JP2006302920A - Chip type solid electrolytic capacitor - Google Patents

Chip type solid electrolytic capacitor Download PDF

Info

Publication number
JP2006302920A
JP2006302920A JP2005117771A JP2005117771A JP2006302920A JP 2006302920 A JP2006302920 A JP 2006302920A JP 2005117771 A JP2005117771 A JP 2005117771A JP 2005117771 A JP2005117771 A JP 2005117771A JP 2006302920 A JP2006302920 A JP 2006302920A
Authority
JP
Japan
Prior art keywords
lead wire
anode lead
anode
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005117771A
Other languages
Japanese (ja)
Other versions
JP4424676B2 (en
Inventor
Fumio Kida
文夫 木田
Kazumitsu Takashima
和光 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Toyama Ltd
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Toyama Ltd, NEC Tokin Corp filed Critical NEC Tokin Toyama Ltd
Priority to JP2005117771A priority Critical patent/JP4424676B2/en
Publication of JP2006302920A publication Critical patent/JP2006302920A/en
Application granted granted Critical
Publication of JP4424676B2 publication Critical patent/JP4424676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/14Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chip type solid electrolytic capacitor that reduces ESR and has high welding connection reliability between a positive electrode lead wire and a positive electrode terminal. <P>SOLUTION: In the chip type solid electrolytic capacitor, the positive electrode lead wires 12a, 12b are extracted from one end, capacitor elements 11a, 11b in which a negative electrode layer is formed on an outer surface that is different from extraction sections of the positive electrode lead wires 12a, 12b are placed side by side in a direction in parallel with a packaging surface, a planar positive electrode terminal 14 is welded and connected to the positive electrode lead wires 12a, 12b, and a planar negative electrode terminal is connected to the negative electrode layer. In the chip type solid electrolytic capacitor, the tip at the side of the positive electrode lead wire in the positive electrode terminal 14 has welded surfaces 17a, 17b separated by a cutout 16, the cutout 16 enters a position that is deeper than the tip of the positive electrode lead wires 12a, 12b, and the positive electrode lead wires 12a, 12b are welded and connected to the welded surfaces 17a, 17b, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は複数のコンデンサ素子を収容したチップ型固体電解コンデンサに関する。   The present invention relates to a chip-type solid electrolytic capacitor containing a plurality of capacitor elements.

従来から弁作用金属を用いた固体電解コンデンサは、小型で静電容量が大きく、周波数特性に優れ、CPUの電源回路などに広く使用されている。また、この周波数特性をさらに改善すべく、二酸化マンガンを陰極層に用いたものに対して、導電性高分子を陰極層に用いて、等価直列抵抗(以下、ESRとも記す)を低減したものが用いられている。しかし、CPUの動作周波数の高周波数化に伴い、その電源回路のノイズ特性の改善要求や、リップル許容電流の大電流化要求が増加することにより、さらに低いESR特性を持つコンデンサが要求されるようになった。同時に、小型、大容量かつ薄型の要求を満たすコンデンサが必要となってきた。   Conventionally, a solid electrolytic capacitor using a valve metal is small, has a large capacitance, is excellent in frequency characteristics, and is widely used in a power supply circuit of a CPU. In addition, in order to further improve the frequency characteristics, the equivalent series resistance (hereinafter also referred to as ESR) is reduced by using a conductive polymer for the cathode layer compared to the one using manganese dioxide for the cathode layer. It is used. However, as the operating frequency of the CPU is increased, the demand for improving the noise characteristics of the power supply circuit and the demand for increasing the allowable current of the ripple current increase, so that a capacitor having a lower ESR characteristic is required. Became. At the same time, capacitors that satisfy the requirements for small size, large capacity, and thinness have become necessary.

それに対処するために、1つのパッケージに複数個のコンデンサ素子を収容して並列接続すると、全体の静電容量はその個数倍となり、ESRはその個数分の1となる。そのように複数個のコンデンサ素子を1つのパッケージに収容する構造では、使用時に要求される特性値と外形形状によっては、基板実装面と平行な方向にコンデンサ素子を併置するのが有利な場合がある。   In order to cope with this, when a plurality of capacitor elements are accommodated in one package and connected in parallel, the total electrostatic capacity is multiplied by the number, and the ESR is reduced by one. In such a structure in which a plurality of capacitor elements are accommodated in one package, it may be advantageous to place the capacitor elements in a direction parallel to the board mounting surface depending on the characteristic value and outer shape required at the time of use. is there.

特許文献1に開示された技術は、2つのコンデンサ素子を1つのパッケージに収容して、それぞれのコンデンサ素子に独立して端子を持たせた例である。図8は、その従来例1のチップ型固体電解コンデンサを示す斜視図であり、外装樹脂の一部を除去して描かれている。101は角柱状のコンデンサ素子、102は陽極導出線、103は陰極リード部材、104は陽極リード部材、105は外装樹脂、108はコンデンサ素子間に介在させる絶縁性の樹脂である。   The technique disclosed in Patent Document 1 is an example in which two capacitor elements are accommodated in one package and each capacitor element has a terminal independently. FIG. 8 is a perspective view showing the chip-type solid electrolytic capacitor of Conventional Example 1, and is drawn with a part of the exterior resin removed. 101 is a prismatic capacitor element, 102 is an anode lead wire, 103 is a cathode lead member, 104 is an anode lead member, 105 is an exterior resin, and 108 is an insulating resin interposed between the capacitor elements.

