JP2006300956A - Liquid leakage sensor - Google Patents

Liquid leakage sensor Download PDF

Info

Publication number
JP2006300956A
JP2006300956A JP2006128132A JP2006128132A JP2006300956A JP 2006300956 A JP2006300956 A JP 2006300956A JP 2006128132 A JP2006128132 A JP 2006128132A JP 2006128132 A JP2006128132 A JP 2006128132A JP 2006300956 A JP2006300956 A JP 2006300956A
Authority
JP
Japan
Prior art keywords
liquid leakage
sensor
sound
liquid
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006128132A
Other languages
Japanese (ja)
Other versions
JP4651029B2 (en
Inventor
Kenichi Hayashida
建一 林田
Futoshi Shimai
太 島井
Yohei Komata
洋平 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUUDEN KK
Tokyo Ohka Kogyo Co Ltd
Toyoko Kagaku Co Ltd
Tsuden KK
Original Assignee
TSUUDEN KK
Tokyo Ohka Kogyo Co Ltd
Toyoko Kagaku Co Ltd
Tsuden KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUUDEN KK, Tokyo Ohka Kogyo Co Ltd, Toyoko Kagaku Co Ltd, Tsuden KK filed Critical TSUUDEN KK
Priority to JP2006128132A priority Critical patent/JP4651029B2/en
Publication of JP2006300956A publication Critical patent/JP2006300956A/en
Application granted granted Critical
Publication of JP4651029B2 publication Critical patent/JP4651029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Alarm Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid leakage sensor, installed on a floor or in the lowermost part of a system, such as a liquid leakage receiving section, and enables easy identification of the location at which a liquid leakage occurs, if a liquid leakage abnormality occurs. <P>SOLUTION: The liquid leakage sensor is installed in an inner space of the liquid leakage receiving section and is provided with an alarm means including a sound means, having a resonator within a space range containing at least one of the inner space of the liquid leakage receiving section and/or an upper space of the liquid leakage receiving section, relative to an installation location of the liquid leakage sensor. If the liquid leakage sensor senses a sensor abnormality, the sound means, having at least the resonator distinguishes the liquid leakage sensors within and outside the space range, and the resonator amplifies the audible frequency tone outputted from the sound means so as to identify the installation location of the liquid leakage sensor and alarms a sensor abnormality detection in the liquid leakage sensor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水、酸性溶液、アルカリ溶液等の電気的導通を有する液体や、超純水、アルコール、シンナー、ベンジン等の有機性溶液等の絶縁性を有する液体の漏液を検知する漏液センサの改良に関する。   The present invention is a liquid leakage detector for detecting leakage of electrically conductive liquids such as water, acidic solutions, alkaline solutions, and insulating liquids such as ultrapure water, organic solutions such as alcohol, thinner, and benzine. It relates to the improvement of the sensor.

従来工場等の設備では配管により液体を供給している。しかし、配管には多くの個所に接続用の継手が設けられているため継手から液体が漏液する場合が多い。そこで、液体の種類によっては漏液の監視を人間が常時行わなければならなかった。かかる従来の漏液センサとしては、電極間のインピーダンス変化を検知する導電方式の漏液センサや、所望の液体の液量を、所定の容量の液体が供給されたか否か計測する液量計測方式の漏液センサが知られている。又、特許文献1には漏液を吸収すると透明になるフイルタに透光部(光源)より光を照射しておき、漏液があった時に上記フイルタからの透過光又は反射光の受光量の変化量を検知することにより漏液を確実に検知できるようにした光学式漏液センサ技術が記載されている。かかる従来の漏液センサでは、一般に、漏液を検知した漏液検知異常や、センサが所定の空間位置に設置されていない、センサの設置異常を検知すると、これらの異常ステイタス情報をLED等の表示手段により警報表示すると共に、接点信号等で外部にデジタル出力するようになっていた。   Conventional equipment such as factories supplies liquids by piping. However, since pipes are provided with connecting joints at many locations, liquid often leaks from the joints. Therefore, depending on the type of liquid, humans had to constantly monitor for leakage. As such a conventional liquid leakage sensor, there is a conductive type liquid leakage sensor that detects a change in impedance between the electrodes, or a liquid amount measurement system that measures whether or not a predetermined volume of liquid has been supplied. A liquid leakage sensor is known. Further, Patent Document 1 discloses that a filter that becomes transparent when leaking liquid is irradiated with light from a light transmitting part (light source), and when the liquid leaks, the amount of light received or reflected from the filter is measured. An optical liquid leakage sensor technique is described in which leakage can be reliably detected by detecting the amount of change. In such a conventional liquid leakage sensor, in general, when a liquid leakage detection abnormality in which a liquid leakage is detected or a sensor installation abnormality in which the sensor is not installed in a predetermined spatial position is detected, the abnormal status information such as an LED is displayed. Alarms are displayed on the display means and digitally output to the outside by contact signals or the like.

一方、特許文献2には、複数の漏液センサの電極間インピーダンス等の所望情報を、子機−親機間で通信し、親機側で演算処理した後又はそのまま、親機側の表示手段に表示する漏液監視装置が紹介されており、特許文献2では、漏液等の異常が発生したと判定した場合、その漏液等の警報表示は、映像及び/又は記録手段に表示すると共に、ブザー等の音声でも表示するようになっている。   On the other hand, in Patent Document 2, desired information such as inter-electrode impedance of a plurality of liquid leakage sensors is communicated between the slave unit and the master unit, and after the arithmetic processing is performed on the master unit side or as it is, the display unit on the master unit side The liquid leakage monitoring device to be displayed is introduced. In Patent Document 2, when it is determined that an abnormality such as a liquid leakage has occurred, an alarm display such as the liquid leakage is displayed on the video and / or recording means. In addition, sound such as a buzzer is displayed.

ところで、(A) 洗浄剤/溶剤として、例えば、20℃において、6×10−2N/m以下である低表面張力を有する液体の漏液を検知する場合であって、特に、塩素や臭素を含まない低分子のクロロフルオロカーボン(CFCs)やハロン等の、表面張力が、20℃において、3×10−2N/m以下である低表面張力を有する液体の漏液2aを検知する場合には、漏液が非常に薄い層状を形成しながら拡散し、例えば、図6(B)に示すように、かかる漏液層の厚さd1が、0.5mm以下の薄膜層状に均一に素早く拡散すると共に、0.1mm以下の非常に間隔の狭い空隙部にも、容易に浸透してしまうので、漏液センサ本体を収納するケースのホルダと床面との隙間d2(<d1)に、先ず漏液が浸透し(図6(C))、ホルダ上面まで漏液が拡散するのに長時間を要し、結果として、小量の漏液検知が全くできなかったり、漏液の検知が遅れるといった問題点が発生した。 By the way, (A) As a cleaning agent / solvent, for example, in the case of detecting a liquid leakage having a low surface tension of 6 × 10 −2 N / m or less at 20 ° C., in particular, chlorine or bromine In the case of detecting a liquid leakage 2a having a low surface tension, such as low molecular weight chlorofluorocarbons (CFCs) and halon, which do not contain benzene, and a surface tension of 3 × 10 −2 N / m or less at 20 ° C. Leaks while forming a very thin layer, for example, as shown in FIG. 6 (B), the thickness d1 of such a leak layer diffuses uniformly and quickly into a thin film layer of 0.5 mm or less. At the same time, since it easily penetrates into the gaps of 0.1 mm or less, the gap d2 (<d1) between the holder of the case housing the leak sensor main body and the floor surface first. Leakage penetrates (Fig. 6 (C)) and the top of the holder In takes a long time to leakage is diffused, as a result, may not be at all is a small amount of liquid leakage detection, is a problem that delayed the detection of the leakage has occurred.

(B) 又、従来、漏液センサは、複数の漏液センサが、その警報デジタル出力をワイヤード・オア演算されて、所定のグループ毎に、一括して、シーケンサや親機等により警報出力されるので、漏液検知異常の警報が出力された場合、実際に、何処に設置したセンサが漏液を検知したのか、プラント等システムの保守側からは、直ちに漏液発生箇所が特定できないといった問題点や、漏液センサが、一般に、床面や漏液収容パン等のシステムの最下部に設置される一方で、その上方空間には、様々なシステム構成部材等が架設される使用環境条件で、漏液センサ自体に取付られたLED等の発光式警報表示手段が、漏液異常が発生した場合に、一般には、非常に、視認し難く、漏液発生箇所を容易に特定し難いという問題点もあった。   (B) Conventionally, a plurality of leak sensors are wired-or-calculated for a plurality of leak sensors, and alarms are output from a sequencer, master unit, etc. in a batch for each predetermined group. Therefore, when a leak detection abnormality alarm is output, the actual location of the leak detected by the installed sensor cannot be immediately identified from the maintenance side of the system such as the plant. In general, the point and the leak sensor are installed at the bottom of the system such as the floor surface and the leak storage pan, etc. In general, when a liquid leakage abnormality occurs in a light emitting type alarm display means such as an LED attached to the liquid leakage sensor itself, it is very difficult to visually recognize and it is difficult to easily identify the location of the liquid leakage occurrence. There was also a point.

(C) 更に、特許文献2等の漏液検知システムでは、一般に、漏液センサを設置する人間と、プラント等のシステムを保守・管理する人間とは、全く完全に関係が無く、漏液センサを設置する人間にとっては、多数の漏液センサを、短時間で、正確に全て所定の位置に設置することが要求されるので、机上の理論としては、センサの設置位置を監視装置に1つづつ登録するという操作を要求することが可能であっても、実際に、40以上のセンサを、配線ミス無く、正確に登録し、確認することを要求することは1人の作業者では不可能であり、システム構築作業において、複数の作業者で設置作業を実行することは、装置の購入コストをいたずらに暴騰させることとなり、漏液センサの実際の設置作業者からは、まったく、実用にならない技術となっていた。
又、特許文献2の技術では、親機側で演算処理した後又はそのまま、親機側の表示手段に表示するシステム構成なので、親機が故障した場合には、漏液センサが正常に漏液を検知しても、漏液検知異常の警報を全く出力できないという問題点もあった。
(C) Furthermore, in the leak detection system disclosed in Patent Document 2 and the like, in general, the person who installs the leak sensor and the person who maintains and manages the system such as the plant are completely unrelated, and the leak sensor Since it is required for a person who installs a large number of liquid leakage sensors to be accurately placed in a predetermined position in a short time, as a theory on the desk, the sensor installation position is one in the monitoring device. Even if it is possible to request the operation of registering one by one, it is impossible for one worker to actually register and confirm more than 40 sensors without wiring errors. In the system construction work, if the installation work is performed by a plurality of workers, the purchase cost of the device will be unnecessarily increased, and it will not be practical at all from the actual installation worker of the leak sensor. It was a technology.
Further, in the technique of Patent Document 2, since the system configuration is such that the calculation is performed on the base unit side or displayed as it is on the display unit on the base unit side, if the master unit fails, the liquid leakage sensor is normally leaked. However, there is also a problem that no alarm for abnormal detection of liquid leakage can be output.

更に又、特許文献2の技術では、親機側で演算処理した後又はそのまま、親機側の警報手段により音声メッセージにより漏液異常を通告するシステムなので、漏液発生箇所が音声メッセージの内容に含まれることが必須であると共に、プラント等のシステムを保守・管理する人間にとって、漏液発生場所情報が実際には、空間的にどこの位置に該当するのか、音声場所情報を正確に聞き取り理解できる人でないと、正確な漏液発生箇所の空間位置情報を特定不能であり、特に、派遣社員や人事移動の激しい職場/現場環境では,漏液センサの設置箇所の教育などにかけられる時間/費用等はほとんど皆無であり、新人のオペレータや記憶力/学習能力の十分でないオペレータでは、全く役に立たない警報システムとなってしまうという問題点もあった。   Furthermore, in the technique of Patent Document 2, since the leak notification is made by the voice message by the alarm means on the master unit side after the arithmetic processing on the master unit side or as it is, the location where the leak occurred is the content of the voice message. It must be included, and for those who maintain and manage systems such as plants, the location information of the location where the leak occurred actually corresponds to the spatial location of the sound, and the sound location information is accurately heard and understood. If you are not a person who can do it, it is impossible to specify the exact location information of the location of the leak, especially in the temporary / employee / workplace / site environment where the leak sensor is installed. The problem is that the alarm system is completely useless for new operators and operators with insufficient memory / learning ability. There was.

(D) 又、漏液センサと警報手段とを一体に形成した場合には、漏液センサは、一般に、狭く床面に近い下方設置空間に設置されると共に、作業者の通行空間と干渉しやすいので、センサ全体の床面からの高さは、極力、低いものが望ましい。   (D) When the leak sensor and the alarm means are integrally formed, the leak sensor is generally installed in a lower installation space close to the floor surface and interferes with the operator's passage space. Since it is easy, the height of the entire sensor from the floor is preferably as low as possible.

特公平4−70572号公報Japanese Examined Patent Publication No. 4-70572 特開2002−350275公報JP 2002-350275 A

よって本発明は上述のような事情に鑑みて成されたものであり、本発明の目的は、20℃において、6×10−2N/m以下である低表面張力を有する液体の小量の漏液でも、高速に検知することの可能な漏液センサを提供することにある。 Therefore, the present invention has been made in view of the circumstances as described above, and the object of the present invention is to provide a small amount of liquid having a low surface tension of 6 × 10 −2 N / m or less at 20 ° C. An object of the present invention is to provide a liquid leakage sensor that can detect liquid leakage at high speed.

又、本発明の目的は、複数の漏液センサが、所定のグループ毎に、一括して制御システムに組み込まれていても、漏液検知異常の警報が出力された場合、実際に、何処に設置した漏液センサが作動して漏液検知したのか、プラント等システムの保守側で、漏液発生の空間位置/箇所が、正確かつ容易に特定可能な漏液センサを提供することにもある。   In addition, the object of the present invention is that, even when a plurality of leak sensors are integrated into a control system for each predetermined group, if a leak detection abnormality alarm is output, where It is also possible to provide a leak sensor that can accurately and easily identify the location / location of the occurrence of leak on the maintenance side of a system such as a plant, whether the leak sensor that has been installed is activated and detected. .

更に又、本発明の目的は、複数の漏液センサを、所定のグループ毎に、一括して制御システムに設置する場合、1人の作業者でも、多数の漏液センサを、短時間で、正確に全て所定の空間位置に設置することが可能な漏液センサ及び漏液検知システムを提供することにもある。又、制御システムが故障したり、親機が無い場合でも、漏液センサが正常に漏液を検知した場合には、確実に漏液検知異常の警報を出力し、プラント等システムの保守側で漏液発生の空間位置/箇所を、正確かつ容易に特定可能な漏液センサを提供することにもある。   Furthermore, an object of the present invention is to install a plurality of leak sensors in a control system in a batch for each predetermined group, even for one worker, a large number of leak sensors in a short time, Another object of the present invention is to provide a liquid leakage sensor and a liquid leakage detection system that can be accurately installed at predetermined positions. Even if the control system breaks down or there is no master unit, if the leak sensor detects a leak correctly, it will certainly output a leak detection abnormality alarm, Another object of the present invention is to provide a liquid leakage sensor that can accurately and easily identify the spatial position / location of occurrence of liquid leakage.

本発明は、漏液が浸透し得る気体層又は漏液浸透層を介して、前記漏液と接触し得る少なくとも1つの漏液検知部を具えた漏液センサを、少なくとも1つ使用する漏液検知システムに関し、本発明の上記目的は、
前記漏液センサの設置位置に対し、所定の空間範囲以内に、発音手段を含む警報手段を設け、前記漏液センサのセンサ異常を検知した場合、少なくとも前記発音手段により、前記所定の空間範囲の外側に設置された漏液センサと区別して、当該漏液センサの設置位置が特定可能なように、当該漏液センサのセンサ異常検知を可聴周波数の発信音で警報することによって達成される。
The present invention uses at least one liquid leakage sensor including at least one liquid leakage detection unit that can come into contact with the liquid leakage through a gas layer or liquid leakage infiltration layer through which liquid leakage can permeate. Regarding the detection system, the object of the present invention is to
An alarm means including a sounding means is provided within a predetermined space range with respect to the installation position of the leak sensor, and when a sensor abnormality of the leak sensor is detected, at least the sounding means can This is achieved by warning the sensor abnormality detection of the leak sensor with an audible frequency tone so that the leak sensor can be identified by distinguishing it from the leak sensor installed outside.

又、本発明は、漏液が浸透し得る気体層又は漏液浸透層を介して、前記漏液と接触し得る少なくとも1つの反射境界面と、投光部、受光部及びこれらに結合された制御手段とから成る漏液センサにも関し、本発明の上記目的は、
前記投光部及び受光部を底部が透明材又は半透明材で構成されたケースに収納し一体化すると共に、又は、
前記投光部及び受光部を底部が透明材又は半透明材で構成されたケースに収納し一体化すると共に、該ケース先端に当該漏液センサの床等の設置箇所の表面性状又は表面色からの影響を受けにくくし、かつ、当該ケースの転倒防止を兼ねたケースホルダを装着するようにすると共に、
前記漏液センサの異常検知手段、及び、発音手段を含む警報手段を設け、
前記異常検知手段によりセンサ異常を検知した場合、少なくとも前記発音手段により異常検知を可聴周波数の発信音で警報することによっても達成される。
又、漏液センサにも関し、本発明の上記目的は、
当該漏液センサを前記漏液の収容部の内部空間に設置すると共に、前記漏液センサの設置位置に対し、前記漏液の収容部の内部空間、及び/又は、前記漏液の収容部の上方の空間の少なくとも1つを含む空間範囲以内に、共鳴器を有する発音手段を含む警報手段を設け、
前記漏液センサがセンサ異常を検知した場合、少なくとも前記共鳴器を有する発音手段により、前記空間範囲の外側に設置された漏液センサと区別して、当該漏液センサの設置位置が特定可能なように、当該漏液センサのセンサ異常検知を、前記発音手段から出力される可聴周波数の発信音を前記共鳴器により増幅して警報する
In addition, the present invention is coupled to at least one reflection boundary surface that can come into contact with the liquid leakage, a light projecting unit, a light receiving unit, and a gas layer or a liquid permeation layer through which the liquid leakage can permeate. The liquid leakage sensor comprising the control means also relates to the above object of the present invention.
The light projecting unit and the light receiving unit are housed and integrated in a case whose bottom is made of a transparent or translucent material, or
The light projecting part and the light receiving part are housed and integrated in a case having a bottom made of a transparent material or a semi-transparent material, and the surface of the installation location such as the floor of the liquid leakage sensor or the surface color is attached to the tip of the case. And a case holder that prevents the case from falling over,
An abnormality detection means of the liquid leakage sensor, and an alarm means including a sound generation means,
When a sensor abnormality is detected by the abnormality detection means, it is also achieved by at least alarming the abnormality detection by an audible frequency tone by the sound generation means.
The present invention also relates to a leak sensor.
The liquid leakage sensor is installed in the internal space of the liquid leakage storage unit, and the internal space of the liquid leakage storage unit and / or the liquid leakage storage unit with respect to the installation position of the liquid leakage sensor An alarm means including a sound generation means having a resonator is provided within a spatial range including at least one of the upper spaces,
When the liquid leakage sensor detects a sensor abnormality, the sound sensor having at least the resonator can distinguish the liquid leakage sensor installed outside the space range and specify the installation position of the liquid leakage sensor. Further, a sensor abnormality detection of the liquid leakage sensor is alarmed by amplifying an audible frequency output sound output from the sound generation means by the resonator.

本発明に係る漏液検知システムによれば、漏液センサの設置位置に対し、所定の空間範囲以内に、発音手段を含む警報手段を設け、前記漏液センサが当該漏液センサのセンサ異常を検知した場合、少なくとも前記発音手段により、前記所定の空間範囲の外側に設置された他の漏液センサ設置箇所と区別して、当該漏液センサの設置位置が特定可能なように、当該漏液センサのセンサ異常検知をオペレータ等に可聴周波数の発信音で警報/通報することが可能なので、複数の漏液センサを、所定のグループ毎に、一括して制御システム内に設置する場合、1人の作業者でも、多数の漏液センサを、短時間で、正確に全て所定の位置に設置し、かかる設置状態を1人で確認することが、従来のセンサのように床面を1つ1つ覗いて確認することなく実施可能であり、漏液検知システムの信頼性を非常に向上させることができる。   According to the leak detection system of the present invention, an alarm means including a sounding means is provided within a predetermined space range with respect to the installation position of the leak sensor, and the leak sensor detects a sensor abnormality of the leak sensor. If detected, at least the sound generation means distinguishes the leak sensor from the other leak sensor installation locations installed outside the predetermined space range, so that the leak sensor can be specified. Because it is possible to alert / report an abnormal sensor detection to an operator or the like with an audible frequency tone, when a plurality of leak sensors are installed in a control system for each predetermined group, Even an operator can install a large number of liquid leakage sensors accurately at predetermined positions in a short time and check the installation state by one person one by one like a conventional sensor. Do n’t peek and check Are feasible, it can greatly improve the reliability of the leak detection system.

又、本発明の漏液センサ及び漏液検知システムでは、当該システムの親機が不要であり、システムの中継器等が故障した場合でも、漏液センサが単独で作動可能であれば、正常に漏液状態を検知し可聴周波数の発信音で警報することが可能であり、かかる漏液状態を当該漏液センサが検知した場合、確実に漏液検知警報を、所定の空間範囲の外側に設置された他の漏液センサ設置箇所と区別して、当該漏液センサの設置位置が特定可能なように、オペレータ等に可聴周波数の発信音で警報/通報することが可能なので、漏液センサ及び漏液検知システムを保守する場合、複数の同一機能のセンサが並列に配置された半導体製造工程のような混同/誤認の発生しやすい保守環境でも、的確な漏液発生箇所の特定/発見が、警報発信音を頼りに音源に接近していくだけで可能であり、漏液センサの配置マップの学習等の特別な訓練を受けなくても実際に保守する担当者にとって他のセンサと混同/誤認することなく非常に容易に漏液発生箇所を特定/識別可能であり、非常に有用である。   Moreover, in the liquid leakage sensor and the liquid leakage detection system of the present invention, the master unit of the system is unnecessary, and even if the system repeater or the like breaks down, if the liquid leakage sensor can be operated independently, it is normal. It is possible to detect a leak condition and alarm with an audible tone, and when the leak sensor detects such a leak condition, the leak detection alarm is reliably installed outside the specified space range. It is possible to alert / notify the operator, etc. with an audible frequency tone so that the installation position of the leak sensor can be identified separately from the other leak sensor installation locations. When maintaining a liquid detection system, even in a maintenance environment where confusion / misperception is likely to occur, such as a semiconductor manufacturing process in which multiple sensors with the same function are arranged in parallel, the accurate location / discovery of the location where a liquid leak occurs is an alarm. Rely on dial tone This is possible by simply approaching the sensor, and even without special training such as learning the location map of the leak sensor, it is very easy for the person in charge of the maintenance to easily leak without confusion with other sensors. The location where the liquid is generated can be identified / identified, which is very useful.

更に、本発明の漏液センサ及び漏液検知システムでは、水、酸性溶液、アルカリ溶液等の電気的導通を有する液体や、超純水、アルコール、シンナー、ベンジン等の有機性溶液等の絶縁性を有する液体の漏液を、小量の漏液量でも確実に検知可能であると共に、20℃において、6×10−2N/m以下である低表面張力を有する液体、特に3×10−2N/m以下である低表面張力を有する薄層状液体、即ち、微小量の漏液でも、高速に検知することが可能である。 Furthermore, in the liquid leakage sensor and the liquid leakage detection system of the present invention, insulating properties such as liquids having electrical continuity such as water, acidic solutions, alkaline solutions, and organic solutions such as ultrapure water, alcohol, thinner, benzine, etc. A liquid having a low surface tension of 20 × 10 −2 N / m or less at 20 ° C., particularly 3 × 10 − Even a thin layered liquid having a low surface tension of 2 N / m or less, that is, a minute amount of liquid leakage can be detected at high speed.

