasma of gas to be supplied into the chamber by the induction electric field generated by the induction coil. This is for performing film formation or etching on the substrate placed in the chamber.

ここで、チャンバ内のプラズマ分布は誘導コイルの配置、チャンバ内のガス圧力、チャンバの形状等に起因して変化する。そこで、基板上での成膜及びエッチング処理の均一性を向上するためには、基板位置(上下方向)を最適化する位置調整や誘導コイルの形状の最適化というハード面での対策によっていた。   Here, the plasma distribution in the chamber changes due to the arrangement of the induction coil, the gas pressure in the chamber, the shape of the chamber, and the like. Therefore, in order to improve the uniformity of the film formation and etching process on the substrate, it has been based on hardware measures such as position adjustment to optimize the substrate position (vertical direction) and optimization of the shape of the induction coil.

しかしながら、基板位置の上下位置調整のためには、位置調整機構を追加する必要があるばかりでなく、上下動作によりプロセスのスループットが低下するという問題がある。特に、SiOの成膜のように成膜とエッチングを同時に行う必要がある場合等、基板位置の調整だけでは成膜とエッチングの両者の均一性を同時に満たすことが困難な場合がある。 However, in order to adjust the vertical position of the substrate position, it is not only necessary to add a position adjustment mechanism, but there is a problem that the throughput of the process is lowered due to the vertical movement. In particular, when it is necessary to perform film formation and etching simultaneously as in the case of SiO 2 film formation, it may be difficult to satisfy both the uniformity of film formation and etching only by adjusting the substrate position.

一方、誘導コイルの形状の変更は、事前にプロセス条件出しを行って決める必要があり、その後の変更・調整が困難である。   On the other hand, it is necessary to determine the shape of the induction coil by determining process conditions in advance, and subsequent changes and adjustments are difficult.

また、一般にチャンバ内のプラズマ分布は中心から径方向に沿いチャンバ壁に向けて減少する傾向にあり、これを補償して均一性を確保する必要がある等の問題が存在する。   In general, the plasma distribution in the chamber tends to decrease from the center along the radial direction toward the chamber wall, and there is a problem that it is necessary to compensate for this to ensure uniformity.

なお、本発明に類似の公知技術として、複数の誘導コイルを有する回路において、誘導コイルと直列にコンデンサまたはインダクタンスを接続することで前記誘導コイルの電流の制御を行いプラズマ分布を制御する技術が存在する(特許文献1参照)。   As a known technique similar to the present invention, there is a technique for controlling a plasma distribution by controlling a current of the induction coil by connecting a capacitor or an inductance in series with the induction coil in a circuit having a plurality of induction coils. (See Patent Document 1).

ただ、この従来技術は、直列に挿入されたコンデンサあるいはインダクタにより誘導コイルのインピーダンスを変化させることで各誘導コイルの電流量を制御するものである。したがって、各誘導コイルが作る同方向磁場の重ね合わせの範囲におけるプラズマ分布の制御に限定される。また、プラズマ分布を時間的に揺動して均一化を図ることはできない。   However, this conventional technique controls the amount of current in each induction coil by changing the impedance of the induction coil using a capacitor or inductor inserted in series. Therefore, it is limited to the control of the plasma distribution in the range of the superposition of the same direction magnetic field created by each induction coil. Further, the plasma distribution cannot be made uniform by temporally oscillating.

特開2002−124399号公報JP 2002-124399 A 特開2002−033306号公報JP 2002-033306 A 特開2003−188153号公報JP 2003-188153 A 特開平07−263188号公報JP 07-263188 A

本発明は、上記従来技術に鑑み、プラズマの空間分布を制御して、広い面積で成膜またはエッチング速度を均一にする誘導結合型プラズマ生成装置及びプラズマ生成方法を提供することを目的とする。   An object of the present invention is to provide an inductively coupled plasma generating apparatus and a plasma generating method that control the spatial distribution of plasma to make the film formation or etching rate uniform over a wide area.

