JP2006307153A - Resin composition for screen printing and method for forming resin film - Google Patents

Resin composition for screen printing and method for forming resin film Download PDF

Info

Publication number
JP2006307153A
JP2006307153A JP2006010164A JP2006010164A JP2006307153A JP 2006307153 A JP2006307153 A JP 2006307153A JP 2006010164 A JP2006010164 A JP 2006010164A JP 2006010164 A JP2006010164 A JP 2006010164A JP 2006307153 A JP2006307153 A JP 2006307153A
Authority
JP
Japan
Prior art keywords
film
group
resin
screen printing
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006010164A
Other languages
Japanese (ja)
Inventor
Yumi Osako
ゆみ 大迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2006010164A priority Critical patent/JP2006307153A/en
Publication of JP2006307153A publication Critical patent/JP2006307153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition for screen printing having good in-plane film thickness uniformity and continuous printability, which is excellent in planarizing properties, transparency, adhesion and sealability and can form a resin film having low steam-permeability and being low dielectric, and being suitably applied to such uses for electric parts as a sealing film, an insulating film and a planarizing film. <P>SOLUTION: The resin composition for screen printing comprises an abliphatic olefin polymer having a structural unit represented by formula (1) or (2) and a structural unit represented by formula (3) or (4) and having ≥3,000 and <10,000 weight average molecular weight, and an aliphatic hydrocarbon compound (wherein R<SP>1</SP>and R<SP>2</SP>are each a hydrogen atom or a 1-10C hydrocarbon group; R<SP>3</SP>and R<SP>4</SP>are each a hydrogen atom, a 1-10C hydrocarbon group or a polar group, and either of R<SP>3</SP>and R<SP>4</SP>is a polar group; n is 0-2; R<SP>5</SP>-R<SP>8</SP>are each a hydrogen atom or a 1-10C hydrocarbon group; and m is 0-2). The method for forming the resin film has a process of applying the composition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スクリーン印刷用樹脂組成物及び樹脂膜の形成方法に関する。さらに詳しくは、本発明は、電子部品の封止膜、絶縁膜、平坦化膜などとして好適な樹脂膜を形成することができるスクリーン印刷用樹脂組成物及び樹脂膜の形成方法に関する。   The present invention relates to a resin composition for screen printing and a method for forming a resin film. More specifically, the present invention relates to a resin composition for screen printing and a method for forming a resin film that can form a resin film suitable as a sealing film, an insulating film, a planarizing film, and the like for electronic components.

有機エレクトロルミネッセンス素子や液晶表示素子などの各種表示素子、集積回路素子、固体撮像素子、カラーフィルター、ブラックマトリックスなどの電子部品には、その劣化や損傷を防止するための封止膜、素子表面や配線を平坦化するための平坦化膜、電気絶縁性を保つための絶縁膜など、種々の機能性膜が設けられている。こうした機能性膜は、無機材料や有機材料を単独で又は複合して用いて形成される。そして、特に表示素子、固体撮像素子及びカラーフィルターに用いる場合、機能性膜は透明性に優れたものであることが求められる。
さらに、透明性に加えて、封止膜、絶縁膜、平坦化膜などの機能性膜には、それぞれの物性が求められる。例えば、封止膜であれば低水蒸気透過性が求められ、絶縁膜であれば低誘電性すなわち高い電気絶縁性が求められ、平坦化膜であれば段差に追従しない優れた平坦化性が求められる。そして、これらの各種の膜は、一つの電子部品に同時に搭載される場合があり、そのような場合には、膜同士の密着性を向上させる観点から、各膜の材料がより近いものであることが望まれている。
脂環式オレフィン重合体は、低誘電性、低吸水性、耐溶剤性、透明性などに優れた成形品が得られることが知られいる。例えば、長期間使用しても有機EL発光体の劣化を防止することができる封止剤として、極性基を有しない脂環式オレフィン重合体であって、重量平均分子量が10,000以上の比較的高分子量の重合体からなるエレクトロルミネッセンス素子用封止剤が提案されている(特許文献1)。また、比誘電率、耐熱寸法安定性、平坦化性に優れるばかりでなく、良好な透明性や耐熱変色性をもつ樹脂膜を形成可能な感放射線性樹脂組成物として、2個のカルボキシル基をもつ繰り返し単位を有するアルカリ可溶性脂環式オレフィン樹脂、酸発生剤、架橋剤及び溶剤を含有する感放射線性樹脂組成物が提案されている(特許文献2)。
ところで、樹脂膜の形成に、スクリーン印刷が広く用いられている。スクリーン印刷では、印刷に不要な個所を塞いだスクリーンにインクを載せ、スキージで擦ることにより被印刷物へインクを転写する。スクリーン印刷は、装置が比較的簡単であり、インクの無駄が発生せず、紙、繊維、プラスチック、金属、セラミックスなど多種多様な材質への印刷が可能であり、フィルムから成形品まで、厚さ、大きさ、平面、曲面を問わず、ほとんどの形状に対応することができ、インク皮膜が厚く、鮮明で、耐候性、耐薬品性などに優れた樹脂膜が得られる。しかし、スクリーン印刷では、スクリーン版と被印刷物との間にクリアランスがあり、版のメッシュにインクが絡み、スキージによる押し出し力と、インクのローリングによる被印刷物へのインクの押し出しと、版のテンションによりインクが引きちぎられることによる版と被印刷物の間のインクの取り合いにより、塗布量が決定される。したがって、均一な膜厚の樹脂膜を安定に連続して形成することは容易ではなく、良好な面内膜厚均一性と印刷連続性を有するスクリーン印刷用樹脂組成物の開発が試みられている。
例えば、スクリーン印刷法などのインク状態での塗布皮膜適性に優れ、塗工適性、印刷膜寸法精度、均一性などにおいて経時劣化が少ない絶縁性塗膜形成樹脂組成物として、メチロール基又はアルコキシル基を有するメラミン樹脂と、メチロール基又はアルコキシル基と架橋反応性を有する樹脂とを含有する樹脂組成物が提案されている(特許文献3)。また、耐屈曲性、耐折性、柔軟性、耐めっき性、耐熱性、PCT耐性、電気絶縁性、密着性などに優れた熱硬化性樹脂組成物として、1分子中に2個以上のカルボキシル基を有するポリカルボン酸樹脂、1分子中に2個以上のエポキシ基を有する樹脂及び有機溶剤を含有する熱硬化性樹脂組成物が提案されている(特許文献4)。
特開2003−59645号公報 特開2004−212450号公報 特開平11−140147号公報 特開平11−158252号公報
Various display elements such as organic electroluminescence elements and liquid crystal display elements, integrated circuit elements, solid-state imaging elements, color filters, black matrices, and other electronic components include sealing films, element surfaces, Various functional films such as a flattening film for flattening the wiring and an insulating film for maintaining electrical insulation are provided. Such a functional film is formed using an inorganic material or an organic material alone or in combination. And especially when using for a display element, a solid-state image sensor, and a color filter, it is calculated | required that a functional film is excellent in transparency.
Furthermore, in addition to transparency, functional films such as a sealing film, an insulating film, and a planarization film are required to have physical properties. For example, low water vapor permeability is required for sealing films, low dielectric properties, that is, high electrical insulation is required for insulating films, and excellent flatness that does not follow steps is required for flattening films. It is done. These various films may be simultaneously mounted on one electronic component. In such a case, the materials of the respective films are closer from the viewpoint of improving the adhesion between the films. It is hoped that.
It is known that an alicyclic olefin polymer can provide a molded product excellent in low dielectric property, low water absorption, solvent resistance, transparency and the like. For example, as a sealant that can prevent deterioration of an organic EL light emitter even when used for a long period of time, it is an alicyclic olefin polymer having no polar group, and has a weight average molecular weight of 10,000 or more. An electroluminescent device sealing agent made of a high molecular weight polymer has been proposed (Patent Document 1). In addition, as a radiation-sensitive resin composition capable of forming a resin film having not only excellent dielectric constant, heat-resistant dimensional stability and flatness, but also good transparency and heat-resistant discoloration, two carboxyl groups are used. A radiation-sensitive resin composition containing an alkali-soluble alicyclic olefin resin having a repeating unit, an acid generator, a crosslinking agent, and a solvent has been proposed (Patent Document 2).
Incidentally, screen printing is widely used for forming a resin film. In screen printing, ink is placed on a screen that is not necessary for printing, and the ink is transferred to a substrate by rubbing with a squeegee. Screen printing has a relatively simple device, does not waste ink, and can print on a wide variety of materials such as paper, fiber, plastic, metal, and ceramics. Regardless of size, plane, or curved surface, it can be applied to almost any shape, and a resin film having a thick ink film, clear, excellent weather resistance, chemical resistance and the like can be obtained. However, in screen printing, there is a clearance between the screen plate and the substrate, ink is entangled in the plate mesh, the squeegee push force, the ink being pushed onto the substrate by ink rolling, and the plate tension. The coating amount is determined by the ink contact between the printing plate and the substrate by tearing the ink. Therefore, it is not easy to stably and continuously form a resin film having a uniform film thickness, and attempts have been made to develop a resin composition for screen printing having good in-plane film thickness uniformity and printing continuity. .
For example, a methylol group or an alkoxyl group is used as an insulating coating film forming resin composition that is excellent in coating film suitability in an ink state such as a screen printing method and has little deterioration over time in coating suitability, printed film dimensional accuracy, uniformity, etc. A resin composition containing a melamine resin having a methylol group or an alkoxyl group and a resin having crosslinking reactivity has been proposed (Patent Document 3). Moreover, as a thermosetting resin composition excellent in bending resistance, folding resistance, flexibility, plating resistance, heat resistance, PCT resistance, electrical insulation, adhesion, etc., two or more carboxyls in one molecule A thermosetting resin composition containing a polycarboxylic acid resin having a group, a resin having two or more epoxy groups in one molecule, and an organic solvent has been proposed (Patent Document 4).
JP 2003-59645 A JP 2004-212450 A JP-A-11-140147 JP-A-11-158252

本発明者は、前記したような電子部品用の樹脂膜に要求される種々の特性を満足する樹脂膜を形成することができ、しかも良好な面内膜厚均一性と印刷連続性を有するスクリーン印刷用樹脂組成物を得るべく従来技術について鋭意検討を行ったところ、特許文献1の封止剤により得られる樹脂膜は平坦化性に劣り、基板への密着性も不充分であること、特許文献2の樹脂組成物により得られる樹脂膜は封止膜に要求される水蒸気透過性が充分には低くないこと、また、特許文献1〜4の樹脂組成物をスクリーン印刷に用いた場合、面内膜厚均一性と印刷連続性が不充分であることが明らかとなった。
本発明は、平坦化性、透明性、密着性及び封止性に優れ、低水蒸気透過性及び低誘電性である、電子部品の封止膜、絶縁膜及び平坦化膜などとして好適な樹脂膜を形成することができる、良好な面内膜厚均一性と印刷連続性を有するスクリーン印刷用樹脂組成物及び樹脂膜の形成方法を提供することを目的とする。
The present inventor can form a resin film satisfying various characteristics required for the resin film for electronic parts as described above, and has a good in-plane film thickness uniformity and printing continuity. As a result of intensive investigations on the prior art to obtain a resin composition for printing, the resin film obtained by the sealing agent of Patent Document 1 is inferior in flatness and insufficient in adhesion to the substrate. Patent The resin film obtained from the resin composition of Document 2 is not sufficiently low in water vapor permeability required for the sealing film, and when the resin composition of Patent Documents 1 to 4 is used for screen printing, the surface It became clear that the inner film thickness uniformity and printing continuity were insufficient.
INDUSTRIAL APPLICABILITY The present invention is a resin film that is excellent as a sealing film, an insulating film, a flattening film, etc. for electronic parts, having excellent flatness, transparency, adhesion and sealing properties, and having low water vapor permeability and low dielectric properties It is an object of the present invention to provide a resin composition for screen printing having good in-plane film thickness uniformity and printing continuity, and a method for forming a resin film.

本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、重量平均分子量が3,000〜10,000で、特定の構造単位を有する脂環式オレフィン重合体と、該重合体の溶剤として沸点150℃以上の脂環式炭化水素を用いることにより、封止膜、絶縁膜、平坦化膜などに必要な低水蒸気透過性、高平坦化性、低誘電性などを兼ね備えた透明な樹脂膜を、均一な膜厚で、安定して連続的にスクリーン印刷により形成し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)一般式(1)又は一般式(2)で表される構造単位(a)と、一般式(3)又は一般式(4)で表される構造単位(b)とを有し、重量平均分子量が3,000以上10,000未満である脂環式オレフィン重合体と、脂肪族炭化水素化合物とを含有することを特徴とするスクリーン印刷用樹脂組成物、

Figure 2006307153
(ただし、式中、R1とR2はそれぞれ独立して水素原子又は炭素数1〜10の炭化水素基であり、R3とR4はそれぞれ独立して水素原子、炭素数1〜10の炭化水素基又は極性基であって、R3とR4のうちいずれか一方のみは極性基であり、nは0〜2の整数である。)
Figure 2006307153
(ただし、式中、R5〜R8はそれぞれ独立して水素原子又は炭素数1〜10の炭化水素基であり、mは0〜2の整数である。)、
(2)脂肪族炭化水素化合物が、沸点150℃以上の脂環式炭化水素である(1)に記載のスクリーン印刷用樹脂組成物、
(3)脂環式オレフィン重合体における構造単位(a)と構造単位(b)との合計に対する構造単位(a)の割合が、0.005〜40モル%である(1)又は(2)に記載のスクリーン印刷用樹脂組成物、
(4)脂環式オレフィン重合体における構造単位(a)と構造単位(b)との合計に対する一般式(2)で表される構造単位と一般式(4)で表される構造単位との合計の割合が、90モル%以上である(1)〜(3)のいずれか1項に記載のスクリーン印刷用樹脂組成物、
(5)固形分濃度が1〜70重量%である(1)〜(4)のいずれか1項に記載のスクリーン印刷用樹脂組成物、
(6)25℃における粘度が5〜1,000,000mPa・sである(1)〜(5)のいずれか1項に記載のスクリーン印刷用樹脂組成物、及び、
(7)(1)〜(6)のいずれか1項に記載のスクリーン印刷用塗料組成物を、スクリーン印刷法により基板に塗布する工程を有することを特徴とする樹脂膜の形成方法、
を提供するものである。 As a result of intensive studies to solve the above problems, the present inventor has obtained an alicyclic olefin polymer having a weight average molecular weight of 3,000 to 10,000 and a specific structural unit, and By using an alicyclic hydrocarbon having a boiling point of 150 ° C. or higher as a solvent, it is a transparent material having low water vapor permeability, high flatness, low dielectric properties, etc. necessary for sealing films, insulating films, flattening films, etc. It has been found that a resin film can be stably and continuously formed by screen printing with a uniform film thickness, and the present invention has been completed based on this finding.
That is, the present invention
(1) having a structural unit (a) represented by general formula (1) or general formula (2) and a structural unit (b) represented by general formula (3) or general formula (4); A resin composition for screen printing, comprising an alicyclic olefin polymer having a weight average molecular weight of 3,000 or more and less than 10,000, and an aliphatic hydrocarbon compound,
Figure 2006307153
(In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and R 3 and R 4 are each independently a hydrogen atom, having 1 to 10 carbon atoms. (It is a hydrocarbon group or a polar group, and only one of R 3 and R 4 is a polar group, and n is an integer of 0 to 2.)
Figure 2006307153
(Wherein, R 5 to R 8 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and m is an integer of 0 to 2).
(2) The resin composition for screen printing according to (1), wherein the aliphatic hydrocarbon compound is an alicyclic hydrocarbon having a boiling point of 150 ° C. or higher,
(3) The ratio of the structural unit (a) to the total of the structural unit (a) and the structural unit (b) in the alicyclic olefin polymer is 0.005 to 40 mol% (1) or (2) A resin composition for screen printing according to claim 1,
(4) The structural unit represented by the general formula (2) and the structural unit represented by the general formula (4) with respect to the sum of the structural unit (a) and the structural unit (b) in the alicyclic olefin polymer. The resin composition for screen printing according to any one of (1) to (3), wherein the total ratio is 90 mol% or more,
(5) Resin composition for screen printing of any one of (1)-(4) whose solid content concentration is 1 to 70 weight%,
(6) The resin composition for screen printing according to any one of (1) to (5), which has a viscosity at 25 ° C. of 5 to 1,000,000 mPa · s, and
(7) A method for forming a resin film comprising a step of applying the coating composition for screen printing according to any one of (1) to (6) to a substrate by a screen printing method,
Is to provide.