本発明の漏液検知システムでは、漏液が浸透し得る気体層又は漏液浸透層を介して、前記漏液と接触し得る少なくとも1つの漏液検知部を具えた漏液センサを、少なくとも1つ使用する構成となっており、
前記漏液センサの設置位置に対し、所定の空間範囲以内に、発音手段を含む警報手段を設け、前記漏液センサのセンサ異常を検知した場合、少なくとも前記発音手段により、前記所定の空間範囲の外側に設置された漏液センサと区別して、当該漏液センサの設置位置が特定可能なように、当該漏液センサのセンサ異常検知を可聴周波数の発信音で警報すると共に、
前記所定の空間範囲の内側に設置された単独又は複数の漏液センサにより、前記警報手段が共通して利用可能であることが好ましく、更に、当該警報手段の警告灯が容易に視認可能な空間位置に設置されていると、より一段と好ましい。
In the liquid leakage detection system of the present invention, at least one liquid leakage sensor comprising at least one liquid leakage detection unit that can come into contact with the liquid leakage through a gas layer or a liquid leakage infiltration layer through which liquid leakage can permeate. It is configured to use one,
An alarm means including a sounding means is provided within a predetermined space range with respect to the installation position of the leak sensor, and when a sensor abnormality of the leak sensor is detected, at least the sounding means can While distinguishing from the leak sensor installed outside, so that the installation position of the leak sensor can be specified, the sensor abnormality detection of the leak sensor is warned with an audible tone,
Preferably, the alarm means can be used in common by a single or a plurality of liquid leakage sensors installed inside the predetermined space range, and the warning light of the alarm means can be easily visually confirmed. It is more preferable that it is installed at the position.

しかして、本発明の漏液検知システムで使用する漏液センサでは、漏液センサと、発音手段を含む警報手段とを、一体に形成してもよく、及び/又は、漏液センサと、発音手段を含む警報手段とを、分離して設置し、有線及び/又は無線により、漏液センサと発音手段を含む警報手段とを、相互に接続してもよい。   Thus, in the leak sensor used in the leak detection system of the present invention, the leak sensor and the alarm means including the sound generation means may be formed integrally and / or the leak sensor and the sound generation. The alarm means including the means may be installed separately, and the leak sensor and the alarm means including the sound generation means may be connected to each other by wire and / or wireless.

上記漏液センサと、発音手段を含む警報手段とを、一体に形成するシステム構成では、漏液センサの設置位置に警報手段も一体に固定配置されるので、特別な接続番号等の設定操作は一切不要であり、システムの構築が非常に容易で、接続の確認作業も容易であり、かかるシステムの保守・監視作業も、非常に直感的で、理解しやすいシステムを提供することが可能である。   In the system configuration in which the leak sensor and the alarm means including the sounding means are integrally formed, the alarm means is also integrally fixed at the position where the leak sensor is installed. It is not necessary at all, system construction is very easy, connection confirmation work is easy, maintenance and monitoring work of such system is also very intuitive, it is possible to provide a system that is easy to understand .

又、上記漏液センサと、発音手段を含む警報手段とを、分離して設置し、有線により、漏液センサと発音手段を含む警報手段とを、相互に接続するシステム構成では、かかる分離した警報手段を当該システムの上部空間で、視認性の良好な位置に設置することが可能であり、システムの調整作業や、保守・管理作業が、誰でも容易にできる利点がある。   Further, in the system configuration in which the liquid leakage sensor and the alarm means including the sound generation means are separately installed and the liquid leakage sensor and the alarm means including the sound generation means are connected to each other by wire, such a separation is provided. The alarm means can be installed at a position with good visibility in the upper space of the system, and there is an advantage that anyone can easily perform system adjustment work and maintenance / management work.

更に、上記漏液センサと、発音手段を含む警報手段とを、分離して設置し、無線により、漏液センサと発音手段を含む警報手段とを、相互に接続するシステム構成では、かかる分離した警報手段を当該システムの上部空間で、視認性の良好な位置に設置すると共に、防爆構造の警報手段を提供することができ、揮発性の液体や引火性の液体の漏液検知及び/又は警報・監視処理を、非常に安全かつ確実に実施でき、又、システムの調整作業や、保守・管理作業が、特別なセンサ配置マップ等を学習することなく誰でも容易にできる利点もある。   Further, in the system configuration in which the liquid leakage sensor and the alarm means including the sounding means are separately installed and the liquid leakage sensor and the alarm means including the sounding means are connected to each other wirelessly, such a separation is provided. The alarm means can be installed at a position with good visibility in the upper space of the system, and an alarm means with an explosion-proof structure can be provided. Leakage detection and / or alarm of volatile liquid and flammable liquid The monitoring process can be performed very safely and reliably, and there is an advantage that anyone can easily perform system adjustment work and maintenance / management work without learning a special sensor arrangement map.

更に又、本発明の漏液センサの1例では、漏液が浸透し得る気体層又は漏液浸透層を介して、前記漏液と接触し得る少なくとも1つの反射境界面と、投光部、受光部及びこれらに結合された制御手段とから成る漏液センサが利用可能であり、
前記投光部及び受光部を底部が透明材又は半透明材で構成されたケースに収納し一体化すると共に、又は、
前記投光部及び受光部を底部が透明材又は半透明材で構成されたケースに収納し一体化すると共に、該ケース先端に当該漏液センサの床等の設置箇所の表面性状又は表面色からの影響を受けにくくし、かつ、当該ケースの転倒防止を兼ねたケースホルダを装着するようにすると共に、
前記漏液センサの異常検知手段、及び、発音手段を含む警報手段を、所定の空間範囲の外側に設置された他の漏液センサ設置箇所と区別して、当該漏液センサの設置位置が特定可能なように、当該漏液センサのセンサ異常検知を可聴周波数の発信音で警報すると共に、
前記所定の空間範囲の内側に設置された単独又は複数の漏液センサにより、前記警報手段が単独又は共通して利用可能であることが好ましく、更に、当該警報手段が容易に視認可能な空間位置に設置されていると、より一段と好ましい。
Furthermore, in one example of the liquid leakage sensor of the present invention, at least one reflective boundary surface that can come into contact with the liquid leakage through a gas layer or a liquid leakage infiltration layer through which liquid leakage can penetrate, a light projecting unit, A liquid leakage sensor comprising a light receiving unit and control means coupled thereto can be used,
The light projecting unit and the light receiving unit are housed and integrated in a case whose bottom is made of a transparent or translucent material, or
The light projecting part and the light receiving part are housed and integrated in a case having a bottom made of a transparent material or a semi-transparent material, and the surface of the installation location such as the floor of the liquid leakage sensor or the surface color is attached to the tip of the case. And a case holder that prevents the case from falling over,
It is possible to identify the location of the leak sensor by distinguishing the leak detection means and the alarm means including the sound generation means from other leak sensor locations installed outside the predetermined space range. As such, the sensor abnormality detection of the leak sensor is warned with an audible frequency tone,
It is preferable that the alarm means can be used singly or in common by a single or a plurality of liquid leakage sensors installed inside the predetermined space range, and further, a spatial position where the alarm means can be easily visually confirmed. It is more preferable that it is installed.

本発明に係る漏液センサ及び漏液検知システムについて、以下、図面を参照しつつ説明する。
図1は、本発明の漏液検知システム1aを塗布現像装置に適用した場合の機械的1構成例を示すブロック図である。
図2は、その漏液検知部(漏液センサ部)を、漏液センサ20aと、発音手段を含む警報手段70aとを、一体に形成した構成の1例である。
図2(A)は、本発明の漏液センサ20aの構造を示す平面図である。
図2(B)は、その2B−2Bでの、横断面図である。
図2(C)は、その側面図である。
図3(A)は、その3A−3Aでの縦断面図である。
図3(B)は、図2(B)の拡大図である。
図3(C)は、その3C−3Cでの横断面図である。
図4(A)は、本発明のホルダ5の平面図である。
図4(B)は、その中央横断面図である。
図4(C)は、切断部8dを有する薄紙8の平面図である。
図5は、本発明の高速漏液引込手段6の動作原理を示す拡大断面図である。
図6は、本発明の漏液センサ20aの信号処理の1構成例を示すブロック図である。
図7は、本発明の防爆型漏液検知システム1bの機械的1構成例を示すブロック図である。
図8は、その漏液検知部(漏液センサ部)を、漏液センサ20bと、発音手段を含む警報手段70bとを、分離して設置した構成の1例である。
図9は、本発明の防爆型警報手段70bの信号処理の1構成例を示すブロック図である。
Hereinafter, a liquid leakage sensor and a liquid leakage detection system according to the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing one mechanical configuration example when the liquid leakage detection system 1a of the present invention is applied to a coating and developing apparatus.
FIG. 2 shows an example of a configuration in which the leak detection unit (leak sensor unit) is integrally formed with a leak sensor 20a and an alarm unit 70a including a sound generation unit.
FIG. 2A is a plan view showing the structure of the leak sensor 20a of the present invention.
FIG. 2B is a cross-sectional view taken along line 2B-2B.
FIG. 2C is a side view thereof.
FIG. 3A is a longitudinal sectional view taken along line 3A-3A.
FIG. 3B is an enlarged view of FIG.
FIG. 3C is a cross-sectional view taken along 3C-3C.
FIG. 4A is a plan view of the holder 5 of the present invention.
FIG. 4B is a central cross-sectional view thereof.
FIG. 4C is a plan view of the thin paper 8 having the cutting portion 8d.
FIG. 5 is an enlarged cross-sectional view showing the operating principle of the high-speed liquid leakage drawing means 6 of the present invention.
FIG. 6 is a block diagram showing one configuration example of signal processing of the leak sensor 20a of the present invention.
FIG. 7 is a block diagram showing one mechanical configuration example of the explosion-proof leakage detection system 1b of the present invention.
FIG. 8 shows an example of a configuration in which the leak detection unit (leak sensor unit) is separated from the leak sensor 20b and the alarm unit 70b including a sound generation unit.
FIG. 9 is a block diagram showing one configuration example of signal processing of the explosion-proof alarm means 70b of the present invention.

本発明の漏液検知システムを、半導体ウエハ(以下、ウエハと呼ぶ)の塗布現像装置に適用した場合に関して、図1乃至図6を参照し、以下に説明する。
先ず、図1は、本発明の漏液検知部(漏液センサ)20aを、漏液センサ部20aと、発音手段72を含む警報手段70aとを、一体に形成して構成した漏液検知システム1aの1例であり、漏液が浸透し得る気体層又は漏液浸透層を介して、漏液と接触し得る少なくとも1つの漏液検知部(図1では、当該漏液検知部が、少なくとも1つの光学式反射境界面を含む光学式漏液検知部から構成されているが、非絶縁性液体の存在によって電極間インピーダンスが変化する電極対を含む導電式漏液検知部、又は、液量計測式漏液検知部を利用することも可能である)を具えた漏液センサを、少なくとも1つ使用するように構成された(図1の例では、1つであるが、面積の広い同一の底面や床面では、複数の漏液センサを複数箇所に分散して設置することも可能である)漏液検知システム1aの1例であり、漏液センサ20aを、それぞれ、後述する各漏液収容部98の底面99に、各漏液収容部がシステムの管理者/保守担当者にとって、区別して空間的に識別可能なように設置し、この設置位置に対し、所定の空間範囲以内(漏液収容部98の底面上方空間)に、後述する発音手段を含む警報手段70aを設け、漏液センサ20aのセンサ異常(漏液検知異常やセンサ設置異常)を検知した場合、少なくとも発音手段により、上記所定の空間範囲の外側に設置された他の漏液センサ設置箇所と区別して(各漏液収容部をそれぞれ独立して区別可能なように)、漏液センサの設置位置が容易かつ直接的に特定可能なように、漏液センサのセンサ異常検知を可聴周波数の発信音で警報するようにしたもので、漏液センサ20aと警報手段70aとは、信号線により接続されると共に、一体に形成され設置されている。
The case where the liquid leakage detection system of the present invention is applied to a semiconductor wafer (hereinafter referred to as a wafer) coating and developing apparatus will be described below with reference to FIGS.
First, FIG. 1 shows a leak detection system in which a leak detection unit (leak sensor) 20a of the present invention is formed by integrally forming a leak sensor unit 20a and an alarm unit 70a including a sound generation unit 72. 1a, at least one leak detection unit that can come into contact with the leak via the gas layer or leak penetration layer that can penetrate the leak (in FIG. 1, the leak detection unit is at least A conductive leakage detector comprising an electrode pair whose impedance is changed by the presence of a non-insulating liquid, or an amount of liquid, which is composed of an optical leakage detector including one optical reflective boundary surface It is configured to use at least one liquid leakage sensor having a measurement type liquid leakage detection unit (in the example of FIG. 1, the number is the same, but the area is the same). A plurality of leak sensors are distributed at multiple locations on the bottom and floor of the This is an example of the leakage detection system 1a, and the leakage sensor 20a is connected to the bottom surface 99 of each leakage storage portion 98, which will be described later, and each leakage storage portion is a system administrator / Alarm means including a sounding means to be described later within a predetermined space range (space above the bottom surface of the liquid leakage storage unit 98) with respect to the installation position for the maintenance person so as to be distinguished and spatially distinguishable 70a is provided, and when a sensor abnormality (leakage detection abnormality or sensor installation abnormality) of the liquid leakage sensor 20a is detected, at least by a sounding means, the other liquid leakage sensor installation locations installed outside the predetermined space range Distinct (so that each leak container can be identified independently), and sensor leak detection of leak sensor is transmitted with audible frequency so that the location of leak sensor can be specified easily and directly Alarm with sound Obtained by the so that, the liquid leakage sensor 20a and alarm unit 70a, and is connected by a signal line, is installed integrally formed.

しかして、上記ウエハの塗布現像装置は、ウエハに種々の処理を施す処理機構が配設された処理機構ユニットと、処理機構ユニットにウエハを搬入・搬出するための搬入搬出機構とから一般に構成され、搬入搬出機構は、処理前のウエハを収納するウエハキャリアと、処理後のウエハを収納するウエハキャリアと、ウエハを吸着保持するア−ムと、このア−ムを水平のX方向、Y方向及びθ(回転)方向にそれぞれ移動させるためのX方向移動機構、Y方向移動機構及びθ方向移動機構と、処理機構ユニットとの間でウエハの受渡しを行う載置台とを有し、又、上記処理機構ユニットには、ウエハとレジスト膜との密着性を向上させるための前処理を行うアドヒ−ジョン塗布機構と、ウエハの上面にレジスト液を塗布する塗布機構81aと、塗布機構81aでレジスト液を塗布する前のウエハを冷却して所定温度に調整する冷却機構と、ウエハに塗布されたレジスト膜中に残存する溶剤を蒸発させるための加熱処理を行うベ−ク機構と、露光後のレジストを現像処理する現像機構81bとからなる各処理機構が設けられている。更に、処理機構ユニットには、上記の各処理機構81a、81b等にウエハの搬入/搬出を行うためのア−ムを有する搬送機構が搬送路に沿って配設され、上記のように構成された処理ユニットにおいて、搬入搬出機構から搬入されたウエハは、アドヒ−ジョン塗布機構で前処理された後、冷却処理及び塗布処理され、ベ−ク機構で加熱処理され、又、現像機構81bで現像処理されたりして、その後、搬入搬出機構へ送られ、ウエハキャリアに収納される。かかる構成において、本発明の漏液検知システム1aを具えた処理液タンク82から、レジスト液塗布機構81aへ、処理液、すなわちレジスト液が供給される。   The wafer coating and developing apparatus is generally composed of a processing mechanism unit in which a processing mechanism for performing various processes on the wafer is disposed, and a loading / unloading mechanism for loading / unloading the wafer into / from the processing mechanism unit. The loading / unloading mechanism includes a wafer carrier for storing the unprocessed wafer, a wafer carrier for storing the processed wafer, an arm for sucking and holding the wafer, and the arm in the horizontal X and Y directions. And an X direction moving mechanism, a Y direction moving mechanism, and a θ direction moving mechanism for moving in the θ (rotation) direction, respectively, and a mounting table for delivering the wafer to and from the processing mechanism unit. The processing mechanism unit includes an adhesion coating mechanism for performing a pretreatment for improving the adhesion between the wafer and the resist film, a coating mechanism 81a for coating a resist solution on the upper surface of the wafer, and a coating. A cooling mechanism that cools the wafer before applying the resist solution by the cloth mechanism 81a and adjusts the wafer to a predetermined temperature, and a baking mechanism that performs heat treatment for evaporating the solvent remaining in the resist film applied to the wafer. And a developing mechanism 81b for developing the exposed resist. Further, the processing mechanism unit is provided with a transport mechanism having an arm for loading / unloading wafers in / from each of the processing mechanisms 81a, 81b, etc., along the transport path. In the processing unit, the wafer loaded from the loading / unloading mechanism is pre-processed by the adhesion coating mechanism, then cooled and coated, heated by the baking mechanism, and developed by the developing mechanism 81b. Then, it is sent to the loading / unloading mechanism and stored in the wafer carrier. In such a configuration, the processing liquid, that is, the resist liquid is supplied from the processing liquid tank 82 having the liquid leakage detection system 1a of the present invention to the resist liquid coating mechanism 81a.

上記半導体ウエハ処理装置における処理液タンク82の配置及び処理液用温度制御部84の配置が、図1に示され、これら処理液タンク82及び温度制御部84に、それぞれ漏液検知システム1aが設けられている。しかして、処理液タンク82から出た送出導管83は、塗布機構81aに接続され、処理液タンク82の上部周囲に設けられた外槽89にも漏液センサを設けることができ、送出導管83には温度制御ユニット85が設けられており、それにより塗布機構81aに供給される処理液は一定の温度に維持される。温度制御ユニット85には、温調ユニット84aにより一定の温度に制御された温度制御用液である恒温水が循環供給される。温度制御部84は、恒温水タンク91と、ポンプ90及びサーモモジュール88を有する送り導管87と、戻し導管86等からなる温調ユニット84aと、熱交換器として構成された温度制御ユニット85とから構成されている。サーモモジュール88は、詳細には図示されていないが、ここに制御電流を流すことにより温調水を一定の温度に維持することができる。
恒温水タンク91には液レベル検出用のフロート94が設けられており、このフロート94は、その支持部95の近くに電気接点96を有する。この接点96は図示しない論理回路を介してソレノイドバルブ97の動作を制御可能に接続されている。この恒温水タンク91と処理液タンク82の下方に漏液収容パン98がそれぞれ独立して配置されており、この漏液収容パン98の底部99に漏液検出用漏液センサ20aがそれぞれ独立して相互に区別可能なように配置されている。
The arrangement of the treatment liquid tank 82 and the arrangement of the treatment liquid temperature control unit 84 in the semiconductor wafer processing apparatus are shown in FIG. 1, and the leakage detection system 1a is provided in each of the treatment liquid tank 82 and the temperature control unit 84. It has been. Thus, the delivery conduit 83 exiting from the treatment liquid tank 82 is connected to the coating mechanism 81a, and a leakage sensor can be provided in the outer tub 89 provided around the upper portion of the treatment liquid tank 82. Is provided with a temperature control unit 85, whereby the processing liquid supplied to the coating mechanism 81a is maintained at a constant temperature. The temperature control unit 85 is circulated and supplied with constant temperature water which is a temperature control liquid controlled at a constant temperature by the temperature adjustment unit 84a. The temperature control unit 84 includes a constant temperature water tank 91, a feed conduit 87 having a pump 90 and a thermo module 88, a temperature control unit 84a including a return conduit 86 and the like, and a temperature control unit 85 configured as a heat exchanger. It is configured. Although the thermo module 88 is not shown in detail, the temperature adjustment water can be maintained at a constant temperature by supplying a control current thereto.
The constant temperature water tank 91 is provided with a float 94 for detecting the liquid level. The float 94 has an electrical contact 96 near the support portion 95. The contact 96 is connected so as to control the operation of the solenoid valve 97 via a logic circuit (not shown). Under the constant temperature water tank 91 and the treatment liquid tank 82, a leakage storage pan 98 is independently arranged, and a leakage detection leak sensor 20 a is independent of the bottom 99 of the leakage storage pan 98. So that they can be distinguished from each other.

上記図示しない論理回路は、液量が減少した際にソレノイドバルブ97を開状態にして温度制御用液(以下に温調液という)を供給するためのものである。切換スイッチは、温調液供給の自動と手動を切換えするために使われる。スイッチの接点が右側に接続されていると、ソレノイドバルブ97には電流が流れ、バルブが開き、手動にて温調液が補充供給される。スイッチの接点が左側に接続されていると、温調液の供給は自動的に行われる。
タンク91の液面が低下すると、フロート94が低下し、接点96はONになる。この時インバータA1の入力は0となり、出力は1(正論理のHレベル状態)になる。インバータA1の出力は、それぞれの遅延回路D1とD2を介してインバータA2とA3に伝達されるが、遅延回路D1は約1分の遅延時間を有し、遅延回路D2は約2秒の遅延時間を有する。従って接点96がONになってから約2秒後に、インバータA4の出力端子に信号1が生じるので、この時トランジスタTrがONとなり、ソレノイドバルブ97に電流が流れる。さらに約1分後にはインバータA2の出力が0になるので、トランジスタTrは再びOFFとなり、ソレノイドバルブ97の電流は遮断される。各遅延回路D1、D2にはダイオードが設けられており、これら遅延回路D1、D2は、0→1の信号を遅延するが、1→0の信号は遅れなく伝達する。従って遅延回路D1により、ソレノイドバルブ97が1分以上の期間開くことを防止し、遅延回路D2により、ソレノイドバルブ97が液面の波立ち等によってONとOFFを頻繁に繰返すことを防止することができる。
The logic circuit (not shown) is for supplying a temperature control liquid (hereinafter referred to as a temperature control liquid) by opening the solenoid valve 97 when the liquid amount decreases. The changeover switch is used for switching between automatic and manual supply of the temperature adjustment liquid. When the contact of the switch is connected to the right side, a current flows through the solenoid valve 97, the valve is opened, and the temperature adjustment liquid is manually supplied and supplied. When the contact of the switch is connected to the left side, the temperature adjustment liquid is automatically supplied.
When the liquid level in the tank 91 is lowered, the float 94 is lowered and the contact 96 is turned on. At this time, the input of the inverter A1 becomes 0 and the output becomes 1 (positive logic H level state). The output of the inverter A1 is transmitted to the inverters A2 and A3 via the delay circuits D1 and D2, respectively. The delay circuit D1 has a delay time of about 1 minute, and the delay circuit D2 has a delay time of about 2 seconds. Have Accordingly, about 2 seconds after the contact 96 is turned on, the signal 1 is generated at the output terminal of the inverter A4. At this time, the transistor Tr is turned on, and a current flows through the solenoid valve 97. Further, after about 1 minute, the output of the inverter A2 becomes 0, so that the transistor Tr is turned off again, and the current of the solenoid valve 97 is cut off. Each delay circuit D1, D2 is provided with a diode, and these delay circuits D1, D2 delay the signal of 0 → 1, but transmit the signal of 1 → 0 without delay. Therefore, the delay circuit D1 can prevent the solenoid valve 97 from opening for a period of 1 minute or longer, and the delay circuit D2 can prevent the solenoid valve 97 from frequently repeating ON and OFF due to the liquid level undulation. .