上記課題を解決するための本発明の第1の態様は、
真空容器であるチャンバと、このチャンバ内に配設された基板と、高周波電流が供給される誘導コイルとを有し、この誘導コイルにより形成した高周波電界で前記チャンバ内に供給されるガスをプラズマ化し、このプラズマを利用して前記基板に対する成膜やエッチングの処理を行う誘導結合型プラズマ生成装置において、
独立した複数の誘導コイルを同心状に内外に配設するとともに、各誘導コイルに供給する高周波電流の位相を独立に制御し得るように構成したことを特徴とする。
The first aspect of the present invention for solving the above problems is as follows.
A chamber which is a vacuum container, a substrate disposed in the chamber, and an induction coil to which a high-frequency current is supplied, and plasma is supplied to the gas supplied into the chamber by a high-frequency electric field formed by the induction coil. In an inductively coupled plasma generation apparatus that performs film formation and etching processing on the substrate using this plasma,
A plurality of independent induction coils are concentrically arranged inside and outside, and the phase of the high-frequency current supplied to each induction coil can be controlled independently.

本発明の第2の態様は、
上記第1の態様において、各誘導コイルは個別に各高周波電源に接続され、各高周波電源で出力する高周波電流の位相を調整するように構成したことを特徴とする。
The second aspect of the present invention is:
In the first aspect, each induction coil is individually connected to each high-frequency power source, and is configured to adjust the phase of the high-frequency current output from each high-frequency power source.

本発明の第3の態様は、
上記第1の態様において、高周波電源が出力する高周波電流を複数に分配する分配器と、この分配器で分配した高周波電流の位相を制御する移相器とを有し、一つの高周波電源で位相が異なる高周波電流を各誘導コイルに供給するように構成したことを特徴とする。
The third aspect of the present invention is:
In the first aspect, there is provided a distributor that distributes a plurality of high-frequency currents output from the high-frequency power source, and a phase shifter that controls the phase of the high-frequency current distributed by the distributor, and the phase is controlled by one high-frequency power source. Is configured to supply different high frequency currents to the induction coils.

本発明の第4の態様は、
上記第1乃至第3の態様の何れか一つにおいて、前記基板を前記チャンバ内で昇降可能に形成して前記プラズマに対する基板の相対的な位置関係を調節可能にしたことを特徴とする。
The fourth aspect of the present invention is:
In any one of the first to third aspects, the substrate is formed to be movable up and down in the chamber so that the relative positional relationship of the substrate with respect to the plasma can be adjusted.

本発明の第5の態様は、
上記第1乃至第4の態様の何れか一つにおいて、相対的に外側の誘導コイルに供給する一つの高周波電流と相対的に内側の誘導コイルに供給する他の高周波電流の位相差を180度に設定するとともに、前記外側の誘導コイルに供給する高周波電流を前記内側の誘導コイルに供給する高周波電流よりも大きくしたことを特徴とする。
According to a fifth aspect of the present invention,
In any one of the first to fourth aspects, a phase difference between one high-frequency current supplied to the relatively outer induction coil and another high-frequency current supplied to the relatively inner induction coil is 180 degrees. And the high-frequency current supplied to the outer induction coil is made larger than the high-frequency current supplied to the inner induction coil.

本発明の第6の態様は、
高周波電流が供給される誘導コイルにより形成した高周波電界で真空容器であるチャンバ内に供給されるガスをプラズマ化して前記チャンバ内に配設された基板に対する成膜やエッチングの処理を行うためのプラズマを生成するプラズマ生成方法において、
同心状に内外に配設した複数の誘導コイルに供給する高周波電流の位相を独立に制御して前記プラズマの空間分布が前記チャンバの径方向に亘り広い範囲で均一になるように制御することを特徴とする。
The sixth aspect of the present invention is:
Plasma for forming a film or etching a substrate disposed in the chamber by converting the gas supplied into the chamber, which is a vacuum vessel, into plasma by a high-frequency electric field formed by an induction coil to which a high-frequency current is supplied In the plasma generation method for generating
Independently controlling the phase of the high-frequency current supplied to a plurality of induction coils arranged concentrically inside and outside, and controlling the spatial distribution of the plasma to be uniform over a wide range in the radial direction of the chamber. Features.

本発明によれば、誘導結合型プラズマ生成装置において、複数の誘導コイルの電流の位相を制御することで、均質かつ均一な成膜またはエッチングが可能となる。すなわち、誘導コイルの形状、配置等のハード面の変更を伴うことなく電気的な制御(電気的な制御)で均質かつ均一な成膜またはエッチングを可能にする。   According to the present invention, in the inductively coupled plasma generating apparatus, uniform and uniform film formation or etching can be performed by controlling the phase of the current of the plurality of induction coils. That is, uniform or uniform film formation or etching is possible by electrical control (electrical control) without changing the hardware surface such as the shape and arrangement of the induction coil.