本発明のスクリーン印刷用樹脂組成物は印刷連続性が良好であり、該組成物から得られる樹脂膜は、面内膜厚均一性が良好である上に、透明性や密着性が高く、低水蒸気透過性であって、平坦化性に優れ、絶縁性が高く、封止性に優れた樹脂膜であり、例えば、集積回路素子、表示素子、固体撮像素子などの電子部品の製造における封止膜、絶縁膜、平坦化膜などの形成に好適に用いることができる。   The resin composition for screen printing of the present invention has good printing continuity, and the resin film obtained from the composition has good in-plane film thickness uniformity, high transparency and adhesion, and low It is a water vapor permeable resin film with excellent flatness, high insulation, and excellent sealing properties. For example, sealing in the manufacture of electronic components such as integrated circuit elements, display elements, and solid-state imaging elements. It can be suitably used for forming a film, an insulating film, a planarizing film, and the like.

本発明のスクリーン印刷用樹脂組成物は、一般式(1)又は一般式(2)で表される構造単位(a)と、一般式(3)又は一般式(4)で表される構造単位(b)とを有し、重量平均分子量が3,000以上10,000未満である脂環式オレフィン重合体と、沸点150℃以上の脂環式炭化水素とを含有する。

Figure 2006307153
ただし、一般式(1)及び一般式(2)において、R1とR2はそれぞれ独立して水素原子又は炭素数1〜10の炭化水素基であり、R3とR4はそれぞれ独立して水素原子、炭素数1〜10の炭化水素基又は極性基であって、R3とR4のうちいずれか一方のみは極性基であり、nは0〜2の整数である。また、一般式(3)及び一般式(4)において、R5〜R8はそれぞれ独立して水素原子又は炭素数1〜10の炭化水素基であり、mは0〜2の整数である。
一般式(1)〜(4)における炭素数1〜10の炭化水素基としては、例えば、アルキル基、シクロアルキル基、アリール基などを挙げることができる。アルキル基としては、例えば、メチル基、エチル基、iso−プロピル基、tert−ブチル基、ヘキシル基、ヘプチル基などを挙げることができる。シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、2−メチルシクロヘキシル基、シクロオクチル基などを挙げることができる。アリール基としては、例えば、フェニル基、2−メチルフェニル基、ベンジル基などを挙げることができる。これらの中で、炭素数1〜10の炭化水素基が炭素数が1〜6のアルキル基であることが好ましく、炭素数1〜4のアルキル基であることがより好ましく、エチル基であることがさらに好ましい。 The resin composition for screen printing of the present invention comprises a structural unit (a) represented by general formula (1) or general formula (2) and a structural unit represented by general formula (3) or general formula (4). and an alicyclic olefin polymer having a weight average molecular weight of 3,000 or more and less than 10,000, and an alicyclic hydrocarbon having a boiling point of 150 ° C. or higher.
Figure 2006307153
However, the general formula (1) and general formula (2), R 1 and R 2 are each independently a hydrocarbon group having 1 to 10 hydrogen atoms or carbon atoms, R 3 and R 4 are each independently hydrogen atom, a hydrocarbon group or a polar group having 1 to 10 carbon atoms, either one of R 3 and R 4 only is a polar group, n is an integer of 0-2. Moreover, in General formula (3) and General formula (4), R < 5 > -R < 8 > is respectively independently a hydrogen atom or a C1-C10 hydrocarbon group, and m is an integer of 0-2.
As a C1-C10 hydrocarbon group in General formula (1)-(4), an alkyl group, a cycloalkyl group, an aryl group etc. can be mentioned, for example. Examples of the alkyl group include a methyl group, an ethyl group, an iso-propyl group, a tert-butyl group, a hexyl group, and a heptyl group. Examples of the cycloalkyl group include a cyclopentyl group, a cyclohexyl group, a 2-methylcyclohexyl group, a cyclooctyl group, and the like. Examples of the aryl group include a phenyl group, a 2-methylphenyl group, and a benzyl group. Among these, the hydrocarbon group having 1 to 10 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and an ethyl group. Is more preferable.

一般式(1)及び一般式(2)における極性基としては、例えば、カルボキシル基、スルホン酸基、リン酸基、ヒドロキシル基などの酸素原子を有する極性基;第一級アミノ基、第二級アミノ基、第一級アミド基、第二級アミド基(N−アルキルアミド基)などの窒素原子を有する極性基;チオール基などのイオウ原子を有する極性基などのプロトン性極性基;エステル基(アルコキシカルボニル基及びアリーロキシカルボニル基を総称していう。)、エポキシ基、ハロゲン原子、ニトリル基、アルコキシル基、アクリロイル基、R3とR4とから構成されたカルボニルオキシカルボニル基(ジカルボン酸の酸無水物残基)、N−置換イミド基、カルボニル基、第三級アミノ基、スルホン基などの非プロトン性極性基;などを挙げることができる。
これらの中で、他の材料に対する密着性が高く、耐熱性が高い重合体が得られる点から、プロトン性極性基が好ましく、酸素原子を有する極性基及び窒素原子を有する極性基がより好ましく、酸素原子を有する極性基がさらに好ましく、カルボキシル基が特に好ましい。
本発明における脂環式オレフィン重合体の構造単位(a)では極性基が1つ存在するが、そのような極性基の存在は、本発明の組成物により形成される樹脂膜が、基板への高密着性と低水蒸気透過性とをバランスよく発揮するのに寄与するものと考えられる。
Examples of the polar group in the general formula (1) and the general formula (2) include a polar group having an oxygen atom such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, and a hydroxyl group; a primary amino group and a secondary group Polar groups having nitrogen atoms such as amino groups, primary amide groups, secondary amide groups (N-alkylamide groups); protic polar groups such as polar groups having sulfur atoms such as thiol groups; ester groups ( An alkoxycarbonyl group and an aryloxycarbonyl group), an epoxy group, a halogen atom, a nitrile group, an alkoxyl group, an acryloyl group, and a carbonyloxycarbonyl group composed of R 3 and R 4 (an acid anhydride of a dicarboxylic acid). Product residues), N-substituted imide groups, carbonyl groups, tertiary amino groups, sulfone groups and other aprotic polar groups; and the like.
Among these, in terms of obtaining a polymer having high adhesion to other materials and high heat resistance, a protic polar group is preferable, a polar group having an oxygen atom and a polar group having a nitrogen atom are more preferable, A polar group having an oxygen atom is more preferred, and a carboxyl group is particularly preferred.
In the structural unit (a) of the alicyclic olefin polymer in the present invention, there is one polar group, but the presence of such a polar group is caused by the fact that the resin film formed by the composition of the present invention is applied to the substrate. It is thought that it contributes to exhibiting high adhesion and low water vapor permeability in a balanced manner.

本発明において、構造単位(a)と構造単位(b)との合計のうち、構造単位(a)の割合が、0.005〜40モル%であることが好ましく、0.01〜30モル%であることがより好ましく、0.02〜20モル%であることがさらに好ましい。構造単位(a)の割合が0.005〜40モル%であれば、密着性と耐熱性が高く、水蒸気透過性が低い樹脂膜を容易に得ることができる。また、構造単位(a)と構造単位(b)との合計の割合は、脂環式オレフィン重合体の全構造単位中の65モル%以上であることが好ましい。このような脂環式オレフィン重合体は、樹脂膜を構成するための脂環式オレフィン重合体として好適である。
構造単位(a)と構造単位(b)との合計に対する一般式(2)で表される構造単位及び一般式(4)で表される構造単位の合計の割合、すなわち主鎖不飽和結合の水素化率は、高耐熱性を得る観点から、90モル%以上であることが好ましく、95モル%以上であることがより好ましく、98モル%以上であることがさらに好ましい。耐熱性が高いと、成形加工時や製品としての使用時の加熱によってその特性が劣化することが防止又は抑制されるという利点がある。
In the present invention, the proportion of the structural unit (a) in the total of the structural unit (a) and the structural unit (b) is preferably 0.005 to 40 mol%, and 0.01 to 30 mol%. It is more preferable that it is 0.02 to 20 mol%. When the proportion of the structural unit (a) is 0.005 to 40 mol%, a resin film having high adhesion and heat resistance and low water vapor permeability can be easily obtained. Further, the total ratio of the structural unit (a) and the structural unit (b) is preferably 65 mol% or more in the total structural units of the alicyclic olefin polymer. Such an alicyclic olefin polymer is suitable as an alicyclic olefin polymer for constituting a resin film.
The ratio of the total of the structural unit represented by the general formula (2) and the structural unit represented by the general formula (4) to the total of the structural unit (a) and the structural unit (b), that is, the main chain unsaturated bond From the viewpoint of obtaining high heat resistance, the hydrogenation rate is preferably 90 mol% or more, more preferably 95 mol% or more, and further preferably 98 mol% or more. High heat resistance has an advantage that its characteristics are prevented or suppressed from being deteriorated by heating during molding or use as a product.

本発明のスクリーン印刷用樹脂組成物に用いる脂環式オレフィン重合体は、一般式(5)で表される極性基を有する脂環式オレフィンと、一般式(6)で表される無極性の脂環式オレフィンとを、メタセシス触媒の存在下に開環重合させることにより得ることができる。さらに重合反応後に、必要に応じて水素添加反応を行うこともできる。また、ニトリル基、エステル基、アミド基、酸無水物基などの加水分解によってカルボキシル基を生成する極性基を有する脂環式オレフィン重合体を得たのち、これを加水分解してカルボキシル基に変換することもできる。

Figure 2006307153
ただし、一般式(5)において、R1とR2はそれぞれ独立して水素原子又は炭素数1〜10の炭化水素基であり、R3とR4はそれぞれ独立して水素原子、炭素数1〜10の炭化水素基又は極性基であって、R3とR4のうちいずれか一方のみは極性基であり、nは0〜2の整数である。また、一般式(6)において、R5〜R8はそれぞれ独立して水素原子又は炭素数1〜10の炭化水素基であり、mは0〜2の整数である。一般式(5)及び一般式(6)における炭素数1〜10の炭化水素基としては、一般式(1)〜(4)について述べたものと同じ基を挙げることができる。一般式(5)における極性基としては、一般式(1)〜(2)について述べたものと同じ基を挙げることができる。 The alicyclic olefin polymer used in the resin composition for screen printing of the present invention is an alicyclic olefin having a polar group represented by the general formula (5) and a nonpolar olefin represented by the general formula (6). An alicyclic olefin can be obtained by ring-opening polymerization in the presence of a metathesis catalyst. Furthermore, after the polymerization reaction, a hydrogenation reaction can be performed as necessary. Moreover, after obtaining an alicyclic olefin polymer having a polar group that generates a carboxyl group by hydrolysis of a nitrile group, ester group, amide group, acid anhydride group, etc., this is hydrolyzed and converted to a carboxyl group You can also
Figure 2006307153
However, in the general formula (5), R 1 and R 2 are each independently a hydrocarbon group having 1 to 10 hydrogen atoms or carbon atoms, R 3 and R 4 are each independently hydrogen, carbon 1 10 to 10 hydrocarbon groups or polar groups, and only one of R 3 and R 4 is a polar group, and n is an integer of 0 to 2. Moreover, in General formula (6), R < 5 > -R < 8 > is respectively independently a hydrogen atom or a C1-C10 hydrocarbon group, and m is an integer of 0-2. As a C1-C10 hydrocarbon group in General formula (5) and General formula (6), the same group as what was described about General formula (1)-(4) can be mentioned. Examples of the polar group in the general formula (5) include the same groups as those described for the general formulas (1) to (2).

