JP2006307275A - Method for producing reduced iron - Google Patents

Method for producing reduced iron Download PDF

Info

Publication number
JP2006307275A
JP2006307275A JP2005130317A JP2005130317A JP2006307275A JP 2006307275 A JP2006307275 A JP 2006307275A JP 2005130317 A JP2005130317 A JP 2005130317A JP 2005130317 A JP2005130317 A JP 2005130317A JP 2006307275 A JP2006307275 A JP 2006307275A
Authority
JP
Japan
Prior art keywords
iron oxide
iron
shaft furnace
carbon
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005130317A
Other languages
Japanese (ja)
Inventor
Yuichi Yamamura
雄一 山村
Akira Takase
顕 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005130317A priority Critical patent/JP2006307275A/en
Publication of JP2006307275A publication Critical patent/JP2006307275A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a reduced iron having excellent quality together with the reduction of the input energy while improving the producing efficiency by using reducing gas, by making suitable of an operating method for iron oxide introduced into a shaft furnace. <P>SOLUTION: In a method for producing the reduced iron by reducing the iron oxide in the shaft furnace, (a) the iron oxide containing carbon so as to beforehand become ≥10 mass% in conversion into the carbon, is charged in the shaft furnace, and (b) the reduced iron is produced by blowing the reducing gas into the shaft furnace. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉄鉱石等の鉄酸化物を原料として、還元鉄を得るための還元鉄の製造方法に関するものである。   The present invention relates to a method for producing reduced iron for obtaining reduced iron using an iron oxide such as iron ore as a raw material.

鉄酸化物等の金属酸化物から還元鉄を製造する方法については、従来、鉄酸化物をシャフト炉の上方から装入し、シャフト炉の下方から天然ガス等の還元性ガスを導入して鉄酸化物を還元する方法があった。   As for the method of producing reduced iron from metal oxides such as iron oxide, conventionally, iron oxide is charged from above the shaft furnace, and reducing gas such as natural gas is introduced from below the shaft furnace. There was a way to reduce the oxide.

例えば、特許文献1には、シャフト炉に、還元性ガスとしてペンタン等の高級炭化水素ガスの熱分解により生成するCOとH2を導入することにより、鉄酸化物原料を鉄に直接還元する方法が開示されている。 For example, Patent Document 1 discloses a method for directly reducing an iron oxide raw material to iron by introducing CO and H 2 generated by thermal decomposition of a higher hydrocarbon gas such as pentane as a reducing gas into a shaft furnace. Is disclosed.

一方、近年、回転炉床炉を予備還元炉とするシステムが提案されている。回転炉床炉は円環状の炉体を備えるもので、炉内の内部に移動式の炉床を設け、粉粒状の金属酸化物と固体還元剤とを混合して造粒した造粒物を原料として炉床上に置くとともに、バーナから燃料ガス等を吹き込んで、炉内の可燃性ガスを燃焼させ、その燃焼熱により、造粒物中の金属酸化物と固体還元剤とを反応させて還元金属を得るものである。   On the other hand, in recent years, a system using a rotary hearth furnace as a preliminary reduction furnace has been proposed. A rotary hearth furnace is provided with an annular furnace body, a movable hearth is provided inside the furnace, and a granulated product obtained by mixing granulated metal oxide and a solid reducing agent is granulated. Place on the hearth as a raw material, and inject a fuel gas from a burner to burn the combustible gas in the furnace, and the combustion heat causes the metal oxide in the granulated product to react with the solid reducing agent for reduction. The metal is obtained.