さらに、従来の基板位置調整手段等とも簡単に組み合わせることが可能であり、組み合わせた場合にはより一層の制御性の向上を図ることができる。   Furthermore, it can be easily combined with conventional substrate position adjusting means and the like, and when combined, further controllability can be improved.

以下、本発明の実施の形態を図面に基づき詳細に説明する。なお、本実施の形態の説明は例示であり、本発明の構成は以下の説明に限定されない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The description of the present embodiment is an exemplification, and the configuration of the present invention is not limited to the following description.

<第1の実施の形態>
図1は本発明の第1の実施の形態に係る誘導結合型プラズマ生成装置を概念的に示す説明図である。同図に示すように、本形態に係る誘導結合型プラズマ生成装置は、真空容器であるチャンバ1と、このチャンバ1内に配設した支持台2に載置した基板3と、高周波電流が供給される誘導コイル4とを有し、この誘導コイル4により形成した高周波電界で前記チャンバ1内に供給されるガスをプラズマ化し、このプラズマを利用して前記基板3に対する成膜やエッチングの処理を行うものである。
<First Embodiment>
FIG. 1 is an explanatory view conceptually showing the inductively coupled plasma generating apparatus according to the first embodiment of the present invention. As shown in the figure, the inductively coupled plasma generating apparatus according to the present embodiment is supplied with a high-frequency current from a chamber 1 that is a vacuum vessel, a substrate 3 placed on a support base 2 disposed in the chamber 1, and A gas supplied into the chamber 1 with a high-frequency electric field formed by the induction coil 4, and the plasma is used for film formation and etching on the substrate 3. Is what you do.

前記誘導コイル4は、図2に特にこの部分を抽出して詳細に示すように、半径が異なる独立した複数本(本形態では2本)の誘導コイル4A、4Bを同心状に内外に配設して構成してある。ここで、誘導コイル4A、4Bの高周波電流を供給する各給電点A、Bは同一面上で180度異なる位置に配設してある。このように給電点A、Bの位置を変えて配設することは必須ではないが、このような構成とすることでチャンバ1の径方向のプラズマ分布を均一化することができる。すなわち、給電点A、Bには各誘導コイル4A、4Bの垂直方向の立ち上がり部を有するので、この部分で電界及び磁界が乱れ、ひいてはプラズマの乱れを生起する。したがって、給電点A、Bが同一位置に集中すると、プラズマの乱れも集中してしまうが、上述の如く給電点A、Bを分散させた場合には、プラズマの乱れを分散させることができ、その分チャンバ1内のプラズマ密度の均一化を図ることができる。   As shown in detail in FIG. 2 by extracting this part in particular, the induction coil 4 has a plurality of independent induction coils 4A and 4B having different radii (two in this embodiment) arranged concentrically inside and outside. Configured. Here, the feeding points A and B for supplying the high-frequency current of the induction coils 4A and 4B are arranged at positions different by 180 degrees on the same plane. Although it is not essential to change the positions of the feeding points A and B in this way, the plasma distribution in the radial direction of the chamber 1 can be made uniform by adopting such a configuration. That is, since the feeding points A and B have rising portions in the vertical direction of the induction coils 4A and 4B, the electric field and the magnetic field are disturbed in this portion, and consequently, the plasma is disturbed. Therefore, when the feeding points A and B are concentrated at the same position, the plasma disturbance is also concentrated. However, when the feeding points A and B are dispersed as described above, the plasma disturbance can be dispersed. Accordingly, the plasma density in the chamber 1 can be made uniform.

また、前記各誘導コイル4A、4Bは、それぞれに供給する高周波電流の位相を独立に制御し得るように構成してある。すなわち、誘導コイル4Aには高周波電源5Aがアンプ6A及び整合器7Aを介して、誘導コイル4Bには高周波電源5Bがアンプ6B及び整合器7Bを介してそれぞれ接続してあり、これら高周波電源5A、4Bが独立にそれぞれの出力電流である高周波電流の位相を制御し得るようになっている。   Each induction coil 4A, 4B is configured to be able to independently control the phase of the high-frequency current supplied thereto. That is, a high frequency power source 5A is connected to the induction coil 4A via an amplifier 6A and a matching unit 7A, and a high frequency power source 5B is connected to the induction coil 4B via an amplifier 6B and a matching unit 7B. 4B can control the phase of the high frequency current which is each output current independently.