他の例を図9に基づいて説明する。図9は従来例2のチップ型固体電解コンデンサを外装樹脂を省略して示す斜視図であり、201はコンデンサ素子、202は陽極リード線、203は陰極端子、204は陽極端子である。この例はすでに製造販売されているものであり、3個のコンデンサ素子を基板実装面に平行な方向に併置して、パッケージ内部で並列接続した例である。   Another example will be described with reference to FIG. FIG. 9 is a perspective view showing the chip-type solid electrolytic capacitor of Conventional Example 2 with the exterior resin omitted, wherein 201 is a capacitor element, 202 is an anode lead wire, 203 is a cathode terminal, and 204 is an anode terminal. This example is already manufactured and sold, and is an example in which three capacitor elements are juxtaposed in a direction parallel to the board mounting surface and connected in parallel inside the package.

特開平10−172865号公報JP-A-10-172865

従来例1のチップ型固体電解コンデンサは、2つのコンデンサ素子を並列接続して使用するか、また独立に用いるか等の選択ができる点では有用であるが、並列接続使用を前提とした場合には、ESRの低減等に問題がある。たとえば、基板上のランドの大きさが、陽極側と陰極側のそれぞれで、端子の2個分をカバーしなければ、ESRが低くならない等である。   The chip-type solid electrolytic capacitor of Conventional Example 1 is useful in that it is possible to select whether to use two capacitor elements connected in parallel or independently. Has a problem in reducing ESR. For example, if the size of the land on the substrate does not cover two terminals on each of the anode side and the cathode side, the ESR will not be lowered.

他方、従来例2の場合には、実際の製作では、近接した距離で2本の陽極リード線を溶接する必要があり、互いの溶接強度にばらつきが発生し易い。すなわち、2つの溶接位置が近いときには、一方の陽極リード線を溶接するための1回目の溶接によって生じた溶接痕(ナゲット)により、他方の陽極リード線を溶接するための2回目の溶接が影響を受けるからである。また1回目の溶接によって生じた陽極端子の変形、ねじれが2回目の溶接時に影響をおよぼすからである。   On the other hand, in the case of Conventional Example 2, in actual production, it is necessary to weld two anode lead wires at a close distance, and the welding strength tends to vary. That is, when the two welding positions are close, the second welding for welding the other anode lead wire is affected by the welding mark (nugget) generated by the first welding for welding one anode lead wire. Because it receives. This is because the deformation and twisting of the anode terminal caused by the first welding affects the second welding.

この状況にあって、本発明の課題は、ESRが低減され、陽極リード線と陽極端子の溶接接続の信頼性の高いチップ型固体電解コンデンサを提供することにある。   In this situation, an object of the present invention is to provide a chip-type solid electrolytic capacitor with reduced ESR and high reliability in welding connection between an anode lead wire and an anode terminal.

本発明のチップ型固体電解コンデンサは、一端から陽極リード線が引き出され、前記陽極リード線の引き出し部とは異なる外面には陰極層が形成されたコンデンサ素子の複数個を実装面に平行な方向に併置し、前記陽極リード線には板状の陽極端子が溶接接続され、前記陰極層には板状の陰極端子が接続されたチップ型固体電解コンデンサにおいて、前記陽極端子での陽極リード線側の先端部は、切り欠き部によって分離された溶接面を有し、前記切り欠き部は前記陽極リード線の先端位置よりも深い位置まで入り込み、前記溶接面の各々には1つの陽極リード線が接続されたことを特徴とする。   In the chip-type solid electrolytic capacitor of the present invention, an anode lead wire is drawn from one end, and a plurality of capacitor elements having a cathode layer formed on the outer surface different from the lead portion of the anode lead wire are parallel to the mounting surface. In a chip-type solid electrolytic capacitor in which a plate-like anode terminal is connected to the anode lead wire by welding and a plate-like cathode terminal is connected to the cathode layer, the anode lead wire side at the anode terminal The front end of each has a weld surface separated by a notch, the notch enters a position deeper than the front end position of the anode lead wire, and one anode lead wire is placed on each of the weld surfaces. It is connected.

また、本発明のチップ型固体電解コンデンサは、一端から陽極リード線が引き出された2個のコンデンサ素子を備え、前記陽極端子での陽極リード線側の先端部には、前記陽極リード線と同方向に伸びる1つの切り欠き部が形成され、前記切り欠き部の両側は対称に形成されるとよい。   The chip-type solid electrolytic capacitor of the present invention includes two capacitor elements each having an anode lead wire drawn out from one end, and the anode lead wire side tip of the anode terminal is the same as the anode lead wire. One notch extending in the direction is formed, and both sides of the notch are preferably formed symmetrically.