例えば、特許文献2には、微粉鉄鉱石と微粒炭素質材料とを団塊にして成形体を成形し、該成形体を回転炉床炉で予備還元し、少なくとも1000℃の温度で排出し、製錬還元容器内に溶融金属浴を生成させ、該容器内の浴の表面下に微粉炭素質材料を導入し、予備還元した成形体を還元する方法が開示されている。   For example, Patent Document 2 discloses that a compact is formed by agglomerating fine iron ore and fine carbonaceous material, the compact is preliminarily reduced in a rotary hearth furnace, discharged at a temperature of at least 1000 ° C., and manufactured. A method is disclosed in which a molten metal bath is generated in a smelting reduction vessel, a fine carbonaceous material is introduced below the surface of the bath in the vessel, and the pre-reduced shaped body is reduced.

この方法においては、原料の金属化率(原料中の金属酸化物の酸素のうち、除去された酸素の割合)が、90%程度又はそれ以上の高率に保たれるようにコントロールされている。即ち、炉床上に造粒物を薄く延べ広げることにより、表層付近と内部との間の金属化率の分布幅を小さくし、かつ、その炉床をゆっくりと移動させることにより、炉内に造粒物を長時間滞在させることにより、金属化率を高率に維持している。   In this method, the metallization rate of the raw material (the proportion of oxygen removed from the metal oxide oxygen in the raw material) is controlled to be maintained at a high rate of about 90% or more. . In other words, by thinly spreading the granulated material on the hearth, the distribution width of the metallization rate between the surface layer and the inside is reduced, and the hearth is slowly moved to create it in the furnace. The metallization rate is maintained at a high rate by allowing the grains to stay for a long time.

特開昭61−73805号公報JP 61-73805 A 特公平3−60883号公報Japanese Patent Publication No. 3-60883

特許文献1記載の方法は、確かに、還元性ガスをシャフト炉に導入することによって還元鉄を製造できるものであるが、生産性を上げるためには、炉の操業を高温で行う必要があり、また、一方で、大量の還元性ガスを必要とするので、上記方法は、必ずしも経済的なプロセスではない。   Although the method described in Patent Document 1 can surely produce reduced iron by introducing reducing gas into the shaft furnace, it is necessary to operate the furnace at a high temperature in order to increase productivity. On the other hand, the method is not necessarily an economical process because it requires a large amount of reducing gas.

また、特許文献2記載の方法においては、回転炉床炉内での還元促進のために、回転炉床炉内で鉄酸化物原料を薄く広げて置くが、これによって、逆に、時間あたりの生産量が少なくなるし、また、熱量の多くが排ガスとして出ていくにもかかわらず、バーナの火炎を原料には直接接触させずに、炉内ガス温度を相当に(1350〜1450℃に)高めて原料を加熱するので、生産効率が低いという課題がある。   Further, in the method described in Patent Document 2, in order to promote reduction in the rotary hearth furnace, the iron oxide raw material is spread out thinly in the rotary hearth furnace. Despite the fact that the production volume is reduced and a large amount of heat is emitted as exhaust gas, the gas temperature in the furnace is considerably increased (to 1350-1450 ° C.) without directly contacting the burner flame with the raw material. Since the raw material is heated at a high temperature, there is a problem that the production efficiency is low.

そこで、本発明においては、シャフト炉に導入する鉄酸化物の操業方法を適正化することによって、還元性ガスを用いて安定的に生産効率を高めつつ、投入エネルギーも小さくするとともに、優れた品質の還元鉄を製造することができる還元鉄製造技術を提供することを目的とする。   Therefore, in the present invention, by optimizing the operation method of the iron oxide introduced into the shaft furnace, while reducing the input energy stably while improving the production efficiency stably using the reducing gas, the excellent quality An object of the present invention is to provide a reduced iron production technique capable of producing reduced iron.

本発明は、上記目的のもとになされたもので、その要旨は、以下のとおりである。   The present invention has been made based on the above object, and the gist thereof is as follows.