本発明において、開環重合は、メタセシス触媒の存在下に行うことができる。メタセシス触媒としては、例えば、ルテニウム、ロジウム、パラジウム、イリジウム、オスミウム、白金などの白金族化合物;タングステン、モリブデン又はレニウムと、周期表1族、2族、4族、12族、13族又は14族元素との化合物であって、該元素−炭素結合又は該元素−水素結合を有するもの;チタン、バナジウム、ジルコニウム、タングステン、モリブデンなどのハロゲン化物又はアセチルアセトン化物と、有機アルミニウム化合物とからなる触媒;ビス(シクロペンタジエニル)ルテニウム、ビス(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、[(p−シメン)(CH3CN)3Ru](BF4)2などの有機化合物を配位子として有するルテニウム化合物などを挙げることができる。これらの中で、モリブデン、ルテニウム、オスミウムなどを含有するメタセシス触媒は、酸素や空気中の水分に対して比較的安定であって、失活しにくいので、大気下でも生産が可能であるために好ましく、中でもルテニウムを含有するメタセシス触媒は、重合活性が高く特に好ましい。
本発明において、脂環式オレフィン重合体の水素添加反応は、水素添加触媒の存在下に行うことができる。水素添加触媒としては、例えば、チタン、コバルト、ニッケルなどの有機酸塩又はアセチルアセトン塩とリチウム、マグネシウム、アルミニウム、スズなどの有機金属化合物とを組み合わせた均一系触媒;パラジウム、白金、ルテニウム、ロジウムなどの貴金属を担体に担持した固体触媒;ロジウム、レニウム、ルテニウムなどの貴金属錯体触媒;周期表8〜10族遷移金属化合物を主成分とする均一系水素化触媒;周期表8〜10族遷移金属を担体に担持した担持型触媒などを挙げることができる。
In the present invention, the ring-opening polymerization can be carried out in the presence of a metathesis catalyst. Examples of the metathesis catalyst include platinum group compounds such as ruthenium, rhodium, palladium, iridium, osmium, and platinum; tungsten, molybdenum, or rhenium, and periodic groups 1, 2, 4, 12, 13, or 14. A compound comprising an element having the element-carbon bond or the element-hydrogen bond; a catalyst comprising a halide or acetylacetonide such as titanium, vanadium, zirconium, tungsten, molybdenum, and an organoaluminum compound; Ruthenium compounds having an organic compound such as (cyclopentadienyl) ruthenium, bis (tricyclohexylphosphine) benzylideneruthenium dichloride, [(p-cymene) (CH 3 CN) 3 Ru] (BF 4 ) 2 as a ligand, etc. Can be mentioned. Among these, metathesis catalysts containing molybdenum, ruthenium, osmium, etc. are relatively stable to oxygen and moisture in the air and are not easily deactivated, so they can be produced even in the atmosphere. Among these, a metathesis catalyst containing ruthenium is particularly preferable because of its high polymerization activity.
In the present invention, the hydrogenation reaction of the alicyclic olefin polymer can be performed in the presence of a hydrogenation catalyst. Examples of the hydrogenation catalyst include homogeneous catalysts in which organic acid salts such as titanium, cobalt, nickel, or acetylacetone salts are combined with organic metal compounds such as lithium, magnesium, aluminum, tin; palladium, platinum, ruthenium, rhodium, etc. A solid catalyst having a noble metal supported on a support; a noble metal complex catalyst such as rhodium, rhenium, ruthenium; a homogeneous hydrogenation catalyst mainly composed of a group 8-10 transition metal compound of the periodic table; a group 8-10 transition metal Examples thereof include a supported catalyst supported on a carrier.

構造単位(a)は、一般式(1)又は一般式(2)で表される構造単位であって、一般式(5)で表される極性基を有する脂環式オレフィンの開環重合により得ることができる。プロトン性である極性基を有する脂環式オレフィンとしては、例えば、5−カルボキシビシクロ[2.2.1]ヘプト−2−エン、5−メチル−5−カルボキシビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシメチル−5−カルボキシビシクロ[2.2.1]ヘプト−2−エン、8−カルボキシテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−メチル−8−カルボキシテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エンなどのカルボキシル基を有する脂環式オレフィン;5−(4−ヒドロキシフェニル)ビシクロ[2.2.1]ヘプト−2−エン、5−メチル−5−(4−ヒドロキシフェニル)ビシクロ[2.2.1]ヘプト−2−エン、8−(4−ヒドロキシフェニル)テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−メチル−8−(4−ヒドロキシフェニル)テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エンなどのヒドロキシ基を有する脂環式オレフィンなどを挙げることができる。これらの中で、カルボキシル基を有する脂環式オレフィンを好適に用いることができる。 The structural unit (a) is a structural unit represented by the general formula (1) or (2), and is obtained by ring-opening polymerization of an alicyclic olefin having a polar group represented by the general formula (5). Obtainable. Examples of the alicyclic olefin having a polar polar group include 5-carboxybicyclo [2.2.1] hept-2-ene, 5-methyl-5-carboxybicyclo [2.2.1] hept. 2-ene, 5-carboxymethyl-5-carboxy bicyclo [2.2.1] hept-2-ene, 8-carboxy-tetracyclo [4.4.0.1 2, 5 .1 7,10] dodeca 3-ene, 8-methyl-8-carboxylate cycloaliphatic olefins having tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-carboxyl group, such as ene; 5- ( 4-hydroxyphenyl) bicyclo [2.2.1] hept-2-ene, 5-methyl-5- (4-hydroxyphenyl) bicyclo [2.2.1] hept-2-ene, 8- (4- hydroxyphenyl) tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene, 8-methyl-8- (4- Hydroxyphenyl) tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3 and the like alicyclic olefin having a hydroxyl group such as ene. In these, the alicyclic olefin which has a carboxyl group can be used conveniently.

非プロトン性である極性基を有する脂環式オレフィンとしては、例えば、5−アセトキシビシクロ[2.2.1]ヘプト−2−エン、5−メトキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−メチル−5−メトキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、8−アセトキシテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−エトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−n−プロポキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−イソプロポキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−n−ブトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−メチル−8−メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−メチル−8−エトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−メチル−8−n−プロポキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−メチル−8−イソプロポキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−メチル−8−n−ブトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−(2,2,2−トリフルオロエトキシカルボニル)テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−メチル−8−(2,2,2−トリフルオロエトキシカルボニル)テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エンなどのエステル基を有する脂環式オレフィン;8−シアノテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−メチル−8−シアノテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、5−シアノビシクロ[2.2.1]ヘプト−2−エンなどのニトリル基を有する脂環式オレフィン;などを挙げることができる。非プロトン性極性基としてエステル基やニトリル基を有するこれらの脂環式オレフィンは、加水分解によりプロトン性の極性基を生成することができる。
極性基を有する脂環式オレフィンとして、8−カルボキシテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン及び8−メチル−8−カルボキシテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エンを特に好適に用いることができる。
Examples of the alicyclic olefin having an aprotic polar group include 5-acetoxybicyclo [2.2.1] hept-2-ene and 5-methoxycarbonylbicyclo [2.2.1] hept-2. - ene, 5-methyl-5-methoxycarbonyl-bicyclo [2.2.1] hept-2-ene, 8-acetoxy tetracyclo [4.4.0.1 2, 5 .1 7,10] dodeca -3 - ene, 8-methoxycarbonyltetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene, 8-ethoxycarbonyl tetracyclo [4.4.0.1 2, 5. 1 7,10] dodeca-3-ene, 8-n-propoxycarbonyl tetracyclo [4.4.0.1 2, 5 .1 7,10] dodeca-3-ene, 8-isopropoxycarbonyl tetracyclo [ 4.4.0.1 2,5 .1 7,10] dodeca-3-ene, 8-n-butoxycarbonyl tetracyclo [4.4.0.1 2,5 .1 7 , 10] dodeca-3-ene, 8-methyl-8-methoxycarbonyltetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene, 8-methyl-8-ethoxycarbonyl tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene, 8-methyl -8-n-propoxycarbonyl tetracyclo [4.4.0.1 2, 5 .1 7,10] dodeca-3-ene, 8-methyl-8-isopropoxycarbonyl tetracyclo [4.4.0.1 2, 5 .1 7,10] dodeca-3-ene, 8-methyl-8 n- butoxycarbonyl tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene, 8- (2,2,2-trifluoroethoxy-carbonyl) tetracyclo [4.4.0 .1 2,5 .1 7,10] dodeca-3-ene, 8-methyl-8- (2,2,2-trifluoroethoxy-carbonyl) tetracyclo [4.4.0.1 2,5 .1 7 , 10] dodeca-3-ene How an alicyclic olefin with an ester group; 8-cyano-tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene, 8-methyl-8-cyano-tetracyclo [4. 4.0.1, 2 , 5.1,10 ] alicyclic olefins having a nitrile group such as dodec-3-ene and 5-cyanobicyclo [2.2.1] hept-2-ene; be able to. These alicyclic olefins having an ester group or a nitrile group as an aprotic polar group can generate a protic polar group by hydrolysis.
Alicyclic olefin having a polar group, 8-carboxy-tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene and 8-methyl-8-carboxy tetracyclo [4. 4.0.1, 2 , 5.1,10 ] dodec-3-ene can be particularly preferably used.

構造単位(b)は、一般式(3)又は一般式(4)で表される構造単位であって、一般式(6)で表される無極性の脂環式オレフィンの開環重合により得ることができる。
一般式(6)で表される無極性の脂環式オレフィンとしては、例えば、ビシクロ[2.2.1]ヘプト−2−エン(慣用名:ノルボルネン)、5−エチルビシクロ[2.2.1]ヘプト−2−エン、5−ブチルビシクロ[2.2.1]ヘプト−2−エン、5−エチリデンビシクロ[2.2.1]ヘプト−2−エン、5−メチリデンビシクロ[2.2.1]ヘプト−2−エン、5−ビニルビシクロ[2.2.1]ヘプト−2−エン、トリシクロ[4.3.0.12,5]デカ−3,7−ジエン(慣用名:ジシクロペンタジエン)、テトラシクロ[8.4.0.111,14.03,7]ペンタデカ−3,5,7,11,12−ペンタエン、テトラシクロ[4.4.0.12,5.17,10]デカ−3−エン(慣用名:テトラシクロドデセン)、8−メチルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−エチルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−メチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−エチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−ビニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−プロペニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカ−3,10−ジエン、シクロペンテン、シクロペンタジエン、1,4−メタノ−1,4,4a,5,10,10a−ヘキサヒドロアントラセン、8−フェニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、テトラシクロ[9.2.1.02,10.03,8]テトラデカ−3,5,7,12−テトラエン(別名:1,4−メタノ−1,4,4a,9a−テトラヒドロ−9H−フルオレン)、ペンタシクロ[7.4.0.13,6.110,13.02,7]ペンタデカ−4,11−ジエン、ペンタシクロ[9.2.1.14,7.02,10.03,8]ペンタデカ−5,12−ジエンなどを挙げることができる。
The structural unit (b) is a structural unit represented by the general formula (3) or the general formula (4), and is obtained by ring-opening polymerization of a nonpolar alicyclic olefin represented by the general formula (6). be able to.
Examples of the nonpolar alicyclic olefin represented by the general formula (6) include bicyclo [2.2.1] hept-2-ene (common name: norbornene), 5-ethylbicyclo [2.2. 1] hept-2-ene, 5-butylbicyclo [2.2.1] hept-2-ene, 5-ethylidenebicyclo [2.2.1] hept-2-ene, 5-methylidenebicyclo [2. 2.1] hept-2-ene, 5-vinylbicyclo [2.2.1] hept-2-ene, tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name) : dicyclopentadiene), tetracyclo [8.4.0.1 11,14 .0 3,7] pentadeca -3,5,7,11,12- pentaene, tetracyclo [4.4.0.1 2, 5 .1 7,10] dec-3-ene (trivial name: tetracyclododecene), 8-methyl tetracyclo [4.4.0.1 2, 5 .1 7,10] dodeca-3-ene, 8 -Ethyltetra Cyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene, 8-methylidene-tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca -3 - ene, 8-ethylidene tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene, 8-vinyl-tetracyclo [4.4.0.1 2,5 .1 7 , 10] dodeca-3-ene, 8-propenyl-tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene, pentacyclo [6.5.1.1 3, 6. 0 2,7 .0 9,13] pentadeca-3,10-diene, cyclopentene, cyclopentadiene, 1,4-methano -1,4,4a, 5,10,10a hexa hydro anthracene, 8-phenyl-tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene, tetracyclo [9.2.1.0 2,10 .0 3,8] tetradeca -3,5,7,12 Tetraene (also known as 1,4-methano-1,4,4a, 9a-tetrahydro-9H-fur Oren), pentacyclo [7.4.0.1 3,6 .1 10,13 .0 2,7] pentadeca-4,11-diene, pentacyclo [9.2.1.1 4,7 .0 2, 10.0 3,8] such as pentadeca-5,12-diene can be mentioned.

本発明のスクリーン印刷用樹脂組成物に用いる脂環式オレフィン重合体には、上記の構造単位(a)及び構造単位(b)以外の構造単位(以下、「他の構造単位」という。)、例えば、メタセシス触媒によって開環重合し得る単量体に由来する他の構造単位が含有されていてもよい。このような他の構造単位を導入するための単量体としては、例えば、シクロブテン、シクロペンテン、3−フェニルシクロペンテン、シクロヘプテン、シクロオクテンなどのシクロオレフィン類などを挙げることができる。
本発明に用いる脂環式オレフィン重合体の重量平均分子量(Mw)は、3,000以上10,000未満であり、より好ましくは4,000以上9,500未満であり、さらに好ましくは5,000以上9,000未満である。脂環式オレフィン重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィーによって、40℃のテトラヒドロフランを溶媒として測定し、ポリスチレン換算重量平均分子量として求めることができる。脂環式オレフィン重合体の重量平均分子量が3,000以上10,000未満であると、透明性、面内膜厚均一性、密着性に優れた樹脂膜を得ることができる。
脂環式オレフィン重合体のガラス転移温度は、20〜250℃であることが好ましく、50〜200℃であることがより好ましく、70〜170℃であることがさらに好ましい。脂環式オレフィン重合体のガラス転移温度は、示差走査熱量計(DSC)を用いて測定することができる。
本発明においては、脂環式オレフィンの開環重合に際して、アリルクロリド、アリルアルコール、アクリルアミドなどのビニル化合物;1,5−ヘキサジエン、1,6−ヘプタジエンなどのジエン化合物;1−ヘキセンなどのα−オレフィン化合物;などの分子量調整剤を、モノマー全量に対して0.1〜10モル%添加すると、開環重合体の分子量の調整が容易になる。用いる分子量調整剤の量が少ない場合は、比較的高い重量平均分子量の重合体が得られ、逆に多い場合は、比較的低い重量平均分子量の重合体が得られる。
The alicyclic olefin polymer used in the resin composition for screen printing of the present invention includes structural units other than the structural unit (a) and the structural unit (b) (hereinafter referred to as “other structural units”), For example, other structural units derived from a monomer that can be ring-opening polymerized by a metathesis catalyst may be contained. Examples of the monomer for introducing such other structural unit include cycloolefins such as cyclobutene, cyclopentene, 3-phenylcyclopentene, cycloheptene, and cyclooctene.
The weight average molecular weight (Mw) of the alicyclic olefin polymer used in the present invention is from 3,000 to less than 10,000, more preferably from 4,000 to less than 9,500, and even more preferably 5,000. It is less than 9,000. The weight average molecular weight of the alicyclic olefin polymer can be determined as a polystyrene-converted weight average molecular weight by gel permeation chromatography using tetrahydrofuran at 40 ° C. as a solvent. When the weight average molecular weight of the alicyclic olefin polymer is from 3,000 to less than 10,000, a resin film excellent in transparency, in-plane film thickness uniformity, and adhesion can be obtained.
The glass transition temperature of the alicyclic olefin polymer is preferably 20 to 250 ° C, more preferably 50 to 200 ° C, and further preferably 70 to 170 ° C. The glass transition temperature of the alicyclic olefin polymer can be measured using a differential scanning calorimeter (DSC).
In the present invention, in the ring-opening polymerization of an alicyclic olefin, vinyl compounds such as allyl chloride, allyl alcohol and acrylamide; diene compounds such as 1,5-hexadiene and 1,6-heptadiene; α-such as 1-hexene When a molecular weight adjusting agent such as an olefin compound is added in an amount of 0.1 to 10 mol% based on the total amount of the monomer, the molecular weight of the ring-opening polymer can be easily adjusted. When the amount of the molecular weight modifier used is small, a polymer having a relatively high weight average molecular weight is obtained, and conversely, when the amount is large, a polymer having a relatively low weight average molecular weight is obtained.