図2は、本発明における発音手段を含む警報手段70aを光学式漏液センサ(漏液検出部が光学反射面で構成された漏液センサ)20aと一体に形成した構成を拡大して示す1例であり、漏液センサ20aは、光源手段14a及び受光手段16を、底部12dが透明材又は半透明材で構成されたケースに収納し一体化したケース12と、当該ケースを装着するケースホルダ5とで構成され、漏液収容部98の漏液検出対象底面(漏液センサを直接、建物等の床面に設置する場合には、設置用床面をさす)99に、ネジ/釘等の固定部材により固定設置されるか、図示しない他の固定手段により漏液収容部98の所定の漏液検知箇所に固定されると共に、表面張力が、20℃において、6×10−2N/m以下である低表面張力の漏液を、所定の隙間及び所定の断面形状の毛管現象を発現しうる空隙部を利用して(例えば、隙間1mm以下の平行空隙部、及び/又は、最大隙間1mm以下で上方に向けて漸次狭くなる楔状空隙部)、重力に抗して、漏液検知用反射境界面の漏液検知位置まで漏液検出対象床面99から、小量の漏液でも、直接速やかに引き上げ導くための後述する高速漏液引込手段6を、少なくとも1つ設けたもので、
ABS樹脂、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ポリプロピレン、ポリビニルアルコール、メタクリル樹脂、石油樹脂、ポリアミド、ポリ塩化ビニリデン、ポリカーボネート、ポリアセタール、弗素樹脂、ポリイミド、ポリエーテルエステルケトン、ポリフェニレンスルフィド、ポリベンズイミダゾール、ポリシクロオレフィン等の熱可塑性樹脂、又は、フェノール樹脂、尿素樹脂、不飽和ポリエステル、ポリウレタン、アルキド樹脂、メラミン樹脂、エポキシ樹脂等の熱硬化性樹脂、則ち、熱可塑性樹脂又は熱硬化性樹脂等の合成樹脂部材/プラスチック部材、又は、ポリアミノ酸、脂肪族ポリエステル、ポリーεーカプロラクトン、ポリビニルアルコール、キトサン、澱粉、セルロース等と汎用性ポリマーとの混合物等の生分解樹脂部材、又は、これらの組合せから成るグループから選択されたもの、
更に、ポリアミド、ポリカーボネート、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンエーテル、ポリエーテルエステルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリケトンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリ四弗化エチレン、芳香族ポリエステル、ポリアミノビスマレイミド、トリアジン樹脂等のエンジニアリングプラスチック部材、又は、ガラス、又は、セラミックスを少なくとも1つを含む透明材又は半透明材で構成されたケース底部12dに、図5に示すような凸形状で、その底面12pが漏液収容部98の漏液検出対象底面99に直接密着接触可能な漏液検知部の一端を突設して設け、
この検知部には、漏液検出対象底面(又は床面)99に対して約35度〜50度の所定の傾斜角度で平面状の漏液検知用全反射面12m及び12nを設け、これらの平面状全反射面12m及び12nは、コーナーキューブと同等の機能を果たすように、全反射面の延長が相互に所定の角度で交差するように形成し、少なくとも1つの光源手段、受光手段及びこれらに結合された制御手段を、上記各反射境界面のそれぞれに対し、同一の側に配設し、上記第1の全反射境界面12mに対しては光源手段から光を投射し、第1の全反射境界面12mからの反射光を第2の全反射境界面12nに投射し、第2の全反射境界面12nからの反射光を受光手段で受光し、その出力を前記制御手段により演算処理して漏液を検知するため、
先ず、漏液検知用の第1の光学系を形成する光源手段14aからの投射光22uが、全反射面12mに上方から下方に全反射面12mで所定の臨界角以上で全反射するように、透明材又は半透明材12dの屈折率に応じた所定の入射角で照射され、その反射光22vが全反射面12nに投射され、全反射面12nからの全反射光24uが、透明材又は半透明材12dの屈折率に応じた所定の受光角度でCCDやMOS型ホトダイオード等から成る光電変換素子の受光手段16で受光され、かかる光学経路を伝搬した漏液検知光が電気信号に変換され、その出力が、例えば、図6に示すようなマルチプレクサ31を介して、所定のサンプリング周期毎にA/D変換手段32によりデジタル信号に変換され、マイクロプロセッサ(MPU)36を含み漏液検知手段18を兼ねた制御手段30内の、バッファメモリ34に順次書込まれ、デジタル処理されたり、受光手段16のアナログ出力が、直接、図示しないアナログ比較器等から成るアナログ演算手段に入力され、アナログ回路から構成された検知手段18を兼ねた制御手段30内で、所定の基準レベルと比較し、反射光量の大小により漏液の有無をアナログ処理することも可能である。
FIG. 2 shows an enlarged view of a configuration in which an alarm means 70a including a sounding means in the present invention is formed integrally with an optical liquid leakage sensor (a liquid leakage sensor having a liquid leakage detection portion formed of an optical reflecting surface) 20a. As an example, the liquid leakage sensor 20a includes a case 12 in which the light source means 14a and the light receiving means 16 are housed and integrated in a case having a bottom 12d made of a transparent material or a translucent material, and a case holder for mounting the case. 5, and a screw / nail or the like on a leak detection target bottom surface of the leak storage portion 98 (if the leak sensor is installed directly on the floor surface of a building, the installation floor surface is indicated) 99. The fixing member is fixed by a fixing member or fixed to a predetermined leakage detection portion of the leakage container 98 by other fixing means (not shown), and the surface tension is 6 × 10 −2 N / at 20 ° C. Low surface tension leakage that is less than or equal to m Gaps and gaps that can exhibit capillary action with a predetermined cross-sectional shape (for example, parallel gaps with a gap of 1 mm or less and / or wedge-like gaps that gradually narrow upward with a maximum gap of 1 mm or less) ), High-speed liquid leakage pull-in to be described later, for directly pulling up even a small amount of liquid from the leakage detection target floor surface 99 to the liquid leakage detection position on the reflective boundary surface for liquid leakage detection against gravity. At least one means 6 is provided,
ABS resin, polyethylene, polyvinyl chloride, polystyrene, polypropylene, polyvinyl alcohol, methacrylic resin, petroleum resin, polyamide, polyvinylidene chloride, polycarbonate, polyacetal, fluorine resin, polyimide, polyetheresterketone, polyphenylene sulfide, polybenzimidazole, poly Thermoplastic resins such as cycloolefin, or thermosetting resins such as phenolic resins, urea resins, unsaturated polyesters, polyurethanes, alkyd resins, melamine resins, and epoxy resins, that is, thermoplastic resins or thermosetting resins Synthetic resin / plastic members, or polyamino acids, aliphatic polyesters, poly-ε-caprolactone, polyvinyl alcohol, chitosan, starch, cellulose, etc. Solution resin member, or, those selected from the group consisting of combinations,
Furthermore, polyamide, polycarbonate, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polyphenylene ether, polyether ester ketone, polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyketone sulfide, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene. FIG. 5 shows a case bottom portion 12d made of an engineering plastic member such as fluorinated ethylene, aromatic polyester, polyaminobismaleimide, triazine resin, or the like, or a transparent material or translucent material containing at least one glass or ceramic. In the convex shape as shown, the bottom surface 12p is provided to project one end of a liquid leakage detection unit that can be in close contact with the liquid leakage detection target bottom surface 99 of the liquid leakage storage unit 98,
The detection unit is provided with planar liquid leakage detection total reflection surfaces 12m and 12n at a predetermined inclination angle of about 35 degrees to 50 degrees with respect to the leakage detection target bottom surface (or floor surface) 99. The planar total reflection surfaces 12m and 12n are formed such that the extension of the total reflection surface intersects each other at a predetermined angle so as to perform the same function as the corner cube, and includes at least one light source means, light receiving means, and these Control means coupled to each of the reflection boundary surfaces is disposed on the same side, and light is projected from the light source means to the first total reflection boundary surface 12m. The reflected light from the total reflection boundary surface 12m is projected onto the second total reflection boundary surface 12n, the reflected light from the second total reflection boundary surface 12n is received by the light receiving means, and the output is calculated by the control means. In order to detect leaks,
First, the projection light 22u from the light source means 14a forming the first optical system for detecting liquid leakage is totally reflected on the total reflection surface 12m from the upper side to the lower side by the total reflection surface 12m at a predetermined critical angle or more. Irradiated at a predetermined incident angle corresponding to the refractive index of the transparent or translucent material 12d, the reflected light 22v is projected onto the total reflection surface 12n, and the total reflection light 24u from the total reflection surface 12n The leakage detection light that is received by the light receiving means 16 of the photoelectric conversion element composed of a CCD, a MOS type photodiode or the like at a predetermined light receiving angle corresponding to the refractive index of the translucent material 12d is converted into an electric signal. The output is converted into a digital signal by an A / D conversion means 32 at a predetermined sampling period via a multiplexer 31 as shown in FIG. In the control means 30 also serving as the leakage detection means 18, the data is sequentially written into the buffer memory 34 and digitally processed, or the analog output of the light receiving means 16 is directly constituted by an analog computing means such as an analog comparator (not shown). It is also possible to perform analog processing for the presence or absence of liquid leakage according to the amount of reflected light in the control means 30 that also serves as the detection means 18 composed of an analog circuit and compared with a predetermined reference level.

しかして、漏液センサ20aの内部で演算処理され生成された漏液の有無を示す漏液検知情報は、外部出力設定器33及び信号線26を介して(設定器33内部のディップ・スイッチ等で特定されたPNP出力又はNPN出力の外部出力形式で)外部にディジタル出力されると共に、かかる外部出力情報とは独立して作動する警報手段、例えば、共鳴体を打つことにより発音する手段を含む発音手段、及び/又は、ホイッスル又はサイレンを含む発音手段、及び/又は、振動することにより発音する手段(例えば、圧電ブザー等)、及び/又は、振動することにより発音する手段とこれに結合された共鳴手段とを含む発音手段72を、少なくとも1つ具えた警報手段70aにも出力され、更に警報手段70aには、警告灯29も接続するのが好ましく、当該漏液検知箇所を他の漏液検知箇所と区別して、初心者でも可聴周波数の発信音で直接認知可能なように、保守人に警報・通知するようになっている。
上記光源手段/投光手段としては、LEDや赤外線発光素子、半導体レーザ、投光用光ファイバ等が利用可能であり、又、発音手段72を含む警報手段70aと漏液センサ20aとを、一体に形成して構成した漏液検知システム1aでは、上記光源手段14a、受光手段16、警告灯29、検知手段18、発音手段72への駆動電力を供給制御する警報手段70aの制御部700、及び/又は、制御手段30等は、遮光材を兼ねた回路基板7に、一体に形成し、固定するのが好ましい。尚、警報手段70aの電気的制御部700の内部には、有線又は無線の通信手段702を設けることが好ましく、かかる通信手段702により、発音手段72のオン−オフ制御や出力発信音の音量制御、発音手段72のリセット操作等が外部からの遠隔操作指令を介して実行できると、漏液発生後の保守・復旧作業が、確実/迅速に実施でき好ましい。
Accordingly, the leakage detection information indicating the presence or absence of leakage generated by calculation processing inside the leakage sensor 20a is transmitted via the external output setting device 33 and the signal line 26 (such as a dip switch in the setting device 33). Alarm means that is digitally output to the outside (in the PNP output or NPN output external output format specified in the above) and operates independently of such external output information, for example, means for sounding by striking a resonator Sound generating means and / or sound generating means including a whistle or siren and / or means for sounding by vibration (for example, a piezoelectric buzzer) and / or means for sounding by vibration and coupled thereto The sound generation means 72 including the resonance means is also output to the alarm means 70a having at least one, and the alarm light 29 is also connected to the alarm means 70a. Preferred, and the leak detection point to distinguish it from the other leak detection points, so that the so as to be recognized directly in the tone of the audible frequency even a beginner, to the alarm and notification to the maintenance people.
As the light source means / light projecting means, an LED, an infrared light emitting element, a semiconductor laser, a light projecting optical fiber, or the like can be used, and the alarm means 70a including the sound generating means 72 and the liquid leakage sensor 20a are integrated. In the liquid leakage detection system 1a formed and configured as described above, the light source means 14a, the light receiving means 16, the warning light 29, the detection means 18, the control unit 700 of the alarm means 70a for controlling the supply of driving power to the sound generation means 72, and It is preferable that the control means 30 or the like is integrally formed and fixed on the circuit board 7 that also serves as a light shielding material. In addition, it is preferable to provide a wired or wireless communication means 702 inside the electrical control unit 700 of the alarm means 70a. With the communication means 702, on / off control of the sound generation means 72 and volume control of the output dial tone are performed. If the resetting operation of the sound generating means 72 can be executed through a remote operation command from the outside, it is preferable that the maintenance / recovery work after the occurrence of liquid leakage can be carried out reliably / rapidly.

しかして、警報手段70aの電気的制御部700は、制御手段30に兼用させることが可能であり、その固定台71は、回路基板7にネジ等の固定具により固定されると共に、その上面に、圧電振動素子(例えば、京都府にある株式会社村田製作所の圧電振動素子PKLCS1212E4001−R1)等からなる発音手段72が振動可能な状態で、所定の位置に固定され、その上面に、中空下部の内側下面に振動伝達面74が形成され、警報手段70aの本体部をなす円筒殻体73が、光学式漏液センサ20aの上部円周周縁部に形成された嵌合凹部溝に、下端周縁部に形成された嵌合凸部78を介してワンタッチ着脱可能に一体形成され、円筒殻体73の中空上部は蓋部76と共に発音手段72の共鳴器75を形成し、更に、円筒殻体73の中空上部側壁及び/又は蓋部76には、発音手段72の共鳴音を放射する窓部77が単独、又は、複数個形成されるようになっている。尚、上記窓部77は、殻体73の上面に形成するよりは側面に形成するのが、漏液が直接共鳴器75の内部に流入することを防止でき好ましい。
更に、共鳴器75は、透明材及び/又は半透明材で構成すると、回路基板7の上面に配設した警告灯29の点灯状態が外部から直接観測可能となり好ましい。
Thus, the electric control unit 700 of the alarm means 70a can be used also as the control means 30, and the fixing base 71 is fixed to the circuit board 7 by a fixing tool such as a screw, and on the upper surface thereof. The sound generating means 72 including a piezoelectric vibration element (for example, a piezoelectric vibration element PKLCS1212E4001-R1 of Murata Manufacturing Co., Ltd. in Kyoto Prefecture) is fixed at a predetermined position in a state where the sound generation means 72 can vibrate. A vibration transmitting surface 74 is formed on the inner lower surface, and the cylindrical shell 73 forming the main body of the alarm means 70a is formed in the fitting recess groove formed in the upper circumferential peripheral portion of the optical leak sensor 20a, and the lower end peripheral portion. The hollow portion of the cylindrical shell 73 forms a resonator 75 of the sound generating means 72 together with the lid portion 76, and is further formed into a cylindrical shell 7 through a fitting convex portion 78 formed on the cylindrical portion 73. The hollow upper sidewall and / or the lid part 76, windows 77 for emitting a resonance sound of the sound generating means 72 alone, or is adapted to be formed in plural. Note that the window 77 is preferably formed on the side surface rather than on the upper surface of the shell 73 so that the leaked liquid can be prevented from flowing directly into the resonator 75.
Furthermore, it is preferable that the resonator 75 be made of a transparent material and / or a translucent material because the lighting state of the warning lamp 29 provided on the upper surface of the circuit board 7 can be directly observed from the outside.

又、上記実施例では、警報手段70aを漏液センサ本体のケース12と一体に形成する構成で説明したが、警報手段70aの発音手段の振動源/振動部は、ホルダ5側に設けることも可能であり、又、ケースとホルダとの2箇所に分散させて形成することも可能である。又、上記共鳴手段/共鳴器も、ケース12側に配設する構成の他か、ホルダ5側に配設したり、ケースとホルダとの2箇所に分散させて配置・形成することも可能であり、更に又、後述するように、漏液センサの設置箇所とは分離した上方の所定の空間位置に、別途、有線・無線の通信手段を介して設置することも可能である。
尚、共鳴手段/共鳴器を、ケース12側及びホルダ5側の2箇所に分散させて配置・形成すると、保守点検/漏液発生後の復旧作業時に、本体ケース12をホルダ5から取り外した場合、警報音の音量を低減でき、復旧作業等での不要な高い警報音を減らすことができ好ましい。
In the above embodiment, the alarm means 70a is described as being formed integrally with the case 12 of the leak sensor body. However, the vibration source / vibration portion of the sound generation means of the alarm means 70a may be provided on the holder 5 side. It is also possible to disperse and form in two places, the case and the holder. Further, the resonance means / resonator may be arranged on the holder 12 side, or may be arranged and formed in two locations, the case and the holder, in addition to the arrangement arranged on the case 12 side. In addition, as will be described later, it may be separately installed via a wired / wireless communication means at a predetermined spatial position above the location where the liquid leakage sensor is installed.
If the resonance means / resonator is distributed and arranged at two locations on the case 12 side and the holder 5 side, the main body case 12 is removed from the holder 5 during maintenance / inspection / restoration after leakage. It is preferable that the volume of the alarm sound can be reduced and unnecessary high alarm sound in the restoration work can be reduced.

次に、ケース12の漏液検出対象底面99に対する浮き/傾斜が発生していないか平行度をチェックする設置異常検知手段4として第2の光学系が、上記第1の漏液検知用光学系とは、独立して設けられ、この第2の光学系では、光源手段14cからの投射光がケース底部12dを屈折・透過して上方より薄紙8に向かって投射され、ホルダ5の中空部を有するリング状枠体5aの内周部に、内側リング中心方向に向かって、突起部5hが枠体5aと一体に形成され、この突起部5hの上面に、光の吸収材/透光材で形成された薄紙載置平面5jが形成され、かかる平面5jの上に薄紙8の一部分が載置され、第3の光学的反射(境界)面である薄紙8に対し、ケース底部12dの臨界角未満の入射角で光22zが照射され、薄紙に屈折して投射され、その反射光24zが受光手段16cにより受光され、上述と同様にして電気信号に変換されて制御手段30に入力されるようになっている。尚、光源手段14cと受光手段16cとの間に、光源手段14cから受光手段16cへ直接入射する投射光の遮光材12qを充填/形成するのが好ましく、これとは別に、上記第1の光学系と第2の光学系とを光学的に分離するために、第1及び第2の光学系の間にも、遮光材12qを充填/形成するのが好ましい。   Next, a second optical system serving as the installation abnormality detection means 4 for checking parallelism to check whether a float / inclination has occurred with respect to the bottom surface 99 of the liquid leakage detection target of the case 12 is the first liquid leakage detection optical system. In this second optical system, the projection light from the light source means 14c is refracted and transmitted through the case bottom 12d and projected from above to the thin paper 8, and the hollow portion of the holder 5 is projected. A protrusion 5h is formed integrally with the frame 5a on the inner periphery of the ring-shaped frame 5a in the direction toward the center of the inner ring. A light absorber / translucent material is formed on the upper surface of the protrusion 5h. The formed thin paper placement plane 5j is formed, a part of the thin paper 8 is placed on the flat surface 5j, and the critical angle of the case bottom 12d with respect to the thin paper 8 which is the third optical reflection (boundary) surface. The light 22z is irradiated at an incident angle of less than Isa is, the reflected light 24z is received by the light receiving unit 16c, are input to the control unit 30 is converted into an electric signal in the same manner as described above. In addition, it is preferable to fill / form the light shielding material 12q of the projection light directly incident on the light receiving means 16c from the light source means 14c between the light source means 14c and the light receiving means 16c. In order to optically separate the system and the second optical system, it is preferable to fill / form the light shielding material 12q between the first and second optical systems.

又、制御手段30は、漏液の有無判定手段(漏液検知手段)と、ケースの設置異常判定手段と、警報手段70aの制御部700とを兼ねて動作せしめることが可能であり、又、ケース12の底面(又は床面)99に対する平行度をチェックする設置異常検知手段4は、上記例では、光学式設置異常検知手段であるが、この他に、磁石や静電容量の変化を利用した設置異常検知手段も利用可能である。   Further, the control means 30 can be operated as a leakage presence / absence determination means (leakage detection means), a case installation abnormality determination means, and a control unit 700 of the alarm means 70a. The installation abnormality detection means 4 for checking the parallelism with the bottom surface (or floor surface) 99 of the case 12 is an optical installation abnormality detection means in the above example, but in addition to this, a change in magnet or capacitance is used. The installation abnormality detection means that has been used can also be used.

又、ケース底部12dの内側には、金属箔等の遮光材を貼着することも可能であり、かかる遮光材は、ケース底部の光の照射面及び受光手段近傍の反射光受光面を除いた空間範囲に配設すると、床面が白色又は鏡面で構成された床面に漏液が浸入した場合でも、受光手段が不要な床面からの反射光を受光しない光学的効果がある。更に、制御手段30で処理した漏液の検知出力や設置異常等のセンサ異常情報は外部にケーブル26を介して電気信号として出力されると共に、更にケース12の回路基板7の上面に設けられた表示手段29にも、緑色/赤色切換点灯可能なLED等により警告表示されるようになっている。
尚、ホルダ5の外径がケース12の外径の1.3倍以上の大きさのものを使用した方が、センサ20aの転倒防止の面から好ましく、ケーブル26の腰が強い場合、ケース12を単独で設置すると、ケース12が容易に転倒しやすいので、通常は、ケース12を挿入したホルダ5を漏液検出対象底面99にネジ等の固定材によりしっかりと固定し、更に/又は、建物や装置等の側壁や側面61からケース12を固定するためのアーム状の圧接手段60をケース側面部に延設し、その一端62をネジ、釘等の固定材64により建物61側に固定すると共に、他端66をケース側面部に圧接し、ケース12の転倒防止を図ってもよい。
Further, a light shielding material such as a metal foil can be attached to the inside of the case bottom 12d. The light shielding material excludes the light irradiation surface at the case bottom and the reflected light receiving surface near the light receiving means. When arranged in the space range, there is an optical effect that the reflected light from the unnecessary floor surface is not received by the light receiving means even when the liquid leaks into the floor surface having a white floor surface or a mirror surface. Further, sensor abnormality information such as leakage detection output and installation abnormality processed by the control means 30 is output to the outside as an electrical signal via the cable 26 and further provided on the upper surface of the circuit board 7 of the case 12. A warning is also displayed on the display means 29 by an LED or the like that can be switched between green and red.
Note that it is preferable to use a holder 5 having an outer diameter 1.3 times or more larger than the outer diameter of the case 12 from the viewpoint of preventing the sensor 20a from falling down. Since the case 12 is easily tumbled when installed alone, normally, the holder 5 into which the case 12 is inserted is firmly fixed to the bottom surface 99 of the leak detection target with a fixing material such as a screw, and / or the building. Arm-like pressure contact means 60 for fixing the case 12 from the side wall 61 or the side surface 61 of the apparatus or the like is extended to the case side surface, and one end 62 thereof is fixed to the building 61 side by a fixing material 64 such as a screw or a nail. At the same time, the other end 66 may be pressed against the side surface of the case to prevent the case 12 from falling.