また、本発明のチップ型固体電解コンデンサは、一端から陽極リード線が引き出された3個のコンデンサ素子を備え、前記陽極端子での陽極リード線側の先端部には、前記陽極リード線と同方向に伸びる2つの切り欠き部で分離された3つの溶接面が形成され、前記3つの溶接面の幅は略等しくするとよい。   The chip-type solid electrolytic capacitor according to the present invention includes three capacitor elements from which an anode lead wire is drawn out from one end, and the tip of the anode terminal on the anode lead wire side is the same as the anode lead wire. Three weld surfaces separated by two notches extending in the direction are formed, and the widths of the three weld surfaces may be substantially equal.

また、本発明のチップ型固体電解コンデンサ、両方向に陽極リード線が引き出され、前記陽極リード線の引き出し部とは異なる外面には陰極層が形成されたコンデンサ素子の複数個を実装面に平行な方向に併置し並列接続してなるチップ型固体電解コンデンサにおいて、前記陽極リード線のうち同方向に引き出された陽極リード線は1つの板状の陽極端子に溶接接続され、前記陽極端子での陽極リード線側の先端部は、切り欠き部によって分離された溶接面を有し、前記切り欠き部は前記陽極リード線の先端位置よりも深い位置まで入り込み、前記溶接面の各々には1つの陽極リード線が接続されたことを特徴とする。   Further, the chip-type solid electrolytic capacitor of the present invention has a plurality of capacitor elements in which anode lead wires are drawn out in both directions and a cathode layer is formed on the outer surface different from the lead-out portion of the anode lead wires. In a chip-type solid electrolytic capacitor that is juxtaposed in parallel and connected in parallel, the anode lead wire drawn out in the same direction among the anode lead wires is welded to one plate-like anode terminal, and the anode at the anode terminal The leading end on the lead wire side has a weld surface separated by a notch, and the notch enters a position deeper than the tip position of the anode lead wire, and each welding surface has one anode. A lead wire is connected.

また、本発明のチップ型固体電解コンデンサは、両方向に陽極リード線が引き出された2個のコンデンサ素子を備え、前記陽極端子での陽極リード線側の先端部には、前記陽極リード線と同方向に伸びる1つの切り欠き部が形成され、前記切り欠き部の両側は対称に形成されるとよい。   The chip-type solid electrolytic capacitor of the present invention includes two capacitor elements with anode lead wires drawn out in both directions, and the anode lead wire side tip portion of the anode terminal is the same as the anode lead wire. One notch extending in the direction is formed, and both sides of the notch are preferably formed symmetrically.

そして、本発明のチップ型固体電解コンデンサは、両方向に陽極リード線が引き出された3個のコンデンサ素子を備え、前記陽極端子での陽極リード線側の先端部には、前記陽極リード線と同方向に伸びる2つの切り欠き部で分離された3つの溶接面が形成され、前記3つの溶接面の幅は略等しくするとよい。   The chip-type solid electrolytic capacitor of the present invention includes three capacitor elements with anode lead wires drawn out in both directions, and the anode lead wire side tip portion of the anode terminal is the same as the anode lead wire. Three weld surfaces separated by two notches extending in the direction are formed, and the widths of the three weld surfaces may be substantially equal.

本発明では、陽極端子の先端部に切り込み部によって分離された溶接面を設け、それぞれの溶接面に1つの陽極リード線を溶接することによって、隣接する溶接部が影響しあうことを抑制した。すなわち、近接した距離で2つの陽極リード線を溶接した場合でも溶接時の溶け込み部分が影響しあうことを防止し、さらに、前の溶接によって生じた陽極端子先端部の変形、ねじれ等が隣接する溶接面に及ばないようにする。その結果、ESRの低減が可能になり、溶接接続の信頼性を高めることができる。   In this invention, the welding surface isolate | separated by the notch | incision part was provided in the front-end | tip part of the anode terminal, and the welding part which adjoined was suppressed by welding one anode lead wire to each welding surface. That is, even when two anode lead wires are welded at close distances, the penetration portion at the time of welding is prevented from affecting each other, and the deformation, twist, etc. of the anode terminal tip caused by the previous welding are adjacent to each other. Avoid reaching the weld surface. As a result, the ESR can be reduced, and the reliability of the weld connection can be improved.

すなわち、本発明によれば、ESRが低減され、陽極リード線と陽極端子の溶接接続の信頼性が高いチップ型固体電解コンデンサを提供できる。   That is, according to the present invention, it is possible to provide a chip-type solid electrolytic capacitor with reduced ESR and high reliability in welding connection between the anode lead wire and the anode terminal.