かかる本形態の誘導結合型プラズマ生成装置においては、前記高周波電源5A、5Bが出力する各高周波電流の位相を変化させて位相差を作ることができる。ここで、高周波電流の位相差が180度の場合には、誘導コイル4A、4Bに流れる高周波電流の方向は常に正負反対となり、90度の場合は、時間とともに両高周波電流の方向の正負が変化する。したがって、位相差の制御により各誘導コイル4A、4Bに流れる各高周波電流の作る磁場(誘導電界)を変化させることでプラズマ空間分布を定常、非定常に変化させることができる。   In the inductively coupled plasma generating apparatus of this embodiment, the phase difference can be created by changing the phase of each high-frequency current output from the high-frequency power supplies 5A and 5B. Here, when the phase difference of the high-frequency current is 180 degrees, the direction of the high-frequency current flowing through the induction coils 4A and 4B is always opposite to the positive and negative directions, and when it is 90 degrees, the sign of both high-frequency current directions changes with time. To do. Therefore, by changing the magnetic field (induction electric field) generated by each high-frequency current flowing through each induction coil 4A, 4B by controlling the phase difference, the plasma spatial distribution can be changed between steady and unsteady.

このとき、外側の誘導コイル4Aに供給する高周波電流を内側の誘導コイル4Bに供給する高周波電流よりも大きくすることで最大電界密度の領域を誘導コイル4Aの真下よりもチャンバ1の径方向に関してチャンバ1の壁面側にシフトさせる。この結果、プラズマ分布をチャンバ1の壁面近傍まで拡張してより均一なプラズマ分布を形成することができる。   At this time, by setting the high-frequency current supplied to the outer induction coil 4A to be larger than the high-frequency current supplied to the inner induction coil 4B, the region of maximum electric field density is set in the chamber 1 with respect to the radial direction of the chamber 1 directly below the induction coil 4A. Shift to the wall surface side of 1. As a result, the plasma distribution can be expanded to the vicinity of the wall surface of the chamber 1 to form a more uniform plasma distribution.

図3は、外側/内側の誘導コイル4A、4Bに供給する高周波電流が逆位相(位相差180度)になるとともに、それぞれ150/−50の割合で供給した場合のプラズマ分布Iを示している。図4は比較のため、2つの誘導コイル4A、4Bに同位相で電流を流した場合のプラズマ分布IIを示した。両図において、横軸の0.0の位置が、チャンバ1の中心軸に一致し、Wの位置がチャンバ1の壁面位置に一致するとともに、縦軸のHの位置がチャンバ1の天井板位置に一致し、符号3の部分が基板位置に一致している。また、図5は基板3の位置でのイオンフラックスの均一性の比較結果を示すグラフである。このグラフは、イオンフラックスの最大値MAXと最小値MINとを用い、(MAX−MIN)/(MAX+MIN)の値をIIの場合を基準として正規化した数値を表示したものである。したがって、数値が小さいほど均一であることを示している。   FIG. 3 shows the plasma distribution I when the high-frequency current supplied to the outer / inner induction coils 4A and 4B has an opposite phase (phase difference of 180 degrees) and is supplied at a rate of 150 / -50 respectively. . For comparison, FIG. 4 shows a plasma distribution II when currents are passed through the two induction coils 4A and 4B in the same phase. In both figures, the position of 0.0 on the horizontal axis coincides with the central axis of the chamber 1, the position of W coincides with the wall surface position of the chamber 1, and the position of H on the vertical axis indicates the ceiling plate position of the chamber 1. , And the portion of reference numeral 3 matches the substrate position. FIG. 5 is a graph showing a comparison result of the uniformity of ion flux at the position of the substrate 3. This graph displays numerical values obtained by normalizing the value of (MAX−MIN) / (MAX + MIN) with reference to the case of II using the maximum value MAX and the minimum value MIN of the ion flux. Therefore, the smaller the numerical value, the more uniform.