又、ケース底部12dと漏液検出対象底面99との間隔d4は、検知する液体の粘度/表面張力に対応して種々のものに変更できることが好ましいが、地震や重量物の移動等により、反射境界面12m,12nと漏液検出対象底面99との角度や間隔が変化すると、漏液センサの漏液有無判定の誤動作の原因となりやすいので、ホルダ5とケース12とは、後述するようなワンタッチ着脱可能で、かつ、間隔d4が外部の振動に対しても変化しない構造のものが好ましい。又、ホルダ5は遮光材で構成すると、ケース12の周囲からノイズ光が侵入したり、床面からの不要な反射光の受光を防止する効果がある。又、ホルダ5を使用せず、ケース12を単体で漏液センサ20aとして使用する場合は、上述の間隔d4が外部の振動に対しても変化しないように、別途設置した圧接手段60等により底面99に固定するのが好ましい。尚、上記光源手段14c、受光手段16c、及び、表示手段29等も、遮光材を兼ねた回路基板7に、一体に形成し、固定するのが好ましい。   Further, the distance d4 between the case bottom 12d and the leak detection target bottom surface 99 can be changed to various values according to the viscosity / surface tension of the liquid to be detected. If the angle or interval between the boundary surfaces 12m, 12n and the leak detection target bottom surface 99 changes, it may easily cause a malfunction of the leak detection of the leak sensor, so the holder 5 and the case 12 are one-touch as described later. A structure that is detachable and has a structure in which the distance d4 does not change even with external vibration is preferable. In addition, when the holder 5 is made of a light shielding material, there is an effect of preventing noise light from entering around the case 12 and receiving unnecessary reflected light from the floor surface. Further, when the holder 12 is not used and the case 12 is used alone as the liquid leakage sensor 20a, the bottom surface is pressed by a separately installed pressure contact means 60 or the like so that the distance d4 does not change even with external vibration. It is preferable to fix to 99. The light source means 14c, the light receiving means 16c, the display means 29 and the like are also preferably formed and fixed integrally on the circuit board 7 also serving as a light shielding material.

次に、漏液検知用投射光22uの全反射面12mへの照射位置は、全反射面12mの部位であって漏液検出対象底面99に近い下方の位置が好ましく、ケース12の底部に設けられた凸形状の漏液検知部底面12p等は、図4(C)に示すような切断線条8dを所定箇所に形成した薄紙8に対する密着シート押さえとして利用可能である。又、光源手段14aと受光手段16との間に、光源手段14aから受光手段16へ直接入射する投射光の遮光材12qを充填/形成するのが好ましい。   Next, the irradiation position of the liquid leakage detection projection light 22u to the total reflection surface 12m is preferably a lower position near the liquid leakage detection target bottom surface 99 that is a part of the total reflection surface 12m and is provided at the bottom of the case 12. The convex liquid leakage detection unit bottom surface 12p and the like thus formed can be used as an adhesive sheet presser for the thin paper 8 in which cutting lines 8d as shown in FIG. Further, it is preferable to fill / form between the light source means 14a and the light receiving means 16 with a light shielding material 12q for the projection light that directly enters the light receiving means 16 from the light source means 14a.

しかして、ケース12全体は、本発明の主として中央中空部を有するリング状枠体5aから成るホルダ5(図4(A),(B))に挿入/装着により嵌合されて固定されるようになっており(図2)、枠体5aの漏液検出対象底面99に対向する底面5b(図4(B))は、漏液検出対象底面99から所定の間隔d5(通常2mm〜5mmの範囲の空隙部が形成できる間隔が好ましい)を保って略平行に形成され、ケース12の底部12dに、凸形状で底面12pが薄紙8を挟持して底面99に直接密着接触する漏液検知部が突設して設けられているので((図2(B),図5)、漏液検出対象底面99に薄膜状に拡散する低表面張力の漏液2aを、中央中空部に拡散した漏液検出対象底面99から直接検出することが可能であり、一方、ホルダ5は、リング中心から外側方向の外周部に設けられた単一又は複数箇所の突起子5cに形成された貫通穴5dを利用して、底面99にクギ/ネジ等の固定材により固定してもよいし、突起子5cの扇状底面に接着剤を貼着し底面99に密着して接着固定してもよい(図4)。又、固定せず、単に漏液検出対象底面99に移動自在に載置しておくだけでもよい。更に、建物や装置等の側壁や側面61からケース12を固定するためのアーム状の圧接手段60をケース側面部に延設し、その一端62を固定部材64により建物61側に固定する(図8)と共に、他端66をケース側面部に圧接し、ケース12の転倒防止を図ってもよい。   Thus, the entire case 12 is fitted and fixed by insertion / mounting to the holder 5 (FIGS. 4A and 4B) mainly composed of the ring-shaped frame 5a having the central hollow portion of the present invention. 2 (FIG. 2), the bottom surface 5b (FIG. 4B) facing the leakage detection target bottom surface 99 of the frame 5a is a predetermined distance d5 (usually 2 mm to 5 mm) from the leakage detection target bottom surface 99. The liquid leakage detection unit is formed in a substantially parallel shape while maintaining a gap that can form a gap in the range), and has a convex bottom surface 12p sandwiching the thin paper 8 between the bottom 12d of the case 12 and directly contacting the bottom surface 99. (FIGS. 2 (B) and 5), the leakage 2a having a low surface tension that diffuses in the form of a thin film on the leakage detection target bottom surface 99 is leaked into the central hollow portion. It is possible to detect directly from the bottom 99 of the liquid detection target, The slider 5 is fixed to the bottom surface 99 with a fixing material such as a nail / screw using the through holes 5d formed in the single or plural protrusions 5c provided on the outer peripheral portion in the outward direction from the ring center. Alternatively, an adhesive may be attached to the fan-shaped bottom surface of the protrusion 5c and adhered and fixed to the bottom surface 99 (FIG. 4). Furthermore, arm-shaped pressure contact means 60 for fixing the case 12 from the side wall 61 or the side surface 61 of the building or device etc. is extended to the side surface of the case, and one end 62 thereof is fixed. The member 64 may be fixed to the building 61 side (FIG. 8), and the other end 66 may be pressed against the side surface of the case to prevent the case 12 from falling.

更に、図2の例では、光源手段14a,14c及び受光手段16、16cを、底部12dが透明材又は半透明材で構成されたケース内部に収納し一体化したケースの1例となっており、ケース12を装着するケースホルダ5とケース12とで高速漏液引込手段6を構成するようになっており、その構成(図5)は、例えば、枠体5aの内周部に、内側リング中心方向に向かって、先端部5fが楔状の矩体突起部5eを、枠体5aと一体に形成し、この突起部5eは、漏液検知用投射光の吸収材/透光材で形成するのが好ましく、突起部5eの底面5gは、漏液検出対象底面99と密着せず、漏液検出対象底面99との間に、所定の隙間d6=1mm以下(好ましくは、0.9mm以下、より好ましくは、0.5mm以下)の平行空隙部d6を形成し、20℃で、6×10−2N/m以下である低表面張力の漏液2aを、平行空隙部d6の毛管現象を利用して、漏液検出対象底面99に対向する底面5gに、高速に拡散せしめるようになっており、又、底面5gの一端で突起部5eの先端部5fは、ケース12の全反射面12mとの間に、所定の隙間d7=1mm以下(好ましくは、0.9mm以下、より好ましくは、0.5mm以下)の平行空隙部d7を形成し、及び/又は、下端部の最大隙間d7=1mm以下(好ましくは、0.9mm以下、より好ましくは、0.5mm以下)で上方に向けて漸次狭くなる楔状空隙部d7を形成し、かかる空隙部d7の毛管現象を利用して、20℃で、6×10−2N/m以下である低表面張力の漏液2aを、重力に抗して、漏液検知用反射境界面12mの所定の漏液検知位置の上方まで底面99から、小量でも、直接速やかに引き上げ導くようになっている。 Further, in the example of FIG. 2, the light source means 14a and 14c and the light receiving means 16 and 16c are an example of a case in which the bottom 12d is housed and integrated in a case made of a transparent material or a semi-transparent material. The case holder 5 to which the case 12 is mounted and the case 12 constitute the high-speed liquid leakage drawing means 6, and the configuration (FIG. 5) is, for example, an inner ring on the inner periphery of the frame 5 a. A rectangular protrusion 5e having a wedge-shaped tip 5f is formed integrally with the frame 5a toward the center, and the protrusion 5e is formed of an absorbing material / translucent material for leakage detection light. Preferably, the bottom surface 5g of the protrusion 5e is not in close contact with the leakage detection target bottom surface 99, and a predetermined gap d6 = 1 mm or less (preferably 0.9 mm or less, More preferably, the parallel gap part d6 of 0.5 mm or less) is formed. 5 g of the bottom surface 5 g facing the leakage detection target bottom surface 99 by using the capillary phenomenon of the parallel gap portion d 6, using the low surface tension leakage liquid 2 a that is 6 × 10 −2 N / m or less at 20 ° C. Further, a predetermined gap d7 = 1 mm or less (preferably between the end 5f of the protrusion 5e at one end of the bottom surface 5g and the total reflection surface 12m of the case 12). 0.9 mm or less, more preferably 0.5 mm or less) and / or the maximum gap d7 at the lower end is 1 mm or less (preferably 0.9 mm or less, more preferably, A low surface that is 6 × 10 −2 N / m or less at 20 ° C. by using the capillary phenomenon of the gap d7. Reflection boundary for leakage detection against gravity leakage 2a against gravity From the bottom surface 99 to above the predetermined leakage detection position of the surface 12m, even in small amounts, so that the direct quickly lead pulling.

尚、空隙部d7には、切断片8dを有する漏液検知用薄紙8の一部分を介挿させることも可能であり、低表面張力の漏液2aを検知する速度は、実験によると、薄紙8が空隙部d7に介在させてあっても、無くても、ほぼ同程度の検知速度であった。又、ケース12全体は、リング状枠体5aの上面内周部に複数箇所立設して設けられた嵌合係止部5nに挿入/装着により嵌合されて、回転自在に固定されるようになっており(図2(A),(B))、係止部5nの先端部5pには、斜め上方にテーパ面を形成し、ケース12の着脱操作が、ワンタッチで可能な構造が好ましい(図4(B))。   Note that a part of the leakage detection thin paper 8 having the cut piece 8d can be inserted into the gap d7, and the speed of detecting the low surface tension leakage 2a is determined according to the experiment. The detection speed was almost the same whether or not it was interposed in the gap d7. Further, the entire case 12 is fitted by insertion / attachment to fitting engagement portions 5n provided at a plurality of positions on the inner peripheral portion of the upper surface of the ring-shaped frame 5a so as to be rotatably fixed. (FIGS. 2 (A) and 2 (B)), and the tip 5p of the locking portion 5n is formed with a tapered surface obliquely upward so that the case 12 can be attached and detached with one touch. (FIG. 4B).

かかる構成において漏液センサ20aの動作を図3(C)及び図5を参照して説明すると、先ず、ケース12がホルダ5や圧接手段60により、しっかりと漏液検出対象底面99に固定されていない場合には、ケース12とホルダ5とが、浮いたり、斜めに傾斜したり、転倒した設置異常状態となり、このため光学式設置異常検知手段4の投射光/反射光の光学経路22z/24zが正常な位置に形成できず、光源手段14cの投射光22zは、本体部12dの光学的反射境界面12aから空気等の気体層に透過/拡散して、反射部材(薄紙8)に到達しないか、又は、所定の角度以上に曲げられて投射され、その反射光24zは、ほとんど受光手段16cに到達しなくなるので、大幅に受光量の減少した受光手段16cの出力を検知手段18により正常な反射光レベルと比較することにより、容易に漏液センサ20aの設置異常が検知され、MPU等からなる制御手段30を介して設置異常アラーム信号(又はエラーコードER−A)が、外部出力設定器33に設定されたPNP出力又はNPN出力のディジタル出力形式でケーブル26を介して外部に出力され、更に、図示しない電源制御部により、光源手段14a,14c及び受光手段16、16cへの電源供給が停止され、漏液センサ20aはエラー待機状態となる。   The operation of the leak sensor 20a in this configuration will be described with reference to FIGS. 3C and 5. First, the case 12 is firmly fixed to the leak detection target bottom surface 99 by the holder 5 and the press contact means 60. Otherwise, the case 12 and the holder 5 are in an abnormal installation state where the case 12 floats, tilts obliquely, or falls, and therefore the optical path 22z / 24z of the projection light / reflected light of the optical installation abnormality detection means 4 Cannot be formed in a normal position, and the projection light 22z of the light source means 14c is transmitted / diffused from the optical reflection boundary surface 12a of the main body 12d to a gas layer such as air and does not reach the reflection member (thin paper 8). Alternatively, the reflected light 24z is bent and projected at a predetermined angle or more and hardly reaches the light receiving means 16c, so that the output of the light receiving means 16c with a greatly reduced amount of received light is detected by the detecting means 1. By comparing with the normal reflected light level, the installation abnormality of the liquid leakage sensor 20a is easily detected, and the installation abnormality alarm signal (or error code ER-A) is externally transmitted via the control means 30 such as MPU. It is output to the outside through the cable 26 in the digital output format of PNP output or NPN output set in the output setting device 33, and further supplied to the light source means 14a, 14c and the light receiving means 16, 16c by a power supply control unit (not shown). The power supply is stopped, and the leak sensor 20a enters an error standby state.

この時点で、設置異常検知手段4から警報手段70aに上記設置異常アラーム信号とは独立して可聴周波数の警報発信信号を出力し、発音手段72の振動が共鳴器75により増幅されて空中に放射され、設置異常アラーム信号で警告されたオペレータ(通常、保守室等で待機している)は、警報発生現場に急行した場合に、直ちに、何処の箇所に設置された漏液センサの設置異常が発生しているか、従来のように、1つ1つ床面や漏液収容部の底面を点検する必要がなく、発音手段72及び共鳴器75から発信される可聴周波数の警報音を頼りに発音源に近づけば、極めて容易に、当該設置異常箇所を他の漏液センサ設置箇所と区別して特定可能である。尚、発音手段72及び共鳴器75から発信される警報音は、周波数が一定又は可変の断続音及び/又は連続音である、音色が一定又は可変の断続音及び/又は連続音である、音の強さが一定又は可変の断続音及び/又は連続音である、音のピッチが一定又は可変の断続音及び/又は連続音である、デュウティイ比が一定又は可変の断続音及び/又は連続音である、又は、これらを組み合わせた警報音を含む発信音が利用可能である。
更に、警報手段70aでは、警告灯/表示手段29をエラー(赤色)点灯させることが可能であるが、発音手段72から発信される可聴周波数の警報音の変動に対応して、警告灯29の明るさを変動せしめることも可能であり、その対応関係は、警報音の変動に同期させて明るさや発光波長等を変動させてもよいし、それぞれ独立に変動させてもよい。
At this time, an alarm transmission signal having an audible frequency is output from the installation abnormality detection unit 4 to the alarm unit 70a independently of the installation abnormality alarm signal, and the vibration of the sound generation unit 72 is amplified by the resonator 75 and radiated into the air. When an operator (usually waiting in a maintenance room) who has been warned by an installation abnormality alarm signal rushes to the site where the alarm is generated, an installation abnormality of the leak sensor installed at any location immediately occurs. There is no need to inspect the floor surface or the bottom of the liquid leakage storage part one by one as in the conventional case, and sound is generated by relying on an audible alarm sound emitted from the sound generating means 72 and the resonator 75. If it is close to the source, it is very easy to distinguish the location of abnormal installation from other locations where the liquid leakage sensor is installed. Note that the alarm sound transmitted from the sound generating means 72 and the resonator 75 is an intermittent sound and / or a continuous sound with a constant or variable frequency, or an intermittent sound and / or a continuous sound with a constant or variable timbre. Intermittent tones and / or continuous tones with constant or variable intensity, intermittent tones and / or continuous tones with constant or variable pitch, intermittent tones and / or continuous tones with constant or variable duty ratio A dial tone including an alarm sound or a combination thereof can be used.
Further, in the alarm means 70a, the warning light / display means 29 can be lit in error (red), but in response to the change in the audible frequency alarm sound transmitted from the sound generation means 72, the warning light 29 It is also possible to vary the brightness, and the correspondence relationship may vary the brightness, the emission wavelength, etc. in synchronization with the variation of the alarm sound, or may vary independently.

かかるアラーム信号の出力されない通常の正常設置された状態では、電源制御部から、光源手段14a,14c及び受光手段16、16cへ電源が供給され、漏液センサ20aは作動状態となり、いかなる漏液も存在しない場合には、図3(C)に示すように光学式設置異常検知手段4の投射光/反射光の光学経路22z/24zが正常な位置に形成され、光源手段14cからの投射光22zが、ホルダ底面5jに載置された反射材(薄紙8)の反射面で反射され、その反射光24zが受光素子16cに入力され、その出力を検知手段18により正常な反射光レベルと比較することにより、容易に漏液センサ20aの正常設置状態が検知される。
又、漏液検知用光学系を形成する光源手段14aからの投射光22uが、第1の全反射面12mに上方から下方に全反射面12mで所定の臨界角以上で全反射するように、透明材又は半透明材12dの屈折率に応じた所定の入射角で照射され、その全反射光22vが第2の全反射面12nに投射され、全反射面12nからの全反射光24uが、透明材又は半透明材12dの屈折率に応じた所定の受光角度で受光手段16により受光され、かかる光学経路を伝搬した漏液検知光が光電変換素子により電気信号に変換され、その出力が、検知手段18を兼ねた制御手段30内で、デジタル処理されたり、受光手段16のアナログ出力が、直接、アナログ比較器等から成るアナログ演算手段に入力され、アナログ回路から構成された検知手段18を兼ねた制御手段30内で、アナログ処理される。尚、漏液が存在しない場合には、上記例では、何れの受光手段でも正常な受光量が検知され、受光量の低下現象は発生しない。
In a normal normal installation state where no alarm signal is output, power is supplied from the power supply control unit to the light source means 14a and 14c and the light receiving means 16 and 16c, the leakage sensor 20a is activated, and any leakage occurs. If not, the optical path 22z / 24z of the projection light / reflected light of the optical installation abnormality detection means 4 is formed at a normal position as shown in FIG. 3C, and the projection light 22z from the light source means 14c. Is reflected by the reflecting surface of the reflecting material (thin paper 8) placed on the holder bottom surface 5j, the reflected light 24z is input to the light receiving element 16c, and the output is compared with the normal reflected light level by the detecting means 18. Thus, the normal installation state of the liquid leakage sensor 20a is easily detected.
Further, the projection light 22u from the light source means 14a forming the leak detection optical system is totally reflected on the first total reflection surface 12m from above to below at the total reflection surface 12m at a predetermined critical angle or more. Irradiated at a predetermined incident angle corresponding to the refractive index of the transparent or translucent material 12d, the total reflection light 22v is projected onto the second total reflection surface 12n, and the total reflection light 24u from the total reflection surface 12n is The leakage detection light received by the light receiving means 16 at a predetermined light receiving angle corresponding to the refractive index of the transparent material or translucent material 12d and propagated through the optical path is converted into an electrical signal by the photoelectric conversion element, and the output is In the control means 30 also serving as the detection means 18, digital processing is performed, or the analog output of the light receiving means 16 is directly input to the analog calculation means including an analog comparator or the like, and the detection means 18 configured by an analog circuit is provided. In proof control means 30 within, are analog processing. In the case where there is no leakage, in any of the above examples, a normal amount of received light is detected by any of the light receiving means, and the phenomenon of a decrease in the amount of received light does not occur.

次に、20℃で、6×10−2N/m以下である低表面張力の漏液2aが、漏液検出対象底面99に薄膜状に拡散してきた場合には、高速漏液引込手段6の一部を形成する矩体突起部5eの底面5gに対向する漏液検出対象底面99の領域まで、液位d1の漏液2aが拡散してきた時点で、漏液検出対象底面99と底面5gとの間に形成された平行空隙部d6により、空隙部d6の間隔と漏液2aの液位d1との長さを、略同程度の長さ、又は、液位d1>間隔d6の長さに設定しておくと、空隙部d6の毛管現象を利用して、漏液2aが平行空隙部d6に急速に引き込まれ(図5の2a1)、漏液2aが底面5gに接触すると共に、漏液検出対象底面99に対向する底面5g全体に、高速に拡散される。 Next, when the leaked liquid 2a having a low surface tension of 6 × 10 −2 N / m or less at 20 ° C. has diffused into the leak detection target bottom surface 99 in a thin film shape, the high-speed leak-in means 6 When the leak 2a of the liquid level d1 has diffused to the area of the leak detection target bottom 99 facing the bottom 5g of the rectangular protrusion 5e that forms a part of the rectangular protrusion 5e, the leak detection target bottom 99 and the bottom 5g The distance between the gap d6 and the liquid level d1 of the leaked liquid 2a is approximately the same length, or the length of the liquid level d1> the distance d6. Is set, the leak 2a is rapidly drawn into the parallel gap d6 by utilizing the capillary action of the gap d6 (2a1 in FIG. 5), and the leak 2a contacts the bottom surface 5g and leaks. It is diffused at high speed over the entire bottom surface 5g facing the liquid detection target bottom surface 99.

その後、底面5gの一端で、突起部5eの先端部5fの一端を形成する最下端部まで漏液2aが拡散すると(図5の2a2)、漏液2aは、更に、ケース12の全反射面12mと先端部5fとで形成された平行空隙部d7の一端に到達し、空隙部d7は、所定の隙間d7で漏液2aの毛管現象が発現するように設定されているので、漏液2aの漏れ量が小量であっても、重力に抗して、漏液検知用反射境界面12mの所定の漏液検知位置より上方まで、漏液検出対象底面99から直接速やかに引き上げ導かれる(図5の2a3)。かくして、漏液2aが、漏液検知用反射境界面12mの所定の漏液検知位置を上方に通過すると、光源手段14aからの投射光22uの大半の光は、全反射面12mで全反射せず、底部12d及び全反射面12mを、大略直進し、更に、空隙部d7に充満した漏液2aを屈折直進した後、投射光の吸収材/透光材で形成された矩体突起部5e及び空隙部d6に充満した漏液2a中を大略直進して、漏液検出対象底面99で反射され、全反射面12nと反対方向に伝搬・進行する。   Thereafter, when the leak 2a diffuses at one end of the bottom surface 5g to the lowest end forming one end of the tip 5f of the protrusion 5e (2a2 in FIG. 5), the leak 2a further flows into the total reflection surface of the case 12 Since it reaches one end of the parallel gap part d7 formed by 12m and the tip part 5f, and the gap part d7 is set so that the capillary phenomenon of the liquid leak 2a appears in the predetermined gap d7, the liquid leak 2a Even if the amount of leakage is small, the liquid leakage detection target bottom surface 99 is promptly and directly pulled up to a position above the predetermined leakage detection position of the leakage detection reflective boundary surface 12m against gravity. 2a3) in FIG. Thus, when the liquid leakage 2a passes upward through a predetermined liquid leakage detection position on the liquid leakage detection reflecting boundary surface 12m, most of the projection light 22u from the light source means 14a is totally reflected by the total reflection surface 12m. The rectangular protrusion 5e formed by the projection light absorber / translucent material after the bottom portion 12d and the total reflection surface 12m substantially straightly traveled, and the liquid leakage 2a filled in the gap portion d7 refracted straight. In addition, it travels substantially straight through the leaked liquid 2a filled in the gap d6, is reflected by the leak detection target bottom surface 99, and propagates and travels in the direction opposite to the total reflection surface 12n.