次に、本発明の実施の形態を図に基づいて説明する。図1は本発明の実施の形態1のチップ型固体電解コンデンサの端子溶接構造を示す斜視図である。11aと11bは基板実装面に平行な方向に併置された角形のコンデンサ素子、12aと12bは陽極リード線、14は成形された板状の陽極端子、16は切り欠き部、17aと17bは溶接面、18は直立部、19は実装面部である。同図のように、本実施の形態1の陽極端子14は、切り欠き部16によって隔てられた溶接面17a,17bを有する先端部と、直立部18と、実装面部19とからなる。切り欠き部16の両側で溶接面17aと溶接面17bとは対称な形状にして、コンデンサ素子間でのESRのばらつきが起きにくい形状とした。   Next, embodiments of the present invention will be described with reference to the drawings. 1 is a perspective view showing a terminal welding structure of a chip-type solid electrolytic capacitor according to Embodiment 1 of the present invention. 11a and 11b are rectangular capacitor elements juxtaposed in a direction parallel to the substrate mounting surface, 12a and 12b are anode lead wires, 14 is a molded plate-like anode terminal, 16 is a notch, and 17a and 17b are welded. The surface 18 is an upright portion, and 19 is a mounting surface portion. As shown in the figure, the anode terminal 14 according to the first embodiment includes a tip portion having welding surfaces 17 a and 17 b separated by a notch portion 16, an upright portion 18, and a mounting surface portion 19. The welded surface 17a and the welded surface 17b are symmetrical on both sides of the notch 16 so that variations in ESR between capacitor elements do not easily occur.

このとき、陽極リード線の先端位置よりも深い位置まで、切り込み部16が入り込むようにする必要がある。こうすることで、抵抗溶接のときの溶融によって生じる溶接痕が、隣どうしで影響しあうことを防止できる。また、1回目の溶接によって、溶接部付近の陽極端子には、変形やねじれが生じるが、その影響を隣の溶接面に及ぼさないようにすることができる。   At this time, it is necessary to make the cut portion 16 enter a position deeper than the tip position of the anode lead wire. By doing so, it is possible to prevent welding marks generated by melting during resistance welding from affecting each other. Moreover, although the deformation | transformation and twist generate | occur | produce in the anode terminal of the welding part vicinity by the 1st welding, it can be made not to exert the influence on the adjacent welding surface.

また、図2に斜視図で示した陽極端子は切り欠き部26が直立部28にまで、入り込んだ形状を有する。隣接する溶接部間の影響を考察すると、互いの干渉は溶接痕の生成や陽極リード線と陽極端子の熱膨張係数の違いによるものと推定できる。したがって、熱膨張係数の違いによる変形やねじれに対処するためには、図2のような、深い切り込みが有効である。   Further, the anode terminal shown in a perspective view in FIG. 2 has a shape in which the notch portion 26 is inserted into the upright portion 28. Considering the influence between adjacent welds, it can be presumed that the mutual interference is due to the generation of welding marks and the difference in thermal expansion coefficient between the anode lead wire and the anode terminal. Therefore, a deep cut as shown in FIG. 2 is effective in dealing with deformation and twist due to a difference in thermal expansion coefficient.

図3は本実施の形態1のチップ型固体電解コンデンサでの陽極端子および陰極端子のコンデンサ素子との接続構造を示す斜視図であり、リードフレームを曲げ加工してなる陰極端子13は導電性接着剤を介してコンデンサ素子11a,11bの陰極層と接続される。   FIG. 3 is a perspective view showing a connection structure between the anode terminal and the cathode terminal capacitor element in the chip-type solid electrolytic capacitor of Embodiment 1, and the cathode terminal 13 formed by bending the lead frame is electrically conductively bonded. It connects with the cathode layer of capacitor | condenser element 11a, 11b through an agent.

ここで、本実施の形態1のチップ型固体電解コンデンサの作製方法について、補足する。コンデンサ素子11a,11bはタンタル粉末にタンタルの陽極リード線を引き出し部を残して埋め込み、加圧成形後、焼成し、さらに陽極酸化により酸化皮膜を形成し、その上に陰極層を形成して作製する。次に、図3に示した陽極および陰端子に対応する端子形成部を作製したリードフレーム上にコンデンサ素子11a,11bを裁置し、陰極側は導電性接着剤により接続し、陽極側は抵抗溶接によって溶接する。その後、外装樹脂で、モールド成形し、リードフレームから切断分離して本発明のチップ型固体電解コンデンサを得る。   Here, it supplements about the manufacturing method of the chip-type solid electrolytic capacitor of this Embodiment 1. FIG. Capacitor elements 11a and 11b are prepared by embedding a tantalum anode lead wire in a tantalum powder leaving a lead portion, followed by pressure molding, firing, forming an oxide film by anodic oxidation, and forming a cathode layer thereon. To do. Next, the capacitor elements 11a and 11b are placed on the lead frame on which the terminal forming portions corresponding to the anode and the negative terminal shown in FIG. 3 are manufactured, the cathode side is connected by a conductive adhesive, and the anode side is a resistance. Weld by welding. Thereafter, it is molded with an exterior resin and cut and separated from the lead frame to obtain the chip-type solid electrolytic capacitor of the present invention.