これらの図を参照すれば明らかな通り、図3に示す本形態の場合が明らかにプラズマ分布Iをチャンバ1の壁面近傍まで拡張することができている。すなわち、位相差180度の方がプラズマをよりチャンバ1の壁面に近い位置に維持することができ、その結果前記壁面でのプラズマの損失が補償され、基板3上でより広い範囲でプラズマ分布Iが均一となる。   As is apparent from these drawings, the plasma distribution I can be extended to the vicinity of the wall surface of the chamber 1 in the case of this embodiment shown in FIG. That is, the phase difference of 180 degrees can maintain the plasma at a position closer to the wall surface of the chamber 1. As a result, the loss of the plasma on the wall surface is compensated, and the plasma distribution I over a wider range on the substrate 3. Becomes uniform.

また、誘導コイル4A、4Bに供給する高周波電流の位相差が90度の場合は高周波電流1/4周期毎に、プラズマ励起電流が最大となる位置が変化するので、プラズマが生成される位置を動的に変化させることが可能となる。すなわち、位相差θを0度<θ≦180度の範囲で任意に変化させる位相制御を行うことにより、誘導コイル4A、4Bの位置を変えることなくプラズマ分布Iを目的に応じて制御することが可能となる。   Further, when the phase difference of the high-frequency current supplied to the induction coils 4A and 4B is 90 degrees, the position where the plasma excitation current is maximized changes every high-frequency current 1/4 cycle. It can be changed dynamically. That is, by performing phase control that arbitrarily changes the phase difference θ in the range of 0 ° <θ ≦ 180 °, the plasma distribution I can be controlled according to the purpose without changing the positions of the induction coils 4A and 4B. It becomes possible.

<第2の実施の形態>
図6は本発明の第2の実施の形態に係る誘導結合型プラズマ生成装置を概念的に示す説明図である。同図に示すように、本形態に係る誘導結合型プラズマ生成装置は、誘導コイル4に高周波電流を供給するための給電系の構成が異なるだけで他の構成は図1に示す第1の実施の形態に係る誘導結合型プラズマ生成装置と同一である。そこで、図6中、図1と同一部分には同一番号を付し、重複する説明は省略する。
<Second Embodiment>
FIG. 6 is an explanatory view conceptually showing the inductively coupled plasma generating apparatus according to the second embodiment of the present invention. As shown in the figure, the inductively coupled plasma generating apparatus according to the present embodiment is different from the first embodiment shown in FIG. 1 only in the configuration of the power feeding system for supplying the induction coil 4 with a high-frequency current. This is the same as the inductively coupled plasma generating apparatus according to the embodiment. Therefore, in FIG. 6, the same parts as those in FIG.

図6に示すように、本形態に係る誘導結合型プラズマ生成装置では、高周波電源15は1個であるが、各誘導コイル4A、4Bにそれぞれ供給する高周波電流の位相を独立に制御し得るように構成してある。すなわち、高周波電源15が出力する高周波電流は分配器18で分配され、その一方がアンプ6A及び整合器7Aを介して誘導コイル4Aに供給される。一方、分配器18で分配された他方の高周波電流は、移相器19でその位相を所定の位相に制御し、アンプ6B及び整合器7Bを介して誘導コイル4Bに供給される。   As shown in FIG. 6, in the inductively coupled plasma generating apparatus according to the present embodiment, there is one high-frequency power supply 15, but the phase of the high-frequency current supplied to each induction coil 4A, 4B can be controlled independently. It is configured. That is, the high-frequency current output from the high-frequency power supply 15 is distributed by the distributor 18, and one of them is supplied to the induction coil 4A via the amplifier 6A and the matching unit 7A. On the other hand, the phase of the other high-frequency current distributed by the distributor 18 is controlled to a predetermined phase by the phase shifter 19 and supplied to the induction coil 4B via the amplifier 6B and the matching unit 7B.

かかる本形態の誘導結合型プラズマ生成装置においても、高周波電源15が出力する高周波電流の位相を変化させて各誘導コイル4A,4Bに供給する高周波電流の位相差を作ることができる。すなわち、移相器19における位相制御により第1の実施の形態と全く同様のプラズマ分布を形成することができる。   Also in the inductively coupled plasma generator of this embodiment, the phase difference of the high frequency current supplied to each induction coil 4A, 4B can be made by changing the phase of the high frequency current output from the high frequency power supply 15. That is, the same plasma distribution as in the first embodiment can be formed by phase control in the phase shifter 19.