従って、漏液検知用光学経路の一部を形成する全反射面12mで全反射し、その後全反射面12nでも全反射された光24uが、受光手段16で受光される光量は、大幅に低下し、その出力を制御手段30により演算処理して、小量の漏液2aが、漏液検出対象底面99に薄く拡散し始めた非常に初期の段階で、非常に高速に検知することができる。又、低表面張力の漏液2aが、漏液検出対象底面99に一度に大量に漏れだした場合には、ケース12の外周は全て漏液2aで水浸しになり、かつ、漏液検知用反射境界面12nの所定の漏液検知位置も漏液2a中に水没するので、光源手段14aからの投射光22uが、全反射面12mで全反射され、その全反射光22vが全反射面12nに投射されても、漏液2aのために全反射面12nで全反射せず、直ちに、全反射面12nを大略直進し、更に、空隙部d4に充満した漏液2aの中を屈折直進した後、ケース12の外周方向に拡散・放射され、受光手段16の設置位置と全く関係ない方向に伝搬・進行する。従って、漏液検知用光学経路の一部を形成する全反射面12nで全反射された光24uが、受光手段16で受光される光量は、大幅に低下し、その出力を制御手段30により演算処理して漏液2aの大量発生を、非常に初期の段階で、非常に高速に検知することができる。
かくして、漏液検知手段18を兼ねた制御手段30により、漏液2aが検出されると、表示手段29を正常(緑色)点灯からエラー(赤色)点灯させると共に、外部出力設定器33に設定されたPNP出力又はNPN出力のディジタル出力形式で、ケーブル26を介して外部に漏液検知信号をディジタル出力する(漏液検知エラーコードER−B)。
Accordingly, the amount of light 24u that is totally reflected by the total reflection surface 12m that forms a part of the optical path for detecting leakage and then totally reflected by the total reflection surface 12n is significantly reduced by the light receiving means 16. Then, the output is calculated by the control means 30, and a very small amount of the liquid leakage 2a can be detected at a very high speed at the very early stage when the liquid leakage detection target bottom surface 99 starts to diffuse thinly. . In addition, when a large amount of low surface tension leakage 2a leaks to the leakage detection target bottom surface 99 at once, the outer periphery of the case 12 is completely immersed in the leakage 2a, and the reflection for detecting leakage Since the predetermined leakage detection position of the boundary surface 12n is also submerged in the leakage 2a, the projection light 22u from the light source means 14a is totally reflected by the total reflection surface 12m, and the total reflection light 22v is reflected on the total reflection surface 12n. Even if it is projected, it is not totally reflected at the total reflection surface 12n due to the leaked liquid 2a, but immediately travels substantially straight through the total reflection surface 12n, and further goes straight through the inside of the leaked liquid 2a filled in the gap portion d4. The light is diffused / radiated in the outer peripheral direction of the case 12 and propagates / moves in a direction completely unrelated to the installation position of the light receiving means 16. Accordingly, the amount of light received by the light receiving means 16 of the light 24u totally reflected by the total reflection surface 12n forming a part of the optical path for detecting leakage is greatly reduced, and the output is calculated by the control means 30. It is possible to detect a large amount of the leaked liquid 2a at a very early stage by processing at a very high speed.
Thus, when the liquid leakage 2a is detected by the control means 30 also serving as the liquid leakage detection means 18, the display means 29 is turned on from the normal (green) lighting to the error (red) lighting, and is set in the external output setting device 33. In addition, a leak detection signal is digitally output to the outside via the cable 26 in a digital output format of PNP output or NPN output (leak detection error code ER-B).

この時点で、漏液検知部18から警報手段70aに、外部にディジタル出力される漏液検知信号とは別に警報音発信信号が出力されると、発音手段72が駆動され、例えば、圧電素子等による振動により生成された発振音が共鳴器75により共鳴増幅されて空中に放射されるので、保守監視室等で待機しているオペレータは、漏液検知信号ER−Bで漏液の発生が警告された後、警報発生現場に急行した場合に、直ちに、何処の箇所に設置された漏液センサが漏液を検知したのか、従来のように、1つ1つ床面や漏液収容部の底面を点検する必要がなく、発音手段72及び共鳴器75から発信される増幅警報音を頼りに発音源に近づけば、極めて容易に、当該漏液発生箇所を他の漏液センサ設置箇所と区別して特定可能である。
尚、発音手段72及び共鳴器75から発信される警報音は、周波数が一定又は可変の断続音及び/又は連続音である、音色が一定又は可変の断続音及び/又は連続音である、音の強さが一定又は可変の断続音及び/又は連続音である、音のピッチが一定又は可変の断続音及び/又は連続音である、デュウティイ比が一定又は可変の断続音及び/又は連続音である、又は、これらを組み合わせた警報音を含む発信音が利用可能である。
更に、警報手段70aでは、警告灯/表示手段29をエラー(赤色)点灯させることが可能であるが、発音手段72から発信される可聴周波数の警報音の変動に対応して、警告灯29の明るさを変動せしめることも可能であり、その対応関係は、警報音の変動に同期させて明るさや発光波長等を変動させてもよいし、それぞれ独立に変動させてもよい。
更に、発音手段72から漏液検知時に放射される警報発信音は、ケースの設置異常時に放射される警報発信音と同一音でなく、いずれのセンサ異常か識別可能なように相互に区別可能な異なる発信音が好ましく、かかる相互に区別可能な異なる発信音としては、例えば、警報発信音の音量を変更する、警報発信音の音色を変更する、警報発信音の周波数を変更する、警報発信音のデューティ比を変更する、警報発信音を連続音と断続音とで出力する、又は、これらの組合せた発信音とする等、種々の組合せが利用可能である。
At this time, when an alarm sound transmission signal is output from the leak detection unit 18 to the alarm means 70a separately from the leak detection signal digitally output to the outside, the sound generation means 72 is driven, for example, a piezoelectric element or the like. Since the oscillation sound generated by the vibration due to the vibration is resonantly amplified by the resonator 75 and radiated into the air, the operator waiting in the maintenance monitoring room or the like warns of the occurrence of liquid leakage by the liquid leakage detection signal ER-B. After that, when rushing to the site where the alarm occurred, where the leak sensor installed immediately detected the leak, as in the past, one by one on the floor and leak container If it is not necessary to check the bottom surface and the amplified alarm sound transmitted from the sound generating means 72 and the resonator 75 is relied on the sound source, it is very easy to distinguish the leak occurrence location from other leak sensor installation locations. It can be specified separately.
Note that the alarm sound transmitted from the sound generating means 72 and the resonator 75 is an intermittent sound and / or a continuous sound with a constant or variable frequency, or an intermittent sound and / or a continuous sound with a constant or variable timbre. Intermittent tones and / or continuous tones with constant or variable intensity, intermittent tones and / or continuous tones with constant or variable pitch, intermittent tones and / or continuous tones with constant or variable duty ratio A dial tone including an alarm sound or a combination thereof can be used.
Further, in the alarm means 70a, the warning light / display means 29 can be lit in error (red), but in response to the change in the audible frequency alarm sound transmitted from the sound generation means 72, the warning light 29 It is also possible to vary the brightness, and the correspondence relationship may vary the brightness, the emission wavelength, etc. in synchronization with the variation of the alarm sound, or may vary independently.
Furthermore, the alarm sound emitted from the sound generating means 72 when detecting leakage is not the same sound as the alarm sound emitted when the case is abnormal, and can be distinguished from each other so that any sensor abnormality can be identified. Different dial tones are preferred, and as such different dial tones that can be distinguished from each other, for example, the volume of the alarm dial tone is changed, the tone of the alarm dial tone is changed, the frequency of the alarm dial tone is changed, the alarm dial tone Various combinations can be used, such as changing the duty ratio, outputting a warning sound as a continuous sound and an intermittent sound, or using a combined sound as a combination thereof.

次に、20℃で、6×10−2N/m以上の表面張力の漏液2が、漏液検出対象底面99に拡散してきた場合には、漏液検出対象底面99とケース底部12dとの間に形成された平行空隙部d4に、薄紙8が介挿されているので、液位d3の漏液2が、薄紙8の外周部又は一部に接触した(図5)直後に、漏液2が薄紙8の全面に浸透/拡散し、漏液2が薄紙8を介して全反射面12n近傍まで急速に引き込まれる。かくして、漏液2が、漏液検知用反射境界面12nの所定の漏液検知位置に到達すると、光源手段14aからの投射光22uは、全反射面12mで全反射され、その全反射光22vが全反射面12nでは、漏液2のために全反射せず、全反射面12nを、大略直進し、更に、漏液2の浸透した薄紙8の中を屈折直進した後、漏液検出対象底面99で反射され、受光手段16の設置位置と全く関係ない方向に伝搬・進行する。従って、漏液検知用光学経路の一部を形成する全反射面12nで全反射された光24uが、受光手段16で受光される光量は、大幅に低下し、その出力を制御手段30により演算処理して漏液2を、底面99に薄く拡散し始めた非常に初期の段階で、非常に高速に検知することができる。 Next, when the liquid leakage 2 having a surface tension of 6 × 10 −2 N / m or more at 20 ° C. has diffused into the liquid leakage detection target bottom surface 99, the liquid leakage detection target bottom surface 99, the case bottom 12d, Since the thin paper 8 is inserted in the parallel gap part d4 formed between the two, the liquid leakage d2 at the liquid level d3 comes into contact with the outer peripheral part or a part of the thin paper 8 (FIG. 5). The liquid 2 penetrates / diffuses on the entire surface of the thin paper 8, and the leaked liquid 2 is rapidly drawn to the vicinity of the total reflection surface 12n through the thin paper 8. Thus, when the leaked liquid 2 reaches the predetermined leak detection position of the leak detection reflective boundary surface 12n, the projection light 22u from the light source means 14a is totally reflected by the total reflection surface 12m, and the total reflected light 22v. However, the total reflection surface 12n does not totally reflect due to the leak 2, but the total reflection surface 12n travels substantially straight, and further refracts straight through the thin paper 8 into which the leak 2 has penetrated. The light is reflected by the bottom surface 99 and propagates and travels in a direction completely unrelated to the installation position of the light receiving means 16. Accordingly, the amount of light received by the light receiving means 16 of the light 24u totally reflected by the total reflection surface 12n forming a part of the optical path for detecting leakage is greatly reduced, and the output is calculated by the control means 30. The leaked liquid 2 can be detected at a very high speed at the very early stage where the liquid leakage 2 starts to diffuse thinly into the bottom surface 99.

又、一度に大量の漏液2が発生した場合には、ケース12の外周は全て漏液2で水浸し、かつ、漏液検知用反射境界面12nの所定の漏液検知位置も漏液2中に水没するので、光源手段14aからの投射光22uが、全反射面12mが漏液2中に水没している場合には、全反射せず全反射面12mを大略直進し、更に、空隙部d7に充満した漏液2の中を屈折直進し、全反射面12nと全く関係ない方向に伝搬・進行したり、又は、
全反射面12mで全反射され、その全反射光22vが全反射面12nに投射された場合には、漏液2のために全反射面12nでは全反射せず、直ちに、全反射面12nを大略直進し、更に、空隙部d4に充満した漏液2の中を屈折直進した後、漏液検出対象底面99で反射され、受光手段16の設置位置と全く関係ない方向に伝搬・進行する。
従って、一度に大量の漏液2が発生した場合には、漏液検知用光学経路の一部を形成する全反射面12nで全反射された光24uが、受光手段16で受光される光量は、漏液2が存在しない場合と比較すると、大幅に低下し、その出力を制御手段30により演算処理して、漏液2の大量発生を、非常に初期の段階で、非常に高速に検知することができる。
かくして、漏液検知手段18を兼ねた制御手段30により、漏液2a又は漏液2が検出されると、表示手段29をエラー点灯させると共に、ケーブル26を介して外部に漏液の有無をディジタル出力する(漏液検知エラーコードER−B)。
Further, when a large amount of liquid leakage 2 occurs at a time, the entire outer periphery of the case 12 is immersed in the liquid leakage 2 and the predetermined liquid leakage detection position of the liquid leakage detection reflection boundary surface 12n is also in the liquid leakage 2 Therefore, when the total reflection surface 12m is submerged in the liquid leakage 2, the projection light 22u from the light source means 14a does not totally reflect but travels straight through the total reflection surface 12m. refracts straight in the leaked liquid 2 filled in d7, propagates and travels in a direction completely unrelated to the total reflection surface 12n, or
When the total reflection surface 12m is totally reflected and the total reflection light 22v is projected onto the total reflection surface 12n, the total reflection surface 12n is not totally reflected by the total reflection surface 12n because of the liquid leakage 2. It travels substantially straight, and further refracts straight through the leaked liquid 2 filled in the gap d4, and then is reflected by the leak detection target bottom surface 99 and propagates and travels in a direction completely unrelated to the installation position of the light receiving means 16.
Accordingly, when a large amount of liquid leakage 2 occurs at a time, the light amount received by the light receiving means 16 from the light 24u totally reflected by the total reflection surface 12n forming a part of the optical path for liquid leakage detection is as follows: Compared with the case where the liquid leak 2 does not exist, the output is greatly reduced, and the output is calculated by the control means 30 to detect a large amount of the liquid leak 2 at a very early stage at a very high speed. be able to.
Thus, when the leakage means 2a or leakage 2 is detected by the control means 30 that also serves as the leakage detection means 18, the display means 29 is turned on in error and the presence / absence of leakage is digitally detected via the cable 26. Output (leak detection error code ER-B).

と同時に、漏液検知手段18から警報手段70aに警報音発信信号を出力し、発音手段72の振動が共鳴器75により共鳴増幅されて空中に放射され、漏液検知信号ER−Bで警告された保守監視室のオペレータ等は、漏液発生現場に急行した場合、直ちに、何処の箇所に設置された漏液センサが漏液を検知したのか、従来のように、1つ1つ床面や漏液収容部の底面を点検する必要がなく、共鳴増幅し放射された警報音発信箇所に近づくことにより、極めて容易に、当該漏液発生箇所を他の漏液センサ設置箇所と区別して容易に特定可能である。   At the same time, an alarm sound transmission signal is output from the leak detection means 18 to the alarm means 70a, and the vibration of the sound generation means 72 is resonantly amplified by the resonator 75 and radiated into the air, and warned by the leak detection signal ER-B. When the operator of the maintenance monitoring room rushes to the site where the leak occurred, the location where the leak sensor installed immediately detected the leak, as in the past, There is no need to check the bottom of the leak container, and it is very easy to distinguish the leak location from other leak sensor installation locations by approaching the location where the alarm sound is emitted after resonance amplification. It can be specified.

尚、上述の受光処理で受光手段として1次元又は2次元のアレイセンサを使用する場合には、複数の各受光素子のA/D変換後のデジタル出力をダブルバッファメモリ34に書込んだ後、MPU36等により以下の処理を行なうと良い。
a)各受光素子28i(i=a〜n)の感度補正を行なった後、受光パターンを移動平均処理等により平滑化する。
b1)平滑化した受光パターンの明暗のピーク位置を演算し、この位置が漏液無し範囲内にあるか否かで漏液の有無を判定する。
b2)平滑化した受光パターンR(j)の反射光量の輝度分布の重心XGを次式により演算し、この重心位置が、漏液無し範囲内にあるか否かで漏液の有無を判定する。
XG=ΣR(j)・j/Σj (j=1からn) ・・・(1)
但し、R(j):受光レベル 、j=1からn:受光位置
When a one-dimensional or two-dimensional array sensor is used as the light receiving means in the above light receiving process, after the digital output after A / D conversion of each of the plurality of light receiving elements is written in the double buffer memory 34, The following processing may be performed by the MPU 36 or the like.
a) After correcting the sensitivity of each light receiving element 28i (i = a to n), the light receiving pattern is smoothed by moving average processing or the like.
b1) The light / dark peak position of the smoothed light receiving pattern is calculated, and the presence / absence of leakage is determined based on whether or not this position is within the range without leakage.
b2) The center of gravity XG of the luminance distribution of the reflected light quantity of the smoothed light receiving pattern R (j) is calculated by the following equation, and the presence / absence of leakage is determined based on whether or not the position of the center of gravity is within the range without leakage. .
XG = ΣR (j) · j / Σj (j = 1 to n) (1)
However, R (j): Light reception level, j = 1 to n: Light reception position

b3)予め、反射光の明暗パターンの、波形立上り部分及び/又は、波形ピーク部分、及び/又は、波形立下り部分等を、漏液有りの反射光パターンの中から切出してテンプレートメモリ35等に、漏液テンプレートパターンT(j)として登録しておき、このテンプレートパターンT(j)と類似した波形位置を、平滑化した受光パターンR(j)の中で相関値CR(m)の演算をすることにより求める。
例えば、漏液無し位置より所定の距離(mth)以上離れた位置(m>mth)で、かつ、所定の類似度Thcr以上テンプレート波形と類似した明暗パターンCR(m)が検出された場合、漏液有りと判定し、それ以外の場合には漏液無しと判定する。
c)かくして、漏液検知手段18を兼ねた制御手段30により、b1)からb3)の演算の中から、所望の演算又は組合わせた演算により、漏液2が検出されると、ケーブル26を介して外部に漏液の有無をディジタル出力する(漏液検知エラーコードER−B)。
尚、上述のb1)及びb2)の処理では、レンズ、凹面鏡等の集光手段により広く反射光を集めることにより、最小限2箇所の受光部(素子)により、漏液の有無演算が実行できる。又、b3)の相関演算では、最小限4〜8箇所の異なる位置からの受光部(受光素子)による反射光データの収集が好ましい。
b3) A waveform rising portion and / or a waveform peak portion and / or a waveform falling portion of the light-dark pattern of the reflected light is cut out from the reflected light pattern with leakage in advance to the template memory 35 or the like. The correlation value CR (m) is calculated in the light receiving pattern R (j) obtained by registering the waveform position similar to the template pattern T (j) as a leaked template pattern T (j). Ask for it.
For example, if a light / dark pattern CR (m) similar to the template waveform is detected at a position (m> mth) that is a predetermined distance (mth) or more away from the position without liquid leakage and a predetermined similarity Thcr or more, It is determined that there is liquid, otherwise it is determined that there is no liquid leakage.
c) Thus, when the leakage 2 is detected by a desired calculation or a combined calculation from the calculations b1) to b3) by the control means 30 also serving as the leakage detection means 18, the cable 26 is disconnected. The presence or absence of leakage is digitally output to the outside (leak detection error code ER-B).
In the above-described processes b1) and b2), the presence / absence calculation of liquid leakage can be performed by a minimum of two light receiving portions (elements) by collecting reflected light widely by a condensing means such as a lens or a concave mirror. . In the correlation calculation of b3), it is preferable to collect the reflected light data from the light receiving portions (light receiving elements) from a minimum of 4 to 8 different positions.

更に又、漏液センサ20aでは、ケース12とホルダ5との間に、薄紙8を介挿しているので、漏液検出対象底面99に拡散してきた漏液2が、薄紙8を順次浸透して、薄紙8を透明層に変換しながら拡散し、リング状枠体5aの内周側に設けられた突起部5hの上面に形成された載置平面5jまで漏液2が浸透し拡散すると、第3の光学的(反射)境界面である薄紙8に対し、ケース底部12dから照射された光22zが、薄紙8の表面では反射せず、そのまま漏液の浸透した薄紙8の中を直進し、更に、光の吸収材/透光材で形成された載置平面5jの内部に、所定の屈折角で直進するので、受光手段16cにより受光される反射光24zの光量が大幅に減少し、ケースの設置異常検知手段4としての制御手段30が作動し、ケースの設置異常エラーとしても、漏液2が検知可能である。従って、漏液検知用の第1の光学系が故障して正常に動作しない場合でも、ケースの設置異常エラーとして、漏液2が検知可能となり、センサのエラー検知機能を、一段と向上させることができる。   In addition, since the thin paper 8 is inserted between the case 12 and the holder 5 in the liquid leakage sensor 20a, the liquid leakage 2 that has diffused to the bottom surface 99 of the liquid leakage detection permeates the thin paper 8 sequentially. When the thin paper 8 is diffused while being converted into a transparent layer, and the leaked liquid 2 penetrates and diffuses to the mounting plane 5j formed on the upper surface of the protrusion 5h provided on the inner peripheral side of the ring-shaped frame 5a, 3, the light 22z irradiated from the case bottom 12d does not reflect on the surface of the thin paper 8 and travels straight through the thin paper 8 into which the liquid leaks. Further, since the light travels straight within the mounting plane 5j formed of the light absorber / translucent material at a predetermined refraction angle, the amount of the reflected light 24z received by the light receiving means 16c is greatly reduced. The control means 30 as the installation abnormality detection means 4 is activated and the case is installed. Even abnormal error, leakage 2 can be detected. Therefore, even when the first optical system for detecting liquid leakage fails and does not operate normally, the liquid leakage 2 can be detected as a case installation error, and the error detection function of the sensor can be further improved. it can.

かくして、図2(B)及び図5の漏液センサ20aは、漏液が浸透し得る気体層d6、d7又は漏液浸透層(例えば、図5では、漏液収容部98の漏液検出対象底面99とケース底面12pとに挟持された薄紙8の一部)を介して、前記漏液と接触し得る少なくとも1つの漏液検知用反射境界面12m,12nと、光源手段14a、受光手段16及びこれらに結合された制御手段30とから成る漏液センサの一種であり、気体層d6又は漏液浸透層(d4又は漏液検出対象底面99と底面12pとに挟持された薄紙8)の漏液収容部98の底面99に対向する面の一部又は全体を、直接、漏液検出対象底面99側に開放し(図5の例では、気体層d6は、床面側全体)、又は、気体層又は漏液浸透層の一部として床面を構成せしめ(例えば、図5では、漏液収容部98の漏液検出対象底面99とケース底面12pとに挟持された薄紙8の一部)、更に、表面張力が、20℃において、6×10−2N/m以下である低表面張力の漏液2aを、所定の隙間d0及び所定の断面形状の毛管現象を発現しうる空隙部を利用して、重力に抗して、漏液検知用反射境界面12mまで漏液収容部98の漏液検出対象底面99から、小量でも、直接速やかに引き上げ導くための高速漏液引込手段6を、少なくとも1つ具え、光源手段14aの投射光22uを漏液検知用反射境界面12mに照射し、反射境界面12mからの反射光を受光手段16で受光し、その出力を制御手段30により演算処理して、低表面張力の漏液2aの有無を速やかに判定できるようにした漏液センサということができる。 Thus, the leak sensor 20a shown in FIGS. 2B and 5 is configured to detect gas leaks in the gas layers d6 and d7 or the leak penetration layer (for example, in FIG. At least one leakage detecting reflection boundary surface 12m, 12n, light source means 14a, light receiving means 16 that can come into contact with the liquid leakage via a part of thin paper 8 sandwiched between bottom surface 99 and case bottom surface 12p). And a leakage sensor including the control means 30 coupled thereto, and leakage of the gas layer d6 or the leakage penetration layer (d4 or the thin paper 8 sandwiched between the leakage detection target bottom surface 99 and the bottom surface 12p). A part or the whole of the surface facing the bottom surface 99 of the liquid storage part 98 is directly opened to the liquid leakage detection target bottom surface 99 side (in the example of FIG. 5, the gas layer d6 is the entire floor surface side), or Configure the floor as part of a gas layer or a liquid permeation layer (for example, In 5, a portion of the thin paper 8 which is sandwiched between the leakage detection target bottom 99 and the case bottom surface 12p of the leak accommodating portion 98), further, surface tension, at 20 ℃, 6 × 10 -2 N / m or less Leakage 2a of low surface tension is leaked to the reflection boundary surface 12m for leak detection against gravity using a gap that can exhibit capillary action having a predetermined gap d0 and a predetermined cross-sectional shape. At least one high-speed liquid-leakage drawing means 6 for directly pulling up even a small amount from the liquid-leakage detection target bottom surface 99 of the liquid storage unit 98, and the projection light 22u of the light source means 14a is reflected for liquid-leakage detection. The boundary surface 12m is irradiated, the reflected light from the reflection boundary surface 12m is received by the light receiving means 16, and the output is subjected to arithmetic processing by the control means 30, so that the presence or absence of the low surface tension leakage 2a can be quickly determined. It can be referred to as a leak sensor.