本発明のスクリーン印刷用樹脂組成物は、前記脂環式オレフィン重合体に加え、脂肪族炭化水素化合物を含有する。本発明においては、該脂肪族炭化水素化合物が、沸点150℃以上の脂環式炭化水素であることが好ましく、沸点150〜250℃の脂環式炭化水素であることがより好ましく、沸点160〜230℃の脂環式炭化水素であることがさらに好ましく、沸点170〜200℃の脂環式炭化水素であることが特に好ましい。脂環式炭化水素の沸点があまりに高いと樹脂膜形成時の揮発性に劣り、そのため、揮発を充分に行おうとすると樹脂膜の酸化劣化が進行する恐れがある。沸点150℃以上の脂環式炭化水素としては、例えば、シクロオクタン(沸点151℃)、シクロノナン(沸点171℃)、シクロデカン(沸点201℃)、シクロウンデカン(沸点91℃(1.6kPa))などのシクロアルカン;シクロノネン(沸点168℃)、シクロオクタジエン、1,4,7−シクロデカトリエン、1,5,9−シクロデカトリエン(沸点231℃)、シクロオクチン(沸点157℃)などの不飽和脂環式単環炭化水素;デカヒドロナフタレン(慣用名:デカリン、沸点190℃、シス−トランス混合物)などの飽和脂環式多環炭化水素、ジシクロペンタジエン(沸点170℃)などの不飽和脂環式多環炭化水素;リモネン(沸点176℃)、m−メンタン(沸点167℃)、p−メンタン(沸点171℃)、3−p−メンテン(沸点169℃)、α−フェランドレン(沸点67℃(2.1kPa))、β−フェランドレン(沸点180℃)、α−ピネン(沸点156℃)、β−ピネン(沸点165℃)などのモノテルペン類;α−セリネン(沸点143℃(2.7kPa))、β−セリネン(沸点134℃(17.8kPa))などのセスキテルペン類などを挙げることができる。これらの脂環式炭化水素は、1種を単独で用いることができ、あるいは、2種以上を組み合わせて用いることもできる。これらの中で、デカヒドロナフタレン及びp−メンタンを好適に用いることができる。
本発明のスクリーン印刷用樹脂組成物において、沸点150℃以上の脂環式炭化水素の配合量は、脂環式オレフィン重合体100重量部に対して、20〜10,000重量部であることが好ましく、50〜5,000重量部であることがより好ましく、100〜1,000重量部であることがさらに好ましい。
本発明において、脂環式オレフィン重合体と沸点150℃以上の脂環式炭化水素との混合方法に特に制限はなく、例えば、撹拌子とマグネティックスターラー、高速ホモジナイザー、ディスパージョン、遊星撹拌機、二軸撹拌機、ボールミル、三本ロールなどを使用して混合することができる。脂環式オレフィン重合体と沸点150℃以上の脂環式炭化水素とを、任意の順序で混合したのち、例えば、孔径が0.5μm程度のフィルタなどを用いてろ過し、使用に供することが好ましい。
The resin composition for screen printing of the present invention contains an aliphatic hydrocarbon compound in addition to the alicyclic olefin polymer. In the present invention, the aliphatic hydrocarbon compound is preferably an alicyclic hydrocarbon having a boiling point of 150 ° C. or more, more preferably an alicyclic hydrocarbon having a boiling point of 150 to 250 ° C., and a boiling point of 160 to 250 ° C. It is more preferable that it is 230 degreeC alicyclic hydrocarbon, and it is especially preferable that it is alicyclic hydrocarbon whose boiling point is 170-200 degreeC. If the boiling point of the alicyclic hydrocarbon is too high, the volatility at the time of forming the resin film is inferior. For this reason, if sufficient volatilization is performed, the resin film may be oxidatively deteriorated. Examples of alicyclic hydrocarbons having a boiling point of 150 ° C. or higher include cyclooctane (boiling point 151 ° C.), cyclononane (boiling point 171 ° C.), cyclodecane (boiling point 201 ° C.), cycloundecane (boiling point 91 ° C. (1.6 kPa)), etc. Such as cyclononene (boiling point 168 ° C.), cyclooctadiene, 1,4,7-cyclodecatriene, 1,5,9-cyclodecatriene (boiling point 231 ° C.), cyclooctyne (boiling point 157 ° C.), etc. Saturated alicyclic monocyclic hydrocarbons; saturated alicyclic polycyclic hydrocarbons such as decahydronaphthalene (common name: decalin, boiling point 190 ° C, cis-trans mixture), and unsaturated such as dicyclopentadiene (boiling point 170 ° C) Alicyclic polycyclic hydrocarbons: limonene (boiling point 176 ° C.), m-menthane (boiling point 167 ° C.), p-menthane (boiling point 171 ° C.), 3-p-mente (Boiling point 169 ° C.), α-ferrandolene (boiling point 67 ° C. (2.1 kPa)), β-ferrandylene (boiling point 180 ° C.), α-pinene (boiling point 156 ° C.), β-pinene (boiling point 165 ° C.), etc. And sesquiterpenes such as α-selinene (boiling point 143 ° C. (2.7 kPa)) and β-serinene (boiling point 134 ° C. (17.8 kPa)). These alicyclic hydrocarbons can be used individually by 1 type, or can also be used in combination of 2 or more type. Among these, decahydronaphthalene and p-menthane can be preferably used.
In the screen printing resin composition of the present invention, the blending amount of the alicyclic hydrocarbon having a boiling point of 150 ° C. or higher is 20 to 10,000 parts by weight with respect to 100 parts by weight of the alicyclic olefin polymer. Preferably, the amount is 50 to 5,000 parts by weight, and more preferably 100 to 1,000 parts by weight.
In the present invention, the mixing method of the alicyclic olefin polymer and the alicyclic hydrocarbon having a boiling point of 150 ° C. or higher is not particularly limited. For example, a stirrer and a magnetic stirrer, a high-speed homogenizer, a dispersion, a planetary stirrer, It can mix using a shaft stirrer, a ball mill, a three-roll. The alicyclic olefin polymer and the alicyclic hydrocarbon having a boiling point of 150 ° C. or higher are mixed in an arbitrary order, and then filtered using a filter having a pore size of about 0.5 μm, for use. preferable.

本発明のスクリーン印刷用樹脂組成物には、脂環式オレフィン重合体及び沸点150℃以上の脂環式炭化水素以外に、必要に応じて、架橋剤、感放射線化合物、酸化防止剤、その他添加剤を含有させることができる。
架橋剤は、脂環式オレフィン重合体の極性基の種類に応じて選択することができ、脂環式オレフィン重合体の極性基と反応し得る官能基を分子内に2個以上、好ましくは3個以上有する化合物を好適に用いることができる。脂環式オレフィン重合体がプロトン性極性基を有する場合には、好ましい官能基として、例えば、アミノ基、カルボキシル基、ヒドロキシル基、エポキシ基、オキセタニル基、イソシアネート基などを挙げることができる。これらの中で、アミノ基、エポキシ基、オキセタニル基、イソシアネート基が好ましく、エポキシ基及びオキセタニル基が特に好ましい。
エポキシ基を有する架橋剤としては、2個以上のエポキシ基を有するエポキシ化合物が好ましく、エポキシ基を3個以上有するエポキシ化合物がより好ましく、脂環式オレフィン重合体との相溶性の良好さから、脂環式構造を有し、エポキシ基を3個以上有する多官能エポキシ化合物がさらに好ましい。エポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ポリフェノール型エポキシ樹脂、環状脂肪族エポキシ樹脂、脂肪族グリシジルエーテル、エポキシアクリレート重合体などを挙げることができる。
In addition to the alicyclic olefin polymer and the alicyclic hydrocarbon having a boiling point of 150 ° C. or higher, the resin composition for screen printing of the present invention, if necessary, includes a crosslinking agent, a radiation sensitive compound, an antioxidant, and other additives. An agent can be included.
The crosslinking agent can be selected according to the kind of polar group of the alicyclic olefin polymer, and two or more functional groups capable of reacting with the polar group of the alicyclic olefin polymer in the molecule, preferably 3 The compound which has more than can be used suitably. When the alicyclic olefin polymer has a protic polar group, examples of preferred functional groups include an amino group, a carboxyl group, a hydroxyl group, an epoxy group, an oxetanyl group, and an isocyanate group. Among these, an amino group, an epoxy group, an oxetanyl group, and an isocyanate group are preferable, and an epoxy group and an oxetanyl group are particularly preferable.
As the crosslinking agent having an epoxy group, an epoxy compound having two or more epoxy groups is preferable, an epoxy compound having three or more epoxy groups is more preferable, and because of good compatibility with the alicyclic olefin polymer, A polyfunctional epoxy compound having an alicyclic structure and having 3 or more epoxy groups is more preferable. Examples of the epoxy compound include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, polyphenol type epoxy resin, cyclic aliphatic epoxy resin, aliphatic glycidyl ether, and epoxy acrylate heavy compound. Examples include coalescence.

オキセタニル基を有する架橋剤としては、2個以上のオキセタニル基を有するオキセタニル化合物が好ましく、脂環式オレフィン重合体との相溶性の良好さから、脂環式構造を有し、オキセタニル基を2個以上有する多官能オキセタニル化合物がより好ましい。オキセタニル化合物としては、例えば、ビスオキセタン類、トリスオキセタン類、ノボラック型オキセタン類、カリックスアレーン型オキセタン類、カルド型オキセタン類、ポリヒドロキシスチレン型オキセタン類、シルセスキオキサンなどのシリコーン樹脂類などの水酸基を有する樹脂とのエーテル化合物などを挙げることができる。
架橋剤の分子量は、加熱時の安定性やゲル化の効率の点から、100〜100,000であることが好ましく、500〜50,000であることがより好ましく、1,000〜10,000であることがさらに好ましい。架橋剤の配合量は、使用目的に応じて選択することができ、脂環式オレフィン重合体100重量部に対し、1〜1,000重量部であることが好ましく、5〜500重量部であることがより好ましく、10〜100重量部であることがさらに好ましい。架橋剤の配合量が脂環式オレフィン重合体100重量部に対して1〜1,000重量部であると、形成される樹脂膜の耐熱性を高度に向上することができる。
As the cross-linking agent having an oxetanyl group, an oxetanyl compound having two or more oxetanyl groups is preferable, and from the viewpoint of good compatibility with an alicyclic olefin polymer, it has an alicyclic structure and has two oxetanyl groups. The polyfunctional oxetanyl compound having the above is more preferable. Examples of oxetanyl compounds include hydroxyl groups such as bisoxetanes, trisoxetanes, novolac oxetanes, calixarene oxetanes, cardo oxetanes, polyhydroxystyrene oxetanes, and silicone resins such as silsesquioxane. And an ether compound with a resin having a hydrogen atom.
The molecular weight of the crosslinking agent is preferably from 100 to 100,000, more preferably from 500 to 50,000, more preferably from 1,000 to 10,000, from the viewpoint of stability during heating and gelation efficiency. More preferably. The amount of the crosslinking agent can be selected according to the purpose of use, and is preferably 1 to 1,000 parts by weight, and preferably 5 to 500 parts by weight with respect to 100 parts by weight of the alicyclic olefin polymer. It is more preferable that the amount is 10 to 100 parts by weight. When the blending amount of the crosslinking agent is 1 to 1,000 parts by weight with respect to 100 parts by weight of the alicyclic olefin polymer, the heat resistance of the formed resin film can be highly improved.

感放射線化合物は、活性放射線を用いて樹脂膜をパターン化する場合に用いることができる。感放射線化合物は、紫外線や電子線などの活性放射線を吸収し、化学反応を引き起こすことができる化合物である。本発明において、プロトン性極性基を有する脂環式オレフィン重合体を使用する場合には、そのアルカリ溶解性を制御し得る化合物であることが好ましい。感放射線化合物としては、例えば、フォトリソグラフィ用の感放射線性樹脂組成物中の光酸発生剤として広く用いられているアセトフェノン化合物、トリアリールスルホニウム塩、キノンジアジド化合物などのアジド化合物などを挙げることができる。これらの中で、アジド化合物が好ましく、キノンジアジド化合物が特に好ましい。感放射線化合物の配合量は、脂環式オレフィン重合体100重量部に対して、1〜100重量部であることが好ましく、5〜50重量部であることがより好ましく、10〜40重量部であることがさらに好ましい。感放射線化合物の配合量が脂環式オレフィン重合体100重量部に対して1〜100重量部であると、基板上に形成させた樹脂膜をパターン化する際に、放射線照射部と放射線未照射部との溶解度差が大きくなり、現像によるパターン化が容易で、かつ、放射線感度も高くなる。   A radiation sensitive compound can be used when patterning a resin film using actinic radiation. A radiation-sensitive compound is a compound that can absorb actinic radiation such as ultraviolet rays and electron beams and cause a chemical reaction. In the present invention, when an alicyclic olefin polymer having a protic polar group is used, it is preferably a compound capable of controlling its alkali solubility. Examples of radiation sensitive compounds include azide compounds such as acetophenone compounds, triarylsulfonium salts, and quinonediazide compounds that are widely used as photoacid generators in radiation sensitive resin compositions for photolithography. . Of these, azide compounds are preferable, and quinonediazide compounds are particularly preferable. The compounding amount of the radiation sensitive compound is preferably 1 to 100 parts by weight, more preferably 5 to 50 parts by weight, and 10 to 40 parts by weight with respect to 100 parts by weight of the alicyclic olefin polymer. More preferably it is. When the amount of the radiation sensitive compound is 1 to 100 parts by weight with respect to 100 parts by weight of the alicyclic olefin polymer, when the resin film formed on the substrate is patterned, the radiation irradiated part and the radiation unirradiated The difference in solubility with the part becomes large, patterning by development is easy, and radiation sensitivity is also high.

酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などを挙げることができる。フェノール系酸化防止剤としては、例えば、2,6−ジ−tert−ブチル−4−メチルフェノール、p−メトキシフェノール、スチレン化フェノール、n−オクタデシル−3−(3',5'−ジ−tert−ブチル−4'−ヒドロキシフェニル)プロピオネート、2,2'−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2−tert−ブチル−6−(3'−tert−ブチル−5'−メチル−2'−ヒドロキシベンジル)−4−メチルフェニルアクリレート、4,4'−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、4,4'−チオビス(3−メチル−6−tert−ブチルフェノール)、アルキル化ビスフェノールなどを挙げることができる。リン系酸化防止剤としては、例えば、亜リン酸トリフェニル、亜リン酸トリス(ノニルフェニル)などを挙げることができる。イオウ系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリルなどを挙げることができる。これらの中で、加熱時の透明性維持の観点から、フェノール系酸化防止剤が好ましく、ペンタエリスリトールテトラキス(3−[3,5−ジ−tert−ブチル−4−ヒドロキシフェニル]プロピオネート)[イルガノックス(登録商標)1010]が特に好ましい。   Examples of the antioxidant include a phenolic antioxidant, a phosphorus antioxidant, and a sulfur antioxidant. Examples of the phenolic antioxidant include 2,6-di-tert-butyl-4-methylphenol, p-methoxyphenol, styrenated phenol, n-octadecyl-3- (3 ′, 5′-di-tert. -Butyl-4'-hydroxyphenyl) propionate, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 2-tert-butyl-6- (3'-tert-butyl-5'-methyl- 2'-hydroxybenzyl) -4-methylphenyl acrylate, 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), 4,4'-thiobis (3-methyl-6-tert-butylphenol), alkyl Bisphenol and the like can be mentioned. Examples of the phosphorus-based antioxidant include triphenyl phosphite and tris (nonylphenyl) phosphite. Examples of the sulfur-based antioxidant include dilauryl thiodipropionate. Among these, from the viewpoint of maintaining transparency during heating, a phenol-based antioxidant is preferable, and pentaerythritol tetrakis (3- [3,5-di-tert-butyl-4-hydroxyphenyl] propionate) [Irganox] (Registered trademark) 1010] is particularly preferable.

その他添加剤としては、例えば、増感剤、界面活性剤、潜在的酸発生剤、密着助剤、帯電防止剤、消泡剤、顔料、染料などを挙げることができる。増感剤としては、例えば、2H−ピリド−(3,2−b)−1,4−オキサジン−3(4H)−オン類、10H−ピリド−(3,2−b)−1,4−ベンゾチアジン類、ウラゾール類、ヒダントイン類、バルビツール酸類、グリシン無水物類、1−ヒドロキシベンゾトリアゾール類、アロキサン類、マレイミド類などを挙げることができる。
界面活性剤は、ストリエーション(塗布筋あと)の防止、塗布性の向上などの目的で使用され、例えば、ノニオン系界面活性剤;フッ素系界面活性剤;シリコーン系界面活性剤;(メタ)アクリル酸共重合体系界面活性剤などを挙げることができる。
潜在的酸発生剤は、本発明のスクリーン印刷用樹脂組成物から得られる樹脂膜の耐熱性及び耐薬品性を向上する目的で使用され、例えば、加熱により酸を発生するカチオン重合触媒であり、スルホニウム塩、ベンゾチアゾリウム塩、アンモニウム塩、ホスホニウム塩などを挙げることができる。これらの中で、スルホニウム塩及びベンゾチアゾリウム塩を好適に用いることができる。
密着助剤としては、例えば、官能性シランカップリング剤などを挙げることができ、その具体例としては、例えば、トリメトキシシリル安息香酸、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどを挙げることができる。これらの中で、γ−グリシドキシプロピルトリメトキシシランを好適に用いることができる。
Examples of other additives include sensitizers, surfactants, latent acid generators, adhesion assistants, antistatic agents, antifoaming agents, pigments, and dyes. Examples of the sensitizer include 2H-pyrido- (3,2-b) -1,4-oxazin-3 (4H) -ones, 10H-pyrido- (3,2-b) -1,4- Examples thereof include benzothiazines, urazoles, hydantoins, barbituric acids, glycine anhydrides, 1-hydroxybenzotriazoles, alloxans, maleimides and the like.
Surfactants are used for the purpose of preventing striations and improving coatability. For example, nonionic surfactants; fluorosurfactants; silicone surfactants; (meth) acrylic Examples include acid copolymer surfactants.
The latent acid generator is used for the purpose of improving the heat resistance and chemical resistance of the resin film obtained from the resin composition for screen printing of the present invention, for example, a cationic polymerization catalyst that generates an acid by heating, Examples include sulfonium salts, benzothiazolium salts, ammonium salts, and phosphonium salts. Of these, sulfonium salts and benzothiazolium salts can be suitably used.
Examples of the adhesion assistant include a functional silane coupling agent, and specific examples thereof include, for example, trimethoxysilylbenzoic acid, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, vinyl Examples include trimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Among these, γ-glycidoxypropyltrimethoxysilane can be preferably used.

本発明のスクリーン印刷用樹脂組成物は、固形分濃度が1〜70重量%であることが好ましく、5〜50重量%であることがより好ましく、10〜40重量%であることがさらに好ましい。脂環式オレフィン重合体と必要に応じて添加される他の成分からなる固形分の濃度が1〜70重量%であると、操作性が良好であり、樹脂膜の厚さの制御が容易となり、樹脂膜の面内膜厚均一性と印刷連続性が向上する。
本発明のスクリーン印刷用樹脂組成物は、25℃における粘度が5〜1,000,000mPa・sであることが好ましく、10〜10,000mPa・sであることがより好ましく、20〜1,000mPa・sであることがさらに好ましい。25℃における粘度が5〜1,000,000mPa・sであると、操作性が良好であり、樹脂膜の厚さの制御が容易となり、樹脂膜の面内膜厚均一性と印刷連続性が向上する。
本発明のスクリーン印刷用樹脂組成物を基板に塗布、乾燥し、必要に応じて樹脂を架橋させることにより樹脂膜を形成することができる。基板は、樹脂溶液に溶解しない成形体であれば特に制限はなく、例えば、プリント配線基板、シリコン基板、ガラス基板、プラスチック基板などの電子部品を構成する基板;樹脂フィルムや金属フィルムなどの支持基板;などを挙げることができる。また、基板は、薄型トランジスタなどの電子回路や発光体などが搭載されたものであってもよい。基板として、電子部品を構成する基板を用いる場合、基板に樹脂溶液を塗布し、乾燥して得られた樹脂膜は、必要に応じて膜中の樹脂が架橋されて、そのまま部品中の機能性膜となる。基板として支持基板を用いる場合、支持基板上に、樹脂溶液を塗布し、乾燥して得られた樹脂膜を、任意の電子部品を構成する基板などにフィルム積層法などによって積層し、必要に応じて積層した樹脂膜中の樹脂を架橋することにより、機能性膜が形成された電子部品を得ることができる。
The resin composition for screen printing of the present invention preferably has a solid content concentration of 1 to 70% by weight, more preferably 5 to 50% by weight, and even more preferably 10 to 40% by weight. When the concentration of the solid content comprising the alicyclic olefin polymer and other components added as necessary is 1 to 70% by weight, the operability is good and the thickness of the resin film can be easily controlled. In-plane film thickness uniformity and printing continuity of the resin film are improved.
The resin composition for screen printing of the present invention has a viscosity at 25 ° C. of preferably 5 to 1,000,000 mPa · s, more preferably 10 to 10,000 mPa · s, and more preferably 20 to 1,000 mPa · s. -More preferably, it is s. When the viscosity at 25 ° C. is 5 to 1,000,000 mPa · s, the operability is good, the thickness of the resin film can be easily controlled, and the in-plane film thickness uniformity and printing continuity of the resin film are improved. improves.
A resin film can be formed by applying the resin composition for screen printing of the present invention to a substrate, drying, and crosslinking the resin as necessary. The substrate is not particularly limited as long as it is a molded body that does not dissolve in a resin solution. For example, a substrate constituting an electronic component such as a printed wiring board, a silicon substrate, a glass substrate, or a plastic substrate; a support substrate such as a resin film or a metal film And the like. The substrate may be one on which an electronic circuit such as a thin transistor or a light emitter is mounted. When using a substrate that constitutes an electronic component as the substrate, the resin film obtained by applying a resin solution to the substrate and drying is cross-linked with the resin in the film if necessary, and the functionality in the component is maintained as it is. Become a film. When a support substrate is used as the substrate, a resin film obtained by applying a resin solution on the support substrate and drying is laminated on a substrate constituting an arbitrary electronic component by a film lamination method or the like. By cross-linking the resin in the laminated resin film, an electronic component on which a functional film is formed can be obtained.

塗布した樹脂溶液を乾燥する条件は、好ましくは30〜150℃、より好ましくは60〜120℃の環境下に、好ましくは0.5〜90分間、より好ましくは1〜60分間、さらに好ましくは1〜30分間放置する方法を挙げることができる。乾燥する方法に特に制限はなく、例えば、加熱乾燥、減圧乾燥、風乾などを挙げることができる。
樹脂膜中の樹脂の架橋は、架橋剤の種類に応じた方法を採用することができ、例えば、加熱や光照射によって行うことができる。加熱は、例えば、ホットプレート、オーブンなどを用いて行うことができる。加熱温度は、100〜250℃であることが好ましく、加熱時間は、樹脂膜の大きさや厚み及び使用機器などにより適宜選択することができる。例えば、ホットプレートを用いる場合は、5〜60分間、オーブンを用いる場合は、10〜90分間であることが好ましい。加熱は、必要に応じて不活性ガス雰囲気下で行うことができる。光照射は、露光機などを用いて、紫外線などの光線を照射することによって行うことができる。照射時間は、照射する光の強さや膜の厚みなどを考慮して任意に設定することができる。
The conditions for drying the applied resin solution are preferably 30 to 150 ° C., more preferably 60 to 120 ° C., preferably 0.5 to 90 minutes, more preferably 1 to 60 minutes, and even more preferably 1. The method of leaving for -30 minutes can be mentioned. There is no restriction | limiting in particular in the method of drying, For example, heat drying, reduced pressure drying, air drying etc. can be mentioned.
The resin in the resin film can be cross-linked by a method according to the type of the cross-linking agent, for example, by heating or light irradiation. The heating can be performed using, for example, a hot plate or an oven. The heating temperature is preferably 100 to 250 ° C., and the heating time can be appropriately selected depending on the size and thickness of the resin film and the equipment used. For example, when a hot plate is used, it is preferably 5 to 60 minutes, and when an oven is used, it is preferably 10 to 90 minutes. Heating can be performed in an inert gas atmosphere as necessary. Light irradiation can be performed by irradiating light rays such as ultraviolet rays using an exposure machine or the like. The irradiation time can be arbitrarily set in consideration of the intensity of light to be irradiated and the thickness of the film.

フィルム積層法は、例えば、樹脂溶液を支持基板に塗布した後に加熱乾燥により溶剤を除去してBステージフィルムを得、次いで、このBステージフィルムを基板上に積層する方法である。加熱乾燥条件は、各成分の種類や配合割合に応じて異なるが、好ましくは30〜150℃、より好ましくは60〜120℃で、好ましくは0.5〜90分間、より好ましくは1〜60分間、さらに好ましくは1〜30分間行うことができる。積層は、加圧ラミネータ、プレス、真空ラミネータ、真空プレス、ロールラミネータなどの圧着機を用いて行うことができる。基板上に形成された樹脂膜は、パターン化されていてもよい。
このようにして得られる樹脂膜の厚さは、樹脂膜の使用目的に応じて適宜設定することができるが、通常は0.1〜1,000μmであることが好ましく、0.3〜500μmであることがより好ましく、0.5〜100μmであることがさらに好ましい。厚さが0.1〜1,000μmであると、水蒸気透過率1,500g/m・24h以下の樹脂膜を得ることができる。
本発明のスクリーン印刷用樹脂組成物から得られる樹脂膜は、表示素子、集積回路素子、固体撮像素子、カラーフィルター、ブラックマトリックスなどの電子部品の製造における封止膜、絶縁膜、平坦化膜などの形成に用いることができる。特に、有機EL素子などの表示素子や、これを含む表示装置において、基板上に設けられた素子や配線を覆う状態で設けられる封止膜、絶縁膜、平坦化膜などの形成に好適に用いることができる。
本発明のスクリーン印刷用樹脂組成物は印刷連続性が良好であり、得られる樹脂膜は、膜厚の均一性が良好である上に、透明性や密着性が高く、低水蒸気透過性であって、平坦化性に優れ、絶縁性が高く、樹脂膜と接触する封止内容物が水により腐食や劣化することを抑制することができ、長期安定駆動可能な電子部品を構成することができる。
The film lamination method is, for example, a method in which a resin solution is applied to a supporting substrate, a solvent is removed by heat drying to obtain a B stage film, and then this B stage film is laminated on the substrate. The heating and drying conditions vary depending on the type and blending ratio of each component, but are preferably 30 to 150 ° C, more preferably 60 to 120 ° C, preferably 0.5 to 90 minutes, more preferably 1 to 60 minutes. More preferably, it can be performed for 1 to 30 minutes. The lamination can be performed using a pressure bonding machine such as a pressure laminator, a press, a vacuum laminator, a vacuum press, or a roll laminator. The resin film formed on the substrate may be patterned.
The thickness of the resin film thus obtained can be appropriately set according to the purpose of use of the resin film, but is usually preferably 0.1 to 1,000 μm, preferably 0.3 to 500 μm. More preferably, it is more preferably 0.5 to 100 μm. When the thickness is 0.1 to 1,000 μm, a resin film having a water vapor transmission rate of 1,500 g / m 2 · 24 h or less can be obtained.
The resin film obtained from the resin composition for screen printing of the present invention includes a sealing film, an insulating film, a planarizing film, etc. in the manufacture of electronic components such as display elements, integrated circuit elements, solid-state imaging elements, color filters, and black matrices. It can be used for forming. In particular, in a display element such as an organic EL element and a display device including the same, it is suitably used for forming a sealing film, an insulating film, a planarizing film, etc. provided in a state of covering elements and wirings provided on a substrate. be able to.
The resin composition for screen printing of the present invention has good printing continuity, and the resulting resin film has good uniformity in film thickness, high transparency and adhesion, and low water vapor permeability. In addition, it is excellent in flatness, high insulative properties, and can suppress the corrosion and deterioration of the sealed contents in contact with the resin film by water, and can constitute an electronic component that can be driven stably for a long period of time. .