以上、要するに本発明によれば、複数の誘導コイルを用いた誘導結合型プラズマ装置において、各誘導コイルに供給する高周波電流の位相を変化させることで、プラズマの空間分布を制御することができる。また、ここで位相変化の時定数を適切に選択することで時間的な空間分布の制御も可能になる。   As described above, according to the present invention, in the inductively coupled plasma apparatus using a plurality of induction coils, the spatial distribution of plasma can be controlled by changing the phase of the high-frequency current supplied to each induction coil. Also, the temporal spatial distribution can be controlled by appropriately selecting the time constant of the phase change.

なお、基板を上下してその位置を制御する従来の基板位置調整手段を、上記第1又は第2の実施の形態に係る誘導結合型プラズマ生成装置と組み合わせることも可能である。この場合には、基板位置調整手段による基板とプラズマとの相対的な位置関係を適切に制御した上でチャンバ内のプラズマ密度の均一化も図り得るので、さらに良好な成膜やエッチングを行うことができる。   The conventional substrate position adjusting means for controlling the position of the substrate by moving it up and down can be combined with the inductively coupled plasma generating apparatus according to the first or second embodiment. In this case, the relative positional relationship between the substrate and the plasma can be appropriately controlled by the substrate position adjusting means, and the plasma density in the chamber can be made uniform. Can do.

本発明は半導体デバイスを製造するための成膜、エッチング等の処理を行う装置等の製造、販売に関する産業分野で利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field relating to the manufacture and sale of apparatuses for performing processes such as film formation and etching for manufacturing semiconductor devices.

本発明の第1の実施の形態に係る誘導結合型プラズマ生成装置を概念的に示す説明図である。It is explanatory drawing which shows notionally the inductively coupled plasma generating apparatus which concerns on the 1st Embodiment of this invention. 図1の誘導コイルの部分を抽出して詳細に示す拡大図である。FIG. 2 is an enlarged view showing a part extracted from FIG. 1 in detail. 外側/内側の誘導コイルに供給する高周波電流が逆位相(位相差180度)になるとともに、それぞれ150/−50の割合で供給した場合のプラズマ分布Iを示す説明図である。It is explanatory drawing which shows the plasma distribution I when the high frequency electric current supplied to an outer / inner induction coil becomes an antiphase (phase difference 180 degree | times), and is supplied in the ratio of 150 / -50, respectively. 図3に示すプラズマ分布との比較のため、2つの誘導コイルに同位相で電流を流した場合のプラズマ分布IIを示す説明図である。It is explanatory drawing which shows plasma distribution II at the time of supplying an electric current with the same phase to two induction coils for the comparison with the plasma distribution shown in FIG. チャンバ内の基板の位置でのイオンフラックスの均一性の比較結果を示すグラフである。It is a graph which shows the comparison result of the uniformity of the ion flux in the position of the board | substrate in a chamber. 本発明の第2の実施の形態に係る誘導結合型プラズマ生成装置を概念的に示す説明図である。It is explanatory drawing which shows notionally the inductively coupled plasma generation apparatus which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

I,II プラズマ分布
1 チャンバ
2 支持台
3 基板
4,4A,4B 誘導コイル
5A,5B 高周波電源
15 高周波電源
18 分配器
19 移相器
I, II Plasma distribution 1 Chamber 2 Support base 3 Substrate 4, 4A, 4B Inductive coil 5A, 5B High frequency power source 15 High frequency power source 18 Distributor 19 Phase shifter

Claims (6)