又、図2(B)及び図5の漏液センサ20aは、漏液に接触し得る少なくとも2つの漏液検知用全反射境界面12m,12nを、気体層d6、d7又は漏液浸透層(例えば、図5では、漏液収容部98の漏液検出対象底面99とケース底面12pとに挟持された薄紙8の一部)を介在させて形成し、少なくとも1つの光源手段14a、受光手段16及びこれらに結合された制御手段30を、各反射境界面のそれぞれに対し、同一の側に配設し、第1の全反射境界面12mに対しては光源手段14aから光22uを投射し、第1の全反射境界面12mからの反射光22vを第2の全反射境界面12nに投射し、第2の全反射境界面12nからの反射光24uを受光手段16で受光し、その出力を制御手段30により演算処理して漏液を検知するようにした漏液センサの一種であり、気体層d6,d7又は漏液浸透層の漏液検出対象底面99に対向する面の一部又は全体を、直接、漏液検出対象底面99側に開放し、又は、気体層又は漏液浸透層の一部として漏液収容部98の底面99側を構成せしめ、更に、表面張力が、20℃において、6×10−2N/m以下である低表面張力の漏液2aを、所定の隙間d0及び所定の断面形状の毛管現象を発現しうる空隙部を利用して、重力に抗して、漏液検知用反射境界面12mまで漏液検出対象底面99から、小量でも、直接速やかに引き上げ導くための高速漏液引込手段6を、少なくとも1つ具え、低表面張力の漏液2aの有無を、小量の漏れ量でも、速やかに判定できるようにした漏液センサということもできる。 2B and FIG. 5 includes at least two leak detection total reflection boundary surfaces 12m and 12n that can come into contact with the leak, gas layers d6 and d7, or a leak penetration layer ( For example, in FIG. 5, at least one of the light source means 14 a and the light receiving means 16 is formed by interposing a part of the thin paper 8 sandwiched between the liquid leakage detection target bottom surface 99 and the case bottom surface 12 p of the liquid leakage storage unit 98. And the control means 30 coupled thereto are arranged on the same side with respect to each of the reflection boundary surfaces, and the light 22u is projected from the light source means 14a to the first total reflection boundary surface 12m, The reflected light 22v from the first total reflection boundary surface 12m is projected onto the second total reflection boundary surface 12n, the reflected light 24u from the second total reflection boundary surface 12n is received by the light receiving means 16, and the output is received. Liquid leakage is detected by arithmetic processing by the control means 30. A part of the surface of the gas layer d6, d7 or the liquid permeation layer facing the liquid leakage detection target bottom surface 99 is directly opened to the liquid leakage detection target bottom surface 99 side. Alternatively, the bottom surface 99 side of the liquid leakage accommodating portion 98 is configured as a part of the gas layer or the liquid leakage permeation layer, and the surface tension is 6 × 10 −2 N / m or less at 20 ° C. The bottom surface of the leak detection target is the liquid leakage detection target 2a up to the reflection boundary surface 12m for leak detection against gravity by utilizing the gap 2 that can exhibit capillary action with a predetermined gap d0 and a predetermined cross-sectional shape. From 99, at least one high-speed liquid-leakage pulling means 6 for directly pulling up and guiding even a small amount can be provided so that the presence or absence of the liquid 2a having a low surface tension can be quickly determined even with a small amount of leakage. It can also be called a leak sensor.

尚、上記毛管現象を発現しうる空隙部の所定の隙間d0としては、低表面張力の漏液2aを、小量、漏液収容部98の漏液検出対象底面99に垂らした場合の、図1(C)に示す漏液2aの厚さd1と同等の長さ、又は、これより小さい(d0<d1)長さであって、漏液2aの毛管現象を安定的に発現可能な長さが好ましく、又、上記毛管現象を安定的に発現しうる空隙部の所定の断面形状としては、例えば、隙間d0以下の平行空隙部断面、及び/又は、最大隙間d0以下で上方に向けて漸次狭くなる楔状空隙部断面等が利用可能であり、毛管現象を安定的に発現しうる断面形状であれば、いかなる形状のものでも利用可能である。   In addition, as the predetermined gap d0 of the gap portion that can exhibit the capillary phenomenon, a low-surface-tension liquid leakage 2a is dropped on the bottom surface 99 of the liquid leakage detection target of the liquid leakage storage section 98 in a small amount. The length is equivalent to the thickness d1 of the leaked liquid 2a shown in 1 (C) or smaller (d0 <d1), and is a length capable of stably expressing the capillary phenomenon of the leaked liquid 2a. Preferably, the predetermined cross-sectional shape of the gap portion that can stably exhibit the capillary phenomenon is, for example, a cross-section of a parallel gap portion having a gap d0 or less and / or gradually upward upward with a maximum gap d0 or less. A narrow wedge-shaped void section or the like can be used, and any cross-sectional shape can be used as long as it can stably exhibit capillary action.

次に、図1乃至図6に対応させて示す図7乃至図9は、本発明の漏液検知部(漏液センサ部)を、漏液センサ本体20bと、発音手段を含む警報手段70bとを、分離して設置した漏液検知システム1b及び1cの別の1実施例を示すものであり、それぞれ同一の番号を付した装置は同一の機能を果たすと共に、図7の漏液検知システム1bでは、漏液センサ20bと、分離設置された警報手段70bとが、無線を介して信号が中継された防爆型漏液検知システム1bとなっており、又、漏液検知システム1cでは、漏液センサ20bと、分離設置された警報手段70bとが、有線を介して中継された防爆型漏液検知システム1cとなっている。   Next, FIG. 7 to FIG. 9 shown corresponding to FIG. 1 to FIG. 6 show the liquid leakage detection part (leakage sensor part) of the present invention, the liquid leakage sensor main body 20b, and alarm means 70b including sounding means. FIG. 7 shows another embodiment of the leak detection systems 1b and 1c installed separately, and the apparatuses with the same numbers perform the same functions, and the leak detection system 1b of FIG. Then, the leak sensor 20b and the alarm means 70b installed separately are an explosion-proof leak detection system 1b in which signals are relayed via radio. In the leak detection system 1c, The sensor 20b and the alarm means 70b installed separately are an explosion-proof type leakage detection system 1c relayed via a wire.

更に、防爆型漏液検知システムでは、図8に示すように危険空間に設置される漏液センサ部(漏液検知部)20bと、安全な空間に設置され電気回路を構成する制御部39とが物理的に分離して設置されると共に、ケース12側のみで高速漏液引込手段6bを構成し、かつ、漏液検知部20b側には電気配線を完全に無くし、電気的発火/引火の事故が絶対発生しない防爆構造を実現すると共に、ホルダ5を不要とし、センサケース単体で作動可能なように構成したもので、光ファイバ等の第1の光伝送手段40a、40cにより、遠隔地の安全地帯に設置された制御部39内に別途隔離して設けられた光源手段14から、投射光22x,22zを、それぞれ、光伝送手段40a、42aにより、漏液検知部20bまで伝送し、反射境界面12m,12nへの光の投受光を行なう第1の光学系(14−40a−12m−12n−42a−16)を形成し、光伝送手段40c、42cにより、後述する高速漏液引込手段6bの上面に形成された反射載置面5j(この例では、面5jは、薄紙8を利用しないので光反射材(白色又は鏡面)を使用するのが好ましい)への光の投受光を行なう第2の光学系(光学式設置異常検知手段4bの光学経路:14−40c−5j−42c−16c)を形成するようにしたため、漏液検知用液体2/2aが揮発性で引火、爆発の危険がある場合でも、極めて安全に漏液検知ができるようにしたものである。   Furthermore, in the explosion-proof type leakage detection system, as shown in FIG. 8, a leakage sensor unit (leakage detection unit) 20b installed in a dangerous space, and a control unit 39 installed in a safe space and constituting an electric circuit, Are installed in a physically separated manner, and the high-speed liquid leakage lead-in means 6b is configured only on the case 12 side, and the electric wiring is completely eliminated on the liquid leakage detection unit 20b side to An explosion-proof structure in which an accident never occurs is realized, the holder 5 is not required, and the sensor case can be operated alone. The first optical transmission means 40a, 40c such as an optical fiber can be used for remote locations. The projection light 22x and 22z are transmitted from the light source means 14 separately provided in the control section 39 installed in the safety zone to the liquid leakage detection section 20b by the light transmission means 40a and 42a, respectively, and reflected. Interface 1 The first optical system (14-40a-12m-12n-42a-16) for projecting and receiving light to m and 12n is formed, and the light transmission means 40c and 42c of the high-speed liquid leakage drawing means 6b described later are used. A second light projecting / receiving light on the reflective mounting surface 5j formed on the upper surface (in this example, the surface 5j preferably uses a light reflecting material (white or mirror surface) since it does not use the thin paper 8). The optical system (optical path of the optical installation abnormality detecting means 4b: 14-40c-5j-42c-16c) is formed, so that the liquid 2 / 2a for leak detection is volatile and there is a risk of ignition or explosion. Even in some cases, leak detection can be performed extremely safely.

則ち、上述の第1の光学系では、遠隔地に設けられた光源手段14からの照射光の一部が、光伝送手段40aによりケース12内に導かれ、全反射を生ずるような臨界角以上の所定の角度で、ケース底部の反射境界面12mへ投射光22uとして照射され、反射境界面12nで更に全反射され、その反射光24uは、光伝送手段42aにより受光され、遠隔地に設けられた制御部39内の受光素子16に伝送され、マルチプレクサ31、AD変換手段32、ダブルバッファ34を介して検知手段18を兼ねた制御手段30に入力されるようになっている。
又、上述の第2の光学系では、遠隔地に設けられた光源手段14からの照射光の他の一部が、光伝送手段40cによりケース12内に導かれ、臨界角以内又は臨界角以上の所定の角度で、反射部材5jへ投射光22zとして照射され、その反射光24zは光伝送手段42cにより受光され、遠隔地に設けられた受光素子16cに伝送され、マルチプレクサ31、AD変換手段32、ダブルバッファ34を介して検知手段18を兼ねた制御手段30に入力されるようになっている。更に、ケース12の底部は、透明材又は半透明材からなる透過光部材12dを基材として構成し、その外側を光の照射面及び反射面/受光面を除いて遮光性の合成樹脂等の遮光材で被覆又は構成し、透過光部材12dと一体成形するのが好ましく、かかる遮光部材を使用すると、ホルダ5がなくても周囲ノイズ光の影響を受けにくく、又漏液浸入時に漏液検出対象となる床面が白色又は鏡面であっても、不要な反射光を床面から受光しないような光学的構造が実現できる。
In other words, in the first optical system described above, a critical angle at which a part of the irradiation light from the light source means 14 provided at a remote place is guided into the case 12 by the light transmission means 40a and causes total reflection. At the above predetermined angle, the reflection boundary surface 12m at the bottom of the case is irradiated as the projection light 22u and further totally reflected by the reflection boundary surface 12n. The reflected light 24u is received by the light transmission means 42a and provided at a remote place. The light is transmitted to the light receiving element 16 in the control unit 39 and input to the control means 30 that also serves as the detection means 18 via the multiplexer 31, the AD conversion means 32, and the double buffer 34.
In the second optical system described above, another part of the light emitted from the light source means 14 provided at a remote place is guided into the case 12 by the light transmission means 40c, and is within the critical angle or above the critical angle. The reflecting member 5j is irradiated as the projection light 22z at a predetermined angle, and the reflected light 24z is received by the light transmission means 42c and transmitted to the light receiving element 16c provided at a remote place. The multiplexer 31 and the AD conversion means 32 The control means 30 also serving as the detection means 18 is input via the double buffer 34. Further, the bottom of the case 12 is configured by using a transmitted light member 12d made of a transparent material or a translucent material as a base material, and the outside thereof is made of a light-shielding synthetic resin or the like except for the light irradiation surface and the reflection surface / light reception surface. It is preferable to cover or configure with a light shielding material and to be integrally formed with the transmitted light member 12d. When such a light shielding member is used, it is not easily affected by ambient noise light even without the holder 5, and liquid leakage is detected when liquid leakage enters. Even if the target floor surface is white or a mirror surface, an optical structure that does not receive unnecessary reflected light from the floor surface can be realized.

しかして、制御部39では、受光手段16及び16cにより、漏液検知面の反射光量が絶えずチェックされ、図8の例では、所定の反射光量が検出されない場合、漏液を検知した、又は、設置異常が発生したと判定され、異常検知信号が、従来と同様に有線26を介して外部の制御部に出力されると共に、ワイヤレスLAN等を含む無線通信手段37を介して、異常検知信号が後述する警報手段70bの無線受信手段79cに伝送されるようになっている。
又、漏液センサ20bでは、ホルダ5を使用せず、ケース12を単体で漏液センサとして使用するので、建物や装置等の側壁や側面61からケース12を固定するためのアーム状の圧接手段60をケース上蓋に延設し、その一端62を固定部材64により建物61側に固定すると共に、他端66をケース上部に圧接し、ケース12の転倒防止を図るのが好ましい。
Thus, in the control unit 39, the light receiving means 16 and 16c constantly check the amount of reflected light on the leakage detection surface, and in the example of FIG. 8, if the predetermined amount of reflected light is not detected, the leakage is detected, or It is determined that an installation abnormality has occurred, and the abnormality detection signal is output to the external control unit via the wire 26 as in the conventional case, and the abnormality detection signal is transmitted via the wireless communication means 37 including a wireless LAN. The data is transmitted to a wireless reception means 79c of an alarm means 70b described later.
Further, in the liquid leakage sensor 20b, the holder 12 is not used, and the case 12 is used as a single liquid leakage sensor. Therefore, an arm-shaped pressure contact means for fixing the case 12 from the side wall 61 or the side surface 61 of a building or device or the like. 60 is extended to the case upper lid, and one end 62 thereof is fixed to the building 61 side by a fixing member 64, and the other end 66 is pressed against the upper portion of the case to prevent the case 12 from falling.

更に図8の例では、ケース12側のみで高速漏液引込手段6bを構成するようになっており、その構成は、例えば、ケース底部12dと漏液検出対象底面99との間に、ケース12の中心方向に向かって、先端部12vが楔状の矩体突起部12uを、ケース底部12dに対して、透明材又は半透明材で構成し、かつ、本体部12dと高速漏液引込手段6bとに折曲/分割可能な一体成形された合成樹脂材で構成するようになっている。この突起部12uは、漏液検知用投射光の吸収材/透光材で形成するのが好ましく、突起部12uの底面12wは、漏液検出対象底面99と密着せず、底面99との間に、所定の隙間d6=1mm以下(好ましくは、0.9mm以下、より好ましくは、0.5mm以下)の平行空隙部d6を形成し、20℃で、6×10−2N/m以下である低表面張力の漏液2aを、平行空隙部d6の毛管現象を利用して、漏液検出対象底面99に対向する底面12wに、高速に拡散せしめるようになっており、又、底面12wの一端で突起部12uの先端部12vは、ケース12の全反射面12mとの間に、所定の隙間d7=1mm以下(好ましくは、0.9mm以下、より好ましくは、0.5mm以下)の平行空隙部d7を形成し、及び/又は、下端部の最大隙間d7=1mm以下(好ましくは、0.9mm以下、より好ましくは、0.5mm以下)で上方に向けて漸次狭くなる楔状空隙部d7を形成し、かかる空隙部d7の毛管現象を利用して、20℃で、6×10−2N/m以下である低表面張力の漏液2aを、重力に抗して、漏液検知用反射境界面12mの所定の漏液検知位置の上方まで漏液検出対象底面99から、小量でも、直接速やかに引き上げ導くようになっている。 Further, in the example of FIG. 8, the high-speed liquid leakage drawing means 6 b is configured only on the case 12 side, and the configuration is, for example, between the case bottom 12 d and the liquid leakage detection target bottom surface 99. The rectangular protrusion 12u having a wedge-shaped tip 12v is formed of a transparent material or a semi-transparent material with respect to the case bottom 12d, and the main body 12d and the high-speed liquid leakage drawing means 6b It is made of a synthetic resin material which is integrally molded and can be bent / divided. The protrusion 12u is preferably formed of an absorbing material / translucent material for liquid leakage detection projection light, and the bottom surface 12w of the protrusion 12u does not come into close contact with the bottom surface 99 of the liquid leakage detection target, and is between the bottom surface 99. A parallel gap d6 having a predetermined gap d6 = 1 mm or less (preferably 0.9 mm or less, more preferably 0.5 mm or less) is formed, and at 20 ° C., 6 × 10 −2 N / m or less. A certain low surface tension leakage 2a is diffused at high speed to the bottom surface 12w facing the leakage detection target bottom surface 99 by utilizing the capillary phenomenon of the parallel gap portion d6. The tip 12v of the protrusion 12u at one end is parallel to the total reflection surface 12m of the case 12 with a predetermined gap d7 = 1 mm or less (preferably 0.9 mm or less, more preferably 0.5 mm or less). Forming void d7 and / or lower end A wedge-shaped gap d7 that gradually narrows upward with a maximum gap d7 of 1 mm or less (preferably 0.9 mm or less, more preferably 0.5 mm or less), and utilizes the capillary phenomenon of the gap d7. Then, the liquid leakage 2a having a low surface tension of 6 × 10 −2 N / m or less at 20 ° C. is against gravity and above the predetermined leakage detection position on the reflection boundary surface 12m for leakage detection. Even from a leak detection target bottom surface 99, a small amount can be directly and quickly pulled up.

かかる一体成形用の合成樹脂部材としては、一般の熱可塑性プラスチック樹脂や熱可塑性エラストマーが利用でき、熱可塑性プラスチック樹脂としては、例えば、ポリエチレンテレフタレ−ト、非晶性ポリエチレンテレフタレ−ト、ポリエチレン、ポリスチレン、ポリプロピレン等が使用でき、また、一体成形用の熱可塑性エラストマーとしては、ポリブタジエン樹脂が使用可能である。
具体的には、ケース底部は、本体部12dと高速漏液引込手段6bとがヒンジで連結されて一体に形成され、本体部12dと高速漏液引込手段6bとが外周縁でV字状の溝部により連結され、合成樹脂材、すなわち、熱可塑性プラスチック樹脂または熱可塑性エラストマーにより一体成形されるようになっており、V字状の溝部を介して、全反射面12m側に折曲すると、面12vの先端部側に形成した所定の高さd7の複数の小突起を介して空隙部d7を形成し、又、高速漏液引込手段6bの面12w側に形成された所定の高さd6の複数の小突起を介して、折曲した場合に漏液検出対象底面99との間で空隙部d6を形成すると共に、反発力を生成する開閉機構を構成するようになっている。従って、ケースの本体部12dと高速漏液引込手段6bとを全反射面12m側に折曲して、ケース12の設置面に対して略水平状態に閉じたときには、自重または外部からの圧接手段60により本体部12dと高速漏液引込手段6bとが空隙部d7を形成した状態を維持でき、かつ、光学式設置異常検知手段4bの光学経路の一部を形成するようになっている。則ち、水平な漏液検出対象底面99にケース12を設置した場合は、ケース12の設置面は、水準器等から規定される基準水平面に対し水平/平行となる。
As the synthetic resin member for integral molding, a general thermoplastic resin or thermoplastic elastomer can be used. Examples of the thermoplastic resin include polyethylene terephthalate, amorphous polyethylene terephthalate, and polyethylene. Polystyrene resin can be used as the thermoplastic elastomer for integral molding.
Specifically, the case bottom portion is integrally formed by connecting the main body portion 12d and the high-speed liquid leakage drawing means 6b with a hinge, and the main body portion 12d and the high-speed liquid leakage drawing means 6b are V-shaped at the outer periphery. It is connected by a groove part, and is integrally formed of a synthetic resin material, that is, a thermoplastic resin or a thermoplastic elastomer, and is bent to a total reflection surface 12m side through a V-shaped groove part. A gap portion d7 is formed through a plurality of small protrusions having a predetermined height d7 formed on the tip end side of 12v, and a predetermined height d6 formed on the surface 12w side of the high-speed liquid leakage drawing means 6b. When bent through a plurality of small protrusions, a gap d6 is formed between the bottom surface 99 of the leak detection target and an opening / closing mechanism that generates a repulsive force is configured. Accordingly, when the main body 12d of the case and the high-speed liquid leakage drawing means 6b are bent toward the total reflection surface 12m side and closed in a substantially horizontal state with respect to the installation surface of the case 12, the pressure contact means from its own weight or from the outside 60, the main body portion 12d and the high-speed liquid leakage drawing means 6b can maintain the state of forming the gap portion d7, and form a part of the optical path of the optical installation abnormality detection means 4b. That is, when the case 12 is installed on the horizontal liquid leak detection target bottom surface 99, the installation surface of the case 12 is horizontal / parallel to a reference horizontal plane defined by a level or the like.

次に、図9を参照して、分離設置した防爆型警報手段70bの1構成例を説明すると、制御部39と共に安全な空間(非危険場所)に分離設置された電源79aからツェナーバリア78aを介して、危険場所に分離設置された警報手段70bに所定の電源が供給され、又、当該警報手段70bを別途設置された他の警報手段70b等と区別し識別するための識別番号設定手段79d(例えば、ディップ・スイッチ等から成る)の出力が制御部79bに入力され、更に、警報手段70bでは、制御部79bに、制御部39から漏液を検知した場合又は設置異常が発生したと判定された場合に、無線通信手段37から出力される異常検知信号を受信する無線受信手段79cが設けられ、スイッチ手段79eを介してツェナーバリア78aからの電源電力が出力駆動手段79hに供給されると、赤色LED等から構成されたパトライト等の警告灯79kを点灯駆動すると共に、発音手段72、共鳴器75等を介して異常発生警告音が空中に放射されるようになっている。
かかる漏液センサ20bと、発音手段72を含む警報手段70bとを、分離して設置し、無線により、漏液センサ20bと警報手段70bとを、相互に接続する構成では、かかる分離した警報手段70bを、漏液検知システム1bの上部空間で、漏液収容部98の水平断面を略鉛直上方に延長して形成される上部空間内で、他の漏液収容器98と識別可能なように所定の距離(例えば、2m以内、より好ましくは、1.5m以内、更に好ましくは、1m以内)だけ相互に分離した視認性の良好な上部空間位置に設置するのが好ましく、かかる防爆構造の警報手段70bを利用すると、揮発性の液体や引火性の液体の漏液検知及び/又は警報処理を、非常に安全かつ確実に実施でき、又、システムの調整作業や、保守・監視作業が、特別な訓練を受けなくても誰でも容易にできる利点もある。
Next, with reference to FIG. 9, an example of the configuration of the separately installed explosion-proof alarm means 70b will be described. The zener barrier 78a is connected to the control unit 39 from the power source 79a installed separately in a safe space (non-hazardous place). Via the identification number setting unit 79d for distinguishing and identifying the alarm unit 70b from the other alarm unit 70b or the like separately installed. The output of (for example, consisting of a dip switch or the like) is input to the control unit 79b, and the alarm means 70b further determines that the control unit 79b has detected a leak from the control unit 39 or that an installation abnormality has occurred. In this case, a wireless receiving means 79c for receiving an abnormality detection signal output from the wireless communication means 37 is provided, and the electric power from the Zener barrier 78a is provided via the switch means 79e. When power is supplied to the output drive means 79h, a warning light 79k such as a patrol light composed of a red LED or the like is driven to drive, and an abnormality occurrence warning sound is emitted into the air via the sound generation means 72, the resonator 75, and the like. It has come to be.
In the configuration in which the leak sensor 20b and the alarm means 70b including the sounding means 72 are separately installed and the leak sensor 20b and the alarm means 70b are connected to each other wirelessly, the separated alarm means is provided. 70b is an upper space of the liquid leakage detection system 1b, and can be distinguished from other liquid leakage containers 98 in an upper space formed by extending the horizontal section of the liquid leakage storage portion 98 substantially vertically upward. It is preferable to install it in a high-visibility upper space position separated from each other by a predetermined distance (for example, within 2 m, more preferably within 1.5 m, further preferably within 1 m). By using the means 70b, leakage detection and / or alarm processing of volatile liquids and flammable liquids can be carried out very safely and reliably, and special adjustment and maintenance / monitoring work can be performed. Training There is also anyone advantage that can be easily without receiving.