(1) 鉄酸化物をシャフト炉内で還元して還元鉄を製造する方法において、
(a)予め炭素換算で10質量%以上となるように炭素を含有せしめた鉄酸化物をシャフト炉に装入し、
(b)シャフト炉に還元性ガスを吹き込むことによって還元鉄を製造する
ことを特徴とする還元鉄の製造方法。
(1) In a method for producing reduced iron by reducing iron oxide in a shaft furnace,
(A) An iron oxide containing carbon in advance so as to be 10% by mass or more in terms of carbon is charged into a shaft furnace,
(B) A method for producing reduced iron, comprising producing reduced iron by blowing a reducing gas into a shaft furnace.

(2) 前記鉄酸化物として含炭粉を使用することを特徴とする前記(1)記載の還元鉄の製造方法。   (2) The method for producing reduced iron according to (1), wherein carbon-containing powder is used as the iron oxide.

(3) 前記鉄酸化物をシャフト炉に装入する前に、該鉄酸化物に、予め石灰石を混ぜ合わせることを特徴とする前記(1)又は(2)記載の還元鉄の製造方法。   (3) The method for producing reduced iron according to (1) or (2), wherein limestone is mixed in advance with the iron oxide before charging the iron oxide into the shaft furnace.

本発明によれば、シャフト炉への鉄酸化物の投入方法等(操業方法)が適正化されるので、還元鉄製造における生産効率が向上するとともに、投入エネルギーの低減が可能となる。   According to the present invention, since the method for introducing iron oxide into the shaft furnace (operation method) is optimized, the production efficiency in the production of reduced iron can be improved and the input energy can be reduced.

本発明者は、シャフト炉における鉄酸化物の操業方法を適正化する方法について、種々の方法を検討した。その結果、シャフト炉への鉄酸化物の導入に際し、適正な導入方法を選択すれば、効率よく還元が進み、還元鉄の生産性が向上することを知見した。   This inventor examined various methods about the method of optimizing the operating method of the iron oxide in a shaft furnace. As a result, when introducing an iron oxide into a shaft furnace, it was found that if an appropriate introduction method was selected, the reduction proceeded efficiently and the productivity of reduced iron was improved.

即ち、原料となる鉄酸化物に、予め固体炭素を適正に含有させておけば、鉄酸化物のシャフト炉への装入後に、炉内に導入された還元性ガスによる鉄酸化物の還元が進行するとともに、鉄酸化物自身に含まれる炭素による還元も並行して進行し、従来の還元性ガスだけによる還元よりも、鉄酸化物の還元に要する時間が大幅に短縮するとの発想に至った。   In other words, if solid iron is appropriately contained in the iron oxide as a raw material in advance, after the iron oxide is charged into the shaft furnace, the iron oxide can be reduced by the reducing gas introduced into the furnace. As the process progresses, the reduction by the carbon contained in the iron oxide itself progresses in parallel, leading to the idea that the time required for the reduction of iron oxide is significantly reduced compared to the reduction by the conventional reducing gas alone. .

但し、鉄酸化物中に単に炭素分が含まれているだけでは、還元鉄の品質は安定しない、即ち、シャフト炉から排出される還元鉄の金属化率は大きくバラツキと考えられるので、還元鉄の品質に及ぼす鉄酸化物中炭素の影響を調査した。   However, the quality of the reduced iron is not stable if the iron oxide simply contains carbon, that is, the metalization rate of the reduced iron discharged from the shaft furnace is considered to vary greatly. The effect of carbon in iron oxide on the quality of iron was investigated.

容積0.2m3のシャフト炉に、表1に示す組成の鉄鉱石に、炭素源として、同じく表1に示す石炭を、炭素の含有量を変えて添加して造粒したペレット状の鉄酸化物を装入し、還元性ガスとしてCOG=1500Nm3/t−鉄酸化物一定で炉内下方から導入して、上記鉄酸化物の還元を行った。 Pelletized iron oxide granulated by adding the coal shown in Table 1 to the iron ore having the composition shown in Table 1 as a carbon source and changing the carbon content in a shaft furnace having a volume of 0.2 m 3 The product was charged and introduced as a reducing gas at a constant COG = 1500 Nm 3 / t-iron oxide from the bottom of the furnace to reduce the iron oxide.