真空容器であるチャンバと、このチャンバ内に配設された基板と、高周波電流が供給される誘導コイルとを有し、この誘導コイルにより形成した高周波電界で前記チャンバ内に供給されるガスをプラズマ化し、このプラズマを利用して前記基板に対する成膜やエッチングの処理を行う誘導結合型プラズマ生成装置において、
独立した複数の誘導コイルを同心状に内外に配設するとともに、各誘導コイルに供給する高周波電流の位相を独立に制御し得るように構成したことを特徴とする誘導結合型プラズマ生成装置。
A chamber which is a vacuum container, a substrate disposed in the chamber, and an induction coil to which a high-frequency current is supplied, and plasma is supplied to the gas supplied into the chamber by a high-frequency electric field formed by the induction coil. In an inductively coupled plasma generation apparatus that performs film formation and etching processing on the substrate using this plasma,
An inductively coupled plasma generating apparatus characterized in that a plurality of independent induction coils are arranged concentrically inside and outside and the phase of a high-frequency current supplied to each induction coil can be controlled independently.
請求項1において、
各誘導コイルは個別に各高周波電源に接続され、各高周波電源で出力する高周波電流の位相を調整するように構成したことを特徴とする誘導結合型プラズマ生成装置。
In claim 1,
Each induction coil is individually connected to each high-frequency power source, and is configured to adjust the phase of a high-frequency current output from each high-frequency power source.
請求項1において、
高周波電源が出力する高周波電流を複数に分配する分配器と、この分配器で分配した高周波電流の位相を制御する移相器とを有し、一つの高周波電源で位相が異なる高周波電流を各誘導コイルに供給するように構成したことを特徴とする誘導結合型プラズマ生成装置。
In claim 1,
It has a distributor that distributes the high-frequency current output from the high-frequency power supply into multiple parts, and a phase shifter that controls the phase of the high-frequency current distributed by this distributor. An inductively coupled plasma generating apparatus characterized by being configured to supply to a coil.
請求項1乃至請求項3の何れか一つにおいて、
前記基板を前記チャンバ内で昇降可能に形成して前記プラズマに対する基板の相対的な位置関係を調節可能にしたことを特徴とする誘導結合型プラズマ生成装置。
In any one of Claims 1 to 3,
An inductively coupled plasma generating apparatus, wherein the substrate is formed so as to be movable up and down in the chamber, and the relative positional relationship of the substrate with respect to the plasma can be adjusted.
請求項1乃至請求項4の何れか一つにおいて、
相対的に外側の誘導コイルに供給する一つの高周波電流と相対的に内側の誘導コイルに供給する他の高周波電流の位相差を180度に設定するとともに、前記外側の誘導コイルに供給する高周波電流を前記内側の誘導コイルに供給する高周波電流よりも大きくしたことを特徴とする誘導結合型プラズマ生成装置。
In any one of Claim 1 thru | or 4,
The phase difference between one high-frequency current supplied to the relatively outer induction coil and the other high-frequency current supplied to the relatively inner induction coil is set to 180 degrees, and the high-frequency current supplied to the outer induction coil Is made larger than a high-frequency current supplied to the inner induction coil.
高周波電流が供給される誘導コイルにより形成した高周波電界で真空容器であるチャンバ内に供給されるガスをプラズマ化して前記チャンバ内に配設された基板に対する成膜やエッチングの処理を行うためのプラズマを生成するプラズマ生成方法において、
同心状に内外に配設した複数の誘導コイルに供給する高周波電流の位相を独立に制御して前記プラズマの空間分布が前記チャンバの径方向に亘り広い範囲で均一になるように制御することを特徴とするプラズマ生成方法。
Plasma for forming a film or etching a substrate disposed in the chamber by converting the gas supplied into the chamber, which is a vacuum vessel, into plasma by a high-frequency electric field formed by an induction coil to which a high-frequency current is supplied In the plasma generation method for generating
Independently controlling the phase of the high-frequency current supplied to a plurality of induction coils arranged concentrically inside and outside, and controlling the spatial distribution of the plasma to be uniform over a wide range in the radial direction of the chamber. A plasma generation method.
JP2005139374A 2005-05-12 2005-05-12 Inductively coupled plasma production device and plasma production method Withdrawn JP2006318725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005139374A JP2006318725A (en) 2005-05-12 2005-05-12 Inductively coupled plasma production device and plasma production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005139374A JP2006318725A (en) 2005-05-12 2005-05-12 Inductively coupled plasma production device and plasma production method

Publications (1)

Publication Number Publication Date
JP2006318725A true JP2006318725A (en) 2006-11-24

Family

ID=37539220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005139374A Withdrawn JP2006318725A (en) 2005-05-12 2005-05-12 Inductively coupled plasma production device and plasma production method

Country Status (1)