かかる構成において、その動作を次に説明すると、図5の高速漏液引込手段6と、図8の高速漏液引込手段6bとでは、高速漏液引込手段6及び6bの構成が、薄紙8を使用せず、又、光学経路の一部に、投光/受光用の光伝送手段が、それぞれ、追加されている点を除いては、全く同様であるから、その動作も、基本的に全く同様である。
具体的には、先ず、光学式設置異常検知手段4bでは、光源手段14ー光伝送手段40cからの投射光22zが、高速漏液引込手段6bの上面に設けられた反射材5jに、臨界角未満の入射角で照射され、その反射光24zが光伝送手段42cー受光手段16cにより受光され、電気信号に変換されて制御手段30に入力されるようになっている。尚、白色または鏡面状等の反射材5jに基づく反射面は、突起部12uの上面に設けることが可能であり、突起部12uに接着、溶融、圧入して形成するようにし、又は、突起部12uの上面に凸凹の反射面を刻設して、投射光22zの反射面を形成してもよい。
In this configuration, the operation will be described next. In the high-speed liquid leakage drawing means 6 of FIG. 5 and the high-speed liquid leakage drawing means 6b of FIG. The light transmission / reception light transmission means is added to a part of the optical path and is completely the same except that it is added. It is the same.
Specifically, first, in the optical installation abnormality detection means 4b, the projection light 22z from the light source means 14-light transmission means 40c is applied to the reflector 5j provided on the upper surface of the high-speed liquid leakage drawing means 6b, at a critical angle. The reflected light 24z is received by the light transmission means 42c-light receiving means 16c, converted into an electrical signal, and input to the control means 30. The reflective surface based on the reflective material 5j such as white or mirror surface can be provided on the upper surface of the protrusion 12u, and can be formed by bonding, melting, and press-fitting to the protrusion 12u, or the protrusion An uneven reflecting surface may be formed on the upper surface of 12u to form a reflecting surface for the projection light 22z.

一方、ケース12の本体部12dと突起部12uとが所定の間隔で空隙部d7を形成していない場合は、上記ヒンジ機構から生成される反発力により、本体部12dと突起部12uとが、浮いたり、斜めに傾斜したり、転倒した設置異常状態となり、本体部12dと突起部12uとが間隔d7以上に開いた状態を維持できる開閉機構が予めケース12には付勢されており、このため設置異常状態では、正常な第2の光学経路が形成されず、投射光が空気等の気体層に拡散し、上述の光学式設置異常検知手段4bの投射光および反射光の光学経路22z/24zが、正常な位置に形成できず、容易にケース12の設置異常が検知され、非危険地帯に設けられた制御部39では、MPU等からなる制御手段30を介して設置異常アラーム信号(又はエラーコードER−A)がケーブル26により外部にディジタル出力され、漏液センサ20bはエラー待機状態となる。   On the other hand, when the main body 12d and the protrusion 12u of the case 12 do not form the gap d7 at a predetermined interval, the repulsive force generated from the hinge mechanism causes the main body 12d and the protrusion 12u to An opening / closing mechanism that can maintain the state where the main body 12d and the protrusion 12u are opened at a distance d7 or more is energized to the case 12 in advance. Therefore, in the abnormal installation state, a normal second optical path is not formed, and the projection light diffuses into a gas layer such as air, so that the optical path 22z / of the projection light and the reflected light of the optical installation abnormality detection means 4b described above. 24z cannot be formed at a normal position, and an abnormal installation of the case 12 is easily detected, and the control unit 39 provided in the non-hazardous area is provided with an abnormal installation alarm signal (or an error signal) via the control means 30 comprising an MPU or the like. Error Code ER-A) is a digital output to the outside by a cable 26, leakage sensor 20b is in error standby state.

この時点で、更に、設置異常検知手段4bから非危険地帯に設けられた制御部39内の無線通信手段37により設置異常検知信号が無線信号で放射され、危険地帯に設けられた警報手段70b内の受信手段79cによりこの無線異常検知信号が受信されると、制御部79bでは、スイッチ手段79eを介してツェナーバリア78aからの供給電力が出力駆動手段79hに供給され、パトライト等の警告灯79kが点灯駆動されると共に、発音手段72、共鳴器75等を介して異常発生警告音が外部に放射される。尚、複数の漏液センサ20bにより共通の警報手段70bを共同して利用する場合や、近くの空間に警報手段70bが複数個設置されている場合には、かかる複数の警報手段70bを相互に区別するために、通信手段37から放射される無線異常信号の中に、各警報手段を特定する識別番号等を付加して、上記無線検知信号を出力するのが好ましい。かかる識別番号は、制御部79bにより自動的に抽出され、設定手段79dから出力される識別番号と比較して、当該警報手段70bが選択されたか否かが判定される。   At this time, the installation abnormality detection signal is further emitted as a radio signal by the wireless communication means 37 in the control unit 39 provided in the non-hazardous area from the installation abnormality detection means 4b, and the alarm means 70b provided in the danger area. When the radio abnormality detection signal is received by the receiving means 79c, the control unit 79b supplies the power supplied from the Zener barrier 78a to the output driving means 79h via the switch means 79e, and a warning light 79k such as a patrol light is generated. While being lit, an abnormality occurrence warning sound is radiated to the outside through the sound generation means 72, the resonator 75, and the like. When the common alarm means 70b is shared by the plurality of liquid leakage sensors 20b or when a plurality of alarm means 70b are installed in a nearby space, the plurality of alarm means 70b are mutually connected. In order to make a distinction, it is preferable to add an identification number or the like identifying each alarm means to the radio abnormality signal radiated from the communication means 37 and output the radio detection signal. The identification number is automatically extracted by the control unit 79b, and compared with the identification number output from the setting unit 79d, it is determined whether or not the alarm unit 70b is selected.

かくして、識別番号等で警報手段70bが特定されると、当該警報手段70bの出力駆動手段79hにより、発音手段72が駆動され、その振動が共鳴器75により増幅されて空中に放射され、別途処理された設置異常アラーム信号26で警告されたオペレータは、直ちに、何処の箇所に設置された漏液センサの設置異常が発生しているか、従来のように、1つ1つ床面や漏液収容部の底面を点検する必要がなく、警報発生現場に急行した場合に、極めて容易に、共鳴増幅された漏液源警告発信音を頼りに、当該設置異常検出箇所を他の漏液センサ設置箇所と区別して特定可能である。   Thus, when the alarm means 70b is specified by the identification number or the like, the sound generating means 72 is driven by the output driving means 79h of the alarm means 70b, and the vibration is amplified by the resonator 75 and radiated into the air, which is processed separately. The operator who has been warned by the installed abnormality alarm signal 26 immediately knows where the installation abnormality of the leak sensor is occurring, or the floor surface and the leak container one by one as in the past. It is not necessary to inspect the bottom surface of the unit, and if you rush to the site where the alarm occurred, you can very easily rely on the resonance-amplified leakage source warning sound to place the installation abnormality detection point at another leakage sensor installation point. And can be specified separately.

かかるアラーム信号の出力されない通常の正常設置状態では、漏液センサ20bは作動状態となり、いかなる漏液も存在しない場合には、光学式設置異常検知手段4bの投射光/反射光の光学経路22z/24zが正常な位置に形成され、光源手段14ー光伝送手段40cからの投射光22zが、突起部12uの反射面5jで反射され、その反射光24zが、光伝送手段42cを介して伝送され、受光素子16cに入力され、その出力を検知手段18により正常な反射光レベルと比較することにより、容易に漏液センサ20bの正常設置状態が検知される。
更に、漏液検知用光学系を形成する光源手段14ー光伝送手段40aからの投射光22uが、第1の全反射面12mに上方から下方に全反射面12mで所定の臨界角以上で全反射するように、透明材又は半透明材12dの屈折率に応じた所定の入射角で照射され、その全反射光22vが第2の全反射面12nに投射され、全反射面12nからの全反射光24uが、透明材又は半透明材12dの屈折率に応じた所定の受光角度で、光伝送手段42aの一端で受光され、光伝送手段42aを介して受光手段16に伝送され、かかる光学経路を伝搬した漏液検知光が光電変換素子16により電気信号に変換され、その出力が、検知手段18を兼ねた制御手段30内で、デジタル処理されたり、受光手段16のアナログ出力が、直接、アナログ比較器等から成るアナログ演算手段に入力され、アナログ回路から構成された検知手段18を兼ねた制御手段30内で、アナログ処理される。尚、漏液が存在しない場合には、上記例では、何れの受光手段でも正常な受光量が検知され、受光量の低下現象は発生しない。
In a normal normal installation state in which such an alarm signal is not output, the liquid leakage sensor 20b is in an operating state, and when no liquid leakage exists, the optical path 22z / light of the projection light / reflected light of the optical installation abnormality detection means 4b. 24z is formed at a normal position, the projection light 22z from the light source means 14-light transmission means 40c is reflected by the reflection surface 5j of the protrusion 12u, and the reflected light 24z is transmitted via the light transmission means 42c. The normal installation state of the liquid leakage sensor 20b is easily detected by inputting the output to the light receiving element 16c and comparing the output with the normal reflected light level by the detecting means 18.
Further, the projection light 22u from the light source means 14-light transmission means 40a forming the liquid leakage detection optical system is totally transmitted from above to below the first total reflection surface 12m at the total reflection surface 12m above a predetermined critical angle. It is irradiated at a predetermined incident angle corresponding to the refractive index of the transparent or translucent material 12d so as to be reflected, and the total reflected light 22v is projected onto the second total reflection surface 12n, and the total reflection from the total reflection surface 12n. The reflected light 24u is received at one end of the light transmitting means 42a at a predetermined light receiving angle corresponding to the refractive index of the transparent or translucent material 12d, and transmitted to the light receiving means 16 via the light transmitting means 42a. The leakage detection light propagating through the path is converted into an electric signal by the photoelectric conversion element 16, and the output is digitally processed in the control means 30 that also serves as the detection means 18, or the analog output of the light receiving means 16 is directly output. Analog comparator It is input to the analog arithmetic means comprising, in the control means 30 which also serves as a detection unit 18 which is an analog circuit, is analog processing. In the case where there is no leakage, in any of the above examples, a normal amount of received light is detected by any of the light receiving means, and the phenomenon of a decrease in the amount of received light does not occur.

次に、20℃で、6×10−2N/m以下である低表面張力の漏液2aが、漏液検出対象底面99に薄膜層状に拡散してきた場合には、高速漏液引込手段6bの一部を形成する矩体突起部12uの底面12wに対向する漏液検知対象底面99の領域まで、液位d1の漏液2aが拡散してきた時点で、漏液検知対象底面99とケース底面12wとの間に形成された平行空隙部d6により、空隙部d6の間隔と漏液2aの液位d1との長さを、略同程度の長さ、又は、液位d1>間隔d6の長さに設定しておくと、空隙部d6の毛管現象を利用して、漏液2aが平行空隙部d6に急速に引き込まれ(図5の2a1)、漏液2aが底面12wに接触すると共に、漏液検出対象底面99に対向するケース底面12w全体に、高速に拡散される。 Next, when the leaked liquid 2a having a low surface tension of 6 × 10 −2 N / m or less at 20 ° C. has diffused in the form of a thin film layer on the bottom 99 of the leak detection target, the high-speed leak drawing means 6b When the leak 2a at the liquid level d1 has diffused to the area of the leak detection target bottom face 99 facing the bottom face 12w of the rectangular protrusion 12u that forms a part of the rectangular protrusion 12u, the leak detection target bottom face 99 and the case bottom face Due to the parallel gap portion d6 formed between 12w and the gap d6, the distance between the gap d6 and the liquid level d1 of the liquid leakage 2a is substantially the same length, or the length of the liquid level d1> the gap d6. If it is set, the leak 2a is rapidly drawn into the parallel gap d6 using the capillary phenomenon of the gap d6 (2a1 in FIG. 5), the leak 2a contacts the bottom surface 12w, It diffuses at high speed over the entire case bottom surface 12w facing the leak detection target bottom surface 99.

その後、底面12wの一端で、突起部12uの先端部12vの一端を形成する最下端部まで漏液2aが拡散すると(図5の2a2)、漏液2aは、更に、ケース12の全反射面12mと先端部12vとで形成された平行空隙部d7の一端に到達し、空隙部d7は、所定の隙間d7で漏液2aの毛管現象が発現するように設定されているので、漏液2aの漏れ量が小量であっても、重力に抗して、漏液検知用反射境界面12mの所定の漏液検知位置より上方まで、漏液検出対象底面99から直接速やかに引き上げ導かれる(図5の2a3)。かくして、漏液2aが、漏液検知用反射境界面12mの所定の漏液検知位置を上方に通過すると、光源手段14からの投射光22uの大半の光は、全反射面12mで全反射せず、底部12d及び全反射面12mを、大略直進し、更に、空隙部d7に充満した漏液2aを屈折直進した後、投射光の吸収材/透光材で形成された矩体突起部12u及び空隙部d6に充満した漏液2a中を大略直進して、漏液検出対象底面99で反射され、全反射面12nと反対方向に伝搬・進行する。従って、漏液検知用光学経路の一部を形成する全反射面12mで全反射し、その後全反射面12nでも全反射された光24uが、光伝送手段42aの一端で受光され、光伝送手段42aを介して受光手段16に伝送される受光光量は、大幅に低下し、その出力を制御手段30により演算処理して、小量の漏液2aが、漏液検出対象底面99に薄く拡散し始めた非常に初期の段階で、非常に高速に検知することができる。   Thereafter, when the leaked liquid 2a diffuses at one end of the bottom surface 12w to the lowermost end part forming one end of the tip end part 12v of the projecting part 12u (2a2 in FIG. 5), the leaked liquid 2a further flows into the total reflection surface of the case 12 Since it reaches one end of the parallel gap part d7 formed by 12m and the tip part 12v, and the gap part d7 is set so that the capillary phenomenon of the liquid leak 2a appears in the predetermined gap d7, the liquid leak 2a Even if the amount of leakage is small, the liquid leakage detection target bottom surface 99 is promptly and directly pulled up to a position above the predetermined leakage detection position of the leakage detection reflective boundary surface 12m against gravity. 2a3) in FIG. Thus, when the leaked liquid 2a passes above the predetermined leak detection position of the leak detection reflective boundary surface 12m, most of the light 22u projected from the light source means 14 is totally reflected by the total reflection surface 12m. First, the rectangular protrusion 12u formed by the projection light absorber / translucent material after the bottom portion 12d and the total reflection surface 12m substantially straightly traveled, and after the liquid leakage 2a filled in the gap d7 refracted straight. In addition, it travels substantially straight through the leaked liquid 2a filled in the gap d6, is reflected by the leak detection target bottom surface 99, and propagates and travels in the direction opposite to the total reflection surface 12n. Accordingly, the light 24u that is totally reflected by the total reflection surface 12m that forms a part of the optical path for detecting leakage and then totally reflected by the total reflection surface 12n is received by one end of the light transmission means 42a, and the light transmission means. The amount of received light transmitted to the light receiving means 16 via 42a is greatly reduced, and the output is subjected to arithmetic processing by the control means 30, so that a small amount of leaked liquid 2a is diffused thinly on the leak detection target bottom surface 99. It can be detected very quickly at the very beginning.

又、低表面張力の漏液2aが、漏液検出対象底面99に一度に大量に漏れだした場合には、ケース12の外周は全て漏液2aで水浸しになり、かつ、漏液検知用反射境界面12nの所定の漏液検知位置も漏液2a中に水没するので、光源手段14からの投射光22uが、全反射面12mで全反射され、その全反射光22vが全反射面12nに投射されても、漏液2aのために全反射面12nで全反射せず、直ちに、全反射面12nを屈折して大略直進し、更に、空隙部d4に充満した漏液2aの中を屈折直進した後、漏液検出対象底面99で反射され、光伝送手段42aの設置位置と全く関係ない方向に伝搬・進行する。従って、漏液検知用光学経路の一部を形成する全反射面12nで全反射された光24uが、光伝送手段42aの一端で受光される光量は、大幅に低下し、光伝送手段42aを介して受光手段16に伝送される受光出力を制御手段30により演算処理して漏液2aの大量発生を、非常に初期の段階で、非常に高速に検知することができる。
かくして、漏液検知手段18を兼ねた制御手段30により、漏液2a及び/又は漏液2が検出されると、ケーブル26を介して外部に漏液の有無をディジタル出力する(漏液検知エラーコードER−B)。
In addition, when a large amount of low surface tension leakage 2a leaks to the leakage detection target bottom surface 99 at once, the outer periphery of the case 12 is completely immersed in the leakage 2a, and the reflection for detecting leakage Since the predetermined leakage detection position of the boundary surface 12n is also submerged in the leakage 2a, the projection light 22u from the light source means 14 is totally reflected by the total reflection surface 12m, and the total reflection light 22v is reflected on the total reflection surface 12n. Even if it is projected, it is not totally reflected at the total reflection surface 12n due to the leaked liquid 2a, but immediately refracts the total reflection surface 12n and travels substantially straight, and further refracts inside the leaked liquid 2a filled in the gap portion d4. After traveling straight, the light is reflected by the leak detection target bottom surface 99 and propagates and travels in a direction completely unrelated to the installation position of the optical transmission means 42a. Accordingly, the amount of light 24u totally reflected by the total reflection surface 12n that forms a part of the optical path for detecting leakage is received by one end of the light transmission means 42a, and the light transmission means 42a is reduced. The light receiving output transmitted to the light receiving means 16 through the arithmetic processing is processed by the control means 30 so that a large amount of leaked liquid 2a can be detected at a very early stage.
Thus, when the leakage means 2a and / or leakage 2 is detected by the control means 30 that also serves as the leakage detection means 18, the presence / absence of leakage is digitally output via the cable 26 (leak detection error). Code ER-B).

この時点で、更に、漏液検知手段18/30から非危険地帯に設けられた制御部39内の無線通信手段37により漏液検知エラー信号が放射され、危険地帯に設けられた警報手段70b内の受信手段79cによりこの漏液エラー検知信号が受信されると、制御部79bでは、スイッチ手段79eを介してツェナーバリア78aからの供給電力が出力駆動手段79hに供給され、パトライト等の警告灯79kがエラー点灯駆動されると共に、発音手段72、共鳴器75等を介して共鳴増幅された異常発生警告音が外部に放射される。尚、複数の漏液センサ20bにより共通の警報手段70bを共同して利用する場合や、近くの空間に警報手段70bが複数個設置されている場合には、かかる複数の警報手段70bを相互に区別するために、通信手段37から放射される無線異常信号の中に、警報手段を特定する識別番号等を付加して、上記無線検知信号を出力するのが好ましい。かかる識別番号は、制御部79bにより自動的に抽出され、設定手段79dから出力される識別番号と比較して、当該警報手段70bが選択されたか否かが判定される。   At this time, a leakage detection error signal is further emitted from the leakage detection means 18/30 by the wireless communication means 37 in the control unit 39 provided in the non-hazardous area, and in the alarm means 70b provided in the danger area. When this leakage error detection signal is received by the receiving means 79c, the control unit 79b supplies the power supplied from the Zener barrier 78a to the output driving means 79h via the switch means 79e, and a warning light 79k such as a patrol light. Is driven to turn on an error, and an abnormality occurrence warning sound that is resonance-amplified via the sound generation means 72, the resonator 75, and the like is emitted to the outside. When the common alarm means 70b is shared by the plurality of liquid leakage sensors 20b or when a plurality of alarm means 70b are installed in a nearby space, the plurality of alarm means 70b are mutually connected. In order to make a distinction, it is preferable to add an identification number or the like identifying the alarm means to the radio abnormality signal radiated from the communication means 37 and output the radio detection signal. The identification number is automatically extracted by the control unit 79b, and compared with the identification number output from the setting unit 79d, it is determined whether or not the alarm unit 70b is selected.

かくして、識別番号等で警報手段70bが特定されると、当該警報手段70bの出力駆動手段79hにより、発音手段72が駆動され、その振動が共鳴器75により共鳴増幅されて空中に放射され、別途処理された漏液検知エラー信号で警告されたオペレータは、直ちに漏液発生現場に急行した場合に、共鳴増幅された警報音発信源に接近していくことにより、何処の箇所に設置された漏液センサの設置異常が発生しているか、従来のように、1つ1つ床面や漏液収容部の底面を点検する必要がなく、極めて容易に、当該漏液発生箇所を他の漏液センサ設置箇所と区別して特定可能である。   Thus, when the alarm means 70b is specified by the identification number or the like, the sound generating means 72 is driven by the output driving means 79h of the alarm means 70b, and the vibration is resonantly amplified by the resonator 75 and radiated into the air. When an operator who has been warned by the processed leak detection error signal immediately rushes to the site where the leak has occurred, he or she will approach the resonance-amplified alarm sound source, thereby leaking the leak at any location. It is not necessary to inspect the floor surface or the bottom of the liquid leakage storage part one by one as in the past, whether there is a liquid sensor installation abnormality, and it is extremely easy to locate the liquid leakage occurrence point to another liquid leakage It can be specified separately from the sensor installation location.

次に、20℃で、6×10−2N/m以上の表面張力の漏液2(図6(D)に示すような)が、漏液検出対象底面99に拡散してきた場合には、図8の例では、液位d3の漏液2が底面99とケース底部12dとの間に形成された平行空隙部d4に拡散していっても、薄紙8が介挿されていないので、そのまま漏液検出対象底面99を全反射面12nの方向に拡散していく。かくして、漏液2が、漏液検知用反射境界面12nの所定の漏液検知位置に到達すると、光源手段14ー光伝送手段40aからの投射光22uは、全反射面12mで全反射され、その全反射光22vが全反射面12nでは、漏液2のために全反射せず、全反射面12nを屈折し、大略直進し、更に、漏液2の中を屈折直進した後、漏液検出対象底面99で反射され、光伝送手段42aの一端が設置されている所定の位置と全く関係ない方向に伝搬・進行する。従って、漏液検知用光学経路の一部を形成する全反射面12nで全反射された光24uが、光伝送手段42aの一端で受光される光量は、大幅に低下し、光伝送手段42aを介して伝送される受光手段16の出力を制御手段30により演算処理して、漏液2が漏液検出対象底面99に薄く拡散し始めた非常に初期の段階で、非常に高速に検知することができる。 Next, when the leaked liquid 2 (as shown in FIG. 6D) having a surface tension of 6 × 10 −2 N / m or more at 20 ° C. has diffused into the leak detection target bottom surface 99, In the example of FIG. 8, even if the liquid leak 2 at the liquid level d3 diffuses into the parallel gap portion d4 formed between the bottom surface 99 and the case bottom portion 12d, the thin paper 8 is not inserted. The leak detection target bottom surface 99 is diffused in the direction of the total reflection surface 12n. Thus, when the leakage 2 reaches the predetermined leakage detection position on the leakage detection reflection boundary surface 12n, the projection light 22u from the light source means 14-light transmission means 40a is totally reflected by the total reflection surface 12m, The total reflected light 22v is not totally reflected at the total reflection surface 12n due to the liquid leakage 2, but is refracted through the total reflection surface 12n and travels substantially straight, and further refracts straight through the liquid leakage 2. It is reflected by the detection target bottom surface 99 and propagates and travels in a direction that is completely unrelated to a predetermined position where one end of the light transmission means 42a is installed. Accordingly, the amount of light 24u totally reflected by the total reflection surface 12n that forms a part of the optical path for detecting leakage is received by one end of the light transmission means 42a, and the light transmission means 42a is reduced. The output of the light receiving means 16 transmitted via the control means 30 is processed by the control means 30 and detected at a very high speed at the very early stage when the leaked liquid 2 starts to diffuse thinly into the leak detection target bottom surface 99. Can do.

