JP2006318652A - Solid oxide type fuel cell separator material - Google Patents

Solid oxide type fuel cell separator material Download PDF

Info

Publication number
JP2006318652A
JP2006318652A JP2005136857A JP2005136857A JP2006318652A JP 2006318652 A JP2006318652 A JP 2006318652A JP 2005136857 A JP2005136857 A JP 2005136857A JP 2005136857 A JP2005136857 A JP 2005136857A JP 2006318652 A JP2006318652 A JP 2006318652A
Authority
JP
Japan
Prior art keywords
mass
coating layer
stainless steel
fuel cell
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005136857A
Other languages
Japanese (ja)
Other versions
JP4756905B2 (en
Inventor
Yukihiro Nishida
幸寛 西田
Kazuyuki Kageoka
一幸 景岡
Manabu Oku
学 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2005136857A priority Critical patent/JP4756905B2/en
Publication of JP2006318652A publication Critical patent/JP2006318652A/en
Application granted granted Critical
Publication of JP4756905B2 publication Critical patent/JP4756905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid oxide type fuel cell separator material which excels in an electrical conductivity at 600°C or more and steam oxidation resistance, and in which a Cr evaporation is also suppressed. <P>SOLUTION: The solid oxide type fuel cell separator material is a separator material in which a TiN coating layer having a thickness of 0.05-100 μm is formed to a ferrite stainless steel of 11-40 mass% of Cr, and a Ti concentration of the TiN coating layer is adjusted to more than 40 atom%. The ferrite stainless steel contains C: below 0.1 mass%, N: below 0.1 mass%, Si: below 1.5 mass%, Mn: below 1.5 mass%, P: below 0.10 mass%, and S: below 0.01 mass%, in addition to the Cr. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、600℃以上の高温域における電気伝導性,耐酸化性に優れ、クロム被毒を抑制した固体酸化物型燃料電池セパレータ材に関する。   The present invention relates to a solid oxide fuel cell separator material that is excellent in electrical conductivity and oxidation resistance in a high temperature range of 600 ° C. or higher and suppresses chromium poisoning.

石油を代表とする化石燃料の枯渇やCO2排出に起因する地球温暖化現象等に対処するため、従来からの発電システムに替わる新しいシステムの実用化が求められている。新しい発電システムの代表的なものに燃料電池があり、クリーンな発電システムとして分散電源,自動車用動力源等への展開が期待されている。
従来から種々の燃料電池が紹介されているが、なかでも固体酸化物型燃料電池(SOFC)は、エネルギー効率が最も優れており、実用化が有望視されている発電システムである。
In order to cope with the depletion of fossil fuels typified by petroleum and the global warming phenomenon caused by CO 2 emissions, there is a demand for practical use of a new system that replaces the conventional power generation system. A typical new power generation system is a fuel cell, which is expected to be deployed as a clean power generation system in distributed power sources, automotive power sources, and the like.
Various fuel cells have been introduced in the past. Among them, the solid oxide fuel cell (SOFC) has the highest energy efficiency and is a power generation system that is expected to be put to practical use.

旧来の固体酸化物型燃料電池(SOFC)は、1000℃程度の高い作動温度のため主としてセラミックスが構成部材に使用されており、金属材料の使用は非常に困難であった。ところが、近年になって固体電解質膜の改良により作動温度を600〜800℃程度まで下げることが可能になった。作動温度の低下に伴い、耐高温酸化性に優れた高Cr・高Niオーステナイト系ステンレス鋼等の金属材料が適用可能になった。   In conventional solid oxide fuel cells (SOFC), ceramics are mainly used as constituent members because of a high operating temperature of about 1000 ° C., and it has been very difficult to use metal materials. However, in recent years, it has become possible to lower the operating temperature to about 600 to 800 ° C. by improving the solid electrolyte membrane. Along with the decrease in operating temperature, metal materials such as high Cr / high Ni austenitic stainless steel having excellent high-temperature oxidation resistance can be applied.

作動温度を下げた固体酸化物型燃料電池(SOFC)のセパレータ材に必要な要求特性は、600〜800℃の温度域で良好な電気伝導性(30mΩ・cm2以下),耐酸化性,セラミックス系固体酸化物と同等の熱膨張係数(室温〜800℃で13×10-6(1/K)程度)を示すことである。起動・停止が頻繁に繰り返される用途では、耐熱疲労性も要求される。 The required properties of a solid oxide fuel cell (SOFC) separator material with reduced operating temperature are good electrical conductivity (less than 30 mΩ · cm 2 ), oxidation resistance, and ceramics in the temperature range of 600 to 800 ° C. The thermal expansion coefficient (about 13 × 10 −6 (1 / K) at room temperature to 800 ° C.) equivalent to that of the system solid oxide. For applications where start / stop is frequently repeated, heat fatigue resistance is also required.

高温での耐水蒸気酸化性に優れている高Cr・高Niオーステナイト系ステンレス鋼は、熱膨張係数が非常に高いため、起動・停止が頻繁に繰り返される用途では熱膨張・熱収縮に起因する熱変形やスケール剥離が発生するため固体酸化物型燃料電池(SOFC)のセパレータ材に使用できない。他方、フェライト系ステンレス鋼は、電解質と同程度の熱膨張係数を示すので固体酸化物型燃料電池のセパレータ材に適している。   High Cr / High Ni austenitic stainless steel, which has excellent resistance to steam oxidation at high temperatures, has a very high coefficient of thermal expansion. Therefore, in applications where start-up and stop are frequently repeated, heat caused by thermal expansion / contraction Due to deformation and scale peeling, it cannot be used as a separator material for solid oxide fuel cells (SOFC). On the other hand, ferritic stainless steel is suitable as a separator material for solid oxide fuel cells because it exhibits a thermal expansion coefficient comparable to that of an electrolyte.

たとえば、C:0.2質量%以下,Si:0.2質量%未満,Mn:1.0質量%以下,Cr:11〜30質量%,Ni:2質量%以下,Al:1質量%以下,Zr:1質量%以下,Y:0.5質量%以下及び/又は希土類元素:0.2質量%以下を含むフェライト系ステンレス鋼が固体酸化物型燃料電池セパレータ用として知られている(特許文献1)。このステンレス鋼は、750〜950℃の温度域で電気伝導性が良好な酸化皮膜を形成し、長時間使用後にも良好な耐酸化性,耐スケール剥離性を示し、電解質との熱膨張差が小さいことも長所である。
特開2003-105503号公報
For example, C: 0.2 mass% or less, Si: less than 0.2 mass%, Mn: 1.0 mass% or less, Cr: 11-30 mass%, Ni: 2 mass% or less, Al: 1 mass% or less , Zr: not more than 1% by mass, Y: not more than 0.5% by mass and / or rare earth elements: not more than 0.2% by mass is known as a ferritic stainless steel for solid oxide fuel cell separators (patents) Reference 1). This stainless steel forms an oxide film with good electrical conductivity in the temperature range of 750 to 950 ° C., shows good oxidation resistance and scale peeling resistance even after prolonged use, and has a difference in thermal expansion from the electrolyte. Small is also an advantage.
JP 2003-105503 A

しかし、ステンレス鋼の無垢材をセパレータに使用した場合、固体酸化物型燃料電池の使用中に酸化物が生成し、接触部の電気抵抗が増加する。電気抵抗の増加に起因する発電損失を解消する上で、セパレータ材の電気伝導度を更に低下させる必要がある。しかも、固体酸化物型燃料電池のセパレータとして紹介されている従来のステンレス鋼は、何れも基本的にCr含有量が高いので、Cr濃度の高い酸化スケールが生成しやすい。600〜800℃の水蒸気雰囲気に曝される固体酸化物型燃料電池のセパレータ環境では、酸化スケールのCrが水蒸気と反応して蒸発し、固体酸化物型電解質が被毒されやすい。
ステンレス鋼表面にAg等を塗布することによりCr/水蒸気の反応を抑制できるが、高価な貴金属元素を消費するので経済的でない。そのため、Crの蒸発をある程度許容しながら固体酸化物型燃料電池を使用せざるを得ない。
However, when a solid stainless steel material is used for the separator, an oxide is generated during the use of the solid oxide fuel cell, and the electrical resistance of the contact portion is increased. In order to eliminate power generation loss due to an increase in electrical resistance, it is necessary to further reduce the electrical conductivity of the separator material. Moreover, since all of the conventional stainless steels introduced as separators for solid oxide fuel cells basically have a high Cr content, an oxide scale with a high Cr concentration is likely to be generated. In the separator environment of a solid oxide fuel cell exposed to a steam atmosphere at 600 to 800 ° C., Cr on the oxide scale reacts with the water vapor to evaporate, and the solid oxide electrolyte is easily poisoned.
Although the reaction of Cr / water vapor can be suppressed by applying Ag or the like to the stainless steel surface, it is not economical because expensive noble metal elements are consumed. Therefore, the solid oxide fuel cell must be used while allowing the Cr to evaporate to some extent.