Figure 2006307275
Figure 2006307275

図1に、鉄鉱石に炭素源として石炭を添加して予めペレット状にした鉄酸化物を、シャフト炉に装入し、還元鉄の金属化率(得られた還元鉄中の金属鉄の割合)が目標85%に達成するまでに要する時間を整理した結果を示す。   In Fig. 1, iron oxide, which has been pelletized by adding coal as a carbon source to iron ore, was charged into a shaft furnace, and the metallization rate of reduced iron (ratio of metallic iron in the obtained reduced iron) ) Shows the result of organizing the time required to reach the target of 85%.

図1の縦軸には、目標金属化率85%に達するまでの時間を、従来法に従い炭素を含まない鉄酸化物を還元性ガスのみを用いて還元した場合における目標金属化率に達するまでの時間を基準として無次元化して示した。   The vertical axis in FIG. 1 shows the time until reaching the target metallization rate of 85% until the target metallization rate is reached when iron oxide not containing carbon is reduced using only a reducing gas according to the conventional method. It is shown as dimensionless with reference to the time.

図1に示されているように、鉄酸化物に含まれている炭素分が増加するにつれ、目標金属化率に達するまで要する時間は短くなる傾向があることが判る。さらに、鉄酸化物中の炭素の割合が10質量%以上になると、単に還元終了時間が短くなるだけでなく、還元時間のバラツキ自体も急激に小さくなることが判る。   As shown in FIG. 1, it can be seen that as the carbon content in the iron oxide increases, the time required to reach the target metallization rate tends to be shorter. Furthermore, it can be seen that when the ratio of carbon in the iron oxide is 10% by mass or more, not only the reduction completion time is shortened, but also the variation in the reduction time itself is drastically reduced.

この理由は、予め鉄酸化物に炭素源として投入した石炭の平均含有割合が10質量%未満と小さい場合には、石炭の混合具合によって鉄酸化物中で石炭が偏析し易くなり、シャフト炉内の鉄酸化物の分布において、石炭の正偏析(炭素分が多い)のところは、炭素による還元とともに還元性ガスによる還元が並行して起きるために、目標金属化率に達する時間は短くなるが、逆に、石炭の負偏析で炭素分が少ないところは、鉄酸化物に含まれる石炭による還元が起こり難く、還元性ガスによる還元が主体となるため、シャフト炉に装入した鉄酸化物が全体的に還元され目標金属化率に達する時間は、さほど短縮されないからであると推測される。   The reason for this is that when the average content of coal previously introduced as a carbon source into iron oxide is as small as less than 10% by mass, the coal tends to segregate in the iron oxide due to the mixing condition of the coal, and the shaft furnace In the distribution of iron oxides, in the case of positive segregation of coal (the carbon content is high), the reduction time with the reducing gas occurs in parallel with the reduction with carbon, so the time to reach the target metallization rate is shortened. On the contrary, when the carbon content is low due to the negative segregation of coal, reduction by the coal contained in the iron oxide hardly occurs, and the reduction by the reducing gas is the main, so the iron oxide charged in the shaft furnace is It is presumed that the overall reduction time to reach the target metallization rate is not so shortened.

従って、予め鉄酸化物に炭素源として投入した石炭の平均含有割合が10質量%未満と小さい場合には、図1に示すように、石炭の偏析(混合具合)によって、目標金属化率に到達する時間がバラツキものと考えられる。   Therefore, when the average content ratio of coal previously introduced as a carbon source into iron oxide is less than 10% by mass, the target metallization rate is reached by coal segregation (mixing condition) as shown in FIG. The time to do is considered to vary.