次に、3個のコンデンサ素子を併置して並列接続して、1つのパッケージに収容した実施の形態を説明する。図4は本発明の実施の形態2のチップ型固体電解コンデンサを示し、図4(a)はそこで用いる陽極端子の斜視図であり、図4(b)は全体の外観を下方から示す斜視図である。図4(a)において、49は実装面部、48は直立部、47a,47b,47cは溶接面、46a,46bは切り欠き部である。ここで、溶接面47a,47b,47cの幅は略等しく、また、切り欠き部46a,46bは直立部48まで入り込んでいる。   Next, an embodiment in which three capacitor elements are juxtaposed and connected in parallel will be described. 4 shows a chip-type solid electrolytic capacitor according to a second embodiment of the present invention, FIG. 4 (a) is a perspective view of an anode terminal used therein, and FIG. 4 (b) is a perspective view showing the overall appearance from below. It is. In FIG. 4A, 49 is a mounting surface portion, 48 is an upright portion, 47a, 47b, and 47c are welding surfaces, and 46a and 46b are notched portions. Here, the widths of the welding surfaces 47a, 47b, and 47c are substantially equal, and the notches 46a and 46b enter the upright portion 48.

その作製方法は実施の形態1と同様であり、陰極端子43についても、実施の形態1の陰極端子13(図3参照)と同形状のものを用いる。こうして得られるチップ型固体電解コンデンサの外形形状は図4(b)のようであり、陽極端子の直立部48および実装面部49ならびに陰極端子43のそれぞれ一部を残して外装樹脂45でモールド被覆している。   The manufacturing method is the same as that of the first embodiment, and the cathode terminal 43 having the same shape as the cathode terminal 13 (see FIG. 3) of the first embodiment is used. The external shape of the chip-type solid electrolytic capacitor thus obtained is as shown in FIG. 4B, and is mold-coated with the exterior resin 45 while leaving part of the upright portion 48, the mounting surface portion 49, and the cathode terminal 43 of the anode terminal. ing.

本実施の形態2では近接する溶接部が3箇所となるので、溶接部間の干渉および陽極端子先端部の変形は起きやすい。したがって、切り欠き部46a,46bの切り込み深さを大きくするなどの工夫が必要である。特に溶接面47bは両側からの影響を受けるので、他の溶接面47a,47cよりは条件が厳しい。しかし、ESRの観点からは、溶接面47a,47b,47cの幅は略等しくするのがよい。   In the second embodiment, since there are three adjacent welds, interference between welds and deformation of the tip of the anode terminal are likely to occur. Therefore, it is necessary to devise such as increasing the cut depth of the notches 46a and 46b. In particular, since the welding surface 47b is affected from both sides, the conditions are stricter than those of the other welding surfaces 47a and 47c. However, from the viewpoint of ESR, the widths of the welding surfaces 47a, 47b, and 47c are preferably substantially equal.

次に、実施の形態3のチップ型固体電解コンデンサを説明する。本実施の形態のチップ型固体電解コンデンサは両方向に陽極リード線が引き出されたコンデンサ素子を並列接続して用いる3端子タイプのチップ型固体電解コンデンサであり、伝送線路型ノイズフィルタとして、CPUと電源回路の間のデカップリング回路等に用いられる。   Next, the chip-type solid electrolytic capacitor of Embodiment 3 will be described. The chip-type solid electrolytic capacitor according to the present embodiment is a three-terminal chip-type solid electrolytic capacitor that uses a capacitor element with an anode lead wire drawn out in both directions in parallel. As a transmission line type noise filter, a CPU and a power source are used. Used for decoupling circuits between circuits.

図5は、本発明の実施の形態3のチップ型固体電解コンデンサの端子溶接構造を示す斜視図である。ここでは、両方向に陽極リード線52aが引き出されたコンデンサ素子51aと、同じく両方向に陽極リード線52bが引き出されたコンデンサ素子51bとが基板実装面に平行な方向に併置され並列接続されている。また、図面左側の陽極端子14は陽極リード線52a,52bの左側に引き出された部分に溶接接続され、その接続構造と対称に、右側の陽極端子14は陽極リード線52a,52bの右側に引き出された部分に溶接接続されている。このとき用いる陽極端子14は実施の形態1と同様であり、その溶接面17a,17bは切り欠き部16によって隔たられている。   FIG. 5 is a perspective view showing a terminal welding structure of a chip-type solid electrolytic capacitor according to Embodiment 3 of the present invention. Here, the capacitor element 51a from which the anode lead wire 52a is drawn out in both directions and the capacitor element 51b from which the anode lead wire 52b is drawn out in both directions are juxtaposed in a direction parallel to the substrate mounting surface and connected in parallel. Further, the anode terminal 14 on the left side of the drawing is welded and connected to a portion drawn to the left side of the anode lead wires 52a and 52b, and the right side anode terminal 14 is drawn out to the right side of the anode lead wires 52a and 52b in symmetry with the connection structure. Welded connection to the part. The anode terminal 14 used at this time is the same as that of the first embodiment, and the welding surfaces 17 a and 17 b are separated by the notch 16.