高価な貴金属元素の使用を必要とせず高温での良好な耐酸化性を保つ手段として、ステンレス鋼に導電性酸化物コーティングを施すことが知られている。たとえば、ZrO2で被覆したステンレス鋼をセパレータに用いた固体酸化物型燃料電池がある(特許文献2)。ZrO2被覆は、良好な耐酸化性を付与するものの高温での電気抵抗が高いため、セパレータの導電部に適用し難い。作動温度の低い固体高分子型燃料電池(PEFC)では酸化抑制元素を含むTiN被覆(特許文献3)が知られているが、100℃以下の作動温度で良好な電気伝導を示す組成の皮膜は、後述するように600℃以上の高温域では逆に高い電気抵抗を示すものが多く、常温での知見が全く参考にならない。
特開平9-67672号公報 特開2002-75398号公報
As a means for maintaining good oxidation resistance at high temperatures without requiring the use of expensive noble metal elements, it is known to apply a conductive oxide coating to stainless steel. For example, there is a solid oxide fuel cell using stainless steel coated with ZrO 2 as a separator (Patent Document 2). Although ZrO 2 coating provides good oxidation resistance, it has a high electrical resistance at high temperatures and is difficult to apply to the conductive part of the separator. In a polymer electrolyte fuel cell (PEFC) having a low operating temperature, a TiN coating containing an oxidation-inhibiting element (Patent Document 3) is known, but a film having a composition showing good electrical conduction at an operating temperature of 100 ° C. or lower is used. As will be described later, in the high temperature range of 600 ° C. or higher, many of them exhibit high electrical resistance, and the knowledge at room temperature is not helpful at all.
Japanese Patent Laid-Open No. 9-67672 Japanese Patent Laid-Open No. 2002-75398

以上のように、600℃以上の高温域で使用するために必要な耐水蒸気酸化性,高温で良好な電気伝導性を示し、Crの蒸発抑制が必要な固体酸化物型燃料電池環境での耐久性についてはこれまで実質的な検討がなされていなかった。
本発明は、基材に使用するフェライト系ステンレス鋼のCr含有量及び基材表面を被覆するセラミック皮膜の種類,組成を特定することにより、耐水蒸気酸化性,高温での電気伝導性,耐Cr蒸発性に優れた固体酸化物型燃料電池セパレータ材を提供することを目的とする。
As described above, steam oxidation resistance necessary for use in a high temperature range of 600 ° C. or higher, good electrical conductivity at high temperature, and durability in a solid oxide fuel cell environment where Cr evaporation must be suppressed Until now, no substantial study has been conducted on sex.
By specifying the Cr content of the ferritic stainless steel used for the base material and the type and composition of the ceramic film covering the base material surface, the present invention is resistant to steam oxidation, electrical conductivity at high temperatures, and resistance to Cr. An object of the present invention is to provide a solid oxide fuel cell separator material excellent in evaporability.

本発明は、基材にCr:11〜40質量%を含むフェライト系ステンレス鋼を用い、基材表面を覆う膜厚:0.05〜100μmの被覆層を形成した固体酸化物型燃料電池セパレータ材であり、被覆層がTi濃度:40原子%以上のTiNであることを特徴とする。TiN被覆層のCr濃度及びV,Zr,Al濃度は必要に応じてCr<10原子%,V+Zr+Al<10原子%に制限する。   The present invention uses a ferritic stainless steel containing Cr: 11 to 40% by mass as a base material, and forms a coating layer having a thickness of 0.05 to 100 μm covering the base material surface. The coating layer is characterized by being TiN having a Ti concentration of 40 atomic% or more. The Cr concentration and the V, Zr, Al concentration of the TiN coating layer are limited to Cr <10 atomic% and V + Zr + Al <10 atomic% as required.

基材に使用するフェライト系ステンレス鋼は、好ましくはCr:11〜40質量%,C:0.1質量%以下,N:0.1質量%以下,Si:1.5質量%以下,Mn:1.5質量%以下,P:0.10質量%以下,S:0.01質量%以下を含み、残部が実質的にFeの組成をもつ。
必要に応じ、Mo:0.1〜4.0質量%,W:0.1〜4.0質量%,Nb:0.05〜0.80質量%,Ti:0.03〜0.50質量%,Cu:0.1〜4.0質量%,Zr:0.03〜0.50質量%,Ta:0.03〜0.50質量%,Al:0.02〜0.20質量%,Y:0.0005〜0.1質量%,REM(La,Ce,Nd等の希土類元素):0.0005〜0.1質量%,Ca:0.0005〜0.01質量%,B:0.0002〜0.01質量%の一種又は二種以上を含むことができる。
The ferritic stainless steel used for the base material is preferably Cr: 11-40 mass%, C: 0.1 mass% or less, N: 0.1 mass% or less, Si: 1.5 mass% or less, Mn: 1.5% by mass or less, P: 0.10% by mass or less, S: 0.01% by mass or less, and the balance substantially has a composition of Fe.
As needed, Mo: 0.1-4.0 mass%, W: 0.1-4.0 mass%, Nb: 0.05-0.80 mass%, Ti: 0.03-0.50 mass %, Cu: 0.1 to 4.0% by mass, Zr: 0.03 to 0.50% by mass, Ta: 0.03 to 0.50% by mass, Al: 0.02 to 0.20% by mass, Y: 0.0005-0.1% by mass, REM (rare earth elements such as La, Ce, Nd): 0.0005-0.1% by mass, Ca: 0.0005-0.01% by mass, B: 0 One kind or two kinds or more of 0.0002 to 0.01% by mass can be contained.

発明の効果及び実施の形態Effects and embodiments of the invention

無垢のステンレス鋼をセパレータに適用した場合、燃料電池の高温水蒸気雰囲気(600〜800℃)に曝されると、酸化が容易に進行するのに加え導電部の電気抵抗が増大し、燃料電池の機能が損なわれる。しかも、蒸発したCrで固体電解質が被毒する。高温で導電性を示すコーティングをステンレス鋼に施すことにより、電気抵抗の増大,固体電解質の被毒が抑制されると考えられる。そこで、本発明者等は、フェライト系ステンレス鋼にTiN被覆層を形成する方法に着目した。   When solid stainless steel is applied to the separator, when exposed to the high-temperature steam atmosphere (600 to 800 ° C.) of the fuel cell, oxidation progresses easily, and the electrical resistance of the conductive portion increases. Function is impaired. Moreover, the solid electrolyte is poisoned by the evaporated Cr. It is considered that an increase in electrical resistance and poisoning of the solid electrolyte are suppressed by applying a coating showing conductivity at high temperatures to stainless steel. Therefore, the inventors focused on a method of forming a TiN coating layer on ferritic stainless steel.

ステンレス鋼表面に生成する酸化皮膜の主成分Cr23の電気抵抗は700℃で103〜102程度であり、同じ700℃でTiNはCr23を下回る電気抵抗を示す。また、TiN被覆層は、Cr:11質量%以上のフェライト系ステンレス鋼を基材とすることにより良好な耐酸化性が付与され、水蒸気酸化によるCrの蒸発を抑止する作用もある。 The electrical resistance of the main component Cr 2 O 3 of the oxide film formed on the stainless steel surface is about 10 3 to 10 2 at 700 ° C., and TiN shows an electrical resistance lower than Cr 2 O 3 at the same 700 ° C. Further, the TiN coating layer is provided with good oxidation resistance by using a ferritic stainless steel of Cr: 11 mass% or more as a base material, and also has an action of suppressing evaporation of Cr due to steam oxidation.