しかしながら、鉄酸化物中の炭素の割合が10質量%以上と高くなると、炭素分の混合具合が悪く、負偏析が生じても、負偏析部分の炭素の含有量は相対的に高くなる一方で、還元性ガスにより還元される鉄酸化物の量自体が減少するため、鉄酸化物中の炭素分の偏析(混合具合)の影響を受け難くなり、目標金属化率に達するまでの時間のバラツキは小さくなるものと考えられる。   However, when the proportion of carbon in the iron oxide is as high as 10% by mass or more, the carbon content is poor, and even if negative segregation occurs, the carbon content of the negative segregation portion is relatively high. Because the amount of iron oxide reduced by reducing gas itself is reduced, it is less affected by segregation (mixing) of carbon in iron oxide, and the time required to reach the target metallization rate varies. Is considered to be small.

以上から、シャフト炉で還元性ガスとともに投入した鉄酸化物から効率よく還元鉄を得るためには、予め炭素分を10質量%以上となるように混合した鉄酸化物を、シャフト炉に装入する必要がある。   From the above, in order to efficiently obtain reduced iron from the iron oxide charged together with the reducing gas in the shaft furnace, the iron oxide mixed in advance so that the carbon content is 10% by mass or more is charged into the shaft furnace. There is a need to.

但し、図1に示すように、鉄酸化物中の炭素の割合が30質量%を超えると、還元時間短縮の効果が飽和するので、経済性を考慮すると、鉄酸化物中の炭素の割合は、30質量%未満が好ましい。   However, as shown in FIG. 1, when the carbon ratio in the iron oxide exceeds 30% by mass, the effect of reducing the reduction time is saturated. Therefore, in consideration of economy, the ratio of carbon in the iron oxide is , Less than 30% by mass is preferable.

なお、鉄酸化物としては、前記の鉄鉱石の他、製鉄所において、鉄製品製造プロセスの中で二次的に発生する鉄酸化物、例えば、製鋼ダスト(転炉集塵ダスト等)、高炉炉頂又は高炉鋳床で飛散した酸化物粉や原料輸送(ベルトコンベア等)の際の落下酸化物粉を、リサイクルすることも可能であり、経済的にもこの方が好ましい。   In addition to the above iron ore, iron oxides that are secondarily generated in the iron product manufacturing process, such as steelmaking dust (converter dust collection dust, etc.), blast furnace, etc. It is also possible to recycle the oxide powder scattered at the top of the furnace or the blast furnace cast floor and the falling oxide powder at the time of raw material transportation (belt conveyor or the like), which is preferable from the economical viewpoint.

また、炭素源としては、石炭のみならず、コ−クス等も使用することが可能である。特に、前記の鉄酸化物中で、高炉炉頂又は高炉鋳床で飛散した酸化物粉や原料輸送(ベルトコンベア等)の際の落下酸化物粉は、炭素分を含む含炭粉であり、炭素と鉄酸化物を混合する工程を簡略化することが可能であるので、上記酸化物粉の使用は、経済的であり、特に好ましい。   Moreover, as a carbon source, not only coal but coke etc. can be used. In particular, in the iron oxide, the oxide powder scattered at the top of the blast furnace furnace or the blast furnace cast floor and the falling oxide powder at the time of raw material transportation (such as a belt conveyor) are carbon-containing powder containing carbon. Since the step of mixing carbon and iron oxide can be simplified, the use of the oxide powder is economical and particularly preferable.

一方、石炭を固体還元剤として用いた場合には、石炭に含有される硫黄が、還元鉄を原料として製造される鉄製品に残留して、品質に悪影響を及ぼすこともあるので、石炭を鉄酸化物に混合する際には、予め、石炭に脱硫処理を施すのが望ましい。   On the other hand, when coal is used as a solid reducing agent, the sulfur contained in the coal may remain in iron products produced using reduced iron as a raw material, which may adversely affect quality. When mixing with the oxide, it is desirable to desulfurize the coal in advance.