図6は、本実施の形態3のチップ型固体電解コンデンサでの陽極端子および陰極端子のコンデンサ素子との接続構造を示す斜視図であり、陰極端子63は折り曲げ加工がなされた板状の端子であり、コンデンサ素子51a,51bに導電性接着剤を介して接続されている。   FIG. 6 is a perspective view showing a connection structure between the anode terminal and the cathode terminal capacitor element in the chip-type solid electrolytic capacitor of Embodiment 3, and the cathode terminal 63 is a plate-like terminal that is bent. Yes, and connected to the capacitor elements 51a and 51b via a conductive adhesive.

図7は、本発明の実施の形態3のチップ型固体電解コンデンサの外観形状を下方から示す斜視図であり、陰極端子63の両側に対称に2つの陽極端子14が配置され外装樹脂75でモールド成形されている。   FIG. 7 is a perspective view showing the external shape of the chip-type solid electrolytic capacitor according to Embodiment 3 of the present invention from below. Two anode terminals 14 are symmetrically arranged on both sides of the cathode terminal 63 and molded with an exterior resin 75. Molded.

次に、実施の形態4のチップ型固体電解コンデンサを説明する。図示は省略するが、陽極端子に実施の形態2(図4(a)参照)の形状のものを用い、両方向に陽極リード線が引き出された3個のコンデンサ素子を併置して、2つの陽極端子を対称に配置し、同一方向に引き出された陽極リード線は1つの陽極端子に溶接し、陰極端子には実施の形態3の陰極端子63(図6参照)と同形状のものを用いたチップ型固体電解コンデンサである。このように3個のコンデンサ素子を並列接続して伝送線路型ノイズフィルタを得ることができる。   Next, the chip-type solid electrolytic capacitor of Embodiment 4 will be described. Although not shown in the drawing, the anode terminal having the shape of the second embodiment (see FIG. 4A) is used, and three capacitor elements with anode lead wires drawn out in both directions are juxtaposed to form two anodes. The terminals are arranged symmetrically, the anode lead wires drawn in the same direction are welded to one anode terminal, and the cathode terminal having the same shape as the cathode terminal 63 (see FIG. 6) of the third embodiment is used. This is a chip-type solid electrolytic capacitor. Thus, a transmission line type noise filter can be obtained by connecting three capacitor elements in parallel.

以上の実施の形態では、コンデンサ素子が2個または3個の場合を説明したが、4個以上のコンデンサ素子を実装面に平行な方向に併置して、並列接続する場合にも、本発明が適用できることは明らかである。   In the above embodiment, the case where there are two or three capacitor elements has been described. However, the present invention can also be applied to a case where four or more capacitor elements are juxtaposed in a direction parallel to the mounting surface and connected in parallel. It is clear that it can be applied.

本発明の実施の形態1でのチップ型固体電解コンデンサの端子溶接構造を示す斜視図。The perspective view which shows the terminal welding structure of the chip type solid electrolytic capacitor in Embodiment 1 of this invention. 実施の形態1で陰極端子の他の形状を示す斜視図。FIG. 6 is a perspective view showing another shape of the cathode terminal in the first embodiment. 実施の形態1のチップ型固体電解コンデンサでの陽極端子および陰極端子のコンデンサ素子との接続構造を示す斜視図。The perspective view which shows the connection structure with the capacitor | condenser element of the anode terminal and cathode terminal in the chip-type solid electrolytic capacitor of Embodiment 1. FIG. 実施の形態2のチップ型固体電解コンデンサを示し、図4(a)は陽極端子の斜視図、図4(b)は全体の外観を下方から示す斜視図。FIG. 4A is a perspective view of an anode terminal, and FIG. 4B is a perspective view showing an overall appearance from below, showing a chip-type solid electrolytic capacitor according to a second embodiment. 実施の形態3のチップ型固体電解コンデンサの端子溶接構造を示す斜視図。The perspective view which shows the terminal welding structure of the chip type solid electrolytic capacitor of Embodiment 3. FIG. 実施の形態3のチップ型固体電解コンデンサでの陽極端子および陰極端子のコンデンサ素子との接続構造を示す斜視図。The perspective view which shows the connection structure with the capacitor | condenser element of the anode terminal and cathode terminal in the chip-type solid electrolytic capacitor of Embodiment 3. FIG. 実施の形態3のチップ型固体電解コンデンサの外観を下方から示す斜視図。The perspective view which shows the external appearance of the chip-type solid electrolytic capacitor of Embodiment 3 from the downward direction. 従来例1のチップ型固体電解コンデンサを示す斜視図。The perspective view which shows the chip-type solid electrolytic capacitor of the prior art example 1. FIG. 従来例2のチップ型固体電解コンデンサを外装樹脂を省略して示す斜視図。The perspective view which abbreviate | omits exterior resin and shows the chip-type solid electrolytic capacitor of the prior art example 2. FIG.