Country Link
JP (1) JP2006318725A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091048A (en) * 2009-10-26 2011-05-06 Applied Materials Inc Dual mode inductively coupling plasma reactor with adjustable phase coil assembly
JP2011096689A (en) * 2009-10-27 2011-05-12 Tokyo Electron Ltd Plasma processing apparatus
JP2011124221A (en) * 2009-10-26 2011-06-23 Applied Materials Inc Inductively coupled plasma apparatus
JP2012074200A (en) * 2010-09-28 2012-04-12 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
JP2015095521A (en) * 2013-11-11 2015-05-18 富士通セミコンダクター株式会社 Apparatus and method for manufacturing semiconductor device
TWI493592B (en) * 2013-09-06 2015-07-21 Hitachi High Tech Corp Plasma processing device
US10971333B2 (en) 2016-10-24 2021-04-06 Samsung Electronics Co., Ltd. Antennas, circuits for generating plasma, plasma processing apparatus, and methods of manufacturing semiconductor devices using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091048A (en) * 2009-10-26 2011-05-06 Applied Materials Inc Dual mode inductively coupling plasma reactor with adjustable phase coil assembly
JP2011124221A (en) * 2009-10-26 2011-06-23 Applied Materials Inc Inductively coupled plasma apparatus
US10573493B2 (en) 2009-10-26 2020-02-25 Applied Materials, Inc. Inductively coupled plasma apparatus
JP2011096689A (en) * 2009-10-27 2011-05-12 Tokyo Electron Ltd Plasma processing apparatus
JP2012074200A (en) * 2010-09-28 2012-04-12 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
US9218943B2 (en) 2010-09-28 2015-12-22 Toyko Electron Limited Plasma processing apparatus and plasma processing method
TWI493592B (en) * 2013-09-06 2015-07-21 Hitachi High Tech Corp Plasma processing device
US10796884B2 (en) 2013-09-06 2020-10-06 Hitachi High-Tech Corporation Plasma processing apparatus
JP2015095521A (en) * 2013-11-11 2015-05-18 富士通セミコンダクター株式会社 Apparatus and method for manufacturing semiconductor device
US10971333B2 (en) 2016-10-24 2021-04-06 Samsung Electronics Co., Ltd. Antennas, circuits for generating plasma, plasma processing apparatus, and methods of manufacturing semiconductor devices using the same

Similar Documents

Publication Publication Date Title
JP2006318725A (en) Inductively coupled plasma production device and plasma production method
US8933628B2 (en) Inductively coupled plasma source with phase control
US10271416B2 (en) High efficiency triple-coil inductively coupled plasma source with phase control
US7285916B2 (en) Multi chamber plasma process system
CN102867725B (en) Antenna, dielectric window, plasma processing apparatus and method of plasma processing
JP4009087B2 (en) Magnetic generator in semiconductor manufacturing apparatus, semiconductor manufacturing apparatus, and magnetic field intensity control method
US10580623B2 (en) Plasma processing using multiple radio frequency power feeds for improved uniformity
US10410889B2 (en) Systems and methods for electrical and magnetic uniformity and skew tuning in plasma processing reactors
US10115566B2 (en) Method and apparatus for controlling a magnetic field in a plasma chamber
JP2007520047A (en) Compact distributed inductive element for large-scale inductively coupled plasma sources
KR20070083488A (en) Plasma processing apparatus
US20140209244A1 (en) Skew elimination and control in a plasma enhanced substrate processing chamber
TW201145345A (en) Plasma processing device and plasma processing method
JP2003323997A (en) Plasma stabilizing method and plasma device
US10784090B2 (en) Plasma processing device and semiconductor device production method
JP2017157627A (en) Plasma processing device and precoat method, and method for precoat process
JPH0855699A (en) Plasma processing device
JP5643143B2 (en) Heat treatment equipment
CN105018899A (en) Plasma CVD apparatus
JP6580830B2 (en) Plasma processing equipment
KR100844150B1 (en) Plasma processing apparatus and method
JP2002124399A (en) Plasma generation device
US10699882B2 (en) Semiconductor manufacturing apparatus and method of manufacturing semiconductor device
US20150279623A1 (en) Combined inductive and capacitive sources for semiconductor process equipment
KR100731998B1 (en) Inductive coupled plasma source

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805