脱硫剤として石灰石を鉄酸化物に予め混合させておけば、シャフト炉で鉄酸化物の還元する際に、硫黄分を脱硫することができるので、石灰石の混合は好ましい。   If limestone is mixed in advance with iron oxide as a desulfurizing agent, sulfur can be desulfurized when iron oxide is reduced in the shaft furnace, so mixing of limestone is preferable.

次に、本発明のシャフト炉に装入する鉄酸化物の好ましい製造プロセスについて説明する。   Next, the preferable manufacturing process of the iron oxide charged in the shaft furnace of the present invention will be described.

鉄酸化物としては、鉄鉱石に限らず、前記のごとく、種々の酸化鉄を使用できるが、種々の酸化鉄原料を鉄源毎に分けて複数のホッパーに収容するとともに、さらに、炭素源となる原料も、予めホッパーに収容しておく。また、必要に応じて、脱硫剤としての石灰石も、同様に予めホッパーに収容しておく。   The iron oxide is not limited to iron ore, and as described above, various iron oxides can be used, and various iron oxide raw materials are divided into iron sources and accommodated in a plurality of hoppers. The raw material to be obtained is also stored in the hopper in advance. Further, if necessary, limestone as a desulfurizing agent is similarly stored in the hopper in advance.

前記ホッパーから、1つ又は2つ以上の酸化鉄原料を切り出すとともに、成形充填材となるバインダーを添加し、必要に応じて、炭素源となる原料、石灰石をそれぞれ切り出し、少なくとも炭素が10質量%以上になるように原料を調製する。   One or two or more iron oxide raw materials are cut out from the hopper, and a binder as a molding filler is added. If necessary, the raw material as a carbon source and limestone are cut out, and at least carbon is 10% by mass. The raw material is prepared so that it becomes the above.

そして、上記調製原料を、ボール・ミル、ニーダー、パドルミキサー等の混合機に投入して、成分、粒度が均一になるように一定時間混合する。次に、得られた混合原料を、押出成型、ブリケットマシン、皿型造粒機等の成型機にて、粒度がφ10〜20mm程度の成形鉄酸化物になるように成形する。   Then, the prepared raw materials are put into a mixer such as a ball mill, a kneader, a paddle mixer, and mixed for a certain period of time so that the components and the particle size are uniform. Next, the obtained mixed raw material is molded by a molding machine such as an extrusion molding machine, a briquette machine, a dish type granulator or the like so as to become a molded iron oxide having a particle size of about φ10 to 20 mm.

なお、粒度や硬度等は、シャフト炉の還元鉄製造条件に応じて、適時変更しても構わない。   The particle size, hardness, etc. may be changed as appropriate according to the reduced iron production conditions of the shaft furnace.

表1に示すような組成の、鉄鉱石、高炉炉頂、鋳床からの飛散分、原料輸送の落粉を鉄酸化物原料として、炭素源として鉄酸化物原料に含まれる炭素分を活用し、さらに、成形充填材となるバインダーを添加してペレット状に成形した。また、鉄酸化物原料に、別途、必要に応じて炭素源としてコークスや石炭を混合し、さらに、一部条件には、脱硫剤として石灰石(100kg/ton−鉄酸化物)を含有させて、ペレット状に成形した。   Utilizing the carbon content in the iron oxide raw material as a carbon source, using the iron ore, the blast furnace top, the dust scattered from the casting floor, and the dust from the material transport as the iron oxide raw material, as shown in Table 1. Further, a binder as a molding filler was added to form a pellet. In addition, coke and coal are mixed as a carbon source separately as required in the iron oxide raw material, and further, in some conditions, limestone (100 kg / ton-iron oxide) is contained as a desulfurizing agent, Molded into pellets.

そして、上記鉄酸化物原料の成形物を、容積0.2m3のシャフト炉に、炉上方から投入した。 Then, the iron oxide raw material molded product was put into a shaft furnace having a volume of 0.2 m 3 from above the furnace.