作動温度が通常80℃程度と低い固体高分子電解質型の燃料電池ではTiN被覆したセパレータ材(特許文献3)もあるが、酸化抑制元素を含むTiN被覆層は、後述の実施例1で示すように600℃以上の高温雰囲気に曝されると逆に電気伝導度を著しく増大させる。電気伝導度の増大は、低温側で酸化抑制材として有効であったAl,Vが却って電気抵抗の高い酸化皮膜を高温側で形成することに起因するものと考えられる。
この点、Ti濃度を40原子%以上としたTiN被覆層は、600〜800℃の温度域で良好な電気伝導度を維持し、水蒸気酸化によるCrの蒸発も効果的に抑制する。電気伝導度の高位維持,Crの蒸発抑制に及ぼすTi濃度の影響は、固体高分子電解質型の燃料電池用セパレータ材から予想できないことであり、47原子%以上で顕著になる。
In a solid polymer electrolyte fuel cell having an operating temperature as low as about 80 ° C., there is a TiN-coated separator material (Patent Document 3), but a TiN coating layer containing an oxidation-inhibiting element is shown in Example 1 described later. In contrast, when exposed to a high temperature atmosphere of 600 ° C. or higher, the electrical conductivity is significantly increased. The increase in electrical conductivity is thought to be due to the fact that Al and V, which are effective as an oxidation inhibitor on the low temperature side, form an oxide film with high electrical resistance on the high temperature side.
In this regard, the TiN coating layer having a Ti concentration of 40 atomic% or more maintains good electrical conductivity in the temperature range of 600 to 800 ° C., and effectively suppresses evaporation of Cr due to steam oxidation. The effect of Ti concentration on maintaining high electrical conductivity and suppressing Cr evaporation is unpredictable from the solid polymer electrolyte type separator for fuel cells, and becomes prominent at 47 atomic% or more.

セパレータ用ステンレス鋼にTiN被覆層を形成する場合、TiN被覆層の安定性が重視され、なかでもTiN被覆層が剥離しないことが要求される。因みに、熱膨張係数の大きなオーステナイト系ステンレス鋼を基材にすると、TiN被覆層と基材との間に熱応力が発生し、使用中、特に起動・停止を繰り返した場合にTiN被覆層が剥離してしまう。他方、Crが11質量%未満のフェライト系ステンレス鋼を基材に使用すると、熱膨張係数が小さいものの酸化速度が速く、ときとして異常酸化することもある。異常酸化は、フェライト系ステンレス鋼のCr含有量を11質量%以上とすることにより防止できる。   When forming a TiN coating layer on stainless steel for a separator, the stability of the TiN coating layer is emphasized, and in particular, the TiN coating layer is required not to peel off. By the way, when austenitic stainless steel with a large thermal expansion coefficient is used as the base material, thermal stress is generated between the TiN coating layer and the base material, and the TiN coating layer peels off during use, especially when it is repeatedly started and stopped. Resulting in. On the other hand, when ferritic stainless steel having a Cr content of less than 11% by mass is used as the base material, although the coefficient of thermal expansion is small, the oxidation rate is fast and sometimes abnormal oxidation occurs. Abnormal oxidation can be prevented by setting the Cr content of the ferritic stainless steel to 11% by mass or more.

TiN被覆層には、長時間経過後の安定性も要求される。Tiは使用環境においては酸化物がより安定であり、基材成分と被覆層との間で拡散が生じ、長時間経過後に初期のTiNと異なった層になってしまうことが懸念される。しかし、本発明者等が長時間経過した被覆層の構造を調査したところ、TiN被覆層がFe,Tiのスピネル系酸化物とTiNの混合層に変質していたものの、被覆層に拡散する基材成分は主にFeであり、CrのTiN側への外方拡散が生じていないことが判った。変質後の被覆層は、無垢のステンレス鋼をセパレータ材として用いた場合に生成するMn,Cr系酸化物と比較しても同等以上の電気伝導性を有するFe,Tiのスピネル系酸化物及び残存TiNからなるので良好な電気伝導度が維持されており、Crの蒸発抑制にも有効である。TiN被覆層によるCrの拡散抑制は、固体高分子型燃料電池用セパレータ材に施したTiN被覆層から予測できない効果であり、固体酸化物型燃料電池用に適した特性をセパレータ材に付与する。   The TiN coating layer is also required to have stability after a long time. There is a concern that Ti is more stable in oxide in the environment of use, diffuses between the base material component and the coating layer, and becomes a layer different from the initial TiN after a long time. However, when the present inventors investigated the structure of the coating layer after a long period of time, the TiN coating layer was transformed into a mixed layer of Fe, Ti spinel-based oxide and TiN, but the base layer diffused into the coating layer. The material component was mainly Fe, and it was found that no outward diffusion of Cr to the TiN side occurred. The coating layer after alteration is Fe and Ti spinel oxides and residual materials having electrical conductivity equal to or higher than that of Mn and Cr oxides produced when solid stainless steel is used as a separator material. Since it is made of TiN, good electrical conductivity is maintained, and it is also effective in suppressing Cr evaporation. The suppression of Cr diffusion by the TiN coating layer is an effect that cannot be predicted from the TiN coating layer applied to the solid polymer fuel cell separator material, and imparts characteristics suitable for the solid oxide fuel cell to the separator material.

以下、固体酸化物型燃料電池セパレータ材の基材に使用されるフェライト系ステンレス鋼の成分,含有量及びTiN被覆層を個別に説明する。
〔C,N:0.1質量%以下〕
高温強度,特にクリープ特性の改善に有効な成分であるが、過剰添加はフェライト系ステンレス鋼の加工性,低温靭性を著しく低下させる。また、TI,Nbと反応して炭窒化物を生成しやすく、高温強度の改善に有効な固溶Tiや固溶Nbを減少させる。したがって、本成分系ではC,N含有量が少ないほど好ましく、共に上限を0.1質量%とした。
Hereinafter, the components, contents, and TiN coating layers of the ferritic stainless steel used for the base material of the solid oxide fuel cell separator will be described individually.
[C, N: 0.1% by mass or less]
Although it is an effective component for improving high-temperature strength, especially creep properties, excessive addition significantly reduces the workability and low-temperature toughness of ferritic stainless steel. Moreover, it reacts with TI and Nb to easily generate carbonitrides, and reduces solute Ti and solute Nb effective in improving high temperature strength. Therefore, in this component system, it is preferable that the C and N contents are small, and the upper limit is set to 0.1% by mass in both cases.

〔Si:1.5質量%以下〕
クロム系酸化物の安定化に有効な合金成分であり、耐水蒸気酸化性を向上させる作用も呈する。しかし、1.0質量%を超える過剰量のシリコンが含まれると、電気抵抗の高いSiO2の酸化物層が基材表層に形成され、電気伝導度が低下する。過剰量のSi含有は、フェライト系ステンレス鋼の低温靭性を低下させ、鋼板に表面疵を発生させ製造性を低下させる原因にもなる。
〔Mn:1.5質量%以下〕
フェライト系ステンレス鋼のスケール剥離性を改善する成分であるが、1.5質量%を超える過剰量のMnが含まれると鋼材が硬質化し、加工性,低温靭性が低下する。
〔S:0.01質量%以下〕
熱間加工性,耐溶接高温割れ性に悪影響を及ぼす成分であり、異常酸化の起点にもなる。そのため、S含有量は可能な限り低くすることが好ましく、上限を0.01質量%とした。
[Si: 1.5% by mass or less]
It is an effective alloy component for stabilizing chromium-based oxides, and also exhibits an effect of improving the steam oxidation resistance. However, if an excessive amount of silicon exceeding 1.0% by mass is contained, a SiO 2 oxide layer having a high electric resistance is formed on the surface layer of the substrate, and the electric conductivity is lowered. Excessive Si content reduces the low-temperature toughness of ferritic stainless steel, and also causes surface flaws on the steel sheet, thereby reducing productivity.
[Mn: 1.5% by mass or less]
Although it is a component that improves the scale peelability of ferritic stainless steel, if an excessive amount of Mn exceeding 1.5% by mass is contained, the steel material becomes hard, and the workability and low temperature toughness deteriorate.
[S: 0.01 mass% or less]
It is a component that adversely affects hot workability and weld hot cracking resistance, and also serves as a starting point for abnormal oxidation. Therefore, the S content is preferably as low as possible, and the upper limit is set to 0.01% by mass.