符号の説明Explanation of symbols

11a,11b,51a,51b コンデンサ素子
12a,12b,52a,52b 陽極リード線
13,43,63 陰極端子
14,44 陽極端子
16,26,46a,46b 切り欠き部
17a,17b,47a,47b,47c 溶接面
18,28,48 直立部
19,49 実装面部
45,75 外装樹脂
11a, 11b, 51a, 51b Capacitor elements 12a, 12b, 52a, 52b Anode lead wires 13, 43, 63 Cathode terminals 14, 44 Anode terminals 16, 26, 46a, 46b Notches 17a, 17b, 47a, 47b, 47c Welding surface 18, 28, 48 Upright portion 19, 49 Mounting surface portion 45, 75 Exterior resin

Claims (6)

一端から陽極リード線が引き出され、前記陽極リード線の引き出し部とは異なる外面には陰極層が形成されたコンデンサ素子の複数個を実装面に平行な方向に併置し、前記陽極リード線には板状の陽極端子が溶接接続され、前記陰極層には板状の陰極端子が接続されたチップ型固体電解コンデンサにおいて、前記陽極端子での陽極リード線側の先端部は、切り欠き部によって分離された溶接面を有し、前記切り欠き部は前記陽極リード線の先端位置よりも深い位置まで入り込み、前記溶接面の各々には1つの陽極リード線が接続されたことを特徴とするチップ型固体電解コンデンサ。   An anode lead wire is drawn from one end, and a plurality of capacitor elements each having a cathode layer formed on the outer surface different from the lead portion of the anode lead wire are arranged in a direction parallel to the mounting surface. In a chip-type solid electrolytic capacitor in which a plate-like anode terminal is connected by welding and a plate-like cathode terminal is connected to the cathode layer, the tip of the anode lead wire side at the anode terminal is separated by a notch A chip type in which the cut-out portion enters a position deeper than a tip position of the anode lead wire, and one anode lead wire is connected to each of the weld surfaces. Solid electrolytic capacitor. 一端から陽極リード線が引き出された2個のコンデンサ素子を備え、前記陽極端子での陽極リード線側の先端部には、前記陽極リード線と同方向に伸びる1つの切り欠き部が形成され、前記切り欠き部の両側は対称に形成されたことを特徴とする請求項1記載のチップ型固体電解コンデンサ。   Two capacitor elements from which an anode lead wire is drawn out from one end are provided, and one notch portion extending in the same direction as the anode lead wire is formed at the tip of the anode lead wire side at the anode terminal, 2. The chip-type solid electrolytic capacitor according to claim 1, wherein both sides of the notch are formed symmetrically. 一端から陽極リード線が引き出された3個のコンデンサ素子を備え、前記陽極端子での陽極リード線側の先端部には、前記陽極リード線と同方向に伸びる2つの切り欠き部で分離された3つの溶接面が形成され、前記3つの溶接面の幅は略等しいことを特徴とする請求項1記載のチップ型固体電解コンデンサ。   Three capacitor elements from which one end of the anode lead wire is drawn out are provided, and the tip of the anode terminal on the anode lead wire side is separated by two notches extending in the same direction as the anode lead wire. The chip-type solid electrolytic capacitor according to claim 1, wherein three welding surfaces are formed, and the widths of the three welding surfaces are substantially equal. 両方向に陽極リード線が引き出され、前記陽極リード線の引き出し部とは異なる外面には陰極層が形成されたコンデンサ素子の複数個を実装面に平行な方向に併置し並列接続してなるチップ型固体電解コンデンサにおいて、前記陽極リード線のうち同方向に引き出された陽極リード線は1つの板状の陽極端子に溶接接続され、前記陽極端子での陽極リード線側の先端部は、切り欠き部によって分離された溶接面を有し、前記切り欠き部は前記陽極リード線の先端位置よりも深い位置まで入り込み、前記溶接面の各々には1つの陽極リード線が接続されたことを特徴とするチップ型固体電解コンデンサ。   A chip type in which anode lead wires are drawn out in both directions, and a plurality of capacitor elements each having a cathode layer formed on the outer surface different from the lead portion of the anode lead wires are juxtaposed in a direction parallel to the mounting surface. In the solid electrolytic capacitor, the anode lead wire drawn out in the same direction among the anode lead wires is welded to one plate-like anode terminal, and a tip portion on the anode lead wire side of the anode terminal is a notch portion. And the notch is inserted into a position deeper than the tip position of the anode lead wire, and one anode lead wire is connected to each of the weld surfaces. Chip type solid electrolytic capacitor. 両方向に陽極リード線が引き出された2個のコンデンサ素子を備え、前記陽極端子での陽極リード線側の先端部には、前記陽極リード線と同方向に伸びる1つの切り欠き部が形成され、前記切り欠き部の両側は対称に形成されたことを特徴とする請求項4記載のチップ型固体電解コンデンサ。   Two capacitor elements with anode lead wires drawn out in both directions are provided, and one notch portion extending in the same direction as the anode lead wire is formed at the tip of the anode lead wire side at the anode terminal, 5. The chip-type solid electrolytic capacitor according to claim 4, wherein both sides of the notch are formed symmetrically. 両方向に陽極リード線が引き出された3個のコンデンサ素子を備え、前記陽極端子での陽極リード線側の先端部には、前記陽極リード線と同方向に伸びる2つの切り欠き部で分離された3つの溶接面が形成され、前記3つの溶接面の幅は略等しいことを特徴とする請求項4記載のチップ型固体電解コンデンサ。   Three capacitor elements with anode lead wires drawn out in both directions are provided, and the anode lead wire side tip of the anode terminal is separated by two notches extending in the same direction as the anode lead wire. The chip-type solid electrolytic capacitor according to claim 4, wherein three welding surfaces are formed, and the widths of the three welding surfaces are substantially equal.
JP2005117771A 2005-04-15 2005-04-15 Chip type solid electrolytic capacitor Expired - Fee Related JP4424676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117771A JP4424676B2 (en) 2005-04-15 2005-04-15 Chip type solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117771A JP4424676B2 (en) 2005-04-15 2005-04-15 Chip type solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2006302920A true JP2006302920A (en) 2006-11-02
JP4424676B2 JP4424676B2 (en) 2010-03-03