Figure 2006307275
Figure 2006307275

本発明例及び比較例では、前記の鉄酸化物製造プロセスのように、酸化鉄原料等をホッパーから切り出し、パドルミキサーで撹拌混合した後、ブリケットマシンにてφ20mmの鉄酸化物に成形し、シャフト炉に装入した。従来例では、鉄酸化物の鉄鉱石を成形せずにそのままシャフト炉に装入した。   In the present invention example and the comparative example, as in the iron oxide production process described above, the iron oxide raw material and the like are cut out from the hopper, stirred and mixed with a paddle mixer, and then formed into a φ20 mm iron oxide with a briquette machine. The furnace was charged. In the conventional example, the iron oxide iron ore was directly charged into the shaft furnace without being formed.

鉄酸化物の還元は、本発明例、比較例、及び、従来例とも、還元性ガスとしてCOG=1500Nm3/t−鉄酸化物一定で炉内下方から導入して行い、金属化率が85%以上に達するまでに要する時間を測定した。その結果を表2に示す。 The reduction of the iron oxide was performed by introducing COG = 1500 Nm 3 / t-iron oxide from the lower part of the furnace as a reducing gas in both the present invention example, the comparative example and the conventional example, and the metallization rate was 85. The time required to reach% or higher was measured. The results are shown in Table 2.

また、鉄酸化物へ石灰石を所定量混合した場合における還元鉄中の硫黄分の分析結果も併せて表2に示す。   Table 2 also shows the analysis result of the sulfur content in the reduced iron when a predetermined amount of limestone is mixed with the iron oxide.

なお、還元時間は、目標金属化率85%に達するまでに要した時間を、従来例(鉄酸化物に炭素を含めず還元性ガスのみを用いて還元)により目標金属化率85%に達するまでに要した時間を基準として無次元化して評価し、表2に示した。   Note that the reduction time reaches the target metallization rate of 85% according to the conventional example (reduction using only reducing gas without including carbon in the iron oxide). Table 2 shows the evaluation that was made dimensionless based on the time required until.

表2中で、本発明例であるNo.1〜No.4においては、鉄酸化物中の炭素含有量が10%以上であるため、酸化鉄源の種類によらず、目標金属化率85%以上に達する時間は、従来例の時間の0.68〜0.8であり、大幅に短縮されている。   In Table 2, No. which is an example of the present invention. 1-No. 4, since the carbon content in the iron oxide is 10% or more, the time to reach the target metallization rate of 85% or more is 0.68 to the time of the conventional example regardless of the type of the iron oxide source. 0.8, which is greatly shortened.

また、還元時間のバラツキ(標準偏差σ)も、0.024〜0.3と小さいものであった。また、予め石灰石を混合したNo.4の場合には、還元前の鉄酸化物に比べ、シャフト炉で硫黄分が脱硫されて、還元鉄中の硫黄分が約10%低下した。   Further, the variation in the reduction time (standard deviation σ) was as small as 0.024 to 0.3. Moreover, No. which mixed limestone beforehand. In the case of 4, the sulfur content was desulfurized in the shaft furnace, and the sulfur content in the reduced iron was reduced by about 10% compared to the iron oxide before the reduction.

一方、表2中で鉄酸化物中の炭素含有量が10質量%未満の比較例のNo.5及びNo.6においては、従来例に比べ、還元時間を短縮できるものの、本発明例よりも時間を要し、しかも、バラツキ(標準偏差σ)が大きく、安定的に還元時間を短縮することはできなかった。   On the other hand, in Table 2, No. of the comparative example whose carbon content in the iron oxide is less than 10% by mass. 5 and no. In FIG. 6, although the reduction time can be shortened compared to the conventional example, it takes more time than the example of the present invention, and the variation (standard deviation σ) is large, and the reduction time cannot be stably reduced. .

鉄酸化物中の炭素含有量(%)と目標金属化率(85%)に達するまでに要する時間(還元時間比)との関係を示す図である。It is a figure which shows the relationship between carbon content (%) in an iron oxide, and the time (reduction time ratio) required to reach | attain a target metalization rate (85%).