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、水素化率、重量平均分子量、粘度、面内膜厚均一性、平坦化性、光線透過率、水蒸気透過率、絶縁性、密着性、封止性及び印刷連続性は、以下に示す方法に従って測定した。
(1)水素化率
水素化率、すなわち構造単位(a)及び構造単位(b)の合計に対する一般式(2)で表される構造単位及び一般式(4)で表される構造単位の合計の割合は、核磁気共鳴装置[日本電子(株)、JNM−ECA500]を用い、1H−NMRにより測定した。
(2)重量平均分子量(Mw)
重合体の重量平均分子量(Mw)は、高速ゲルパーミエーションクロマトグラフ[東ソー(株)、HLC−8220GPC]を用い、テトラヒドロフランを溶媒としてポリスチレン換算値を測定した。
(3)粘度
25℃において、E型粘度計を用いて測定した。
(4)面内膜厚均一性
150mm×150mm×1.4mmのガラス基板[コーニング社、コーニング1737ガラス]上に、ステンレス鋼スクリーン[東京プロセスサービス(株)、ST500]を用い、スクリーン印刷用樹脂組成物をマイクロスキージ[マイクロテック(株)]を用いてスキージスピード50mm/秒で、スクリーン印刷機[マイクロテック(株)、MT−320TVC]にて塗布した。その後、ホットプレートを用いて80℃で30分加熱して、膜厚3μmの樹脂膜を形成した。得られた樹脂膜について、光学式膜厚計[ナノメトリクス・ジャパン(株)、Nanometrics Nanospec M6500]を用いて、面内121点の膜厚を測定した。測定点は、150mm×150mmのガラス基板を縦横12分割したときの交点とした。この測定された膜厚に基づいて、次式により面内膜厚均一性を算出した。
面内膜厚均一性(%)={(膜厚最大値−膜厚最小値)/(平均膜厚)}×100
この値が小さいほど、樹脂膜の基板面内での膜厚が均一であることを意味し、一般に面内膜厚の均一性が高い場合は、樹脂組成物の塗布性も良好である。この値が10%未満のときに ○、10%以上のときに × と評価した。
(5)平坦化性
2μmの段差を有するシリコン酸化膜基板に、面内膜厚均一性と同様の方法にて、膜厚3μmの樹脂膜を形成した。得られた基板のシリコン酸化膜段差部を、接触式膜厚測定器[ケーエルエー・テンコール(株)、P−10]を用いて測定し、段差が0.2μm未満のときに ○、0.2μm以上のときに × と評価した。
(6)光線透過率
ガラス基板[コーニング社、コーニング1737ガラス]上に、面内膜厚均一性と同様の方法にて、膜厚2μmの樹脂膜を形成した。この樹脂膜について、光線透過率を、分光光度計[日本分光(株)、V−560]を用いて550nmの波長で測定した。測定値をLambert−Beerの式に基づいて2.0μmの光線透過率に換算して評価した。光線透過率が高いほど、透明性に優れている。
(7)水蒸気透過率
厚さ25μmのポリイミドフィルム[東レ・デュポン(株)、カプトン100H]上に、面内膜厚均一性と同様の方法にて、膜厚3μmの樹脂膜を形成した。この複合膜について、水蒸気透過率測定装置[MOCON社、PERMATRAN−W]を用い、JIS K 7192 7.B法に準じて、40℃、90%RHの条件にて水蒸気透過率を測定した。同様にして、ポリイミドフィルム自体の水蒸気透過率を測定することにより、樹脂膜の水蒸気透過率を次式に基づいて算出した。
樹脂膜の水蒸気透過率 =(1/複合膜透過率−1/ポリイミドフィルム透過率)-1
水蒸気透過率が低いほど、内部の電子材料を保護する性能が高い。
(8)絶縁性
P型シリコンウェハ(抵抗値1Ω以下)上に、面内膜厚均一性を評価した場合と同様の方法にて、膜厚3μmの樹脂膜を形成した。水銀プローバー[フォーディメンションインク社製、CVmap92A]を用い、電流−電圧特性評価を行った。すなわち、電圧量1MV/cm印加を行った際の樹脂膜中に流れる電流値を測定した。電流値が3×10-10A/cm2未満の時は ○、3×10-10A/cm2以上の時は × とした。
(9)密着性
ガラス基板[コーニング社、コーニング1737ガラス]上に、面内膜厚均一性と同様の方法にて、膜厚が2μmの樹脂膜を形成した。この樹脂膜について、JIS K 5600−5−6に従い、100箇所を観察し、剥れなかった部分を数えた。剥れなかった部分が多いほど、密着性が高い。
(10)封止性(有機エレクトロルミネッセンス素子の発光輝度評価)
後述する方法により作製された、封止された有機エレクトロルミネッセンス素子を用いて、40℃、90%RHの環境下で10,000時間放置する試験を行った。放置試験前及び放置試験後の素子それぞれに、クロム電極層を陽極、透明電極層を陰極として直流電圧を印加した。
放置試験後にも放置試験前と同様に、発光面にダークスポットが見られなかった場合に ○、放置試験後にダークスポットは発生したが、明所にて5Vから陰極側より青色発光が確認したときの視認性が良好であった(すなわち、発生したダークスポットの数が少ない)場合に △、放置試験後にダークスポットが発生し、明所にて5Vから陰極側より青色発光が確認したときの視認性が悪かった(すなわち、発生したダークスポットの数が多い)場合に × と評価した。
(11)印刷連続性
ガラス基板[コーニング社、コーニング1737ガラス]上に、面内膜厚均一性と同様の方法にて膜厚2μmの樹脂膜を3回連続して形成した。得られた樹脂膜を、面内膜厚均一性と同様の方法にて膜厚測定をし、印刷回数1〜3回での膜厚の平均値の標準偏差を印刷連続性として評価した。この値が小さいほど、連続して印刷しても樹脂膜の膜厚が均一であることを意味し、印刷連続性が優れているといえる。この値が0.5μm未満のときは ○、0.5μm以上のときは × と評価した。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The hydrogenation rate, weight average molecular weight, viscosity, in-plane film thickness uniformity, flatness, light transmittance, water vapor transmittance, insulation, adhesion, sealing properties and printing continuity are the methods shown below. Measured according to
(1) Hydrogenation rate Hydrogenation rate, that is, the sum of the structural unit represented by the general formula (2) and the structural unit represented by the general formula (4) with respect to the sum of the structural unit (a) and the structural unit (b) Was measured by 1 H-NMR using a nuclear magnetic resonance apparatus [JEOL Ltd., JNM-ECA500].
(2) Weight average molecular weight (Mw)
The weight average molecular weight (Mw) of the polymer was measured by polystyrene conversion using tetrahydrofuran as a solvent using a high-speed gel permeation chromatograph [Tosoh Corporation, HLC-8220GPC].
(3) Viscosity The viscosity was measured at 25 ° C. using an E-type viscometer.
(4) In-plane film thickness uniformity Resin for screen printing using a stainless steel screen [Tokyo Process Service Co., Ltd., ST500] on a 150 mm × 150 mm × 1.4 mm glass substrate [Corning, Corning 1737 Glass]. The composition was applied using a micro squeegee [Microtech Co., Ltd.] at a squeegee speed of 50 mm / sec. Using a screen printer [Microtech Co., Ltd., MT-320TVC]. Then, it heated for 30 minutes at 80 degreeC using the hotplate, and formed the resin film with a film thickness of 3 micrometers. About the obtained resin film, the film thickness of 121 points | pieces in the surface was measured using the optical film thickness meter [Nanometrics Japan Co., Ltd., Nanometrics Nanospec M6500]. The measurement point was an intersection when a glass substrate of 150 mm × 150 mm was divided into 12 parts vertically and horizontally. Based on the measured film thickness, the in-plane film thickness uniformity was calculated by the following equation.
In-plane film thickness uniformity (%) = {(film thickness maximum value−film thickness minimum value) / (average film thickness)} × 100
The smaller this value, the more uniform the film thickness of the resin film in the substrate surface. Generally, when the uniformity of the in-plane film thickness is high, the application property of the resin composition is also good. When this value was less than 10%, it was evaluated as x when the value was 10% or more.
(5) Flatness A resin film having a film thickness of 3 μm was formed on a silicon oxide film substrate having a level difference of 2 μm by the same method as the in-plane film thickness uniformity. The silicon oxide film step portion of the obtained substrate was measured using a contact-type film thickness measuring instrument [KLA Tencor Co., Ltd., P-10], and when the step was less than 0.2 μm, ○, 0.2 μm It evaluated as x at the above time.
(6) Light transmittance A resin film having a film thickness of 2 μm was formed on a glass substrate [Corning, Corning 1737 glass] by the same method as the in-plane film thickness uniformity. About this resin film, the light transmittance was measured at a wavelength of 550 nm using a spectrophotometer [JASCO Corporation, V-560]. The measured value was converted into a light transmittance of 2.0 μm and evaluated based on the Lambert-Beer equation. The higher the light transmittance, the better the transparency.
(7) Water vapor transmission rate On a polyimide film [Toray DuPont, Kapton 100H] having a thickness of 25 μm, a resin film having a thickness of 3 μm was formed in the same manner as the in-plane film thickness uniformity. About this composite film, the water-vapor-permeation rate was measured on 40 degreeC and 90% RH conditions using the water-vapor-permeation measuring apparatus [MOCON company, PERMATRAN-W] according to JISK7192 7.B method. Similarly, the water vapor permeability of the resin film was calculated based on the following equation by measuring the water vapor permeability of the polyimide film itself.
Water vapor permeability of resin film = (1 / composite membrane permeability-1 / polyimide film permeability) -1
The lower the water vapor transmission rate, the higher the performance of protecting the internal electronic material.
(8) Insulation A resin film having a thickness of 3 μm was formed on a P-type silicon wafer (resistance value of 1Ω or less) by the same method as that for evaluating the in-plane film thickness uniformity. Current-voltage characteristics were evaluated using a mercury prober [CVmap92A, manufactured by Four Dimension Inc.]. That is, the value of the current flowing in the resin film when a voltage amount of 1 MV / cm was applied was measured. Current value when less than 3 × 10 -10 A / cm 2 is ○, was × when 3 × 10 -10 A / cm 2 or more.
(9) Adhesiveness A resin film having a film thickness of 2 μm was formed on a glass substrate [Corning, Corning 1737 glass] by the same method as in-plane film thickness uniformity. About this resin film, according to JISK5600-5-6, 100 places were observed and the part which did not peel was counted. The more parts that did not peel off, the higher the adhesion.
(10) Sealing properties (emission luminance evaluation of organic electroluminescence elements)
Using a sealed organic electroluminescence device manufactured by the method described later, a test was performed in which the sample was allowed to stand for 10,000 hours in an environment of 40 ° C. and 90% RH. A direct current voltage was applied to each of the elements before and after the standing test using the chromium electrode layer as an anode and the transparent electrode layer as a cathode.
After the neglect test, as in the case before the neglect test, when a dark spot was not seen on the light emitting surface, ○, a dark spot was generated after the neglect test, but when blue light emission was confirmed from the cathode side from 5V in the bright place △ when the visibility is good (that is, when the number of generated dark spots is small), a dark spot is generated after the standing test, and when blue light emission is confirmed from the cathode side from 5 V in a bright place When the property was bad (that is, when the number of generated dark spots was large), it was evaluated as x.
(11) Printing continuity A resin film having a film thickness of 2 μm was continuously formed three times on a glass substrate [Corning, Corning 1737 glass] by the same method as the in-plane film thickness uniformity. The obtained resin film was measured for film thickness by the same method as the in-plane film thickness uniformity, and the standard deviation of the average value of the film thickness after 1 to 3 printings was evaluated as printing continuity. As this value is smaller, it means that the film thickness of the resin film is uniform even when continuously printed, and it can be said that the printing continuity is excellent. When this value was less than 0.5 μm, it was evaluated as ○, and when it was 0.5 μm or more, it was evaluated as ×.

実施例1
構造単位(a)を与える8−カルボキシテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン(以下、TCDCとする。)5.4重量部(5モル%)、構造単位(b)を与える8−エチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン(以下、ETDとする。)94.6重量部(95モル%)、1,5−ヘキサジエン5.5重量部、1,3−ジメシチルイミダゾリジン−2−イリデン(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド0.05重量部及びトルエン400重量部を、窒素置換したガラス製耐圧反応器に仕込み、撹拌しつつ70℃にて2時間開環重合反応させて、重合体溶液(固液分濃度約20重量%)を得た。この重合体の重量平均分子量は6,000であり、数平均分子量は2,900であった。この重合体溶液の一部を撹拌機付きオートクレーブに移し、150℃にて水素を圧力4MPaで溶存させて5時間反応させ、水素化された重合体を含む重合体水素添加物溶液(固液分濃度約20重量%)を得た。この重合体水素添加物の水素化率は100%、重量平均分子量は6,000であった。その結果を表1に示す。
重合体水素添加物溶液100重量部に粉末活性炭1重量部を添加し、オートクレーブに入れ、撹拌しつつ150℃にて水素を圧力4MPaで3時間溶存させた。次いで、溶液を取り出して孔径0.2μmのフッ素樹脂製フィルタでろ過し、活性炭を分離して重合体溶液を得た。ろ過は、滞りなく行うことができた。この重合体溶液にデカリン(シス−トランス混合物、沸点190℃)233重量部を添加し、混合溶液をエバポレーターにより減圧濃縮してトルエンを除去し、樹脂のデカリン溶液を得た。このデカリン溶液を、孔径0.45μmのポリテトラフルオロエチレン製フィルタでろ過して樹脂溶液(ア)を調製した。
樹脂溶液(ア)を用いて樹脂膜Aを形成し、面内膜厚均一性、平坦化性、光線透過率、水蒸気透過率、絶縁性、密着性、封止性及び印刷連続性を評価した。その結果を表2に示す。
Example 1
Providing structural units (a) 8- carboxy tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene (hereinafter referred to as TCDC.) 5.4 parts by weight (5 mol %), giving the structural units (b) 8- ethylidene tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene (hereinafter referred to as ETD.) 94.6 parts by weight (95 mol%) 1,5-hexadiene 5.5 parts by weight, 1,3-dimesitylimidazolidine-2-ylidene (tricyclohexylphosphine) benzylidene ruthenium dichloride 0.05 parts by weight and toluene 400 parts by weight, The mixture was charged in a nitrogen pressure-resistant glass pressure reactor and subjected to ring-opening polymerization reaction at 70 ° C. for 2 hours with stirring to obtain a polymer solution (solid-liquid concentration of about 20% by weight). The polymer had a weight average molecular weight of 6,000 and a number average molecular weight of 2,900. A part of this polymer solution was transferred to an autoclave equipped with a stirrer, and hydrogen was dissolved at 150 ° C. at a pressure of 4 MPa and reacted for 5 hours. A polymer hydrogenated solution containing a hydrogenated polymer (solid-liquid component) A concentration of about 20% by weight) was obtained. The hydrogenation rate of this polymer hydrogenated product was 100%, and the weight average molecular weight was 6,000. The results are shown in Table 1.
1 part by weight of powdered activated carbon was added to 100 parts by weight of the polymer hydrogenated solution, and the mixture was placed in an autoclave, and hydrogen was dissolved at 150 ° C. at a pressure of 4 MPa for 3 hours while stirring. Next, the solution was taken out and filtered through a fluororesin filter having a pore size of 0.2 μm, and activated carbon was separated to obtain a polymer solution. Filtration could be performed without delay. 233 parts by weight of decalin (cis-trans mixture, boiling point 190 ° C.) was added to this polymer solution, and the mixed solution was concentrated under reduced pressure using an evaporator to remove toluene, thereby obtaining a resin decalin solution. This decalin solution was filtered through a polytetrafluoroethylene filter having a pore size of 0.45 μm to prepare a resin solution (A).
The resin film A was formed using the resin solution (a), and the in-plane film thickness uniformity, flatness, light transmittance, water vapor transmittance, insulation, adhesion, sealing properties and printing continuity were evaluated. . The results are shown in Table 2.