又、一度に大量の漏液2が発生した場合には、ケース12の外周は全て漏液2で水浸し、かつ、漏液検知用反射境界面12nの所定の漏液検知位置も漏液2中に水没するので、光源手段14ー光伝送手段40aからの投射光22uが、全反射面12mで全反射され、その全反射光22vが全反射面12nに投射されても、漏液2のために全反射面12nでは全反射せず、直ちに、全反射面12nを屈折し大略直進し、更に、空隙部d4に充満した漏液2の中を屈折直進した後、漏液検出対象底面99で反射され、光伝送手段42aの一端が設置されている位置と全く関係ない方向に伝搬・進行する。従って、漏液検知用光学経路の一部を形成する全反射面12nで全反射された光24uが、光伝送手段42aを介して受光手段16で受光される光量は、大幅に低下し、その出力を制御手段30により演算処理して、漏液2の大量発生を、非常に初期の段階で、非常に高速に検知することができる。
かくして、漏液検知手段18を兼ねた制御手段30により、漏液2a又は2が検出されると、ケーブル26を介してオペレータ等に警告するため、外部に漏液の有無をディジタル出力する(漏液検知エラーコードER−B)。尚、上述の受光処理では、レンズ、凹面鏡等の集光手段により広く反射光を集めることにより、受光手段(素子)16、16cの感度を向上させることも可能である。
Further, when a large amount of liquid leakage 2 occurs at a time, the entire outer periphery of the case 12 is immersed in the liquid leakage 2 and the predetermined liquid leakage detection position of the liquid leakage detection reflection boundary surface 12n is also in the liquid leakage 2 Even if the projection light 22u from the light source means 14-light transmission means 40a is totally reflected by the total reflection surface 12m and the total reflection light 22v is projected on the total reflection surface 12n, the liquid leakage 2 is present. In addition, the total reflection surface 12n does not totally reflect, but immediately refracts the total reflection surface 12n and travels substantially straight, and further refracts straight in the leaked liquid 2 filled in the gap portion d4. It is reflected and propagates and travels in a direction that has nothing to do with the position where one end of the optical transmission means 42a is installed. Therefore, the amount of light 24u totally reflected by the total reflection surface 12n that forms a part of the optical path for detecting leakage is received by the light receiving means 16 via the light transmission means 42a is greatly reduced. The output is arithmetically processed by the control means 30, and a large amount of leakage 2 can be detected at a very high speed at a very early stage.
Thus, when the leakage means 2a or 2 is detected by the control means 30 that also serves as the leakage detection means 18, an operator or the like is warned via the cable 26, so the presence or absence of leakage is digitally output (leakage). Liquid detection error code ER-B). In the light receiving process described above, it is also possible to improve the sensitivity of the light receiving means (elements) 16 and 16c by collecting reflected light widely by a light collecting means such as a lens or a concave mirror.

この時点で、更に、漏液検知手段18/30から非危険地帯に設けられた制御部39内の無線通信手段37により無線漏液検知エラー信号が放射され、危険地帯に設けられた警報手段70b内の受信手段79cによりこの無線漏液エラー検知信号が受信されると、制御部79bでは、スイッチ手段79eを介してツェナーバリア78aからの供給電力が出力駆動手段79hに供給され、パトライト等の警告灯79kが点灯駆動されると共に、発音手段72、共鳴器75等を介して共鳴増幅された可聴周波数の異常発生警告音が外部に放射される。かくして、識別番号等で警報手段70bが特定されると、当該警報手段70bの出力駆動手段79hにより、発音手段72が駆動され、その振動が共鳴器75により増幅されて空中に放射され、別途処理された漏液検知エラー信号で警告されたオペレータは、直ちに、何処の箇所に設置された漏液センサの設置異常が発生しているか、従来のように、1つ1つ床面や漏液収容部の底面を点検する必要がなく、警報発生現場に急行した場合に、極めて容易に、当該漏液発生箇所を他の漏液センサ設置箇所と区別して特定可能である。   At this point, a wireless leakage detection error signal is further emitted from the leakage detection means 18/30 by the wireless communication means 37 in the control unit 39 provided in the non-hazardous area, and an alarm means 70b provided in the danger area. When the wireless leak error detection signal is received by the receiving means 79c, the control unit 79b supplies the power supplied from the Zener barrier 78a to the output driving means 79h via the switch means 79e, and a warning such as a patrol light. The lamp 79k is driven to turn on, and an audible abnormality warning sound that is amplified by resonance is emitted to the outside via the sound generating means 72, the resonator 75, and the like. Thus, when the alarm means 70b is specified by the identification number or the like, the sound generating means 72 is driven by the output driving means 79h of the alarm means 70b, and the vibration is amplified by the resonator 75 and radiated into the air, which is processed separately. The operator who has been warned by the leaked detection error signal immediately detects where the leak sensor installed at the location is abnormal, and as usual, the floor surface and the leak containment one by one It is not necessary to inspect the bottom surface of the unit, and when a warning is dispatched to the site where an alarm is generated, the leakage occurrence point can be distinguished from other leakage sensor installation points and specified.

従って図8に示すような構造の漏液センサ20bによれば、漏液センサ20bを漏液検出対象底面99に置くだけで、ホルダ4、5や薄紙8がなくても外来光の影響をほとんど受けずに、かつ、漏液2aや2が、ホルダ4の上面まで到達する以前の、漏液検出対象底面99に小量だけ流出した漏液流出の初期段階で、素早く漏液を検出することができる利点がある。又、漏液検知部には電気信号が一切流れないので、揮発性の漏液に対しても、極めて安全に検出処理を行なうことができ、一度に大量の漏液が流出しても、この漏液を2重、3重にチェックして検出し、漏液検出処理の信頼性を一段と向上させることができると共に、光伝送手段40/42の長さを変更することにより、光源手段14並びに受光手段16、16c等と、反射境界面12m/12n等との物理的距離を所望の可変距離に変更することができる。   Therefore, according to the leak sensor 20b having the structure as shown in FIG. 8, only the leak sensor 20b is placed on the leak detection target bottom surface 99, and the influence of extraneous light is almost eliminated even without the holders 4, 5 and the thin paper 8. Without leaking, the leak 2a or 2 quickly detects the leak at the initial stage of the leak that leaked a small amount to the leak detection bottom surface 99 before reaching the top surface of the holder 4 There is an advantage that can be. In addition, since no electrical signal flows through the leak detection unit, even volatile leaks can be detected extremely safely, even if a large amount of leaks leaks at once. The liquid leakage can be detected by checking the leakage in double and triple, and the reliability of the leakage detection process can be further improved. By changing the length of the light transmission means 40/42, the light source means 14 and The physical distance between the light receiving means 16, 16c and the like and the reflection boundary surface 12m / 12n and the like can be changed to a desired variable distance.

又、ケースの本体部12dと突起部12uとが所定の間隔d6,d7を保持できない状態では、光学式設置異常検知手段4bの光学経路が所定の位置に形成されず、ヒンジ機構から生成される反発力により、本体部12dと突起部12uとが、浮いたり、斜めに傾斜したり、転倒した設置異常状態となり、本体部12dと突起部12uとが開いた状態を維持できる開閉機構により、投射光の反射経路が大きく曲げられるので、設置異常状態が容易に検知することができ、漏液エラーと設置異常エラーとを区別して検知すると共に、伝送したり、対処することができる。
尚、図8の漏液センサ20bでも、図5と同様に薄紙8を使用することは可能である。
Further, when the case main body 12d and the protrusion 12u cannot maintain the predetermined distances d6 and d7, the optical path of the optical installation abnormality detecting means 4b is not formed at the predetermined position, and is generated from the hinge mechanism. Due to the repulsive force, the main body portion 12d and the projection portion 12u are in an abnormal installation state where the main body portion 12d and the projection portion 12u are maintained in an open abnormal state in which the main body portion 12d and the projection portion 12u are in an abnormal state. Since the light reflection path is greatly bent, an abnormal installation state can be easily detected, and a leak error and an abnormal installation error can be detected separately, transmitted, and dealt with.
Note that the thin paper 8 can also be used in the leak sensor 20b of FIG. 8 as in FIG.

上記実施例では、レジスト液塗布機構81aへ供給されるレジスト液の漏液及びレジスト液用温調液の漏液の検出について説明したが、現像機構81bへ供給される現像液の漏液及び現像液用温調液の漏液の検出にも、同様にして上記説明の通り、適用することができる。又、エッチング処理、洗浄処理等にも適用できる。更に、上記各処理液を一時貯留するタンクからの漏液の検出にも適用できる。上記漏液の原因としては、例えば、各液タンクの破損、供給系の故障によるオーバーフロー、配管部等からの漏れ、排出系の故障によるオーバーフロー等があげられる。   In the above embodiment, the detection of the leakage of the resist solution supplied to the resist solution application mechanism 81a and the detection of the leakage of the temperature adjustment liquid for the resist solution has been described. However, the leakage and development of the developer supplied to the development mechanism 81b are described. The same can be applied to the detection of leakage of the liquid temperature control liquid as described above. It can also be applied to etching processing, cleaning processing, and the like. Furthermore, the present invention can also be applied to detection of liquid leakage from a tank that temporarily stores the processing liquids. Examples of the cause of the liquid leakage include damage to each liquid tank, overflow due to a supply system failure, leakage from a piping section, overflow due to a failure in the discharge system, and the like.

尚、上記実施例では本発明の処理装置を半導体ウエハの塗布現像装置に適用した場合について説明したが、必ずしもこの装置にされるものではなく、半導体ウエハのその他の処理装置やLCD基板、ガラス基板あるいはCD/DVD基板等の処理装置にも適用できることは勿論である。本発明の漏液検知システムによれば、上記のように構成されているので、処理液や温度制御用液の漏液を正確かつ安全に検知することができ、漏液による周辺部の汚染や腐食等を防止することができる。又、漏液発生を検知した場合、空間的に何処の箇所から漏液が漏れているのか、共鳴増幅された可聴周波数の警告発信音により直感的に理解できるので、メンテナンスが容易となり、処理装置の処理効率の向上を図ることができる。

尚、上記高速漏液引込手段は、ホルダ側のみでも、光学的に構成することは可能である。又、防爆構造の漏液センサでなくても、図7に示すように、漏液センサ部と、警報手段とを無線通信手段により、相互に接続することは可能である。
In the above embodiment, the processing apparatus according to the present invention is applied to a semiconductor wafer coating / developing apparatus. However, the present invention is not limited to this apparatus, and other semiconductor wafer processing apparatuses, LCD substrates, and glass substrates are used. Of course, the present invention can also be applied to a processing apparatus such as a CD / DVD substrate. According to the liquid leakage detection system of the present invention, since it is configured as described above, it is possible to accurately and safely detect the leakage of the processing liquid and the temperature control liquid, Corrosion and the like can be prevented. In addition, when the occurrence of leakage is detected, it is possible to intuitively understand where the leakage is from spatially by means of a resonance-amplified audible alarm warning sound, which makes maintenance easier and the processing device The processing efficiency can be improved.

Note that the high-speed liquid leakage drawing means can be optically configured only on the holder side. Further, even if it is not an explosion-proof leakage sensor, as shown in FIG. 7, it is possible to connect the leakage sensor unit and the alarm means to each other by wireless communication means.

本発明の漏液検知システム1aを塗布現像装置に適用した場合の機械的1構成例を示すブロック図である。It is a block diagram which shows the mechanical 1 structural example at the time of applying the liquid leak detection system 1a of this invention to a coating and developing apparatus. 本発明の漏液検知部を、漏液センサ20aと、発音手段を含む警報手段70aとを、一体に形成した構成の1例である。The leak detection unit of the present invention is an example of a configuration in which a leak sensor 20a and an alarm means 70a including a sounding means are integrally formed. その断面図及び拡大図である。It is the sectional view and the enlarged view. 本発明のホルダ5の1構成例を示す図である。It is a figure which shows one structural example of the holder 5 of this invention. 本発明の高速漏液引込手段6の動作原理を示す拡大断面図である。It is an expanded sectional view which shows the principle of operation of the high-speed liquid leakage drawing-in means 6 of this invention. 本発明の漏液センサ20aの信号処理の1構成例を示すブロック図である。It is a block diagram which shows one structural example of the signal processing of the leak sensor 20a of this invention. 本発明の防爆型漏液検知システム1bの機械的1構成例を示すブロック図である。It is a block diagram which shows one mechanical structural example of the explosion-proof type leak detection system 1b of this invention. その漏液検知部を、漏液センサ20bと、警報手段70bとを、分離して設置した構成の1例である。The leak detector is an example of a configuration in which the leak sensor 20b and the alarm means 70b are separated and installed. 本発明の防爆型警報手段70bの信号処理の1構成例を示すブロック図である。It is a block diagram which shows one structural example of the signal processing of the explosion-proof alarm means 70b of this invention.

符号の説明Explanation of symbols

1a、1b、1c 漏液検知システム
2,2a 漏液
4 設置異常検知手段
5 ホルダ
5s,5t、12m,12n 光学的境界面
6、6b 高速漏液引込手段
8 薄紙
d、d1〜d8 空隙部
12 ケース
14、14b 光源手段
16、16c 受光手段
20a、20b 漏液センサ
22u、22z 投射光
24u、24z 反射光
30 制御手段
37、79c 通信手段
39、700 制御部
40a、40c、42a、42c 光伝送手段
70a,70b 警報手段
72 発音手段
75 共鳴器
79k 警告灯
98 漏液収容部
99 底面、床面
1a, 1b, 1c Leakage detection system 2, 2a Leakage 4 Installation abnormality detection means 5 Holders 5s, 5t, 12m, 12n Optical boundary surface 6, 6b High-speed leak drawing means 8 Thin paper d, d1-d8 Cavity 12 Cases 14 and 14b Light source means 16 and 16c Light receiving means 20a and 20b Liquid leakage sensors 22u and 22z Projected light 24u and 24z Reflected light 30 Control means 37 and 79c Communication means 39 and 700 Control units 40a, 40c, 42a and 42c Light transmission means 70a, 70b Alarm means 72 Sound generation means 75 Resonator 79k Warning light 98 Leakage container 99 Bottom surface, floor surface

Claims (10)

漏液センサにおいて、
当該漏液センサを前記漏液の収容部の内部空間に設置すると共に、前記漏液センサの設置位置に対し、前記漏液の収容部の内部空間、及び/又は、前記漏液の収容部の上方の空間の少なくとも1つを含む空間範囲以内に、共鳴器を有する発音手段を含む警報手段を設け、
前記漏液センサがセンサ異常を検知した場合、少なくとも前記共鳴器を有する発音手段により、前記空間範囲の外側に設置された漏液センサと区別して、当該漏液センサの設置位置が特定可能なように、当該漏液センサのセンサ異常検知を、前記発音手段から出力される可聴周波数の発信音を前記共鳴器により増幅して警報するようにしたことを特徴とする漏液センサ。
In the leak sensor,
The liquid leakage sensor is installed in the internal space of the liquid leakage storage unit, and the internal space of the liquid leakage storage unit and / or the liquid leakage storage unit with respect to the installation position of the liquid leakage sensor An alarm means including a sound generation means having a resonator is provided within a spatial range including at least one of the upper spaces,
When the liquid leakage sensor detects a sensor abnormality, the sound sensor having at least the resonator can distinguish the liquid leakage sensor installed outside the space range and specify the installation position of the liquid leakage sensor. In addition, a sensor for detecting abnormality of the leak sensor is alerted by amplifying an audible frequency output sound output from the sounding means by the resonator.
前記漏液センサと前記共鳴器を有する発音手段とを、一体に形成した請求項項1に記載の漏液センサ。     The liquid leakage sensor according to claim 1, wherein the liquid leakage sensor and a sound generation unit having the resonator are integrally formed. 前記漏液センサを本体部と蓋部とに分割して構成し、前記共鳴器を有する発音手段を、前記蓋部に一体に形成した請求項1又は2に記載の漏液センサ。     The liquid leakage sensor according to claim 1, wherein the liquid leakage sensor is divided into a main body portion and a lid portion, and sound generation means having the resonator is formed integrally with the lid portion. 前記発音手段が、共鳴体を打つことにより発音する手段を含む、及び/又は、ホイッスル又はサイレンを含む、及び/又は、振動することにより発音する手段を含む請求項1乃至3のいずれか1項に記載の漏液センサ。   4. The sound generation means includes means for sounding by hitting a resonator and / or a whistle or siren and / or means for sounding by vibration. The liquid leakage sensor described in 1. 前記共鳴器を有する発音手段から発信される可聴周波数の警報音が、周波数が一定又は可変の断続音及び/又は連続音である、音色が一定又は可変の断続音及び/又は連続音である、音の強さが一定又は可変の断続音及び/又は連続音である、音のピッチが一定又は可変の断続音及び/又は連続音である、デュウティイ比が一定又は可変の断続音及び/又は連続音である、又は、これらを組み合わせた警報音を含む請求項1乃至4のいずれか1項に記載の漏液センサ。     The audible alarm sound emitted from the sound generation means having the resonator is an intermittent sound and / or a continuous sound whose frequency is constant or variable, and an intermittent sound and / or a continuous sound whose sound color is constant or variable. Intermittent sound and / or continuous sound with constant or variable sound intensity, intermittent sound and / or continuous sound with constant or variable sound pitch, intermittent sound and / or continuous sound with constant or variable duty ratio The liquid leakage sensor according to any one of claims 1 to 4, comprising an alarm sound that is a sound or a combination thereof. 前記警報手段が、警告灯を更に含む請求項1乃至5のいずれか1項に記載の漏液センサ。   The liquid leakage sensor according to claim 1, wherein the alarm means further includes a warning light. 前記警告灯が、パトライト及び/又はLEDを含む請求項6に記載の漏液センサ。   The liquid leakage sensor according to claim 6, wherein the warning light includes a patrol light and / or an LED. 前記警報手段が、前記発音手段から発信される可聴周波数の警報音の変動に対応して、前記警告灯の明るさを変動せしめるようにした請求項6又は7に記載の漏液センサ。   The liquid leakage sensor according to claim 6 or 7, wherein the warning means changes the brightness of the warning light in response to a change in an audible alarm sound transmitted from the sound generation means. 前記発音手段から発信される可聴周波数の警報音が、当該センサの漏液異常と当該センサの設置異常とを警報する場合、いずれのセンサ異常か識別可能なように、それぞれ異なる発信音で警報するようにした請求項1乃至8のいずれか1項に記載の漏液センサ。   When the audible alarm sound transmitted from the sound generation means warns of the liquid leakage abnormality of the sensor and the installation abnormality of the sensor, an alarm is generated with a different transmission sound so that any sensor abnormality can be identified. The liquid leak sensor according to any one of claims 1 to 8. 前記漏液センサを、防爆構造で構成した請求項1乃至9のいずれか1項に記載の漏液センサ。   The liquid leakage sensor according to claim 1, wherein the liquid leakage sensor has an explosion-proof structure.
JP2006128132A 2003-10-30 2006-05-02 Leak sensor Active JP4651029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006128132A JP4651029B2 (en) 2003-10-30 2006-05-02 Leak sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003370439 2003-10-30
JP2006128132A JP4651029B2 (en) 2003-10-30 2006-05-02 Leak sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004277372A Division JP2005156541A (en) 2003-03-26 2004-09-24 Liquid leakage sensor and liquid leakage sensing system

Publications (2)

Publication Number Publication Date
JP2006300956A true JP2006300956A (en) 2006-11-02
JP4651029B2 JP4651029B2 (en) 2011-03-16

Family

ID=37469371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006128132A Active JP4651029B2 (en) 2003-10-30 2006-05-02 Leak sensor

Country Status (1)

Country Link
JP (1) JP4651029B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133119A (en) * 2009-12-22 2011-07-07 Dainichi Co Ltd Combustion device
JP2014150755A (en) * 2013-02-07 2014-08-25 Yanmar Co Ltd Grain discharge device of combine
WO2021172187A1 (en) * 2020-02-27 2021-09-02 パナソニックIpマネジメント株式会社 Failure diagnosis device, failure diagnosis system, household electrical appliance, sensor unit, and failure diagnosis method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101993467B1 (en) * 2018-10-08 2019-09-30 한국소방산업기술원 harmful chemical leak alarm system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301732A (en) * 1991-03-29 1992-10-26 Tatsuta Electric Wire & Cable Co Ltd Leakage detection device
JP2001074589A (en) * 1999-09-01 2001-03-23 Tsuuden:Kk Liquid leak sensor
JP2002169565A (en) * 2000-11-30 2002-06-14 Hochiki Corp Sound releasing structure for buzzer
JP2002214181A (en) * 2001-01-16 2002-07-31 Inaba Rubber Kk Detection method of leaked liquid
JP2002323894A (en) * 2001-04-25 2002-11-08 Sumitomo Wiring Syst Ltd Buzzer driving device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301732A (en) * 1991-03-29 1992-10-26 Tatsuta Electric Wire & Cable Co Ltd Leakage detection device
JP2001074589A (en) * 1999-09-01 2001-03-23 Tsuuden:Kk Liquid leak sensor
JP2002169565A (en) * 2000-11-30 2002-06-14 Hochiki Corp Sound releasing structure for buzzer
JP2002214181A (en) * 2001-01-16 2002-07-31 Inaba Rubber Kk Detection method of leaked liquid
JP2002323894A (en) * 2001-04-25 2002-11-08 Sumitomo Wiring Syst Ltd Buzzer driving device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133119A (en) * 2009-12-22 2011-07-07 Dainichi Co Ltd Combustion device
JP2014150755A (en) * 2013-02-07 2014-08-25 Yanmar Co Ltd Grain discharge device of combine
WO2021172187A1 (en) * 2020-02-27 2021-09-02 パナソニックIpマネジメント株式会社 Failure diagnosis device, failure diagnosis system, household electrical appliance, sensor unit, and failure diagnosis method
JP7373759B2 (en) 2020-02-27 2023-11-06 パナソニックIpマネジメント株式会社 Fault diagnosis device, fault diagnosis system, home appliance, sensor unit, and fault diagnosis method

Also Published As

Publication number Publication date
JP4651029B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP2005156541A (en) Liquid leakage sensor and liquid leakage sensing system
US7158039B2 (en) Liquid leakage sensor and liquid leakage detecting system
EP1795879B1 (en) Leak detection system and method for offshore hose lines
JP4651029B2 (en) Leak sensor
US11845586B2 (en) Condition detection see-through storage box
CA1061435A (en) Optical-electrical liquid probe
KR100895726B1 (en) Light source equipment
JP2005156541A5 (en)
JP5096276B2 (en) Flame detection unit
JP3719130B2 (en) Liquid level monitoring device
JP2006010597A (en) Detection sensor for out of liquid
JP4467447B2 (en) Leak sensor
JP2009014660A (en) Two-liquid leakage sensor and prism for the same
JP2004294164A (en) Liquid leakage sensor
JP3220440B2 (en) Liquid leak sensor
JP3756683B2 (en) Leak sensor
KR200429436Y1 (en) System of monitoring water leakage
JPH11223630A (en) Chemical or biological species sensing device with opticl fiber utilized, and remote monitoring system using the same
JP3338610B2 (en) Fire detector with confirmation light
JP5135141B2 (en) Flame detector
JP2002181695A (en) Leak sensor
US20120104237A1 (en) Energy beam burn through sensor and method therefor
KR102527745B1 (en) Leakage detection sensor equipped with leakage alarm reset switch, and the leakage alarm recovery system
JP2001050856A (en) Liquid leak sensor
KR102126902B1 (en) Harmful chemical solution leakage sensor with IoT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4651029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250