〔Cr:11〜40質量%〕
ステンレス鋼に必要な耐食性,耐酸化性,電気伝導性を付与する上で必須の合金成分である。600℃前後での耐水蒸気酸化性及び良好な電気伝導性を確保するため、Cr含有量を11質量%以上とした。特に、水蒸気雰囲気に曝されることを考慮した場合、20質量%以上のCr含有量が好ましい。しかし、過剰量のCr添加はフェライト系ステンレス鋼の加工性,低温靭性,475℃脆化感受性に悪影響を及ぼすので、Cr含有量の上限を40質量%とした。
[Cr: 11-40% by mass]
It is an indispensable alloy component for imparting the necessary corrosion resistance, oxidation resistance and electrical conductivity to stainless steel. In order to ensure steam oxidation resistance and good electrical conductivity at around 600 ° C., the Cr content was set to 11% by mass or more. In particular, when considering exposure to a water vapor atmosphere, a Cr content of 20% by mass or more is preferable. However, excessive addition of Cr adversely affects the workability, low temperature toughness, and 475 ° C. embrittlement susceptibility of ferritic stainless steel, so the upper limit of Cr content was set to 40% by mass.

〔Mo,W,Cu:0.1〜4.0質量%〕
Mo,Wは固溶強化により、Cuは固溶強化又は析出強化により高温強度,耐熱疲労性を改善する合金成分であり、積層によるクリープ強度又は起動・停止の繰返しによる熱疲労が問題となる場合、必要に応じて添加される。しかし、過剰添加すると鋼材が過度に硬質化するので、何れも上限を4.0質量%とした。
[Mo, W, Cu: 0.1-4.0% by mass]
Mo and W are alloy components that improve high temperature strength and heat fatigue resistance by solid solution strengthening and Cu by solid solution strengthening or precipitation strengthening, where creep strength due to lamination or thermal fatigue due to repeated start / stop is a problem , Added as needed. However, since the steel material is excessively hardened when excessively added, the upper limit is set to 4.0% by mass in any case.

〔Nb:0.05〜0.80質量%,Ti:0.03〜0.50質量%,Zr:0.05〜0.50質量%,V:0.03〜0.50質量%,Ta:0.03〜0.50質量%〕
必要に応じて添加される合金成分であり、固溶強化又は析出強化によってフェライト系ステンレス鋼の高温強度を更に向上させる。高温強度の改善効果は、何れも0.03質量%以上の添加でみられる。しかし、過剰添加は鋼材の硬質化を招くので、それぞれの上限をNbでは0.80質量%,Ti,Zr,V,Taでは0.50質量%とした。
[Nb: 0.05 to 0.80 mass%, Ti: 0.03 to 0.50 mass%, Zr: 0.05 to 0.50 mass%, V: 0.03 to 0.50 mass%, Ta : 0.03 to 0.50% by mass]
It is an alloy component added as necessary, and further improves the high temperature strength of ferritic stainless steel by solid solution strengthening or precipitation strengthening. The effect of improving the high-temperature strength is observed with addition of 0.03% by mass or more. However, since excessive addition leads to hardening of the steel material, the upper limit of each was set to 0.80% by mass for Nb and 0.50% by mass for Ti, Zr, V, and Ta.

〔Al:0.02〜0.20質量%〕
製鋼段階で脱酸剤として添加されるだけでなく、基材表面にAl23の酸化皮膜を形成させ耐高温酸化性を著しく向上させる任意成分である。0.02質量%以上でAlの添加効果が顕著になるが、過剰添加は加工性,溶接性を低減しセパレータの電気伝導性も損なうので上限を0.20質量%とした。
[Al: 0.02-0.20 mass%]
In addition to being added as a deoxidizer in the steelmaking stage, it is an optional component that significantly improves high-temperature oxidation resistance by forming an oxide film of Al 2 O 3 on the substrate surface. The effect of addition of Al becomes remarkable at 0.02% by mass or more, but excessive addition reduces workability and weldability and impairs the electrical conductivity of the separator, so the upper limit was made 0.20% by mass.

〔Y:0.0005〜0.1質量%,REM:0.0005〜0.1質量%,Ca:0.0005〜0.01質量%〕
何れも必要に応じて添加される合金成分であり、酸化皮膜に固溶して皮膜強度を高め、フェライト系ステンレス鋼の耐水蒸気酸化性を更に向上させる。耐水蒸気酸化性の改善効果は何れも0.0005質量%以上で顕著になるが、過剰添加は鋼材を過度に硬質化させ、製造時に表面疵が生じやすくなって製造コストの上昇を招くので、それぞれの上限をY,REMでは0.1質量%,Caでは0.01質量%とした。
[Y: 0.0005-0.1% by mass, REM: 0.0005-0.1% by mass, Ca: 0.0005-0.01% by mass]
Any of these is an alloy component that is added as necessary, and is dissolved in the oxide film to increase the film strength and further improve the steam oxidation resistance of the ferritic stainless steel. The effects of improving steam oxidation resistance are all significant at 0.0005% by mass or more, but excessive addition hardens the steel material, and surface flaws are likely to occur during production, leading to an increase in production cost. The upper limit of each of Y and REM was 0.1% by mass, and Ca was 0.01% by mass.

〔B:0.0005〜0.01質量%〕
ステンレス鋼の熱間加工性を改善する合金成分であり、必要に応じて添加される。熱間加工性の改善効果は0.0005質量%以上で顕著になるが、過剰添加は却って熱間加工性,鋼板の表面性状を劣化させるので0.01質量%を上限とした。
〔他の成分〕
本発明は他の合金成分を特に規定するものではないが、一般的な不純物であるP,O,Ni等を可能な限り低減することが好ましい。通常は、P:0.1質量%以下,O:0.02質量%以下,Ni:2.0質量%以下に規制されるが、高レベルの加工性,溶接性が要求される場合にはP,O,Niを更に厳しく規制する。また、強度改善に有効なRe,快削性改善に有効なSn,熱間加工性改善に有効なCo,Hf,Sc等の元素も、必要に応じてRe:2.0質量%,Sn:1.0質量%,Co:2.0質量%,Hf:1.0質量%,Sc:0.1質量%を上限に添加できる。
[B: 0.0005 to 0.01% by mass]
It is an alloy component that improves the hot workability of stainless steel, and is added as necessary. The effect of improving hot workability becomes significant at 0.0005 mass% or more, but excessive addition deteriorates the hot workability and the surface properties of the steel sheet, so 0.01 mass% was made the upper limit.
[Other ingredients]
The present invention does not particularly define other alloy components, but it is preferable to reduce general impurities such as P, O, and Ni as much as possible. Normally, P is regulated to 0.1% by mass or less, O: 0.02% by mass or less, and Ni: 2.0% by mass or less. However, when a high level of workability and weldability is required. P, O, and Ni are more strictly regulated. Further, Re effective for improving strength, Sn effective for improving free machinability, and elements such as Co, Hf, and Sc effective for improving hot workability, if necessary, Re: 2.0 mass%, Sn: 1.0% by mass, Co: 2.0% by mass, Hf: 1.0% by mass, and Sc: 0.1% by mass can be added to the upper limit.

〔TiN被覆層〕
TiN被覆層は、スパッタリング,アーク蒸着等の一般的な方法で形成でき、何れの方法による場合も良好な特性を有する被覆層が作製される。被覆効果を十分に発揮させる上で、TiN被覆層の膜厚を0.05μm以上とする。TiN被覆層が厚いほど耐水蒸気酸化性,電気伝導性等の特性が向上するが、過剰な厚膜は製造コストの上昇を招くので100μmを上限とした。好ましくは、0.1〜10μmの範囲にTiN被覆層の膜厚を調整する。
[TiN coating layer]
The TiN coating layer can be formed by a general method such as sputtering or arc deposition, and a coating layer having good characteristics is produced by any method. In order to sufficiently exhibit the coating effect, the thickness of the TiN coating layer is set to 0.05 μm or more. The thicker the TiN coating layer, the better the characteristics such as steam oxidation resistance and electrical conductivity. However, an excessively thick film causes an increase in manufacturing cost, so the upper limit is set to 100 μm. Preferably, the thickness of the TiN coating layer is adjusted in the range of 0.1 to 10 μm.

また、被覆層のTi濃度を40原子%以上とすることにより、600〜800℃の温度域で良好な電気伝導性が維持され、Crの酸化蒸発も効果的に抑制される。Ti濃度の上限は特に規制されるものではないが、通常のTiN被覆層を形成させる方法では60原子%程度が上限となる。より良好な電気伝導性を付与する上では、47〜60原子%の範囲でTi濃度を選定することが好ましい。   Moreover, by setting the Ti concentration of the coating layer to 40 atomic% or more, good electrical conductivity is maintained in the temperature range of 600 to 800 ° C., and oxidative evaporation of Cr is effectively suppressed. The upper limit of the Ti concentration is not particularly limited, but the upper limit is about 60 atomic% in the method of forming a normal TiN coating layer. In order to provide better electrical conductivity, it is preferable to select a Ti concentration in the range of 47 to 60 atomic%.

なお、TiN被覆層への酸化性元素の添加がPEFCでは有効であると特許文献3に開示されているが、600℃以上の高温雰囲気に曝されるSOFCの場合、添加した酸化性元素が電気伝導度の低い酸化物を形成してしまう。特に被覆層のV,Zr,Al濃度の総和が10原子%を超えると電気伝導度が大幅に低下する。そのため、必要に応じて被覆層のV,Zr,Al濃度の総和を10原子%未満に規制し、より高い電気伝導度を得る上ではV,Zr,Al濃度の総和を2原子%以下にすることが好ましい。Cr濃度に関しても、10原子%を超えるCr濃度では水蒸気雰囲気中でCrが蒸発し、固体電解質の性能が低下する傾向がみられる。そこで、必要に応じてTiN被覆層に添加するCrの濃度を10原子%未満に規制し、より長期にわたりCrの蒸発を抑制するためにはTiN被覆層のCr濃度を2原子%以下とすることが好ましい。   Patent Document 3 discloses that the addition of an oxidizing element to the TiN coating layer is effective in PEFC. However, in the case of SOFC exposed to a high temperature atmosphere of 600 ° C. or higher, the added oxidizing element is electrically An oxide having low conductivity is formed. In particular, when the sum of the V, Zr, and Al concentrations of the coating layer exceeds 10 atomic%, the electrical conductivity is greatly reduced. Therefore, if necessary, the sum of the V, Zr, and Al concentrations of the coating layer is restricted to less than 10 atomic%, and in order to obtain higher electrical conductivity, the sum of the V, Zr, and Al concentrations is set to 2 atomic% or less. It is preferable. Regarding the Cr concentration, when the Cr concentration exceeds 10 atomic%, Cr evaporates in the water vapor atmosphere, and the performance of the solid electrolyte tends to decrease. Therefore, if necessary, the concentration of Cr added to the TiN coating layer is restricted to less than 10 atomic%, and the Cr concentration of the TiN coating layer should be 2 atomic% or less in order to suppress the evaporation of Cr over a longer period. Is preferred.

表1の各種フェライト系ステンレス鋼を30kg真空溶解炉で溶製し、インゴットに鋳造した。鍛造,粗圧延,熱延,焼鈍・酸洗,冷延,仕上げ焼鈍,酸洗を経て、板厚:1.5mmの冷延焼鈍・酸洗板を製造し、JIS G4305で規定されるヘアライン仕上げした。   Various ferritic stainless steels shown in Table 1 were melted in a 30 kg vacuum melting furnace and cast into ingots. After forging, rough rolling, hot rolling, annealing / pickling, cold rolling, finishing annealing, pickling, a cold rolled annealing / pickling plate with a thickness of 1.5 mm is manufactured, and the hairline finish specified in JIS G4305 did.

Figure 2006318652
Figure 2006318652

ヘアライン仕上げした鋼種No.4のステンレス鋼板の両面にスパッタリング法で被覆層を形成した。スパッタリング法では、真空チャンバにセットしたターゲット(カソード)とアノード板との間にステンレス鋼板を配置し、真空チャンバを10-3Pa以下の高真空に排気した後、10-1Pa程度の真空になるようにArガスを導入した。そして、ターゲットに-500Vの電圧を印加してプラズマを発生させ、電圧で加速したArイオンをターゲットに衝突させた。Arイオンでターゲットをスパッタリングすると同時に、N2又はN2とC22の混合ガス(反応ガス)を系内に導入することにより、ステンレス鋼表面に所定組成の被覆層を形成した。使用したターゲットと反応ガスの組合せを表2に示す。 A coating layer was formed by sputtering on both surfaces of a stainless steel plate of steel type No. 4 that was hairline finished. In the sputtering method, a stainless steel plate is arranged between a target (cathode) set in a vacuum chamber and an anode plate, the vacuum chamber is evacuated to a high vacuum of 10 −3 Pa or less, and then a vacuum of about 10 −1 Pa is obtained. Ar gas was introduced so that Then, a voltage of −500 V was applied to the target to generate plasma, and Ar ions accelerated by the voltage were collided with the target. At the same time as sputtering of the target with Ar ions, a mixed gas (reactive gas) of N 2 or N 2 and C 2 H 2 was introduced into the system to form a coating layer having a predetermined composition on the stainless steel surface. Table 2 shows combinations of target and reaction gas used.

Figure 2006318652
Figure 2006318652

被覆層が形成されたステンレス鋼板から20mm×20mmの試験片を切り出し、高温での電気抵抗を測定した。
高温電気抵抗の測定では、試験片を両側から挟み込んだ半径10mmのイットリア安定ジルコニア製固体酸化物の円板それぞれに電流供給用の白金電極を取り付けた。白金電極に荷重を掛けて試験片とイットリア安定ジルコニア製固体酸化物円板との接触面の面圧を1.9kg/cm2に調整し、大気中で750℃に昇温し1000時間保持した後、白金電極間に10mAの定電流を流し、試験片を挟み込んだイットリア安定ジルコニア製固体酸化物円板間の電位差を測定した。
電位差の測定値から試験片の電気抵抗を求め、電気抵抗率(面積抵抗率)に換算した。セパレータ用途では、30mΩ・cm2以下の電気抵抗率が良好,30mΩ・cm2を超える電気抵抗率が不良と評価される。電気抵抗率の測定結果を被覆層の組成,膜厚と共に表3に示す。
A test piece of 20 mm × 20 mm was cut out from the stainless steel plate on which the coating layer was formed, and the electrical resistance at high temperature was measured.
In the measurement of the high-temperature electric resistance, a platinum electrode for supplying current was attached to each of the solid oxide discs made of yttria-stable zirconia having a radius of 10 mm sandwiching the test piece from both sides. A load was applied to the platinum electrode to adjust the surface pressure of the contact surface between the test piece and the yttria-stable zirconia solid oxide disk to 1.9 kg / cm 2 , and the temperature was raised to 750 ° C. in the atmosphere and held for 1000 hours. Thereafter, a constant current of 10 mA was passed between the platinum electrodes, and the potential difference between the yttria-stable zirconia solid oxide disks sandwiching the test piece was measured.
The electrical resistance of the test piece was obtained from the measured value of the potential difference, and converted into electrical resistivity (area resistivity). In separator applications, an electrical resistivity of 30 mΩ · cm 2 or less is good, and an electrical resistivity exceeding 30 mΩ · cm 2 is evaluated as poor. The measurement results of electrical resistivity are shown in Table 3 together with the composition and thickness of the coating layer.

表3の試験結果にみられるように、Ti濃度が40原子%以上の被覆層(膜記号A〜D)を形成した試験片では何れも電気抵抗率が30mΩ・cm2以下であり、特にTi濃度:47原子%以上の被覆層(膜記号A〜C)を設けた試験片では20mΩ・cm2を下回る低電気抵抗を示した。TiN被覆層のV,Zr,Al濃度及びCr濃度も、総計で2原子%以下の低い値であった。 As can be seen from the test results in Table 3, all of the test pieces formed with coating layers (film symbols A to D) having a Ti concentration of 40 atomic% or more had an electrical resistivity of 30 mΩ · cm 2 or less, particularly Ti Concentration: A test piece provided with a coating layer (film symbols A to C) of 47 atomic% or more showed a low electric resistance of less than 20 mΩ · cm 2 . The V, Zr, Al concentration and Cr concentration of the TiN coating layer were also low values of 2 atomic% or less in total.

これに対し、他の被覆層(膜記号E〜H)を設けた試験片は、何れも電気抵抗率が30mΩ・cm2を大幅に超えており、要求特性が満足されずセパレータ材としては不適であった。被覆層E〜Hには、総計で10原子%以上のV,Zr及び/又はAlが含まれていた。Crを11原子%含む被覆層Iでは、電気抵抗率が30μΩ・cm2以下と良好であったが、後述するように耐Cr蒸発性が不適であった。 On the other hand, the test pieces provided with other coating layers (film symbols E to H) all have electrical resistivity significantly exceeding 30 mΩ · cm 2 , and the required characteristics are not satisfied, making them unsuitable as separator materials. Met. The coating layers E to H contained 10 atomic% or more of V, Zr and / or Al in total. In the coating layer I containing 11 atomic% of Cr, the electrical resistivity was as good as 30 μΩ · cm 2 or less, but the Cr evaporation resistance was unsuitable as described later.

Figure 2006318652
Figure 2006318652

表1のステンレス鋼板に実施例1と同じスパッタリング法で被覆層を形成した後、25mm×35mmの試験片に切り出し、高温水蒸気酸化試験に供した。
高温水蒸気酸化試験では、燃料電池の熱交換器が曝される雰囲気を想定し、800℃,50体積%H2O+50体積%空気の雰囲気に試験片を300時間放置した。300時間経過した後で試験片の重量を測定し、試験前の重量と比較した。試験前後の重量変化:1mg/cm2以下を良好(○),1mg/cm2を超える重量変化を不良(×)としてセパレータの耐水蒸気酸化性が評価される。一部の試験片については、水蒸気酸化試験後の試験片表面にある被覆層のCr濃度を表層からWDS(EPMA)で定量した。Cr蒸発の有無と対応させるため、Cr濃度が10原子%を超えた試験片を×,10原子%以下の試験片を○と判定した。
After the coating layer was formed on the stainless steel plate of Table 1 by the same sputtering method as in Example 1, it was cut into a 25 mm × 35 mm test piece and subjected to a high temperature steam oxidation test.
In the high temperature steam oxidation test, the test piece was left in an atmosphere of 800 ° C., 50 vol% H 2 O + 50 vol% air for 300 hours, assuming an atmosphere to which the heat exchanger of the fuel cell is exposed. After 300 hours, the weight of the test piece was measured and compared with the weight before the test. Weight change before and after the test: The steam oxidation resistance of the separator is evaluated with 1 mg / cm 2 or less being good (◯) and a weight change exceeding 1 mg / cm 2 being poor (x). For some test pieces, the Cr concentration of the coating layer on the surface of the test piece after the steam oxidation test was quantified from the surface layer by WDS (EPMA). In order to correspond to the presence or absence of Cr evaporation, the test piece having a Cr concentration exceeding 10 atomic% was judged as x, and the test piece having 10 atomic% or less was judged as ◯.

一部の試験片については、Cr蒸発の有無も調査した。水蒸気雰囲気でCrは水溶性の六価クロムとして蒸発するので、試験中、水蒸気を含む炉内の排ガスを500mlの水中で全量トラップし、トラップした結露水に含まれている水溶性クロム量を水蒸気酸化試験後に吸光光度法で分析した。水溶性クロム量が0.1ppm以下の試験片を良好(○),0.1ppmを超える試験片を不良(×)として耐Cr蒸発性を評価した。   About some test pieces, the presence or absence of Cr evaporation was also investigated. Since Cr evaporates as water-soluble hexavalent chromium in a water vapor atmosphere, all the exhaust gas in the furnace containing water vapor is trapped in 500 ml of water during the test, and the amount of water-soluble chromium contained in the trapped condensed water is After the oxidation test, it was analyzed by spectrophotometry. The Cr evaporation resistance was evaluated with a test piece having a water-soluble chromium content of 0.1 ppm or less as good (◯) and a test piece exceeding 0.1 ppm as poor (×).

表4にみられるように、Cr:11質量%以上のステンレス鋼にTi:40原子%以上の被覆層を設けた試験片(鋼種No.1〜11,膜記号A〜D)は、何れも酸化増量が1mg/cm2以下と少なく、固体酸化物型燃料電池セパレータ材として必要な特性を備えていることが判る。結露水の溶出Cr量も0.1ppm以下と少なく、クロム被毒の抑制に有効なことが確認できた。 As seen in Table 4, all of the test pieces (steel types No. 1 to 11 and film symbols A to D) in which a coating layer of Ti: 40 atomic% or more was provided on stainless steel of Cr: 11 mass% or more. It can be seen that the increase in oxidation is as small as 1 mg / cm 2 or less, and it has the necessary characteristics as a solid oxide fuel cell separator material. The amount of Cr eluted from the condensed water was also as low as 0.1 ppm or less, and it was confirmed that it was effective in suppressing chromium poisoning.

他方、Cr:11質量%以上のフェライト系ステンレス鋼(鋼種No.4,11,12)であっても被覆層を形成しない試験片では、酸化増量が1mg/cm2以下と少ないものの何れも0.1ppmを超える水溶性クロムが検出され、固体酸化物型燃料電池セパレータ材として不適であった。また、Cr:11質量%未満のフェライト系ステンレス鋼(鋼種No.13〜15)では、Ti:40原子%以上のTiN被覆層(膜記号A)を施した場合でも、基材のクロム不足のため酸化が著しく進行し、酸化増量が1mg/cm2を大幅に超えたことから固体酸化物型燃料電池セパレータ材として不適であった。Cr濃度が11原子%の被覆層Iでは、酸化増量が少ないものの表層にある過剰量のCrに起因して結露水に0.1ppmを超えるCrの溶出が検出された。
なお、表4の水蒸気酸化試験後のCr濃度,耐Cr蒸発性の欄における表示「−」は、表層Cr濃度又は水溶性クロム量を分析しなかった試験片を示す。
On the other hand, in the case of Cr: 11 mass% or more of ferritic stainless steel (steel types No. 4, 11, 12), any test piece that does not form a coating layer has a small oxidation gain of 1 mg / cm 2 or less. Water-soluble chromium exceeding 0.1 ppm was detected, and was unsuitable as a solid oxide fuel cell separator material. In addition, in a ferritic stainless steel (steel type Nos. 13 to 15) with Cr: less than 11% by mass, even when a TiN coating layer (film symbol A) with Ti: 40 atomic% or more is applied, the chromium of the base material is insufficient. Therefore, oxidation progressed remarkably, and the increase in oxidation greatly exceeded 1 mg / cm 2 , so that it was unsuitable as a solid oxide fuel cell separator material. In the coating layer I having a Cr concentration of 11 atomic%, although the increase in oxidation was small, elution of Cr exceeding 0.1 ppm was detected in the condensed water due to the excessive amount of Cr in the surface layer.
In addition, the display "-" in the column of Cr density | concentration after a steam oxidation test of Table 4, and Cr evaporation resistance shows the test piece which did not analyze surface layer Cr density | concentration or the amount of water-soluble chromium.

Figure 2006318652
Figure 2006318652

以上に説明したように、Cr:11〜40質量%のフェライト系ステンレス鋼にTi:40原子%以上のTiN被覆層を形成することにより、高温で良好な電気伝導性及び耐水蒸気酸化性を示し、Crの蒸発も抑制されるため固体酸化物型燃料電池に適したセパレータ材が得られる。該セパレータ材の使用により、Ag等の高価な金属を消費する必要なく固体酸化物型燃料電池の性能,耐久性が改善されるので、固体酸化物型燃料電池の商品化及び一般家庭への普及が促進される。また、TiN被覆層を設けたフェライト系ステンレス鋼は、耐Cr蒸発性に優れているので、セパレータ材用途に限らず環境汚染の観点からCr蒸発が懸念される高温水蒸気雰囲気に曝される用途や高温での電気伝導度が要求される用途等、広汎な分野への展開も期待できる。   As described above, by forming a TiN coating layer of Ti: 40 atomic% or more on Cr: 11-40 mass% ferritic stainless steel, it exhibits good electrical conductivity and steam oxidation resistance at high temperatures. Since the evaporation of Cr is also suppressed, a separator material suitable for a solid oxide fuel cell can be obtained. The use of the separator material improves the performance and durability of the solid oxide fuel cell without the need for consuming expensive metals such as Ag. Is promoted. Moreover, since the ferritic stainless steel provided with the TiN coating layer is excellent in Cr evaporation resistance, it is not limited to the separator material application and is used in a high-temperature steam atmosphere where Cr evaporation is a concern from the viewpoint of environmental pollution. Expansion into a wide range of fields such as applications that require electrical conductivity at high temperatures is also expected.

Claims (5)

Cr:11〜40質量%のフェライト系ステンレス鋼を基材とし、膜厚:0.05〜100μm,Ti濃度:40原子%以上のTiN被覆層が基材表面に形成されていることを特徴とする固体酸化物型燃料電池セパレータ材。   Cr: 11 to 40% by mass of ferritic stainless steel as a base material, and a TiN coating layer having a film thickness of 0.05 to 100 μm and a Ti concentration of 40 atomic% or more is formed on the surface of the base material. Solid oxide fuel cell separator material. TiN被覆層のCr濃度及びV,Zr,Al濃度がCr<10原子%,且つV+Zr+Al<10原子%である請求項1記載の固体酸化物型燃料電池セパレータ材。   2. The solid oxide fuel cell separator according to claim 1, wherein the TiN coating layer has a Cr concentration and a V, Zr, and Al concentration of Cr <10 atomic% and V + Zr + Al <10 atomic%. 基材がCr:11〜40質量%,C:0.1質量%以下,N:0.1質量%以下,Si:1.5質量%以下,Mn:1.5質量%以下,P:0.10質量%以下,S:0.01質量%以下を含むフェライト系ステンレス鋼である請求項1又は2記載の固体酸化物型燃料電池セパレータ材。   Base material is Cr: 11-40 mass%, C: 0.1 mass% or less, N: 0.1 mass% or less, Si: 1.5 mass% or less, Mn: 1.5 mass% or less, P: 0 The solid oxide fuel cell separator material according to claim 1 or 2, which is ferritic stainless steel containing not more than .10% by mass and S: not more than 0.01% by mass. 基材が更にMo:0.1〜4.0質量%,W:0.1〜4.0質量%,Nb:0.05〜0.80質量%,Ti:0.03〜0.50質量%,Cu:0.1〜4.0質量%,Zr:0.03〜0.50質量%,V:0.03〜0.50質量%,Ta:0.03〜0.50質量%,Al:0.02〜0.20質量%の一種又は二種以上を含むフェライト系ステンレス鋼である請求項3記載の固体酸化物型燃料電池セパレータ材。   The base material is further Mo: 0.1-4.0% by mass, W: 0.1-4.0% by mass, Nb: 0.05-0.80% by mass, Ti: 0.03-0.50% by mass. %, Cu: 0.1 to 4.0% by mass, Zr: 0.03 to 0.50% by mass, V: 0.03 to 0.50% by mass, Ta: 0.03 to 0.50% by mass, The solid oxide fuel cell separator material according to claim 3, which is a ferritic stainless steel containing one or two or more of Al: 0.02 to 0.20 mass%. 基材が更にY:0.0005〜0.1質量%,REM:0.0005〜0.1質量%,Ca:0.0005〜0.01質量%,B:0.0002〜0.01質量%の一種又は二種以上を含むフェライト系ステンレス鋼である請求項3又は4記載の固体酸化物型燃料電池セパレータ材。   The substrate is further Y: 0.0005-0.1% by mass, REM: 0.0005-0.1% by mass, Ca: 0.0005-0.01% by mass, B: 0.0002-0.01% by mass. 5. The solid oxide fuel cell separator material according to claim 3, which is a ferritic stainless steel containing 1% or 2%.
JP2005136857A 2005-05-10 2005-05-10 Solid oxide fuel cell separator material Active JP4756905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005136857A JP4756905B2 (en) 2005-05-10 2005-05-10 Solid oxide fuel cell separator material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005136857A JP4756905B2 (en) 2005-05-10 2005-05-10 Solid oxide fuel cell separator material

Publications (2)

Publication Number Publication Date
JP2006318652A true JP2006318652A (en) 2006-11-24
JP4756905B2 JP4756905B2 (en) 2011-08-24

Family

ID=37539158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005136857A Active JP4756905B2 (en) 2005-05-10 2005-05-10 Solid oxide fuel cell separator material

Country Status (1)

Country Link
JP (1) JP4756905B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836480B1 (en) * 2006-12-28 2008-06-09 주식회사 포스코 Fabrication method of surface nitriding of bipolar plate for polymer electrolyte membrane fuel cell
WO2008082162A1 (en) * 2006-12-28 2008-07-10 Posco Method for improving surface properties of the stainless steels for bipolar plate of polymer electrolyte membrane fuel cell
KR100885041B1 (en) 2008-04-23 2009-02-20 현대하이스코 주식회사 Stainless separator for fuel cell having coating layer selected from mnx, m/mnx, mcy, mbz and method for the same
JP2009235555A (en) * 2008-03-28 2009-10-15 Nippon Steel & Sumikin Stainless Steel Corp Heat resistant ferritic stainless steel sheet having excellent oxidation resistance
JP2010250965A (en) * 2009-04-10 2010-11-04 Tokyo Gas Co Ltd Interconnector for solid oxide fuel cell, and method for forming the same
CN102666907A (en) * 2009-12-25 2012-09-12 本田技研工业株式会社 Nitriding process for maraging steel
WO2014010680A1 (en) * 2012-07-13 2014-01-16 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet and method for producing ferritic stainless steel sheet with oxide coating film having excellent conductivity and adhesion
JP2014078506A (en) * 2012-09-24 2014-05-01 Ngk Insulators Ltd Separator and fuel cell
WO2015108072A1 (en) * 2014-01-14 2015-07-23 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent adhesion and electric conductivity of oxide film
JP2017013503A (en) * 2015-07-06 2017-01-19 日本碍子株式会社 Laminated body and electrochemical device
EP2479307A4 (en) * 2009-09-16 2017-07-19 Hitachi Metals, Ltd. Steel for solid oxide fuel cell having excellent oxidation resistance
JP2017538862A (en) * 2014-12-26 2017-12-28 ポスコPosco Ferritic stainless steel
WO2018117469A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 Stainless steel for polymer fuel cell separation plate, having excellent contact resistance, and manufacturing method therefor
CN113073232A (en) * 2021-03-31 2021-07-06 哈尔滨工业大学 Ternary micro-nano particle composite reinforced heat-resistant titanium-based composite material and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105503A (en) * 1998-09-29 2000-04-11 Fujitsu Ltd Monocomponent developing method
JP2000353531A (en) * 1999-06-08 2000-12-19 Sumitomo Electric Ind Ltd Separator for solid high polymer fuel cell and manufacture thereof
JP2002075398A (en) * 2000-08-30 2002-03-15 Toyota Motor Corp Separator for fuel cell
JP2003173795A (en) * 2001-09-27 2003-06-20 Hitachi Metals Ltd Steel for solid oxide fuel cell separator
JP2003197223A (en) * 2001-12-17 2003-07-11 Korea Advanced Inst Of Sci Technol Porous gas distribution plate for small fuel cell, and separator plate for small fuel cell manufactured including this
JP2003331861A (en) * 2002-05-16 2003-11-21 Nippon Steel Corp Small contact resistance separator/carbon material interface structure for fuel cell, its carbon material and separator, and method for manufacturing stainless steel separator for fuel cell
JP2004506301A (en) * 2000-08-05 2004-02-26 イネオス・クロール・リミテッド Stainless steel substrate processing
JP2005076040A (en) * 2003-08-29 2005-03-24 Tokyo Gas Co Ltd Fe-Cr-Al-BASED HEAT RESISTANT ALLOY FOR SOLID OXIDE TYPE FUEL CELL

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105503A (en) * 1998-09-29 2000-04-11 Fujitsu Ltd Monocomponent developing method
JP2000353531A (en) * 1999-06-08 2000-12-19 Sumitomo Electric Ind Ltd Separator for solid high polymer fuel cell and manufacture thereof
JP2004506301A (en) * 2000-08-05 2004-02-26 イネオス・クロール・リミテッド Stainless steel substrate processing
JP2002075398A (en) * 2000-08-30 2002-03-15 Toyota Motor Corp Separator for fuel cell
JP2003173795A (en) * 2001-09-27 2003-06-20 Hitachi Metals Ltd Steel for solid oxide fuel cell separator
JP2003197223A (en) * 2001-12-17 2003-07-11 Korea Advanced Inst Of Sci Technol Porous gas distribution plate for small fuel cell, and separator plate for small fuel cell manufactured including this
JP2003331861A (en) * 2002-05-16 2003-11-21 Nippon Steel Corp Small contact resistance separator/carbon material interface structure for fuel cell, its carbon material and separator, and method for manufacturing stainless steel separator for fuel cell
JP2005076040A (en) * 2003-08-29 2005-03-24 Tokyo Gas Co Ltd Fe-Cr-Al-BASED HEAT RESISTANT ALLOY FOR SOLID OXIDE TYPE FUEL CELL

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103041B2 (en) 2006-12-28 2015-08-11 Posco Method for improving surface properties of the stainless steels for bipolar plate of polymer electrolyte membrane fuel cell
WO2008082162A1 (en) * 2006-12-28 2008-07-10 Posco Method for improving surface properties of the stainless steels for bipolar plate of polymer electrolyte membrane fuel cell
KR100836480B1 (en) * 2006-12-28 2008-06-09 주식회사 포스코 Fabrication method of surface nitriding of bipolar plate for polymer electrolyte membrane fuel cell
JP2009235555A (en) * 2008-03-28 2009-10-15 Nippon Steel & Sumikin Stainless Steel Corp Heat resistant ferritic stainless steel sheet having excellent oxidation resistance
KR100885041B1 (en) 2008-04-23 2009-02-20 현대하이스코 주식회사 Stainless separator for fuel cell having coating layer selected from mnx, m/mnx, mcy, mbz and method for the same
JP2010250965A (en) * 2009-04-10 2010-11-04 Tokyo Gas Co Ltd Interconnector for solid oxide fuel cell, and method for forming the same
EP2479307A4 (en) * 2009-09-16 2017-07-19 Hitachi Metals, Ltd. Steel for solid oxide fuel cell having excellent oxidation resistance
US20120241050A1 (en) * 2009-12-25 2012-09-27 Honda Motor Co., Ltd. Nitriding process for maraging steel
CN102666907A (en) * 2009-12-25 2012-09-12 本田技研工业株式会社 Nitriding process for maraging steel
JP2014031572A (en) * 2012-07-13 2014-02-20 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having excellent electric conductivity and adhesion property of oxide film
CN104379790A (en) * 2012-07-13 2015-02-25 新日铁住金不锈钢株式会社 Ferritic stainless steel sheet and method for producing ferritic stainless steel sheet with oxide coating film having excellent conductivity and adhesion
WO2014010680A1 (en) * 2012-07-13 2014-01-16 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet and method for producing ferritic stainless steel sheet with oxide coating film having excellent conductivity and adhesion
EP2871251A4 (en) * 2012-07-13 2016-03-02 Nippon Steel & Sumikin Sst Ferritic stainless steel sheet and method for producing ferritic stainless steel sheet with oxide coating film having excellent conductivity and adhesion
TWI561645B (en) * 2012-07-13 2016-12-11 Nippon Steel & Sumikin Sst Ferrite series stainless steel plate and method of manufacturing ferrite series stainless steel plate having excellent conductivity of oxide layer and adhesion properties
JP2014078506A (en) * 2012-09-24 2014-05-01 Ngk Insulators Ltd Separator and fuel cell
JPWO2015108072A1 (en) * 2014-01-14 2017-03-23 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent electrical conductivity and adhesion of oxide film
WO2015108072A1 (en) * 2014-01-14 2015-07-23 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent adhesion and electric conductivity of oxide film
JP2017538862A (en) * 2014-12-26 2017-12-28 ポスコPosco Ferritic stainless steel
JP2017013503A (en) * 2015-07-06 2017-01-19 日本碍子株式会社 Laminated body and electrochemical device
JP2018020558A (en) * 2015-07-06 2018-02-08 日本碍子株式会社 Laminate and electrochemical device
WO2018117469A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 Stainless steel for polymer fuel cell separation plate, having excellent contact resistance, and manufacturing method therefor
KR101903180B1 (en) 2016-12-22 2018-10-01 주식회사 포스코 Stainless steel having excellent contact resistance for pemfc separator and method of manufacturing the same
CN110199047A (en) * 2016-12-22 2019-09-03 株式会社Posco The stainless steel and its manufacturing method for polymer fuel cell partition with excellent contact resistance
JP2020506499A (en) * 2016-12-22 2020-02-27 ポスコPosco Stainless steel for polymer fuel cell separator having excellent contact resistance and method for producing the same
CN110199047B (en) * 2016-12-22 2021-05-11 株式会社Posco Stainless steel for polymer fuel cell separator having excellent contact resistance and method for manufacturing the same
CN113073232A (en) * 2021-03-31 2021-07-06 哈尔滨工业大学 Ternary micro-nano particle composite reinforced heat-resistant titanium-based composite material and preparation method thereof

Also Published As

Publication number Publication date
JP4756905B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4756905B2 (en) Solid oxide fuel cell separator material
JP5645417B2 (en) Al-containing ferritic stainless steel with excellent oxidation resistance and electrical conductivity
JP5401039B2 (en) Ferritic stainless steel and manufacturing method thereof
JP6888201B2 (en) Separator for solid oxide fuel cell with excellent heat resistance and fuel cell using this
JP4310723B2 (en) Steel for solid oxide fuel cell separator
JP5660331B2 (en) Solid oxide fuel cell steel with excellent oxidation resistance
JP2010236012A (en) High temperature conductive member
JP2008285731A (en) Stainless steel sheet having excellent surface electrical conductivity, and method for producing the same
KR100615126B1 (en) Ferritic stainless steel having high temperature creep resistance
EP1298228B2 (en) Steel for separators of solid-oxide type fuel cells
JP2011179063A (en) Conductive member of solid oxide fuel cell
JP4675066B2 (en) Ferritic stainless steel for solid oxide fuel cell separator
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JP2000328200A (en) Austenitic stainless steel for conductive electric parts and fuel battery
JP2005320625A (en) Steel for solid oxide type fuel cell separator
EP3064606A1 (en) Ferritic stainless steel for use in fuel reformer and method of manufacturing ferritic stainless steel
JP5306631B2 (en) Ferritic steel for solid oxide fuel cells and other high temperature applications
JP2006206947A (en) Water-contacting member made from stainless steel for solid polymer type fuel cell system
JP2005293982A (en) Ferritic stainless steel for solid polymer fuel cell separator
US9537158B2 (en) Oxidation resistant ferritic stainless steel including copper-containing spinel-structured oxide, method of manufacturing the steel, and fuel cell interconnect using the steel
JP6418362B1 (en) Stainless steel materials, components, cells and fuel cell stacks
JP3433435B2 (en) Stainless steel with excellent resistance to molten carbonate corrosion
JP4524760B2 (en) Oxidation resistant steel and solid oxide fuel cell parts using the same
JP7021706B2 (en) Austenitic stainless steel sheet for base material of fuel cell separator
JP2005206884A (en) Fe-Cr ALLOY FOR FUEL CELL

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Ref document number: 4756905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250