Claims (3)

鉄酸化物をシャフト炉内で還元して還元鉄を製造する方法において、
(a)予め炭素換算で10質量%以上となるように炭素を含有せしめた鉄酸化物をシャフト炉に装入し、
(b)シャフト炉に還元性ガスを吹き込むことによって還元鉄を製造する
ことを特徴とする還元鉄の製造方法。
In a method for producing reduced iron by reducing iron oxide in a shaft furnace,
(A) An iron oxide containing carbon in advance so as to be 10% by mass or more in terms of carbon is charged into a shaft furnace,
(B) A method for producing reduced iron, comprising producing reduced iron by blowing a reducing gas into a shaft furnace.
前記鉄酸化物として含炭粉を使用することを特徴とする請求項1記載の還元鉄の製造方法。   The method for producing reduced iron according to claim 1, wherein carbon-containing powder is used as the iron oxide. 前記鉄酸化物をシャフト炉に装入する前に、該鉄酸化物に、予め石灰石を混ぜ合わせることを特徴とする請求項1又は2記載の還元鉄の製造方法。
The method for producing reduced iron according to claim 1 or 2, wherein limestone is mixed in advance with the iron oxide before charging the iron oxide into the shaft furnace.
JP2005130317A 2005-04-27 2005-04-27 Method for producing reduced iron Withdrawn JP2006307275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005130317A JP2006307275A (en) 2005-04-27 2005-04-27 Method for producing reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005130317A JP2006307275A (en) 2005-04-27 2005-04-27 Method for producing reduced iron

Publications (1)

Publication Number Publication Date
JP2006307275A true JP2006307275A (en) 2006-11-09

Family

ID=37474490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130317A Withdrawn JP2006307275A (en) 2005-04-27 2005-04-27 Method for producing reduced iron

Country Status (1)

Country Link
JP (1) JP2006307275A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024896A (en) * 2016-08-08 2018-02-15 新日鐵住金株式会社 Manufacturing method of reduced iron, manufacturing method of molten steel and blast furnace iron mill including reduced iron manufacturing process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024896A (en) * 2016-08-08 2018-02-15 新日鐵住金株式会社 Manufacturing method of reduced iron, manufacturing method of molten steel and blast furnace iron mill including reduced iron manufacturing process

Similar Documents

Publication Publication Date Title
KR100710943B1 (en) Process for producing particulate iron metal
AU744754B2 (en) Method of making iron and steel
JP4807103B2 (en) Blast furnace operation method
EP2418292A1 (en) Method for producing metallic iron
US6503289B2 (en) Process for manufacturing molten metal iron
JP2010043314A (en) Methods for producing reduced iron and pig iron
RU2669653C2 (en) Method of producing granular metallic iron
JP4984488B2 (en) Method for producing semi-reduced sintered ore
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
US20110023656A1 (en) Method for producing granular metallic iron
JP2010138427A (en) Method for manufacturing reduced iron agglomerate for steel-making
JP5998763B2 (en) Converter steelmaking method
JP2004183070A (en) Method for producing molten iron
JP2006307275A (en) Method for producing reduced iron
JP2002226920A (en) Sintered ore manufacturing method, and sintered ore
JP2008019455A (en) Method for producing half-reduced sintered ore
JP5910182B2 (en) Hot metal manufacturing method using vertical melting furnace
JP5251296B2 (en) Hot metal production method using vertical melting furnace
JP4992549B2 (en) Hot metal production method using vertical scrap melting furnace
JP2023133079A (en) Rising heat material for converter and manufacturing method thereof
JP2008088533A (en) Method for manufacturing sintered ore
JP2022144966A (en) Blast furnace operation method
JP2009024240A (en) Method for producing molten iron
JP6436317B2 (en) Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same
JP2003213316A (en) Additive for refining furnace and method for refining molten steel using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701