実施例2
TCDCの量を1.1重量部(1モル%)、ETDの量を98.9重量部(99モル%)、1,5−ヘキサジエンの量を4重量部とする以外は、実施例1と同様の方法で樹脂溶液(イ)を調製した。この重合体水素添加物の水素化率は100%、重量平均分子量は8,200であった。その結果を表1に示す。
樹脂溶液(イ)を用いて樹脂膜Bを形成し、面内膜厚均一性、平坦化性、光線透過率、水蒸気透過率、絶縁性、密着性、封止性及び印刷連続性を評価した。その結果を表2に示す。
実施例3
TCDCの量を21.3重量部(20モル%)、ETDの量を78.7重量部(80モル%)、1,5−ヘキサジエンの量を3.5重量部とする以外は、実施例1と同様の方法で樹脂溶液(ウ)を調製した。この重合体水素添加物の水素化率は100%、重量平均分子量は8,900であった。その結果を表1に示す。
樹脂溶液(ウ)を用いて樹脂膜Cを形成し、面内膜厚均一性、平坦化性、光線透過率、水蒸気透過率、絶縁性、密着性、封止性及び印刷連続性を評価した。その結果を表2に示す。
実施例4
デカリン233重量部の代わりに、p−メンタン(シス−トランス混合物、沸点171℃)233重量部を添加した以外は、実施例1と同様の方法で樹脂溶液(エ)を調製した。この重合体水素添加物の水素化率は100%、重量平均分子量は6,000であった。その結果を表1に示す。
樹脂溶液(エ)を用いて樹脂膜Dを形成し、面内膜厚均一性、平坦化性、光線透過率、水蒸気透過率、絶縁性、密着性、封止性及び印刷連続性を評価した。その結果を表2に示す。
Example 2
Example 1 except that the amount of TCDC was 1.1 parts by weight (1 mol%), the amount of ETD was 98.9 parts by weight (99 mol%), and the amount of 1,5-hexadiene was 4 parts by weight. Resin solution (I) was prepared in the same manner. The hydrogenation rate of this polymer hydrogenated product was 100%, and the weight average molecular weight was 8,200. The results are shown in Table 1.
The resin film B was formed using the resin solution (a), and the in-plane film thickness uniformity, flatness, light transmittance, water vapor transmittance, insulation, adhesion, sealing properties and printing continuity were evaluated. . The results are shown in Table 2.
Example 3
Except that the amount of TCDC was 21.3 parts by weight (20 mol%), the amount of ETD was 78.7 parts by weight (80 mol%), and the amount of 1,5-hexadiene was 3.5 parts by weight. A resin solution (c) was prepared in the same manner as in 1. The hydrogenation rate of this polymer hydrogenated product was 100%, and the weight average molecular weight was 8,900. The results are shown in Table 1.
The resin film C was formed using the resin solution (U), and the in-plane film thickness uniformity, flatness, light transmittance, water vapor transmittance, insulation, adhesion, sealing properties and printing continuity were evaluated. . The results are shown in Table 2.
Example 4
A resin solution (D) was prepared in the same manner as in Example 1 except that 233 parts by weight of p-menthane (cis-trans mixture, boiling point 171 ° C.) was added instead of 233 parts by weight of decalin. The hydrogenation rate of this polymer hydrogenated product was 100%, and the weight average molecular weight was 6,000. The results are shown in Table 1.
The resin film D was formed using the resin solution (D), and the in-plane film thickness uniformity, flatness, light transmittance, water vapor transmittance, insulation, adhesion, sealing properties and printing continuity were evaluated. . The results are shown in Table 2.

比較例1
TCDCの量を6.5重量部(6モル%)、ETDの量を93.5重量部(94モル%)、1,5−ヘキサジエンの量を2重量部とする以外は、実施例1同様の方法で樹脂溶液(オ)を調製した。この重合体水素添加物の水素化率は100%、重量平均分子量は16,300であった。その結果を表1に示す。
樹脂溶液(オ)を用いて樹脂膜Eを形成し、面内膜厚均一性、平坦化性、光線透過率、水蒸気透過率、絶縁性、密着性、封止性及び印刷連続性を測定した。その結果を表2に示す。
比較例2
TCDCを用いず、ETDの量を100重量部(100モル%)、1,5−ヘキサジエンの量を3.5重量部とする以外は、実施例1と同様の方法で樹脂溶液(カ)を調製した。この重合体水素添加物の水素化率は100%、重量平均分子量は8,800であった。その結果を表1に示す。
樹脂溶液(カ)を用いて樹脂膜Fを形成し、面内膜厚均一性、平坦化性、光線透過率、水蒸気透過率、絶縁性、密着性、封止性及び印刷連続性を測定した。その結果を表2に示す。
比較例3
ビスフェノールA型エポキシ樹脂[ジャパンエポキシレジン(株)、エピコート828]50重量部、光酸発生剤[旭電化工業(株)、アデカオプトマーSP−170]5重量部及びポリテトラメチレングリコール[三菱化学(株)、PTMG1000]10重量部をホモディスパー型撹拌混合機[特殊機化工業(株)、ホモディスパーL]を用い、撹拌速度3,000rpmで均一に撹拌混合したのち、孔径0.45μmのポリテトラフルオロエチレン製フィルタでろ過して樹脂溶液(キ)を調製した。この重合体の重量平均分子量は7,000であった。その結果を表1に示す。
樹脂溶液(キ)を用いて樹脂膜Gを形成し、面内膜厚均一性、平坦化性、光線透過率、水蒸気透過率、絶縁性、密着性、封止性及び印刷連続性を測定した。その結果を表2に示す。
Comparative Example 1
Example 1 except that the amount of TCDC was 6.5 parts by weight (6 mol%), the amount of ETD was 93.5 parts by weight (94 mol%), and the amount of 1,5-hexadiene was 2 parts by weight. A resin solution (e) was prepared by the method described above. The hydrogenation rate of this polymer hydrogenated product was 100%, and the weight average molecular weight was 16,300. The results are shown in Table 1.
The resin film E was formed using the resin solution (e), and the in-plane film thickness uniformity, flatness, light transmittance, water vapor transmittance, insulation, adhesion, sealing properties and printing continuity were measured. . The results are shown in Table 2.
Comparative Example 2
The resin solution (f) was prepared in the same manner as in Example 1 except that TCDC was not used and the amount of ETD was 100 parts by weight (100 mol%) and the amount of 1,5-hexadiene was 3.5 parts by weight. Prepared. The hydrogenation rate of this polymer hydrogenated product was 100%, and the weight average molecular weight was 8,800. The results are shown in Table 1.
A resin film F was formed using a resin solution (f), and in-plane film thickness uniformity, flatness, light transmittance, water vapor transmittance, insulation, adhesion, sealing properties, and printing continuity were measured. . The results are shown in Table 2.
Comparative Example 3
50 parts by weight of a bisphenol A type epoxy resin [Japan Epoxy Resin Co., Ltd., Epicoat 828], 5 parts by weight of a photoacid generator [Asahi Denka Kogyo Co., Ltd., Adekaoptomer SP-170] and polytetramethylene glycol [Mitsubishi Chemical Co., Ltd., PTMG1000] 10 parts by weight using a homodisper type stirring mixer [Special Machine Chemical Co., Ltd., Homodisper L], uniformly stirring and mixing at a stirring speed of 3,000 rpm, and then having a pore size of 0.45 μm. A resin solution (ki) was prepared by filtration through a polytetrafluoroethylene filter. The weight average molecular weight of this polymer was 7,000. The results are shown in Table 1.
A resin film G was formed using a resin solution (ki), and in-plane film thickness uniformity, flatness, light transmittance, water vapor transmittance, insulation, adhesion, sealing properties, and printing continuity were measured. . The results are shown in Table 2.

比較例4
デカリン233重量部の代わりに、1,2−ジメチルシクロヘキサン(シス体、沸点130℃)233重量部を添加した以外は、実施例1と同様の方法で樹脂溶液(ク)を調製した。この重合体水素添加物の水素化率は100%、重量平均分子量は6,000であった。その結果を表1に示す。
樹脂溶液(ク)を用いて樹脂膜Hを形成し、面内膜厚均一性、平坦化性、光線透過率、水蒸気透過率、絶縁性、密着性、封止性及び印刷連続性を評価した。その結果を表2に示す。
比較例5
デカリン233重量部の代わりに、フルフリルアルコール(沸点171℃)233重量部を添加した以外は、実施例1と同様の方法で樹脂溶液(ケ)を調製した。この重合体水素添加物の水素化率は100%、重量平均分子量は6,000であった。その結果を表1に示す。
樹脂溶液(ケ)を用いて樹脂膜Iを形成しようとしたが、溶液から樹脂が析出してしまい、均一な樹脂膜を形成できなかったために、面内膜厚均一性、平坦化性、光線透過率、水蒸気透過率、絶縁性、密着性、封止性及び印刷連続性を評価することができなかった。
なお、実施例1〜4、比較例1〜2及び比較例4〜5において、脂環式オレフィンの開環重合反応の重合転化率が100%であったことを、ガスクロマトグラフ[(株)島津製作所、GC−17A]によって、残留する脂環式オレフィンのないことで確認した。
Comparative Example 4
A resin solution (C) was prepared in the same manner as in Example 1 except that 233 parts by weight of 1,2-dimethylcyclohexane (cis body, boiling point 130 ° C.) was added instead of 233 parts by weight of decalin. The hydrogenation rate of this polymer hydrogenated product was 100%, and the weight average molecular weight was 6,000. The results are shown in Table 1.
A resin film H was formed using a resin solution (K), and in-plane film thickness uniformity, flatness, light transmittance, water vapor transmittance, insulation, adhesion, sealing properties, and printing continuity were evaluated. . The results are shown in Table 2.
Comparative Example 5
A resin solution (ke) was prepared in the same manner as in Example 1 except that 233 parts by weight of furfuryl alcohol (boiling point 171 ° C.) was added instead of 233 parts by weight of decalin. The hydrogenation rate of this polymer hydrogenated product was 100%, and the weight average molecular weight was 6,000. The results are shown in Table 1.
An attempt was made to form the resin film I using the resin solution (ke), but the resin was deposited from the solution, and a uniform resin film could not be formed. It was not possible to evaluate transmittance, water vapor permeability, insulating properties, adhesion, sealing properties, and printing continuity.
In Examples 1-4, Comparative Examples 1-2, and Comparative Examples 4-5, the gas chromatograph [Shimadzu Corporation] showed that the polymerization conversion rate of the ring-opening polymerization reaction of the alicyclic olefin was 100%. It was confirmed by a manufacturing company, GC-17A] that no alicyclic olefin remained.

Figure 2006307153
Figure 2006307153

Figure 2006307153
Figure 2006307153

この結果から、重量平均分子量を制御した、特定の構造単位を有する脂環式オレフィン重合体と、沸点150℃以上の脂環式炭化水素を用いて得られたスクリーン印刷用樹脂組成物を用いると、透明性が高く、面内膜厚均一性が良好である上に、密着性が高く、低水蒸気透過性であって、絶縁性、平坦化性、封止性、印刷連続性に優れ、電子部品の製造に好適な電子部品用樹脂膜が得られることが分かる。
特定の構造単位を有していても、重量平均分子量が高すぎる脂環式オレフィン重合体を用いた比較例1では、面内膜厚均一性、平坦化性、封止性、印刷連続性が劣る。特定の構造単位を有しない脂環式オレフィン重合体を用いた比較例2では、封止性と印刷連続性が劣る。脂環式オレフィン重合体の代わりにエポキシ樹脂を用いた比較例3では、絶縁性と封止性に劣る。溶剤として沸点130℃のシス−1,2−ジメチルシクロヘキサンを用いた比較例4では、面内膜厚均一性、平坦化性、封止性、印刷連続性が劣る。溶剤としてフルフリルアルコールを用いた比較例5では、均一な樹脂膜を形成することができない。
From this result, when using a resin composition for screen printing obtained by using an alicyclic olefin polymer having a specific structural unit with a controlled weight average molecular weight and an alicyclic hydrocarbon having a boiling point of 150 ° C. or higher. High transparency, good in-plane film thickness uniformity, high adhesion, low water vapor permeability, excellent insulation, flatness, sealing, printing continuity, electronic It turns out that the resin film for electronic components suitable for manufacture of components is obtained.
Even if it has a specific structural unit, in Comparative Example 1 using an alicyclic olefin polymer whose weight average molecular weight is too high, the in-plane film thickness uniformity, flatness, sealing property, and printing continuity are Inferior. In Comparative Example 2 using an alicyclic olefin polymer having no specific structural unit, sealing properties and printing continuity are inferior. In the comparative example 3 which used the epoxy resin instead of the alicyclic olefin polymer, it is inferior to insulation and sealing performance. In Comparative Example 4 using cis-1,2-dimethylcyclohexane having a boiling point of 130 ° C. as a solvent, in-plane film thickness uniformity, planarization, sealing, and printing continuity are inferior. In Comparative Example 5 using furfuryl alcohol as a solvent, a uniform resin film cannot be formed.

(封止された有機エレクトロルミネッセンス素子の形成)
表面にパターニングされたクロム電極層を有する25mm×75mm×1.1mmサイズのガラス板上に、厚さ1.0μmの遮光膜を介して、膜厚3.5μmの逆テーパ型樹脂隔壁層が設けられた有機エレクトロルミネッセンス素子用基板を用い、蒸着装置[日本真空技術(株)]の基板ホルダーに固定すると共に、モリブデン製抵抗加熱ボートにN,N'−ビス(3−メチルフェニル)−N,N'−ジフェニル−[1,1'−ビフェニル]−4,4'−ジアミン(以下、TPDと略記する。)200mgを入れ、また別のモリブデン製抵抗加熱ボートに4,4'−ビス(2,2'−ジフェニルビニル)ビフェニル(以下、DPVBiと略記する。)200mgを入れたのち、真空槽を1×10-4Paまで減圧した。
次いで、TPD入りのボートを215〜220℃まで加熱し、TPDを蒸発速度0.1〜0.3nm/秒で蒸着させて、膜厚60nmの正孔注入輸送層を形成した。この際の基板温度は室温であった。これを真空槽より取り出すことなく、DPVBi入りのボートを240℃まで加熱し、DPVBiを蒸着速度0.1〜0.3nm/秒で上記正孔注入輸送層上に蒸着させ、膜厚40nmの発光層を形成した。この際の基板温度も室温であった。これを真空槽より取り出し、上記発光層の上にステンレス鋼製のマスクを設置し、再び基板ホルダーに固定したのち、モリブデン製ボートにトリス(8−キノリノール)アルミニウム(以下、Alq3と略記する。)200mgを入れ、また別のモリブデン製ボートにマグネシウムリボン1gを入れ、さらにタングステン製バスケットに銀ワイヤー500mgを入れて、これらのボートを真空槽に装着した。次に、真空槽を1×10-4Paまで減圧してから、Alq3入りのボートを230℃まで加熱し、Alq3を蒸着速度0.01〜0.03nm/秒で上記発光層上に蒸着させて、膜厚20nmの電子注入層を形成した。さらに、銀を蒸着速度0.01nm/秒で上記電子注入層上に蒸着させると同時に、マグネシウムを蒸着速度0.14nm/秒で上記電子注入層上に蒸着させ、マグネシウムと銀との混合金属からなる膜厚10nmの電子注入金属層を形成した。最後に、これを別の真空槽に移し、同じマスクを通して、DCスパッタリングにより、電子注入金属層上に、膜厚200nmのIn−Zn−O系の非晶質透明導電層を形成した。なお、DCスパッタリング条件は、スパッタガスとしてアルゴンと酸素の混合ガス(体積比1000:5)を用い、圧力0.3Pa、DC出力40Wであった。このようにして、電子注入金属層及び非晶質透明導電層から構成された透明電極層(陰極)を形成することにより、有機エレクトロルミネッセンス素子の発光体部を形成した。
上記で得られたガラス板の、有機エレクトロルミネッセンス素子の発光体部のある面に、樹脂溶液(ア)〜(ケ)を面内膜厚均一性と同様の方法で厚さ3.5μmにて塗布し、80℃、30分間ホットプレート上で加熱し、透明電極層(陰極)上に、厚さ3μmの樹脂膜を形成した。このようにして、封止された有機エレクトロルミネッセンス素子を作製した。この素子を用いて封止性を評価した。
(Formation of sealed organic electroluminescence device)
A reverse taper type resin partition layer having a film thickness of 3.5 μm is provided on a glass plate having a chromium electrode layer patterned on the surface, with a light shielding film having a thickness of 1.0 μm on a glass plate having a size of 25 mm × 75 mm × 1.1 mm. The organic electroluminescence element substrate thus obtained was fixed to a substrate holder of a vapor deposition apparatus [Nippon Vacuum Technology Co., Ltd.], and N, N′-bis (3-methylphenyl) -N, 200 mg of N′-diphenyl- [1,1′-biphenyl] -4,4′-diamine (hereinafter abbreviated as “TPD”) was added, and 4,4′-bis (2 , 2′-diphenylvinyl) biphenyl (hereinafter abbreviated as DPVBi) 200 mg, and the vacuum chamber was depressurized to 1 × 10 −4 Pa.
Next, the boat containing TPD was heated to 215 to 220 ° C., and TPD was evaporated at an evaporation rate of 0.1 to 0.3 nm / second to form a hole injection transport layer having a thickness of 60 nm. The substrate temperature at this time was room temperature. Without removing this from the vacuum chamber, the DPVBi-containing boat is heated to 240 ° C., and DPVBi is vapor-deposited on the hole injecting and transporting layer at a vapor deposition rate of 0.1 to 0.3 nm / second to emit light with a film thickness of 40 nm. A layer was formed. The substrate temperature at this time was also room temperature. This was taken out from the vacuum chamber, a stainless steel mask was placed on the light emitting layer, and fixed to the substrate holder again. Then, tris (8-quinolinol) aluminum (hereinafter abbreviated as Alq 3 ) was placed on the molybdenum boat. ) 200 mg was put, another 1 g of magnesium ribbon was put in a boat made of molybdenum, 500 mg of silver wire was put in a tungsten basket, and these boats were mounted in a vacuum chamber. Next, from the pressure of the vacuum vessel was reduced to 1 × 10 -4 Pa, the boat Alq 3 containing heated to 230 ° C., the light emitting layer on the at the Alq 3 vapor deposition rate 0.01~0.03Nm / sec Evaporation was performed to form an electron injection layer having a thickness of 20 nm. Further, silver is deposited on the electron injection layer at a deposition rate of 0.01 nm / second, and at the same time, magnesium is deposited on the electron injection layer at a deposition rate of 0.14 nm / second, and a mixed metal of magnesium and silver is used. An electron injection metal layer having a thickness of 10 nm was formed. Finally, this was transferred to another vacuum chamber, and an In—Zn—O-based amorphous transparent conductive layer having a thickness of 200 nm was formed on the electron-injecting metal layer by DC sputtering through the same mask. The DC sputtering conditions were a mixed gas of argon and oxygen (volume ratio 1000: 5) as a sputtering gas, a pressure of 0.3 Pa, and a DC output of 40 W. Thus, the light-emitting part of the organic electroluminescence element was formed by forming the transparent electrode layer (cathode) composed of the electron injection metal layer and the amorphous transparent conductive layer.
Resin solutions (A) to (K) are applied to the surface of the glass plate obtained above with the light emitting part of the organic electroluminescence element at a thickness of 3.5 μm in the same manner as the in-plane film thickness uniformity. This was applied and heated on a hot plate at 80 ° C. for 30 minutes to form a resin film having a thickness of 3 μm on the transparent electrode layer (cathode). In this manner, a sealed organic electroluminescence element was produced. Sealability was evaluated using this element.

本発明のスクリーン印刷用樹脂組成物は印刷連続性が良好であり、該組成物から得られる樹脂膜は、面内膜厚均一性が良好である上に、透明性や密着性が高く、低水蒸気透過性であって、平坦化性に優れ、絶縁性が高く、封止性に優れた樹脂膜であり、例えば、集積回路素子、表示素子、固体撮像素子などの電子部品の製造における封止膜、絶縁膜、平坦化膜などの形成に好適に用いることができる。   The resin composition for screen printing of the present invention has good printing continuity, and the resin film obtained from the composition has good in-plane film thickness uniformity, high transparency and adhesion, and low It is a water vapor permeable resin film with excellent flatness, high insulation, and excellent sealing properties. For example, sealing in the manufacture of electronic components such as integrated circuit elements, display elements, and solid-state imaging elements. It can be suitably used for forming a film, an insulating film, a planarizing film, and the like.

Claims (7)

一般式(1)又は一般式(2)で表される構造単位(a)と、一般式(3)又は一般式(4)で表される構造単位(b)とを有し、重量平均分子量が3,000以上10,000未満である脂環式オレフィン重合体と、脂肪族炭化水素化合物とを含有することを特徴とするスクリーン印刷用樹脂組成物。
Figure 2006307153
(ただし、式中、R1とR2はそれぞれ独立して水素原子又は炭素数1〜10の炭化水素基であり、R3とR4はそれぞれ独立して水素原子、炭素数1〜10の炭化水素基又は極性基であって、R3とR4のうちいずれか一方のみは極性基であり、nは0〜2の整数である。)
Figure 2006307153
(ただし、式中、R5〜R8はそれぞれ独立して水素原子又は炭素数1〜10の炭化水素基であり、mは0〜2の整数である。)
It has a structural unit (a) represented by general formula (1) or general formula (2) and a structural unit (b) represented by general formula (3) or general formula (4), and has a weight average molecular weight. A resin composition for screen printing, comprising: an alicyclic olefin polymer having a molecular weight of 3,000 or more and less than 10,000; and an aliphatic hydrocarbon compound.
Figure 2006307153
(In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and R 3 and R 4 are each independently a hydrogen atom, having 1 to 10 carbon atoms. (It is a hydrocarbon group or a polar group, and only one of R 3 and R 4 is a polar group, and n is an integer of 0 to 2.)
Figure 2006307153
(However, in formula, R < 5 > -R < 8 > is a hydrogen atom or a C1-C10 hydrocarbon group each independently, and m is an integer of 0-2.)
脂肪族炭化水素化合物が、沸点150℃以上の脂環式炭化水素である請求項1に記載のスクリーン印刷用樹脂組成物。   The resin composition for screen printing according to claim 1, wherein the aliphatic hydrocarbon compound is an alicyclic hydrocarbon having a boiling point of 150 ° C. or higher. 脂環式オレフィン重合体における構造単位(a)と構造単位(b)との合計に対する構造単位(a)の割合が、0.005〜40モル%である請求項1又は請求項2に記載のスクリーン印刷用樹脂組成物。   The ratio of the structural unit (a) to the total of the structural unit (a) and the structural unit (b) in the alicyclic olefin polymer is 0.005 to 40 mol%. Resin composition for screen printing. 脂環式オレフィン重合体における構造単位(a)と構造単位(b)との合計に対する一般式(2)で表される構造単位と一般式(4)で表される構造単位との合計の割合が、90モル%以上である請求項1〜3のいずれか1項に記載のスクリーン印刷用樹脂組成物。   Ratio of the total of the structural unit represented by the general formula (2) and the structural unit represented by the general formula (4) to the total of the structural unit (a) and the structural unit (b) in the alicyclic olefin polymer. The resin composition for screen printing according to any one of claims 1 to 3, wherein is 90 mol% or more. 固形分濃度が1〜70重量%である請求項1〜4のいずれか1項に記載のスクリーン印刷用樹脂組成物。   Solid content concentration is 1 to 70 weight%, The resin composition for screen printing of any one of Claims 1-4. 25℃における粘度が5〜1,000,000mPa・sである請求項1〜5のいずれか1項に記載のスクリーン印刷用樹脂組成物。   The resin composition for screen printing according to any one of claims 1 to 5, which has a viscosity at 25 ° C of 5 to 1,000,000 mPa · s. 請求項1〜6のいずれか1項に記載のスクリーン印刷用塗料組成物を、スクリーン印刷法により基板に塗布する工程を有することを特徴とする樹脂膜の形成方法。   A method for forming a resin film, comprising a step of applying the coating composition for screen printing according to any one of claims 1 to 6 to a substrate by a screen printing method.
JP2006010164A 2005-03-31 2006-01-18 Resin composition for screen printing and method for forming resin film Pending JP2006307153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010164A JP2006307153A (en) 2005-03-31 2006-01-18 Resin composition for screen printing and method for forming resin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005103849 2005-03-31
JP2006010164A JP2006307153A (en) 2005-03-31 2006-01-18 Resin composition for screen printing and method for forming resin film

Publications (1)

Publication Number Publication Date
JP2006307153A true JP2006307153A (en) 2006-11-09

Family

ID=37474392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010164A Pending JP2006307153A (en) 2005-03-31 2006-01-18 Resin composition for screen printing and method for forming resin film

Country Status (1)

Country Link
JP (1) JP2006307153A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098996A1 (en) * 2008-02-06 2009-08-13 Zeon Corporation Thin film device, fabrication method for same, and electronic component
JP2013119598A (en) * 2011-12-08 2013-06-17 National Printing Bureau Ultraviolet ray-curing photoluminescent ink composition for screen printing
JP2013127970A (en) * 2009-12-24 2013-06-27 Mitsubishi Plastics Inc Sealing member of display element of light emitting device, and light emitting device manufactured by using the sealing member
CN107017355A (en) * 2015-12-03 2017-08-04 双叶电子工业株式会社 Sealing structure, organic EL display and sensor
WO2021060061A1 (en) * 2019-09-27 2021-04-01 日本ゼオン株式会社 Polymer-containing material and method for producing same, and film
CN115803397A (en) * 2020-08-14 2023-03-14 株式会社Lg化学 Printing plate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098996A1 (en) * 2008-02-06 2009-08-13 Zeon Corporation Thin film device, fabrication method for same, and electronic component
JPWO2009098996A1 (en) * 2008-02-06 2011-05-26 日本ゼオン株式会社 Thin film device, manufacturing method thereof, and electronic component
JP2013127970A (en) * 2009-12-24 2013-06-27 Mitsubishi Plastics Inc Sealing member of display element of light emitting device, and light emitting device manufactured by using the sealing member
JP2013119598A (en) * 2011-12-08 2013-06-17 National Printing Bureau Ultraviolet ray-curing photoluminescent ink composition for screen printing
CN107017355A (en) * 2015-12-03 2017-08-04 双叶电子工业株式会社 Sealing structure, organic EL display and sensor
WO2021060061A1 (en) * 2019-09-27 2021-04-01 日本ゼオン株式会社 Polymer-containing material and method for producing same, and film
CN114174373A (en) * 2019-09-27 2022-03-11 日本瑞翁株式会社 Polymer-containing substance, method for producing same, and film
CN115803397A (en) * 2020-08-14 2023-03-14 株式会社Lg化学 Printing plate

Similar Documents

Publication Publication Date Title
KR101706796B1 (en) Polymer, hydrogen additive, resin composition, resin film, and electronic component
JP2006307153A (en) Resin composition for screen printing and method for forming resin film
KR101008801B1 (en) Radiation-sensitive resin composition
JP6561754B2 (en) Method for producing substrate having lyophilic part and liquid repellent part, composition and method for forming conductive film
TWI417658B (en) Semiconductor element substrate
WO2005098539A1 (en) Radiation-sensitive composition, multilayer body and method for producing same, and electronic component
JPWO2005073310A1 (en) Resin composition, method for producing the same, and resin film
KR102329361B1 (en) Composition for forming interlayer insulating film, interlayer insulating film, method for forming interlayer insulating film pattern, and device
TWI588175B (en) Method for producing ring-opening metathesis polymer oxygen compound and resin composition
JP5401835B2 (en) Positive-type radiation-sensitive resin composition, partition and organic electroluminescence device
JP4206752B2 (en) Radiation sensitive resin composition
JP3965976B2 (en) Radiation sensitive resin composition, resin pattern forming method, resin pattern and use thereof
JP2006307154A (en) Resin film comprising alicyclic olefin polymer
KR20090125044A (en) Active matrix substrate, method for producing the same, and flat display
JP2012214610A (en) Curable resin composition, film, laminate, and cured product
TW200302399A (en) Irradiation-sensitive resin composition and pattern forming process
WO2004029720A1 (en) Radiation-sensitive resin composition, patterned resin film, method for formation of the film, and use thereof
JP4876597B2 (en) Method for preparing radiation-sensitive resin composition
JP2007197623A (en) Film comprising addition polymer of norbornene compound
TWI427096B (en) A laminated body, an active matrix substrate, and a planar display device having the substrate
JP2010070616A (en) Resin composition, resin film, and electronic component
JP4228858B2 (en) Process for producing hydrogenated cycloaliphatic olefin polymer and use thereof
CN110998442A (en) Positive radiation-sensitive resin composition
JP2005274845A (en) Radiation-sensitive composition and laminate using same
WO2022080195A1 (en) Radiation-sensitive resin composition