Family

ID=37470917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117771A Expired - Fee Related JP4424676B2 (en) 2005-04-15 2005-04-15 Chip type solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4424676B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141208A (en) * 2007-12-07 2009-06-25 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2009141142A (en) * 2007-12-06 2009-06-25 Sanyo Electric Co Ltd Solid electrolytic capacitor
WO2010023990A1 (en) * 2008-08-29 2010-03-04 三洋電機株式会社 Decoupling device and mounting body
JP2011049225A (en) * 2009-08-25 2011-03-10 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2012156568A (en) * 2012-05-24 2012-08-16 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2012156567A (en) * 2012-05-24 2012-08-16 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2017098519A (en) * 2015-11-25 2017-06-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Composite electronic component and mounting board therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141142A (en) * 2007-12-06 2009-06-25 Sanyo Electric Co Ltd Solid electrolytic capacitor
US8081421B2 (en) 2007-12-06 2011-12-20 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
US8559166B2 (en) 2007-12-06 2013-10-15 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
TWI413143B (en) * 2007-12-06 2013-10-21 Sanyo Electric Co Solid electrolytic capacitor
JP2009141208A (en) * 2007-12-07 2009-06-25 Sanyo Electric Co Ltd Solid electrolytic capacitor
WO2010023990A1 (en) * 2008-08-29 2010-03-04 三洋電機株式会社 Decoupling device and mounting body
JPWO2010023990A1 (en) * 2008-08-29 2012-01-26 三洋電機株式会社 Decoupling device and mounting body
JP2011049225A (en) * 2009-08-25 2011-03-10 Sanyo Electric Co Ltd Solid electrolytic capacitor
CN101996779A (en) * 2009-08-25 2011-03-30 三洋电机株式会社 Solid electrolytic capacitor
JP2012156568A (en) * 2012-05-24 2012-08-16 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2012156567A (en) * 2012-05-24 2012-08-16 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2017098519A (en) * 2015-11-25 2017-06-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Composite electronic component and mounting board therefor

Also Published As

Publication number Publication date
JP4424676B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP4513811B2 (en) Chip type solid electrolytic capacitor
JP4424676B2 (en) Chip type solid electrolytic capacitor
JP5279569B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006080423A (en) Chip type solid electrolytic capacitor
JP2008187091A (en) Solid-state electrolytic capacitor
JP2005079357A (en) Chip type solid electrolytic capacitor, its manufacturing method, and lead frame used therefor
JP5349112B2 (en) Solid electrolytic capacitor
JP4667214B2 (en) Bottom electrode type solid electrolytic capacitor
JP2007081069A (en) Chip type solid electrolytic capacitor, terminals, and method for manufacturing them
JP2011049225A (en) Solid electrolytic capacitor
JP4895035B2 (en) Solid electrolytic capacitor
JP2008108881A (en) Printed circuit board, and chip type solid electrolytic capacitor mounted on the same
JP5484922B2 (en) Solid electrolytic capacitor
JP2008021771A (en) Chip-type solid electrolytic capacitor
JP4256404B2 (en) Solid electrolytic capacitor
US9214284B2 (en) Decoupling device with three-dimensional lead frame and fabricating method thereof
JP4215250B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
JP4654929B2 (en) Chip type solid electrolytic capacitor
JP4152357B2 (en) Solid electrolytic capacitor
JP2005051051A (en) Solid electrolytic capacitor and manufacturing method thereof
JP5289123B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006024966A (en) Solid electrolytic capacitor
JP5035999B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4789252B2 (en) Multilayer capacitor
JP2008021772A (en) Chip-type solid electrolytic capacitor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees