JP2006292872A - Matrix optical switch - Google Patents

Matrix optical switch Download PDF

Info

Publication number
JP2006292872A
JP2006292872A JP2005110880A JP2005110880A JP2006292872A JP 2006292872 A JP2006292872 A JP 2006292872A JP 2005110880 A JP2005110880 A JP 2005110880A JP 2005110880 A JP2005110880 A JP 2005110880A JP 2006292872 A JP2006292872 A JP 2006292872A
Authority
JP
Japan
Prior art keywords
address
input
elements
output
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005110880A
Other languages
Japanese (ja)
Other versions
JP4727279B2 (en
Inventor
Toshio Watanabe
俊夫 渡辺
Shunichi Soma
俊一 相馬
Takashi Go
隆司 郷
Hiroshi Takahashi
浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005110880A priority Critical patent/JP4727279B2/en
Publication of JP2006292872A publication Critical patent/JP2006292872A/en
Application granted granted Critical
Publication of JP4727279B2 publication Critical patent/JP4727279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a matrix optical switch constituted of a smaller number of stages while maintaining high extinction characteristics. <P>SOLUTION: The matrix optical switch of (n) inputs x (n) outputs comprises 1×2 elements (n), (n-1) pieces, 2×1 elements (n), (n-1) pieces, 1×1 elements 2n pieces (where (n) is a natural number of n≥3), and is arranged with unit optical switch elements in (n+1) stages, in which the first stage consists of 1×2 element (n) pieces, the (n+1)st stage consists of 2×1 element (n) pieces and the second stage consists of 1×2 element (n) and 1×1 element (n) pieces, the n-th stage consists of 2×1 element (n) pieces and 1×1 element (n) pieces, and the i-th stage excluding the first stage, the second stage, the (n) stage and the n-th stage (where, (i) consists of a natural number of 3≤i≤n-1) consists of 1×2 element (n) pieces and 2×1 element (n) pieces. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光通信等で用いられる光スイッチに関するものであり、特に、入出力数が1または2の光スイッチ素子を複数集積して構成されるマトリクス光スイッチに関して、消光比が高く、かつ小型な回路構成を実現するための技術に関するものである。   The present invention relates to an optical switch used in optical communication and the like, and in particular, with respect to a matrix optical switch configured by integrating a plurality of optical switch elements having 1 or 2 inputs / outputs, the extinction ratio is high and the size is small. The present invention relates to a technique for realizing a simple circuit configuration.

光ファイバを伝送媒体とする光通信技術は、信号の伝送距離の拡大をもたらし、大規模な光通信網が構築されてきた。近年では、インターネット通信が広範に普及するのに伴って、通信トラフィックが急速に増大しており、通信網に対する大容量化、高速化、高機能化の要求が高まっている。これまでに、波長の異なる複数の光信号を1本の伝送路で同時に伝送する波長多重通信技術の導入によって、二地点間の伝送容量を増大することが可能となった。   Optical communication technology using an optical fiber as a transmission medium has led to an increase in signal transmission distance, and a large-scale optical communication network has been constructed. In recent years, with the widespread use of Internet communication, communication traffic has increased rapidly, and demands for higher capacity, higher speed, and higher functionality for communication networks have increased. Up to now, it has become possible to increase the transmission capacity between two points by introducing a wavelength multiplexing communication technology that simultaneously transmits a plurality of optical signals having different wavelengths through one transmission line.

しかし、通信網においては、複数の伝送路が集まるノードにおいて、信号の経路を設定(ルーティング)したり、切替(スイッチング)したりする必要があり、伝送容量の増大に伴って、これらの信号処理がボトルネックになってきている。これまでは、伝送されてきた光信号を一旦電気信号に変換した後に経路設定や経路切替を行ない、再び電気信号を光信号に変換して伝送路に送出する方式が用いられてきたが、今後は光信号を電気信号に変換することなく、信号経路の設定や切替処理を行なう方式を用いることによって、ノードのスループットを飛躍的に拡大することができるものと期待されている。このような方式を光通信網に導入するうえで必要不可欠な部品が光スイッチである。   However, in a communication network, it is necessary to set (route) a signal path or switch (switch) a signal path at a node where a plurality of transmission paths are gathered. Is becoming a bottleneck. Up to now, a method has been used in which the transmitted optical signal is once converted into an electrical signal, the path is set and switched, and the electrical signal is converted again into an optical signal and sent to the transmission path. It is expected that the throughput of a node can be dramatically increased by using a method for setting and switching a signal path without converting an optical signal into an electrical signal. An optical switch is an indispensable component for introducing such a system into an optical communication network.

光通信網に用いられる光スイッチには、入出力端子数や端子間の接続パターンに関して、1入力×多出力、多入力×多出力、2入力×2出力を多連にしたものなど、様々な様式があるが、なかでも最も一般的であり重要なのが、複数の入出力端子を持ち、その端子間を完全(厳密)非閉塞(ノンブロッキング)に接続しうるマトリクス光スイッチである。ここで、完全非閉塞とは、任意の入力端子−出力端子間の接続を変更しようとする際に、スイッチ内部の経路の切替が該当の入出力端子間のみで行われ、既に経路が設定されている他の入力端子−出力端子間の接続に関してはスイッチ内部の経路を変更する必要がないことを言う。   There are various types of optical switches used in optical communication networks, such as 1 input x multiple outputs, multiple inputs x multiple outputs, multiple 2 inputs x 2 outputs in terms of the number of input / output terminals and connection patterns between terminals. There is a format, but the most common and important among them are matrix optical switches having a plurality of input / output terminals and capable of connecting between the terminals completely (strictly) and non-blocking (non-blocking). Here, complete non-blocking means that when changing the connection between any input terminal and output terminal, the path inside the switch is switched only between the corresponding input and output terminals, and the path has already been set. It means that there is no need to change the path inside the switch for the connection between the other input terminal and the output terminal.

完全非閉塞なマトリクス光スイッチは、拡張性の点から、光スイッチ素子を複数組み合わせて構成するのが一般的である。その最も単純な構成として、図10に示すような構成が考えられる。これは、入力n本、出力n本のクロスポイントに、2入力×2出力の光スイッチ素子を配置して、各光スイッチ素子のクロス状態とバー状態を切り替えることで、完全非閉塞なn入力×n出力のマトリクス光スイッチ(以下、n×nマトリクス光スイッチという)を構成したものであり、図10はn=4とした場合の例である。なお、2入力×2出力の光スイッチ素子の使用されていない端子は図では省略し、1入力×2出力、あるいは、2入力×1出力、1入力×1出力の光スイッチ素子として表わした。   A completely non-blocking matrix optical switch is generally configured by combining a plurality of optical switch elements from the viewpoint of expandability. As the simplest configuration, a configuration as shown in FIG. 10 can be considered. This is because a 2-input x 2-output optical switch element is arranged at a cross point of n inputs and n outputs, and the non-blocking n inputs are switched by switching the cross state and the bar state of each optical switch element. FIG. 10 shows an example in which n = 4 matrix optical switches (hereinafter referred to as n × n matrix optical switches) are configured. The unused terminals of the 2-input × 2-output optical switch element are not shown in the figure, and are represented as 1-input × 2-output, or 2-input × 1-output, 1-input × 1-output optical switch elements.

光スイッチ素子の具体的な実現方式としては、光ファイバを機械的に移動する方式、微小なミラーなどの可動機構を用いる方式、光導波路の屈折率変化を利用する方式がある。そのなかで、光導波路を用いる方式は、量産性や耐久性に優れていることに加えて、集積性に優れており、多数の光スイッチ素子を単一の基板上に集積することが可能であるので、マトリクス光スイッチを構成するのに適している。   Specific implementation methods of the optical switch element include a method of mechanically moving an optical fiber, a method of using a movable mechanism such as a minute mirror, and a method of using a refractive index change of an optical waveguide. Among them, the method using an optical waveguide is excellent in mass productivity and durability, and also has excellent integration, so that a large number of optical switch elements can be integrated on a single substrate. Therefore, it is suitable for constructing a matrix optical switch.

導波路型の光スイッチにおいて、集積度を高めてチップサイズを小型化するほど、1枚のウェハ上に多数のチップを作製することができ、量産性を高めることができる。チップサイズは、一般に光スイッチの回路長が長いほど大きくなる。マトリクス光スイッチの回路長は回路配置に応じて決まり、光スイッチ素子の段数が多いほど回路長が長くなる。ここで、「段」とは、マトリクス光スイッチにおいて、経路を横方向としたとき、縦方向に並んで配置された光スイッチ素子の一群のことを言う。   In a waveguide type optical switch, as the degree of integration is increased and the chip size is reduced, a larger number of chips can be manufactured on one wafer, and mass productivity can be improved. The chip size generally increases as the circuit length of the optical switch increases. The circuit length of the matrix optical switch is determined according to the circuit arrangement, and the circuit length increases as the number of stages of the optical switch elements increases. Here, “stage” refers to a group of optical switch elements arranged side by side in a vertical direction when a path is a horizontal direction in a matrix optical switch.

例えば、図10の4×4マトリクス光スイッチにおいて光スイッチ素子は7段に配置されていることになる。即ち、n×nマトリクス光スイッチにおいて光スイッチ素子は(2n−1)段に配置されていることになる。また、このような構成では、マトリクス光スイッチの内部で通過する光スイッチ素子の数は接続経路によって異なり、最大(2n−1)個、最小1個である。光スイッチ素子は実際上ある程度の光損失を有するので、通過する素子数が接続経路によって異なると、入出力端子間の挿入損失に偏差が生じてしまうので、好ましくない。   For example, in the 4 × 4 matrix optical switch of FIG. 10, the optical switch elements are arranged in seven stages. That is, in the n × n matrix optical switch, the optical switch elements are arranged in (2n−1) stages. In such a configuration, the number of optical switch elements passing through the matrix optical switch varies depending on the connection path, and is a maximum (2n-1) and a minimum of 1. Since an optical switch element actually has a certain amount of optical loss, if the number of passing elements varies depending on the connection path, a deviation occurs in the insertion loss between the input and output terminals, which is not preferable.

これに対して、2入力×2出力の光スイッチ素子n×n個をn行n段に配置し、各段の間で経路を交差することにより、n×nマトリクス光スイッチを構成する方法が特許文献1に開示されている。該技術によれば、通過する光スイッチ素子の数は、接続経路によらずn個であり、n段に配置された光スイッチ素子でn入力×n出力の完全非閉塞マトリクス光スイッチを構成することができる。該技術により4×4マトリクス光スイッチを構成した例を図11に示す。図11の構成では、4段に配置した2入力×2出力の光スイッチ素子16個で4×4マトリクス光スイッチが構成されている。   On the other hand, there is a method of configuring an n × n matrix optical switch by arranging n × n optical switch elements of 2 inputs × 2 outputs in n rows and n stages and crossing paths between the stages. It is disclosed in Patent Document 1. According to this technique, the number of optical switch elements that pass through is n regardless of the connection path, and an n input × n output completely non-blocking matrix optical switch is configured by optical switch elements arranged in n stages. be able to. FIG. 11 shows an example in which a 4 × 4 matrix optical switch is configured by this technique. In the configuration of FIG. 11, a 4 × 4 matrix optical switch is configured by 16 optical switch elements of 2 inputs × 2 outputs arranged in 4 stages.

光通信網に用いられる光スイッチには、クロストークによる雑音発生を抑制するために、高い消光比が求められる。実際上、光スイッチ素子は無限大の消光比を達成することは不可能であるが、実用上要求される値が、光スイッチ素子において達成しうる消光比より大きい場合も多い。   An optical switch used in an optical communication network is required to have a high extinction ratio in order to suppress noise generation due to crosstalk. In practice, an optical switch element cannot achieve an infinite extinction ratio, but the value required in practice is often larger than the extinction ratio that can be achieved in an optical switch element.

こうした場合に、マトリクス光スイッチにおいて高い消光比を達成する手段として、各クロスポイントに配置された2入力×2出力の光スイッチ素子を2段の単位光スイッチ素子で構成する方法が特許文献2に開示されている(以下、2入力×2出力の光スイッチ素子と、その構成単位である単位光スイッチ素子とを区別するため、複数の単位光スイッチ素子からなる光スイッチ素子を光スイッチ要素と呼ぶ)。   In such a case, as a means for achieving a high extinction ratio in a matrix optical switch, Patent Document 2 discloses a method in which a 2-input × 2-output optical switch element arranged at each cross point is composed of two unit optical switch elements. In order to distinguish between an optical switch element of 2 inputs × 2 outputs and a unit optical switch element that is a structural unit thereof, an optical switch element composed of a plurality of unit optical switch elements is referred to as an optical switch element. ).

該技術により構成した2入力×2出力の光スイッチ要素の例を図12に示す。図12において、単位光スイッチ素子100および200が2個ともオフ状態のとき、入力端子A−1から入力された光信号は第1の単位光スイッチ素子100を通って出力端子B−2に出力され、入力端子A−2から入力された光信号は第2の単位光スイッチ素子200を通って出力端子B−1に出力されるので、光スイッチ要素としてはクロス状態となる。一方、単位光スイッチ素子100および200が2個ともオン状態のとき、入力端子A−1から入力された光信号は第1の単位光スイッチ素子100と第2の単位光スイッチ素子200を通って出力端子B−1に出力されるので、光スイッチ要素としてはバー状態となる。   FIG. 12 shows an example of an optical switch element of 2 inputs × 2 outputs constructed by this technique. In FIG. 12, when both the unit optical switch elements 100 and 200 are in the OFF state, the optical signal input from the input terminal A-1 passes through the first unit optical switch element 100 and is output to the output terminal B-2. Then, since the optical signal input from the input terminal A-2 passes through the second unit optical switch element 200 and is output to the output terminal B-1, the optical switch element is in a cross state. On the other hand, when both of the unit optical switch elements 100 and 200 are in the on state, the optical signal input from the input terminal A-1 passes through the first unit optical switch element 100 and the second unit optical switch element 200. Since it is output to the output terminal B-1, the optical switch element is in a bar state.

該技術によれば、光スイッチ要素の入力端子A−1と出力端子B−1との間の消光比は、各単位光スイッチ素子の消光比の2倍となり、実用上充分な消光比を得ることができる。しかし、その反面、各光スイッチ要素を2段の単位光スイッチ素子で構成することになるため、単位光スイッチ素子の段数は2倍になってしまう。そのため、図11に例を示した回路構成のn×nマトリクス光スイッチに該技術を適用した場合、光スイッチ要素はn段であるが、単位光スイッチ素子としては2n段の素子が必要であり、結果として回路長が長くなってしまう。   According to this technique, the extinction ratio between the input terminal A-1 and the output terminal B-1 of the optical switch element is twice the extinction ratio of each unit optical switch element, and a practically sufficient extinction ratio is obtained. be able to. However, since each optical switch element is composed of two unit optical switch elements, the number of unit optical switch elements is doubled. Therefore, when this technology is applied to the n × n matrix optical switch having the circuit configuration shown in FIG. 11, the optical switch element has n stages, but the unit optical switch element requires 2n stage elements. As a result, the circuit length becomes long.

一例として、該技術により4×4マトリクス光スイッチを構成した例を図13に示す。図13の構成では、4×4マトリクス光スイッチを構成するのに8段の2入力×2出力の光スイッチ素子が必要である。   As an example, FIG. 13 shows an example in which a 4 × 4 matrix optical switch is configured by this technique. In the configuration of FIG. 13, 8 stages of 2 input × 2 output optical switch elements are required to form a 4 × 4 matrix optical switch.

これに対して、図13に示した回路構成において光スイッチ要素の段間に現れる交差部を図12に示した各光スイッチ要素内に埋め込んで回路長を短くする技術が特許文献3に開示されている。これにより、光スイッチ段間の交差のための展開部の長さを削減し、全体の回路長を短縮することができる。該技術により4×4マトリクス光スイッチを構成した例を図14に示す。   On the other hand, Patent Document 3 discloses a technique for shortening the circuit length by embedding crossing portions appearing between stages of the optical switch elements in the circuit configuration shown in FIG. 13 in each optical switch element shown in FIG. ing. Thereby, the length of the expansion | deployment part for the intersection between optical switch stages can be reduced, and the whole circuit length can be shortened. An example in which a 4 × 4 matrix optical switch is configured by this technique is shown in FIG.

特許第1941285号公報Japanese Patent No. 1941285 特許第3041825号公報Japanese Patent No. 3041825 特許第3253007号公報Japanese Patent No. 3253007

しかしながら、特許文献3に開示の方法によってもなお、単位光スイッチ素子の段数としては2n段が必要であり、それがマトリクス光スイッチのチップサイズの小型化を阻む要因となっていた。光通信網に使用される部品に対しては、部品占有面積やコストの削減が求められており、マトリクス光スイッチがより広範に使用されるようになるためには、高い消光特性を維持しつつ、より少ない段数で構成されるマトリクス光スイッチの実現が必須の課題であった。   However, even with the method disclosed in Patent Document 3, 2n stages are required as the number of unit optical switch elements, which is a factor that hinders downsizing of the chip size of the matrix optical switch. Parts used in optical communication networks are required to reduce the area occupied by the parts and cost, and in order to use matrix optical switches more widely, while maintaining high extinction characteristics. Therefore, the realization of a matrix optical switch configured with a smaller number of stages has been an essential issue.

このようなことから本発明は、高い消光特性を維持しつつ、より少ない段数で構成されるマトリクス光スイッチを提供することを目的とする。   Accordingly, an object of the present invention is to provide a matrix optical switch configured with a smaller number of stages while maintaining high extinction characteristics.

上記課題を解決するために、発明者らは、従来のマトリクス光スイッチの回路構成を吟味した結果、光信号が実際に通過する単位光スイッチ素子の数は(n+1)個であることから、光スイッチ素子の段数を(n+1)段に削減することが原理的に可能であるとの着想を得た。さらに、それを実現するための回路構成を鋭意検討した結果、以下に述べる方法によって、n入力×n出力の完全非閉塞マトリクス光スイッチを(n+1)段の単位光スイッチ素子で構成できることを見い出し、本発明を完成するに至った。   In order to solve the above problems, the inventors have examined the circuit configuration of a conventional matrix optical switch. As a result, the number of unit optical switch elements through which an optical signal actually passes is (n + 1). The idea is that it is possible in principle to reduce the number of switch elements to (n + 1). Furthermore, as a result of diligent investigation of the circuit configuration for realizing it, it has been found that an n-input × n-output fully non-blocking matrix optical switch can be configured with (n + 1) stage unit optical switch elements by the method described below. The present invention has been completed.

すなわち、上記課題を解決するための本発明の請求項1に係るマトリクス光スイッチは、1入力2出力の単位光スイッチ素子(これを以下、1×2素子と表わす)n・(n−1)個および2入力1出力の単位光スイッチ素子(これを以下、2×1素子と表わす)n・(n−1)個および1入力1出力の単位光スイッチ素子(これを以下、1×1素子と表わす)2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、該第2段の第(4j−3)番目(これを以下、第(2,4j−3)番地と表わす)と第(2,4j)番地が1×1素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が2×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が1×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが奇数の場合は第(2,2k−1)番地の1×1素子の入力に、kが偶数の場合は第(2,2k)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k)番地の1×1素子の出力に、kが偶数の場合は第(n,2k−1)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが1の場合には第(n,1)番地の2×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の2×1素子の出力に、kがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く偶数の場合は第(n,2k+1)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,2n−1)番地の1×2素子の出力の一方を第(3,2n)番地の1×2素子の入力に、他方を第(3,2n−1)番地の2×1素子の入力の一方に接続し、第(2,2n)番地の1×1素子の出力を該第(3,2n−1)番地の2×1素子の入力の他方に接続し、第(2,4j’−1)番地の1×2素子の出力の一方を第(3,4j’+1)番地の1×2素子の入力に、他方を第(3,4j’−1)番地の2×1素子の入力の一方に接続し、第(2,4j’+1)番地の1×1素子の出力を該第(3,4j’−1)番地の2×1素子の入力の他方に接続し、第(2,4j’)番地の1×1素子の出力を第(3,4j’+2)番地の2×1素子の入力の一方に接続し、第(2,4j’+2)番地の1×2素子の出力の一方を第(3,4j’)番地の1×2素子の入力に、他方を該第(3,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第(n−1)段においては、第(n−1,4j−3)番地の1×2素子の出力の一方を第(n,4j−1)番地の1×1素子の入力に、他方を第(n,4j−3)番地の2×1素子の入力の一方に接続し、第(n−1,4j−1)番地の2×1素子の出力を該第(n,4j−3)番地の2×1素子の入力の他方に接続し、第(n−1,4j−2)番地の2×1素子の出力を第(n,4j)番地の2×1素子の入力の一方に接続し、第(n−1,4j)番地の1×2素子の出力の一方を第(n,4j−2)番地の1×1素子の入力に、他方を該第(n,4j)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続し、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続したことを特徴とする。   That is, the matrix optical switch according to claim 1 of the present invention for solving the above-described problems is a unit optical switch element with one input and two outputs (hereinafter referred to as 1 × 2 elements) n · (n−1). 1 unit optical switch element with two inputs and one output (hereinafter referred to as 2 × 1 elements) n · (n−1) unit optical switch elements with one input and one output (hereinafter referred to as 1 × 1 elements) N × n output matrix optical switch composed of 2 × n (in the present invention, n is an even number of n ≧ 4), and the unit optical switch elements are arranged in (n + 1) stages. The first stage consists of n 1 × 2 elements, the (n + 1) th stage consists of n 2 × 1 elements, the second stage consists of n 1 × 2 elements and n 1 × 1 elements, The second stage (4j-3) th (hereinafter referred to as the (2,4j-3) address) and the (2, 4j) The address is 1 × 1 element, the (2,4j-2) address and the (2,4j−1) th address are 1 × 2 elements (where j is j ≦ n / 2) (Natural number), the n-th stage consists of n 2 × 1 elements and n 1 × 1 elements, and the (n, 4j-3) and (n, 4j) addresses are 2 × 1 elements. The (n, 4j-2) address and the (n, 4j-1) address are 1 × 1 elements, and the i-th stage excluding the first stage, the second stage, the n-th stage, and the (n + 1) -th stage is 1. It consists of n × 2 elements and n 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), and when i is an odd number, the (i, 4j-3) th address and (i , 4j) address is 1 × 2 elements, and (i, 4j−2) and (i, 4j−1) addresses are 2 × 1 elements, and i is an even number, 4j-3) address and (i, 4j) address are 2 × 1 elements, The (i, 4j-2) address and the (i, 4j-1) address are 1 × 2 elements, and the total number n of 1 × 2 elements in the first stage is connected to the input terminal of the matrix optical switch. The output terminal of the matrix optical switch is n total outputs of 2 × 1 elements in the (n + 1) th stage, and the kth (k is a natural number of k ≦ n) 1 × 2 elements in the first stage. One of the outputs is input to the 1 × 2 element at the (2,2k + 1) -th address when k is an odd number, and input to the 1 × 2 element at the (2,2k-2) -th address when k is an even number. When the other of the outputs of the kth 1 × 2 element of the first stage is k is an odd number, the input of the 1 × 1 element at the (2, 2k−1) address is when k is an even number Is connected to the input of the 1 × 1 element at the (2,2k) address, and one of the inputs of the kth 2 × 1 element in the (n + 1) th stage is the (n, 2k) if k is an odd number. ) 1x1 of the address When k is an even number, the output is connected to the output of the 1 × 1 element at the (n, 2k−1) address, and the other of the inputs of the kth 2 × 1 element in the (n + 1) th stage When k is 1, the output of the 2 × 1 element at the (n, 1) address, and when k is an odd number other than 1, the output of the 2 × 1 element at the (n, 2k−2) address. If k is n, connect to the output of the 2 × 1 element at the (n, 2n) address, and if k is an even number excluding n, connect to the output of the 2 × 1 element at the (n, 2k + 1) address. In the second stage, the output of the 1 × 1 element at address (2,1) is connected to one of the inputs of the 2 × 1 element at address (3,2), and the output at address (2,2) One of the outputs of the 1 × 2 element is connected to the input of the 1 × 2 element at the (3,1) address, the other is connected to the other input of the 2 × 1 element at the (3,2) address, 2 × 2n-1) output of 1 × 2 element The input of the 1 × 2 element at the address (3, 2n) is connected to one input of the 2 × 1 element at the address (3, 2n−1), and the 1 × 1 element at the address (2, 2n). Is connected to the other input of the 2 × 1 element at the (3,2n−1) th address, and one output of the 1 × 2 element at the (2,4j′−1) th address is connected to the (3,3 4j ′ + 1) is connected to the input of the 1 × 2 element of the address, the other is connected to one of the inputs of the 2 × 1 element of the (3,4j′−1) th address, and 1 of the (2,4j ′ + 1) th address. The output of the × 1 element is connected to the other input of the 2 × 1 element at the (3,4j′−1) th address, and the output of the 1 × 1 element at the (2,4j ′) th address is 4j ′ + 2) is connected to one of the inputs of the 2 × 1 element at address 2, and the output of the 1 × 2 element at the (2,4j ′ + 2) address is connected to 1 × 2 element of the (3,4j ′) address The other input to the (3,4j ′ + 2) ) Connected to the other input of the 2 × 1 element at the address (where j ′ is a natural number of j ′ ≦ n / 2-1), and in the (n−1) th stage, the (n−1, One of the outputs of the 1 × 2 element at address 4j-3) is input to the input of the 1 × 1 element at address (n, 4j−1), and the other is the output of the 2 × 1 element at address (n, 4j−3). Connected to one of the inputs, the output of the 2 × 1 element at address (n−1,4j−1) is connected to the other input of the 2 × 1 element at address (n, 4j−3), and The output of the 2 × 1 element at address (n−1,4j−2) is connected to one of the inputs of the 2 × 1 element at address (n, 4j), and 1 × at the (n−1,4j) address. One of the outputs of the two elements is connected to the input of the 1 × 1 element at the (n, 4j−2) -th address, and the other is connected to the other input of the 2 × 1 element at the (n, 4j) -th address. 1st stage and 2nd stage, (n-1) th stage, nth stage and (n In the i-th stage except the +1) stage, when i is an odd number, one of the outputs of the 1 × 2 element at the (i, 4j-3) -th address is the 1 × 2 element at the (i + 1, 4j−1) -th address. Is connected to one input of the 2 × 1 element at the (i + 1,4j-3) th address, and the output of the 2 × 1 element at the (i, 4j−1) th address is connected to the (i + 1,4j-3) th input. 4j-3) connected to the other input of the 2 × 1 element at address (i, 4j−2), and the output of the 2 × 1 element at address (i, 4j−2) is the input of the input of the 2 × 1 element at address (i + 1, 4j). Connected to one side, one of the outputs of the 1 × 2 element at the (i, 4j) address is input to the 1 × 2 element at the (i + 1,4j−2) address, and the other is the (i + 1,4j) address When i is an even number, the output of the 2 × 1 element at the (i, 1) address is connected to the input of the 2 × 1 element at the (i + 1,2) address. Connected to one side One of the outputs of the 1 × 2 element at the (i, 2) address is input to the 1 × 2 element at the (i + 1,1) address, and the other is the input of the 2 × 1 element at the (i + 1,2) address. The output of the 1 × 2 element at the (i, 2n−1) th address is connected to the input of the 1 × 2 element at the (i + 1,2n) th address, and the other is connected to the (i + 1,2n−1) th address. ) Connected to one of the inputs of the 2 × 1 element at the address, and the output of the 2 × 1 element at the (i, 2n) address is connected to the other input of the 2 × 1 element at the (i + 1, 2n−1) address. Connect one of the outputs of the 1 × 2 element at the (i, 4j′−1) th address to the input of the 1 × 2 element at the (i + 1,4j ′ + 1) th address and the other (i + 1,4j′−). 1) Connect to one input of the 2 × 1 element at the address, and output the 2 × 1 element at the (i, 4j ′ + 1) th address of the 2 × 1 element at the (i + 1,4j′−1) th address. Connect to the other input Subsequently, the output of the 2 × 1 element at the (i, 4j ′) address is connected to one input of the 2 × 1 element at the (i + 1, 4j ′ + 2) address, and the (i, 4j ′ + 2) address. One of the outputs of the 1 × 2 element is connected to the input of the 1 × 2 element at the (i + 1,4j ′) address, and the other is connected to the other input of the 2 × 1 element at the (i + 1,4j ′ + 2) address. It is characterized by that.

また、本発明の請求項2に係るマトリクス光スイッチは、1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j−3)番地と第(2,4j)番地が1×2素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×1素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k)番地の1×1素子の入力に、kが偶数の場合は第(2,2k−1)番地の1×1素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合には第(2,1)番地の1×2素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×2素子の入力に、kがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く偶数の場合は第(2,2k+1)番地の1×2素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが奇数の場合は第(n,2k−1)番地の1×1素子の出力に、kが偶数の場合は第(n,2k)番地の1×1素子の出力に接続して、第2段においては、第(2,4j−3)番地の1×2素子の出力の一方を第(3,4j−1)番地の1×2素子の入力に、他方を第(3,4j−3)番地の2×1素子の入力の一方に接続し、第(2,4j−1)番地の1×1素子の出力を該第(3,4j−3)番地の2×1素子の入力の他方に接続し、第(2,4j−2)番地の1×1素子の出力を第(3,4j)番地の2×1素子の入力の一方に接続し、第(2,4j)番地の1×2素子の出力の一方を第(3,4j−2)番地の1×2素子の入力に、他方を該第(3,4j)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,2n−1)番地の1×2素子の出力の一方を第(n,2n)番地の1×1素子の入力に、他方を第(n,2n−1)番地の2×1素子の入力の一方に接続し、第(n−1,2n)番地の2×1素子の出力を該第(n,2n−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’−1)番地の1×2素子の出力の一方を第(n,4j’+1)番地の1×1素子の入力に、他方を第(n,4j’−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j’+1)番地の2×1素子の出力を該第(n,4j’−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’)番地の2×1素子の出力を第(n,4j’+2)番地の2×1素子の入力の一方に接続して、第(n−1,4j’+2)番地の1×2素子の出力の一方を第(n,4j’)番地の1×1素子の入力に、他方を該第(n,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続して、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続したことを特徴とする。   The matrix optical switch according to claim 2 of the present invention includes 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n. An n input × n output matrix optical switch configured (in this invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, and the first stage is 1 × 2 It consists of n elements, the (n + 1) th stage consists of n 2 × 1 elements, the second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j-3) th address. And the (2,4j) address is a 1 × 2 element, the (2,4j-2) address and the (2,4j−1) address are 1 × 1 elements (where j is j ≦ n / 2 natural number), the nth stage consists of n 2 × 1 elements and n 1 × 1 elements, and the (n, 4j-3) and (n, 4j) addresses are 1 × 1 elements. And the (n, j-2) address and (n, 4j-1) address are 2 × 1 elements, and the i-th stage excluding the first stage, the second stage, the n-th stage and the (n + 1) -th stage is 1 × 2 It consists of n elements and 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), and when i is an odd number, the (i, 4j-3) th address and the (i, 4j) ) Address is 2 × 1 element, (i, 4j−2) address and (i, 4j−1) address are 1 × 2 elements, and i is an even number, (i, 4j− 3) The address and the (i, 4j) address are 1 × 2 elements, the (i, 4j−2) address and the (i, 4j−1) address are 2 × 1 elements, and the first stage N input meters of 1 × 2 elements of n are used as input terminals of the matrix optical switch, and n output meters of 2 × 1 elements of the (n + 1) -th stage are used as output terminals of the matrix optical switch. 1st stage k-th (k is k ≦ n One of the outputs of the 1 × 2 element of the (natural number of)), when k is an odd number, it is the input of the 1 × 1 element of the (2,2k) address, and when k is an even number, the (2,2k−1) address. And the other of the outputs of the kth 1 × 2 element of the first stage is the input of the 1 × 2 element of the (2,1) address when k is 1 When k is an odd number other than 1, it is input to the 1 × 2 element at the (2,2k−2) address, and when k is n, it is input to the 1 × 2 element at the (2,2n) address. , K is an even number excluding n, it is connected to the input of the 1 × 2 element at the (2, 2k + 1) th address, and k is connected to one of the inputs of the kth 2 × 1 element in the (n + 1) th stage. In the case of an odd number, it is connected to the output of the 2 × 1 element at the (n, 2k + 1) th address, and when k is an even number, it is connected to the output of the 2 × 1 element at the (n, 2k−2) th address. ) Input of the kth 2 × 1 element in the stage The other is connected to the output of the 1 × 1 element at the (n, 2k−1) address when k is an odd number, and to the output of the 1 × 1 element at the (n, 2k) address when k is an even number. In the second stage, one of the outputs of the 1 × 2 element at the (2,4j-3) th address is input to the input of the 1 × 2 element at the (3,4j-1) th address, and the other is the (3,3). 4j-3) connected to one of the 2 × 1 element inputs at address (2,4j−1), and the output of the 1 × 1 element at address (2,4j−1) is the 2 × 1 element at address (3,4j-3). The output of the 1 × 1 element at the (2,4j-2) th address is connected to one input of the 2 × 1 element at the (3,4j) th address, and the (2,4j) ) One of the outputs of the 1 × 2 element at the address is input to the 1 × 2 element at the (3,4j−2) th address, and the other is the other input of the 2 × 1 element at the (3,4j) address. In connection, in the (n-1) th stage, The output of the 2 × 1 element at the (n−1,1) address is connected to one input of the 2 × 1 element at the (n, 2) address, and the 1 × 2 element at the (n−1,2) address. Is connected to the input of the 1 × 1 element at the (n, 1) -th address, and the other is connected to the other input of the 2 × 1 element at the (n, 2) -th address, One of the outputs of the 1 × 2 element at the address 2n−1) is input to the input of the 1 × 1 element at the address (n, 2n), and the other is input to the input of the 2 × 1 element at the address (n, 2n−1). The output of the 2 × 1 element at the (n−1, 2n) -th address is connected to the other input of the 2 × 1 element at the (n, 2n−1) -th address, and the (n−1) th , 4j′−1), one output of the 1 × 2 element at address (n, 4j ′ + 1) is the input of the 1 × 1 element at address (n, 4j ′ + 1), and the other is 2 × at address (n, 4j′−1). Connect to one of the inputs of one element and number (n-1, 4j '+ 1) Is connected to the other input of the 2 × 1 element at the (n, 4j′−1) th address, and the output of the 2 × 1 element at the (n−1,4j ′) th address is The output of the 1 × 2 element at the (n−1,4j ′ + 2) th address is connected to one input of the 2 × 1 element at the (n, 4j ′ + 2) th address. ) Connect the input of the 1 × 1 element at the address and the other to the other input of the 2 × 1 element at the (n, 4j ′ + 2) th address (where j ′ is j ′ ≦ n / 2− 1), the first and second stages, the (n-1) th stage, the nth stage and the (n + 1) th stage except for the i-th stage, if i is an odd number, the (i, 1) th stage The output of the 2 × 1 element at the address is connected to one of the inputs of the 2 × 1 element at the (i + 1,2) th address, and one of the outputs of the 1 × 2 element at the (i, 2) th address is connected to the (i + 1,2) th 1) The input of the 1 × 2 element at the address and the other Connect to the other input of the 2 × 1 element at the address i + 1, 2), and connect one output of the 1 × 2 element at the (i, 2n−1) th address to the 1 × 2 element at the (i + 1, 2n) address. The other input is connected to one of the inputs of the 2 × 1 element at the (i + 1, 2n−1) -th address, and the output of the 2 × 1 element at the (i, 2n) -th address is connected to the (i + 1, 2n−1). ) Connected to the other input of the 2 × 1 element at the address, and one of the outputs of the 1 × 2 element at the (i, 4j′−1) th address is connected to the 1 × 2 element at the (i + 1,4j ′ + 1) th address. The other is connected to one input of the 2 × 1 element at the (i + 1,4j′−1) th address, and the output of the 2 × 1 element at the (i, 4j ′ + 1) th address is connected to the input (i + 1,4j′−1). 4j′-1) is connected to the other input of the 2 × 1 element at address (i, 4j ′), and the output of the 2 × 1 element at address (i, 4j ′) is the 2 × 1 element at address (i + 1, 4j ′ + 2). One of the inputs The output of the 1 × 2 element at the (i, 4j ′ + 2) th address is connected to the input of the 1 × 2 element at the (i + 1,4j ′) th address and the other is the (i + 1,4j) When i is an even number connected to the other input of the 2 × 1 element at the address “+2”, one of the outputs of the 1 × 2 element at the (i, 4j−3) th address is (i + 1, 4j−1). ) Address 1 × 2 element input, the other connected to one of (i + 1,4j−3) address 2 × 1 element input, and (i, 4j−1) address 2 × 1 element input The output is connected to the other input of the 2 × 1 element at the (i + 1,4j-3) address, and the output of the 2 × 1 element at the (i, 4j-2) address is connected to the (i + 1,4j) address. Connect to one of the inputs of the 2 × 1 element, one of the outputs of the 1 × 2 element at the (i, 4j) address is the input of the 1 × 2 element at the (i + 1, 4j−2) address, and the other (I + 1, Characterized in that connected to the other input of the 2 × 1 element of j) address.

上記本発明の請求項2に係るマトリクス光スイッチは、請求項1記載のマトリクス光スイッチにおいて、入力端子と出力端子を入れ替えた構成に相当する。   The matrix optical switch according to a second aspect of the present invention corresponds to the matrix optical switch according to the first aspect, wherein the input terminal and the output terminal are interchanged.

また、本発明の請求項3に係るマトリクス光スイッチは、1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、該第2段の第(4j−3)番目(これを以下、第(2,4j−3)番地と表わす)と第(2,4j)番地が1×2素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×1素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が2×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が1×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合は第(2,1)番地の1×1素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×1素子の入力に、kがnの場合は第(2,2n)番地の1×1素子の入力に、kがnを除く偶数の場合は第(2,2k+1)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k)番地の1×1素子の出力に、kが偶数の場合は第(n,2k−1)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが1の場合には第(n,1)番地の2×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の2×1素子の出力に、kがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く偶数の場合は第(n,2k+1)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,2n−1)番地の1×2素子の出力の一方を第(3,2n)番地の1×2素子の入力に、他方を第(3,2n−1)番地の2×1素子の入力の一方に接続し、第(2,2n)番地の1×1素子の出力を該第(3,2n−1)番地の2×1素子の入力の他方に接続し、第(2,4j’−1)番地の1×2素子の出力の一方を第(3,4j’+1)番地の1×2素子の入力に、他方を第(3,4j’−1)番地の2×1素子の入力の一方に接続し、第(2,4j’)番地の1×1素子の出力を該第(3,4j’−1)番地の2×1素子の入力の他方に接続し、第(2,4j’+1)番地の1×1素子の出力を第(3,4j’+2)番地の2×1素子の入力の一方に接続し、第(2,4j’+2)番地の1×2素子の出力の一方を第(3,4j’)番地の1×2素子の入力に、他方を該第(3,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第(n−1)段においては、第(n−1,4j−3)番地の1×2素子の出力の一方を第(n,4j−1)番地の1×1素子の入力に、他方を第(n,4j−3)番地の2×1素子の入力の一方に接続し、第(n−1,4j−1)番地の2×1素子の出力を該第(n,4j−3)番地の2×1素子の入力の他方に接続し、第(n−1,4j−2)番地の2×1素子の出力を第(n,4j)番地の2×1素子の入力の一方に接続し、第(n−1,4j)番地の1×2素子の出力の一方を第(n,4j−2)番地の1×1素子の入力に、他方を該第(n,4j)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続し、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続したことを特徴とする。   The matrix optical switch according to claim 3 of the present invention includes 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n. An n input × n output matrix optical switch configured (in this invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, and the first stage is 1 × 2 It is composed of n elements, the (n + 1) th stage is composed of n 2 × 1 elements, the second stage is composed of n 1 × 2 elements and n 1 × 1 elements, and the second stage (4j− 3) The 2nd address (hereinafter referred to as the (2,4j-3) address) and the (2,4j) address are 1 × 2 elements, and the (2,4j-2) address and the (2, 4j-1) is an address of 1 × 1 element (where j is a natural number of j ≦ n / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements, n, 4j-3) The ground and the (n, 4j) address are 2 × 1 elements, the (n, 4j−2) address and the (n, 4j−1) address are 1 × 1 elements, The i-th stage excluding the 2nd stage, the n-th stage, and the (n + 1) -th stage is composed of n 1 × 2 elements and n 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), When i is an odd number, the (i, 4j-3) address and the (i, 4j) address are 1 × 2 elements, and the (i, 4j-2) address and the (i, 4j-1) address. Is 2 × 1 element and i is an even number, the (i, 4j-3) address and the (i, 4j) address are 2 × 1 elements, and the (i, 4j-2) address The (i, 4j-1) -th address is 1 × 2 elements, and the total number n of 1 × 2 elements in the first stage is used as input terminals of the matrix optical switch, and 2 in the (n + 1) -th stage. X 1 element n output total n outputs the matrix light The output terminal of the switch, and one of the outputs of the k-th (k is a natural number of k ≦ n) of the first stage is 1 × 2 element at the (2,2k + 1) -th address when k is an odd number When k is an even number, it is connected to the input of the 1 × 2 element at the (2, 2k−2) address, and k is the other output of the kth 1 × 2 element of the first stage. 1 is the input of the 1 × 1 element at the (2,1) address, and k is the input of the 1 × 1 element at the (2,2k−2) address when k is an odd number except 1, and k is n Is connected to the input of the 1 × 1 element at address (2,2n), and when k is an even number excluding n, it is connected to the input of the 1 × 1 element at address (2,2k + 1). ) One of the inputs of the k-th 2 × 1 element of the stage) when k is an odd number, it is the output of the 1 × 1 element at the (n, 2k) address, and when k is an even number, it is the (n, 2k− 1) Connected to the output of 1 × 1 element at the address Then, when the other input of the kth 2 × 1 element in the (n + 1) th stage is k = 1, the output of the 2 × 1 element at the (n, 1) th address is set to 1. When the odd number is excluded, the output of the 2 × 1 element at the (n, 2k−2) th address is obtained, and when k is n, the output of the 2 × 1 element at the (n, 2n) th address is excluded and k is excluded from the n. In the case of an even number, it is connected to the output of the 2 × 1 element at the (n, 2k + 1) th address, and in the second stage, the output of the 1 × 1 element at the (2,1) th address is the (3, 2). Connected to one input of the 2 × 1 element at the address, one output of the 1 × 2 element at the (2,2) address is connected to the input of the 1 × 2 element at the (3,1) address, and the other is Connect the other input of the 2 × 1 element at the (3, 2) address, and connect one output of the 1 × 2 element at the (2, 2n−1) address to the 1 × 2 of the (3, 2n) address. 2 × 2 of the (3, 2n−1) address at the input of the element The output of the 1 × 1 element at the (2,2n) -th address is connected to the other input of the 2 × 1 element at the (3,2n−1) -th address, and the second (2 , 4j′−1), one of the outputs of the 1 × 2 element at address (3,4j ′ + 1) is the input of the 1 × 2 element at address (3,4j ′ + 1) and the other is 2 × at address (3,4j′−1). Connect to one input of one element, connect the output of 1 × 1 element at address (2,4j ′) to the other input of 2 × 1 element at address (3,4j′−1), The output of the 1 × 1 element at the (2,4j ′ + 1) th address is connected to one of the inputs of the 2 × 1 element at the (3,4j ′ + 2) th address, and 1 of the (2,4j ′ + 2) address. Connect one of the outputs of the × 2 element to the input of the 1 × 2 element at the (3,4j ′) address and the other to the other input of the 2 × 1 element at the (3,4j ′ + 2) address. (Where j ′ is j ′ ≦ n / 2-1. In the (n−1) th stage, one of the outputs of the 1 × 2 element at the (n−1,4j−3) th address is converted to the 1 × 1 element at the (n, 4j−1) th address. The other is connected to one input of the 2 × 1 element at the (n, 4j−3) th address, and the output of the 2 × 1 element at the (n−1, 4j−1) th address is connected to the (n , 4j-3) is connected to the other input of the 2 × 1 element at address (n−1, 4j−2) and the output of the 2 × 1 element at address (n−1, 4j−2) is the 2 × 1 element at address (n, 4j). One of the outputs of the 1 × 2 element at address (n−1,4j) is connected to the input of the 1 × 1 element at address (n, 4j−2) and the other is n, 4j) connected to the other input of the 2 × 1 element at address i, in the i-th stage except for the first and second stages, the (n−1) th stage, the nth stage and the (n + 1) th stage Is the (i, 4j-3) address if i is an odd number One of the outputs of the 1 × 2 element is connected to the input of the 1 × 2 element at the (i + 1,4j−1) address, and the other is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j−3) address. The output of the 2 × 1 element at the (i, 4j−1) address is connected to the other input of the 2 × 1 element at the (i + 1, 4j−3) address, and the (i, 4j−2) address. Is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j) th address, and one of the outputs of the 1 × 2 element at the (i, 4j) th address is connected to the (i + 1,4j) th address. -2) The input of the 1 × 2 element at the address is connected to the other input of the 2 × 1 element at the (i + 1,4j) th address, and if i is an even number, the (i, 1) address The output of the 2 × 1 element is connected to one input of the 2 × 1 element at the (i + 1,2) th address, and one output of the 1 × 2 element at the (i, 2) th address is connected to the (i + 1,1) th address. ) 1 × 2 of the address The other input is connected to the other input of the 2 × 1 element at the (i + 1, 2) th address, and one of the outputs of the 1 × 2 element at the (i, 2n−1) th address is (i + 1). , 2n) is connected to the input of the 1 × 2 element at the address (i + 1, 2n−1), and the other is connected to one input of the 2 × 1 element at the address (i + 1, 2n−1). The output is connected to the other input of the 2 × 1 element at the (i + 1, 2n−1) -th address, and one output of the 1 × 2 element at the (i, 4j′−1) -th address is connected to the (i + 1, 4j) The input of the 1 × 2 element at the address “+1” is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j′−1) th address, and the 2 × of the (i, 4j ′ + 1) address. The output of one element is connected to the other input of the 2 × 1 element at the (i + 1,4j′−1) th address, and the output of the 2 × 1 element at the (i, 4j ′) th address is (i + 1,4j). '+2) Connected to one of the inputs of the 2 × 1 element of the ground, and one of the outputs of the 1 × 2 element of the (i, 4j ′ + 2) address is connected to the input of the 1 × 2 element of the (i + 1, 4j ′) address, The other is connected to the other input of the 2 × 1 element at the (i + 1,4j ′ + 2) th address.

上記本発明の請求項3に係るマトリクス光スイッチは、請求項1記載のマトリクス光スイッチにおいて、第(2,4j’+1)番地の1×1素子と第(2,4j’)番地の1×1素子を入れ替えた構成に相当する。   The matrix optical switch according to claim 3 of the present invention is the matrix optical switch according to claim 1, wherein the 1 × 1 element at the (2,4j ′ + 1) th address and the 1 × address at the (2,4j ′) address. This corresponds to a configuration in which one element is replaced.

また、本発明の請求項4に係るマトリクス光スイッチは、1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j−3)番地と第(2,4j)番地が1×2素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×1素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k)番地の1×1素子の入力に、kが偶数の場合は第(2,2k−1)番地の1×1素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合には第(2,1)番地の1×2素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×2素子の入力に、kがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く偶数の場合は第(2,2k+1)番地の1×2素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが1の場合は第(n,1)番地の1×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の1×1素子の出力に、kがnの場合は第(n,2n)番地の1×1素子の出力に、kがnを除く偶数の場合は第(n,2k+1)番地の1×1素子の出力に接続して、第2段においては、第(2,4j−3)番地の1×2素子の出力の一方を第(3,4j−1)番地の1×2素子の入力に、他方を第(3,4j−3)番地の2×1素子の入力の一方に接続し、第(2,4j−1)番地の1×1素子の出力を該第(3,4j−3)番地の2×1素子の入力の他方に接続し、第(2,4j−2)番地の1×1素子の出力を第(3,4j)番地の2×1素子の入力の一方に接続し、第(2,4j)番地の1×2素子の出力の一方を第(3,4j−2)番地の1×2素子の入力に、他方を該第(3,4j)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,2n−1)番地の1×2素子の出力の一方を第(n,2n)番地の1×1素子の入力に、他方を第(n,2n−1)番地の2×1素子の入力の一方に接続し、第(n−1,2n)番地の2×1素子の出力を該第(n,2n−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’−1)番地の1×2素子の出力の一方を第(n,4j’)番地の1×1素子の入力に、他方を第(n,4j’−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j’+1)番地の2×1素子の出力を該第(n,4j’−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’)番地の2×1素子の出力を第(n,4j’+2)番地の2×1素子の入力の一方に接続して、第(n−1,4j’+2)番地の1×2素子の出力の一方を第(n,4j’+1)番地の1×1素子の入力に、他方を該第(n,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続して、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続したことを特徴とする。   The matrix optical switch according to claim 4 of the present invention includes 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n. An n input × n output matrix optical switch configured (in this invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, and the first stage is 1 × 2 It consists of n elements, the (n + 1) th stage consists of n 2 × 1 elements, the second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j-3) th address. And the (2,4j) address is a 1 × 2 element, the (2,4j-2) address and the (2,4j−1) address are 1 × 1 elements (where j is j ≦ n / 2 natural number), the nth stage consists of n 2 × 1 elements and n 1 × 1 elements, and the (n, 4j-3) and (n, 4j) addresses are 1 × 1 elements. And the (n, j-2) address and (n, 4j-1) address are 2 × 1 elements, and the i-th stage excluding the first stage, the second stage, the n-th stage and the (n + 1) -th stage is 1 × 2 It consists of n elements and 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), and when i is an odd number, the (i, 4j-3) th address and the (i, 4j) ) Address is 2 × 1 element, (i, 4j−2) address and (i, 4j−1) address are 1 × 2 elements, and i is an even number, (i, 4j− 3) The address and the (i, 4j) address are 1 × 2 elements, the (i, 4j−2) address and the (i, 4j−1) address are 2 × 1 elements, and the first stage N input meters of 1 × 2 elements of n are used as input terminals of the matrix optical switch, and n output meters of 2 × 1 elements of the (n + 1) -th stage are used as output terminals of the matrix optical switch. 1st stage k-th (k is k ≦ n One of the outputs of the 1 × 2 element of the (natural number of)), when k is an odd number, it is the input of the 1 × 1 element of the (2,2k) address, and when k is an even number, the (2,2k−1) address. And the other of the outputs of the kth 1 × 2 element of the first stage is the input of the 1 × 2 element of the (2,1) address when k is 1 When k is an odd number other than 1, it is input to the 1 × 2 element at the (2,2k−2) address, and when k is n, it is input to the 1 × 2 element at the (2,2n) address. , K is an even number excluding n, it is connected to the input of the 1 × 2 element at the (2, 2k + 1) th address, and k is connected to one of the inputs of the kth 2 × 1 element in the (n + 1) th stage. In the case of an odd number, it is connected to the output of the 2 × 1 element at the (n, 2k + 1) th address, and when k is an even number, it is connected to the output of the 2 × 1 element at the (n, 2k−2) th address. ) Input of the kth 2 × 1 element in the stage On the other hand, when k is 1, the output of the 1 × 1 element at the (n, 1) address, and when k is an odd number other than 1, the output is the 1 × 1 element at the (n, 2k−2) address. If k is n, connect to the output of the 1 × 1 element at the (n, 2n) address, and if k is an even number excluding n, connect to the output of the 1 × 1 element at the (n, 2k + 1) address. In the second stage, one of the outputs of the 1 × 2 element at the (2,4j-3) th address is input to the input of the 1 × 2 element at the (3,4j-1) th address, and the other is the (3,3). 4j-3) connected to one of the 2 × 1 element inputs at address (2,4j−1), and the output of the 1 × 1 element at address (2,4j−1) is the 2 × 1 element at address (3,4j-3). The output of the 1 × 1 element at the (2,4j-2) th address is connected to one input of the 2 × 1 element at the (3,4j) th address, and the (2,4j) ) One of the outputs of the 1 × 2 element at the address is the third (3 4j-2) is connected to the input of the 1 × 2 element at address (3), and the other is connected to the other input of the 2 × 1 element at address (3,4j). The output of the 2 × 1 element at the address (n−1,1) is connected to one input of the 2 × 1 element at the (n, 2) address, and the output of the 1 × 2 element at the (n−1,2) address. One of the outputs is connected to the input of the 1 × 1 element at the (n, 1) address, the other is connected to the other input of the 2 × 1 element at the (n, 2) address, and the (n−1, 2n) -1) One of the outputs of the 1 × 2 element at the address is one of the inputs of the 1 × 1 element at the (n, 2n) address, and the other is one of the inputs of the 2 × 1 element at the (n, 2n−1) address And the output of the 2 × 1 element at the (n−1, 2n) -th address is connected to the other input of the 2 × 1 element at the (n, 2n−1) -th address, One of the outputs of the 1 × 2 element at address 4j′−1) is the (n, 4) ') Connect to the input of the 1 × 1 element at the address, and connect the other to one of the inputs of the 2 × 1 element at the (n, 4j′−1) th address, and 2 at the (n−1,4j ′ + 1) th address. The output of the × 1 element is connected to the other input of the 2 × 1 element at the (n, 4j′−1) th address, and the output of the 2 × 1 element at the (n−1,4j ′) th address is It is connected to one of the inputs of the 2 × 1 element at the address (n, 4j ′ + 2), and one of the outputs of the 1 × 2 element at the (n−1, 4j ′ + 2) address is the (n, 4j ′ + 1) th. The input of the 1 × 1 element at the address is connected to the other input of the 2 × 1 element at the (n, 4j ′ + 2) th address (where j ′ is j ′ ≦ n / 2-1). Natural number), the first and second stages, the (n-1) th stage, the nth stage, and the (i + 1) th stage excluding the (n + 1) th stage, if i is an odd number, the (i, 1) address Output of 2 × 1 element of the (i + 1, 2) address Connected to one of the inputs of the 2 × 1 element, one of the outputs of the 1 × 2 element at the (i, 2) address is connected to the input of the 1 × 2 element at the (i + 1,1) address, and the other is Connect to the other input of the 2 × 1 element at the address i + 1, 2), and connect one output of the 1 × 2 element at the (i, 2n−1) th address to the 1 × 2 element at the (i + 1, 2n) address. The other input is connected to one of the inputs of the 2 × 1 element at the (i + 1, 2n−1) -th address, and the output of the 2 × 1 element at the (i, 2n) -th address is connected to the (i + 1, 2n−1). ) Connected to the other input of the 2 × 1 element at the address, and one of the outputs of the 1 × 2 element at the (i, 4j′−1) th address is connected to the 1 × 2 element at the (i + 1,4j ′ + 1) th address. The other is connected to one input of the 2 × 1 element at the (i + 1,4j′−1) th address, and the output of the 2 × 1 element at the (i, 4j ′ + 1) th address is connected to the input (i + 1,4j′−1). 4j'-1) Connect to the other input of the 2 × 1 element of the ground, and connect the output of the 2 × 1 element of the (i, 4j ′) address to one of the input of the 2 × 1 element of the (i + 1, 4j ′ + 2) address Then, one of the outputs of the 1 × 2 element at the (i, 4j ′ + 2) th address is input to the input of the 1 × 2 element at the (i + 1,4j ′) th address, and the other is the (i + 1,4j ′ + 2). When i is an even number connected to the other input of the 2 × 1 element at the address, one of the outputs of the 1 × 2 element at the (i, 4j-3) address is assigned to the (i + 1, 4j−1) address. The input of the 1 × 2 element is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j-3) th address, and the output of the 2 × 1 element at the (i, 4j−1) th address Connect to the other input of the 2 × 1 element at the (i + 1,4j-3) th address, and output the 2 × 1 element at the (i, 4j-2) th address to 2 × 1 at the (i + 1,4j) th address. Element input The output of the 1 × 2 element at the (i, 4j) address is connected to the input of the 1 × 2 element at the (i + 1, 4j−2) address, and the other is the (i + 1, 4j) address. It is connected to the other input of the 2 × 1 element.

上記本発明の請求項4に係るマトリクス光スイッチは、請求項3記載のマトリクス光スイッチにおいて、入力端子と出力端子を入れ替えた構成に相当する。   The matrix optical switch according to a fourth aspect of the present invention corresponds to the matrix optical switch according to the third aspect, wherein the input terminal and the output terminal are interchanged.

また、本発明の請求項5に係るマトリクス光スイッチは、1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、該第2段の第(4j−3)番目(これを以下、第(2,4j−3)番地と表わす)と第(2,4j)番地が1×1素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が2×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が1×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが奇数の場合は第(2,2k−1)番地の1×1素子の入力に、kが偶数の場合は第(2,2k)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k+1)番地の1×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが1の場合には第(n,1)番地の2×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の2×1素子の出力に、kがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く偶数の場合は第(n,2k+1)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,2n−1)番地の1×2素子の出力の一方を第(3,2n)番地の1×2素子の入力に、他方を第(3,2n−1)番地の2×1素子の入力の一方に接続し、第(2,2n)番地の1×1素子の出力を該第(3,2n−1)番地の2×1素子の入力の他方に接続し、第(2,4j’−1)番地の1×2素子の出力の一方を第(3,4j’+1)番地の1×2素子の入力に、他方を第(3,4j’−1)番地の2×1素子の入力の一方に接続し、第(2,4j’+1)番地の1×1素子の出力を該第(3,4j’−1)番地の2×1素子の入力の他方に接続し、第(2,4j’)番地の1×1素子の出力を第(3,4j’+2)番地の2×1素子の入力の一方に接続し、第(2,4j’+2)番地の1×2素子の出力の一方を第(3,4j’)番地の1×2素子の入力に、他方を該第(3,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第(n−1)段においては、第(n−1,4j−3)番地の1×2素子の出力の一方を第(n,4j−2)番地の1×1素子の入力に、他方を第(n,4j−3)番地の2×1素子の入力の一方に接続し、第(n−1,4j−1)番地の2×1素子の出力を該第(n,4j−3)番地の2×1素子の入力の他方に接続し、第(n−1,4j−2)番地の2×1素子の出力を第(n,4j)番地の2×1素子の入力の一方に接続し、第(n−1,4j)番地の1×2素子の出力の一方を第(n,4j−1)番地の1×1素子の入力に、他方を該第(n,4j)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続し、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続したことを特徴とする。   The matrix optical switch according to claim 5 of the present invention includes 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n. An n input × n output matrix optical switch configured (in this invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, and the first stage is 1 × 2 It is composed of n elements, the (n + 1) th stage is composed of n 2 × 1 elements, the second stage is composed of n 1 × 2 elements and n 1 × 1 elements, and the second stage (4j− 3) The number (this is hereinafter referred to as the (2,4j-3) address) and the (2,4j) address are 1 × 1 elements, the (2,4j-2) address and the (2, 4j-1) is an address of 1 × 2 elements (where j is a natural number of j ≦ n / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements, n, 4j-3) The ground and the (n, 4j) address are 2 × 1 elements, the (n, 4j−2) address and the (n, 4j−1) address are 1 × 1 elements, The i-th stage excluding the 2nd stage, the n-th stage, and the (n + 1) -th stage is composed of n 1 × 2 elements and n 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), When i is an odd number, the (i, 4j-3) address and the (i, 4j) address are 1 × 2 elements, and the (i, 4j-2) address and the (i, 4j-1) address. Is 2 × 1 element and i is an even number, the (i, 4j-3) address and the (i, 4j) address are 2 × 1 elements, and the (i, 4j-2) address The (i, 4j-1) -th address is 1 × 2 elements, and the total number n of 1 × 2 elements in the first stage is used as input terminals of the matrix optical switch, and 2 in the (n + 1) -th stage. X 1 element n output total n outputs the matrix light The output terminal of the switch, and one of the outputs of the k-th (k is a natural number of k ≦ n) of the first stage is 1 × 2 element at the (2,2k + 1) -th address when k is an odd number When k is an even number, it is connected to the input of the 1 × 2 element at the (2, 2k−2) address, and k is the other output of the kth 1 × 2 element of the first stage. When odd, connect to the input of the 1 × 1 element at the (2,2k−1) address, and when k is even, connect to the input of the 1 × 1 element at the (2,2k) address, ) One of the inputs of the k-th 2 × 1 element of the stage, when k is an odd number, it is the output of the 1 × 1 element at the (n, 2k + 1) -th address, and when k is an even number, it is the (n, 2k−) 2) Connect to the output of the 1 × 1 element at the address, and when the other input of the kth 2 × 1 element in the (n + 1) th stage is k = 1, the 2nd of the (n, 1) address X 1 element output, k = 1 In the case of an odd number, the output of the 2 × 1 element at the (n, 2k−2) -th address is used. When k is n, the output of the 2 × 1 element at the (n, 2n) -th address is used, and k excludes n. In the case of an even number, it is connected to the output of the 2 × 1 element at the (n, 2k + 1) th address, and in the second stage, the output of the 1 × 1 element at the (2,1) th address is the (3, 2). Connected to one input of the 2 × 1 element at the address, one output of the 1 × 2 element at the (2,2) address is connected to the input of the 1 × 2 element at the (3,1) address, and the other is Connect the other input of the 2 × 1 element at the (3, 2) address, and connect one output of the 1 × 2 element at the (2, 2n−1) address to the 1 × 2 of the (3, 2n) address. The input of the element is connected to one of the inputs of the 2 × 1 element at the (3,2n−1) th address, and the output of the 1 × 1 element at the (2,2n) th address is connected to the (3,2n). -1) Connect to the other input of the 2 × 1 element at the address One of the outputs of the 1 × 2 element at the (2,4j′−1) address is input to the 1 × 2 element at the (3,4j ′ + 1) address, and the other is the (3,4j′−1) address. The output of the 1 × 1 element at the (2,4j ′ + 1) th address is connected to the other input of the 2 × 1 element at the (3,4j′−1) th address. And the output of the 1 × 1 element at the (2,4j ′) address is connected to one of the inputs of the 2 × 1 element at the (3,4j ′ + 2) address, and the (2,4j ′ + 2) th One of the outputs of the 1 × 2 element at the address is input to the input of the 1 × 2 element at the (3,4j ′) address, and the other is input to the other of the input of the 2 × 1 element at the (3,4j ′ + 2) address. Connected (where j ′ is a natural number of j ′ ≦ n / 2-1), and in the (n−1) th stage, the output of the 1 × 2 element at the (n−1,4j-3) th address 1 × 1 prime of the (n, 4j−2) th address The other input is connected to one input of the 2 × 1 element at the (n, 4j-3) th address, and the output of the 2 × 1 element at the (n−1,4j−1) th address is connected to the child input. The output of the 2 × 1 element at the (n−1,4j−2) th address is connected to the other input of the 2 × 1 element at the (n, 4j−3) address, and 2 × at the (n, 4j) address. One of the inputs of one element is connected, one of the outputs of the 1 × 2 element at address (n−1,4j) is connected to the input of the 1 × 1 element at address (n, 4j−1), and the other is Connected to the other input of the 2 × 1 element at the (n, 4j) -th address, i-th excluding the first and second stages, the (n−1) -th stage, the n-th stage and the (n + 1) -th stage In the stage, when i is an odd number, one of the outputs of the 1 × 2 element at the (i, 4j-3) th address is input to the 1 × 2 element at the (i + 1,4j−1) th address, and the other is the first Input of 2 × 1 element at address (i + 1,4j-3) And the output of the 2 × 1 element at the (i, 4j−1) th address is connected to the other input of the 2 × 1 element at the (i + 1, 4j−3) th address, and the (i, 4j-2) Connect the output of the 2 × 1 element at address (i + 1,4j) to one of the inputs of the 2 × 1 element at address (i + 1,4j), and connect one of the outputs of the 1 × 2 element at address (i, 4j) When the input of the 1 × 2 element at the (i + 1,4j−2) th address is connected to the other input of the 2 × 1 element at the (i + 1,4j) th address, and i is an even number, The output of the 2 × 1 element at address i, 1) is connected to one input of the 2 × 1 element at address (i + 1,2), and one output of the 1 × 2 element at address (i, 2) is connected. The input of the 1 × 2 element at the (i + 1,1) address is connected to the other input of the 2 × 1 element at the (i + 1,2) address, and 1 of the (i, 2n−1) address. × One of the output of 2 elements The input of the 1 × 2 element at the (i + 1, 2n) address is connected to one input of the 2 × 1 element at the (i + 1, 2n−1) address, and the 2 × of the (i, 2n) address. The output of one element is connected to the other input of the 2 × 1 element at the (i + 1, 2n−1) address, and one of the outputs of the 1 × 2 element at the (i, 4j′−1) address is the ( The input of the 1 × 2 element at the address (i + 1, 4j ′ + 1) is connected to one input of the 2 × 1 element at the (i + 1, 4j′−1) th address, and the (i, 4j ′ + 1) th address. Is connected to the other input of the 2 × 1 element at the (i + 1,4j′−1) th address, and the output of the 2 × 1 element at the (i, 4j ′) th address is ( Connect to one of the inputs of the 2 × 1 element at the address (i + 1, 4j ′ + 2) and one of the outputs from the 1 × 2 element at the (i, 4j ′ + 2) address to the 1 × of the (i + 1, 4j ′) address. 2 elements An input, characterized in that connected the other to said (i + 1,4j '+ 2) other of 2 × 1 element input address.

上記本発明の請求項5に係るマトリクス光スイッチは、請求項1記載のマトリクス光スイッチにおいて、第(n,4j−2)番地の1×1素子と第(n,4j−1)番地の1×1素子を入れ替えた構成に相当する。   The matrix optical switch according to a fifth aspect of the present invention is the matrix optical switch according to the first aspect, wherein the 1 × 1 element at the (n, 4j-2) th address and the 1st (n, 4j-1) th address. This corresponds to a configuration in which × 1 element is replaced.

また、本発明の請求項6に係るマトリクス光スイッチは、1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j−3)番地と第(2,4j)番地が1×2素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×1素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k+1)番地の1×1素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×1素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合には第(2,1)番地の1×2素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×2素子の入力に、kがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く偶数の場合は第(2,2k+1)番地の1×2素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k2)番地の2×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが奇数の場合は第(n,2k−1)番地の1×1素子の出力に、kが偶数の場合は第(n,2k)番地の1×1素子の出力に接続して、第2段においては、第(2,4j−3)番地の1×2素子の出力の一方を第(3,4j−1)番地の1×2素子の入力に、他方を第(3,4j−3)番地の2×1素子の入力の一方に接続し、第(2,4j−2)番地の1×1素子の出力を該第(3,4j−3)番地の2×1素子の入力の他方に接続し、第(2,4j−1)番地の1×1素子の出力を第(3,4j)番地の2×1素子の入力の一方に接続し、第(2,4j)番地の1×2素子の出力の一方を第(3,4j−2)番地の1×2素子の入力に、他方を該第(3,4j)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,2n−1)番地の1×2素子の出力の一方を第(n,2n)番地の1×1素子の入力に、他方を第(n,2n−1)番地の2×1素子の入力の一方に接続し、第(n−1,2n)番地の2×1素子の出力を該第(n,2n−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’−1)番地の1×2素子の出力の一方を第(n,4j’+1)番地の1×1素子の入力に、他方を第(n,4j’−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j’+1)番地の2×1素子の出力を該第(n,4j’−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’)番地の2×1素子の出力を第(n,4j’+2)番地の2×1素子の入力の一方に接続して、第(n−1,4j’+2)番地の1×2素子の出力の一方を第(n,4j’)番地の1×1素子の入力に、他方を該第(n,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続して、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続したことを特徴とする。   The matrix optical switch according to claim 6 of the present invention includes 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n. An n input × n output matrix optical switch configured (in this invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, and the first stage is 1 × 2 It consists of n elements, the (n + 1) th stage consists of n 2 × 1 elements, the second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j-3) th address. And the (2,4j) address is a 1 × 2 element, the (2,4j-2) address and the (2,4j−1) address are 1 × 1 elements (where j is j ≦ n / 2 natural number), the nth stage consists of n 2 × 1 elements and n 1 × 1 elements, and the (n, 4j-3) and (n, 4j) addresses are 1 × 1 elements. And the (n, j-2) address and (n, 4j-1) address are 2 × 1 elements, and the i-th stage excluding the first stage, the second stage, the n-th stage and the (n + 1) -th stage is 1 × 2 It consists of n elements and 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), and when i is an odd number, the (i, 4j-3) th address and the (i, 4j) ) Address is 2 × 1 element, (i, 4j−2) address and (i, 4j−1) address are 1 × 2 elements, and i is an even number, (i, 4j− 3) The address and the (i, 4j) address are 1 × 2 elements, the (i, 4j−2) address and the (i, 4j−1) address are 2 × 1 elements, and the first stage N input meters of 1 × 2 elements of n are used as input terminals of the matrix optical switch, and n output meters of 2 × 1 elements of the (n + 1) -th stage are used as output terminals of the matrix optical switch. 1st stage k-th (k is k ≦ n One of the outputs of the 1 × 2 element of the (natural number of)), when k is an odd number, it is the input of the 1 × 1 element of the (2,2k + 1) th address, and when k is an even number, the (2,2k-2) th address. And the other of the outputs of the kth 1 × 2 element of the first stage is the input of the 1 × 2 element of the (2,1) address when k is 1 When k is an odd number other than 1, it is input to the 1 × 2 element at the (2,2k−2) address, and when k is n, it is input to the 1 × 2 element at the (2,2n) address. , K is an even number excluding n, it is connected to the input of the 1 × 2 element at the (2, 2k + 1) th address, and k is connected to one of the inputs of the kth 2 × 1 element in the (n + 1) th stage. In the case of an odd number, it is connected to the output of the 2 × 1 element at the (n, 2k + 1) -th address, and when k is an even number, it is connected to the output of the 2 × 1 element at the (n, 2k2) -th address. Of the kth 2 × 1 element The other is connected to the output of the 1 × 1 element at the (n, 2k−1) address when k is an odd number, and to the output of the 1 × 1 element at the (n, 2k) address when k is an even number. In the second stage, one of the outputs of the 1 × 2 element at the (2,4j-3) th address is input to the 1 × 2 element at the (3,4j-1) th address, and the other is the third (3rd). , 4j-3) is connected to one input of the 2 × 1 element at the address (2j), and the output of the 1 × 1 element at the (2,4j-2) th address is 2 × 1 at the (3,4j-3) address. The output of the 1 × 1 element at the (2,4j−1) th address is connected to one of the inputs of the 2 × 1 element at the (3,4j) th address, 4j) One of the outputs of the 1 × 2 element at the address is the input of the 1 × 2 element at the (3,4j-2) th address, and the other is the other of the inputs of the 2 × 1 element at the (3,4j) address And in the (n-1) th stage, The output of the 2 × 1 element at the (n−1,1) address is connected to one input of the 2 × 1 element at the (n, 2) address, and 1 × 2 at the (n−1,2) address. One of the outputs of the element is connected to the input of the 1 × 1 element at the (n, 1) -th address, and the other is connected to the other of the inputs of the 2 × 1 element at the (n, 2) -th address. , 2n-1), one of the outputs of the 1 × 2 element at the address (n, 2n) is the input of the 1 × 1 element at the address (n, 2n), and the other is the input of the 2 × 1 element at the address (n, 2n−1). The output of the 2 × 1 element at the (n−1, 2n) -th address is connected to the other input of the 2 × 1 element at the (n, 2n−1) -th address, and the (n− One of the outputs of the 1 × 2 element at the address 1,4j′−1) is input to the input of the 1 × 1 element at the (n, 4j ′ + 1) th address, and the other is 2 at the (n, 4j′−1) th address. Connected to one input of × 1 element, (n-1, 4j '+ 1) th The output of the 2 × 1 element at the ground is connected to the other input of the 2 × 1 element at the (n, 4j′−1) address, and the output of the 2 × 1 element at the (n−1,4j ′) address. Is connected to one of the inputs of the 2 × 1 element at the (n, 4j ′ + 2) th address, and one of the outputs of the 1 × 2 element at the (n−1,4j ′ + 2) th address is connected to the (n, 4j) ') Connect the input of the 1 × 1 element at the address and the other to the other input of the 2 × 1 element at the (n, 4j ′ + 2) th address (where j ′ is j ′ ≦ n / 2) −1 natural number), the first and second stages, the (n−1) th stage, the nth stage, and the (i + 1) th stage excluding the (n + 1) th stage, when i is an odd number, The output of the 2 × 1 element at address (i) is connected to one of the inputs of the 2 × 1 element at address (i + 1,2), and one of the outputs of the 1 × 2 element at address (i, 2) is (i + 1). , 1) The input of the 1 × 2 element at the address is the other Connect to the other input of the 2 × 1 element at the (i + 1, 2) address, and one of the outputs of the 1 × 2 element at the (i, 2n−1) address is the 1 × 2 element at the (i + 1, 2n) address. The other input is connected to one input of the 2 × 1 element at the (i + 1, 2n−1) th address, and the output of the 2 × 1 element at the (i, 2n) th address is connected to the (i + 1, 2n−) address. 1) Connect the other input of the 2 × 1 element at the address, and connect one of the outputs of the 1 × 2 element at the (i, 4j′−1) th address to the 1 × 2 element at the (i + 1,4j ′ + 1) th address The other input is connected to one input of the 2 × 1 element at the (i + 1,4j′−1) th address, and the output of the 2 × 1 element at the (i, 4j ′ + 1) th address is connected to the (i + 1) th input. , 4j′-1) is connected to the other input of the 2 × 1 element at address (i, 4j ′), and the output of the 2 × 1 element at address (i, 4j ′) is the 2 × 1 element at address (i + 1, 4j ′ + 2). Of input One of the outputs of the 1 × 2 element at the (i, 4j ′ + 2) address is connected to one side and the input of the 1 × 2 element at the (i + 1,4j ′) address, and the other is the (i + 1,4j). When i is an even number connected to the other input of the 2 × 1 element at the address “+2”, one of the outputs of the 1 × 2 element at the (i, 4j−3) th address is (i + 1, 4j−1). ) Address 1 × 2 element input, the other connected to one of (i + 1,4j−3) address 2 × 1 element input, and (i, 4j−1) address 2 × 1 element input The output is connected to the other input of the 2 × 1 element at the (i + 1,4j-3) address, and the output of the 2 × 1 element at the (i, 4j-2) address is connected to the (i + 1,4j) address. Connect to one of the inputs of the 2 × 1 element, one of the outputs of the 1 × 2 element at the (i, 4j) address is the input of the 1 × 2 element at the (i + 1, 4j−2) address, and the other (I + 1) Characterized in that connected to the other input of the 2 × 1 element 4j) address.

上記本発明の請求項6に係るマトリクス光スイッチは、請求項5記載のマトリクス光スイッチにおいて、入力端子と出力端子を入れ替えた構成に相当する。   The matrix optical switch according to a sixth aspect of the present invention corresponds to the matrix optical switch according to the fifth aspect, wherein the input terminal and the output terminal are interchanged.

また、本発明の請求項7に係るマトリクス光スイッチは、1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、該第2段の第(4j−3)番目(これを以下、第(2,4j−3)番地と表わす)と第(2,4j)番地が1×1素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が2×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が1×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合は第(2,1)番地の1×1素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×1素子の入力に、kがnの場合は第(2,2n)番地の1×1素子の入力に、kがnを除く偶数の場合は第(2,2k+1)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k+1)番地の1×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが1の場合には第(n,1)番地の2×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の2×1素子の出力に、kがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く偶数の場合は第(n,2k+1)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,2n−1)番地の1×2素子の出力の一方を第(3,2n)番地の1×2素子の入力に、他方を第(3,2n−1)番地の2×1素子の入力の一方に接続し、第(2,2n)番地の1×1素子の出力を該第(3,2n−1)番地の2×1素子の入力の他方に接続し、第(2,4j’−1)番地の1×2素子の出力の一方を第(3,4j’+1)番地の1×2素子の入力に、他方を第(3,4j’−1)番地の2×1素子の入力の一方に接続し、第(2,4j’)番地の1×1素子の出力を該第(3,4j’−1)番地の2×1素子の入力の他方に接続し、第(2,4j’+1)番地の1×1素子の出力を第(3,4j’+2)番地の2×1素子の入力の一方に接続し、第(2,4j’+2)番地の1×2素子の出力の一方を第(3,4j’)番地の1×2素子の入力に、他方を該第(3,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第(n−1)段においては、第(n−1,4j−3)番地の1×2素子の出力の一方を第(n,4j−2)番地の1×1素子の入力に、他方を第(n,4j−3)番地の2×1素子の入力の一方に接続し、第(n−1,4j−1)番地の2×1素子の出力を該第(n,4j−3)番地の2×1素子の入力の他方に接続し、第(n−1,4j−2)番地の2×1素子の出力を第(n,4j)番地の2×1素子の入力の一方に接続し、第(n−1,4j)番地の1×2素子の出力の一方を第(n,4j−1)番地の1×1素子の入力に、他方を該第(n,4j)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続し、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続したことを特徴とする。   The matrix optical switch according to claim 7 of the present invention includes 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n. An n input × n output matrix optical switch configured (in this invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, and the first stage is 1 × 2 It is composed of n elements, the (n + 1) th stage is composed of n 2 × 1 elements, the second stage is composed of n 1 × 2 elements and n 1 × 1 elements, and the second stage (4j− 3) The number (this is hereinafter referred to as the (2,4j-3) address) and the (2,4j) address are 1 × 1 elements, the (2,4j-2) address and the (2, 4j-1) is an address of 1 × 2 elements (where j is a natural number of j ≦ n / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements, n, 4j-3) The ground and the (n, 4j) address are 2 × 1 elements, the (n, 4j−2) address and the (n, 4j−1) address are 1 × 1 elements, The i-th stage excluding the 2nd stage, the n-th stage, and the (n + 1) -th stage is composed of n 1 × 2 elements and n 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), When i is an odd number, the (i, 4j-3) address and the (i, 4j) address are 1 × 2 elements, and the (i, 4j-2) address and the (i, 4j-1) address. Is 2 × 1 element and i is an even number, the (i, 4j-3) address and the (i, 4j) address are 2 × 1 elements, and the (i, 4j-2) address The (i, 4j-1) -th address is 1 × 2 elements, and the total number n of 1 × 2 elements in the first stage is used as input terminals of the matrix optical switch, and 2 in the (n + 1) -th stage. X 1 element n output total n outputs the matrix light The output terminal of the switch, and one of the outputs of the k-th (k is a natural number of k ≦ n) of the first stage is 1 × 2 element at the (2,2k + 1) -th address when k is an odd number When k is an even number, it is connected to the input of the 1 × 2 element at the (2, 2k−2) address, and k is the other output of the kth 1 × 2 element of the first stage. 1 is the input of the 1 × 1 element at the (2,1) address, and k is the input of the 1 × 1 element at the (2,2k−2) address when k is an odd number except 1, and k is n Is connected to the input of the 1 × 1 element at address (2,2n), and when k is an even number excluding n, it is connected to the input of the 1 × 1 element at address (2,2k + 1). ) One of the inputs of the k-th 2 × 1 element of the stage, when k is an odd number, it is the output of the 1 × 1 element at the (n, 2k + 1) -th address, and when k is an even number, it is the (n, 2k−) 2) Output of 1 × 1 element at the address And when the other input of the kth 2 × 1 element of the (n + 1) th stage is k = 1, the output of the 2 × 1 element of the (n, 1) th address is k = 1. In the case of an odd number excluding, the output of the 2 × 1 element at the (n, 2k−2) address, and when k is n, the output of the 2 × 1 element at the (n, 2n) address, and k becomes n. In the case of an even number, the output of the 2 × 1 element at the (n, 2k + 1) th address is connected to the output of the 1 × 1 element at the (2,1) address in the second stage. ) Connect to one of the inputs of the 2 × 1 element at the address, one output of the 1 × 2 element at the (2,2) address to the input of the 1 × 2 element at the (3,1) address, and the other Connect the other input of the 2 × 1 element at the (3,2) address, and connect one output of the 1 × 2 element at the (2,2n−1) address to the 1 × of the (3,2n) address. The input of 2 elements, the other of the (3,2n-1) address Connect to one of the inputs of the × 1 element, connect the output of the 1 × 1 element at the (2,2n) address to the other input of the 2 × 1 element at the (3,2n−1) address, One of the outputs of the 1 × 2 element at the address (2,4j′−1) is input to the 1 × 2 element at the (3,4j ′ + 1) th address, and the other is the address of the (3,4j′−1) th address. Connect to one of the inputs of the 2 × 1 element, and connect the output of the 1 × 1 element at the (2,4j ′) address to the other input of the 2 × 1 element at the (3,4j′−1) address. Then, the output of the 1 × 1 element at the (2,4j ′ + 1) th address is connected to one input of the 2 × 1 element at the (3,4j ′ + 2) th address, and the (2,4j ′ + 2) th address One of the outputs of the 1 × 2 element is connected to the input of the 1 × 2 element at the (3,4j ′) address, and the other is connected to the other of the input of the 2 × 1 element at the (3,4j ′ + 2) address. (Where j ′ is j ′ ≦ n / 2) −1 natural number), in the (n−1) th stage, one of the outputs of the 1 × 2 element at the (n−1,4j−3) th address is 1 × 1 at the (n, 4j−2) th address. The other input is connected to one input of the 2 × 1 element at the (n, 4j−3) th address, and the output of the 2 × 1 element at the (n−1, 4j−1) th address is connected to the input of the element. The output of the 2 × 1 element at the (n−1,4j−2) th address is connected to the other input of the 2 × 1 element at the (n, 4j−3) address, and 2 × at the (n, 4j) address. One of the inputs of one element is connected, one of the outputs of the 1 × 2 element at address (n−1,4j) is connected to the input of the 1 × 1 element at address (n, 4j−1), and the other is Connected to the other input of the 2 × 1 element at the (n, 4j) -th address, i-th excluding the first and second stages, the (n−1) -th stage, the n-th stage and the (n + 1) -th stage In the stage, when i is an odd number, (i, 4j-3) One of the outputs of the 1 × 2 element of the ground is input to the input of the 1 × 2 element of the (i + 1,4j−1) address, and the other is input to one of the inputs of the 2 × 1 element of the (i + 1,4j−3) address. And the output of the 2 × 1 element at the (i, 4j−1) -th address is connected to the other input of the 2 × 1 element at the (i + 1, 4j−3) -th address and the (i, 4j−2) The output of the 2 × 1 element at address (i) is connected to one of the inputs of the 2 × 1 element at address (i + 1,4j), and one of the outputs of the 1 × 2 element at address (i, 4j) is (i + 1). , 4j-2) is connected to the input of the 1 × 2 element at the address (i + 1, 4j) and the other is connected to the other input of the 2 × 1 element at the address (i + 1, 4j). The output of the 2 × 1 element at address (i) is connected to one of the inputs of the 2 × 1 element at address (i + 1,2), and one of the outputs of the 1 × 2 element at address (i, 2) is (i + 1). , 1) Address 1 Two inputs are connected to the other input of the 2 × 1 element at the (i + 1,2) th address, and one of the outputs of the 1 × 2 element at the (i, 2n−1) th address is The input of the 1 × 2 element at the address (i + 1, 2n) is connected to one input of the 2 × 1 element at the (i + 1, 2n−1) th address, and the 2 × 1 element at the (i, 2n) address. Is connected to the other input of the 2 × 1 element at the (i + 1, 2n−1) th address, and one output of the 1 × 2 element at the (i, 4j′−1) th address is connected to the (i + 1, 4j ′ + 1) is connected to the input of the 1 × 2 element of the address, the other is connected to one of the inputs of the 2 × 1 element of the (i + 1,4j′−1) th address, and 2 of the (i, 4j ′ + 1) th address The output of the × 1 element is connected to the other input of the 2 × 1 element at the (i + 1,4j′−1) th address, and the output of the 2 × 1 element at the (i, 4j ′) th address is (i + 1,4j ′). 4j '+ 2 ) Connected to one of the inputs of the 2 × 1 element at the address, and one of the outputs of the 1 × 2 element at the (i, 4j ′ + 2) th address is connected to the input of the 1 × 2 element at the (i + 1,4j ′) address. The other is connected to the other input of the 2 × 1 element at the (i + 1,4j ′ + 2) th address.

上記本発明の請求項7に係るマトリクス光スイッチは、請求項5記載のマトリクス光スイッチにおいて、第(2,4j’+1)番地の1×1素子と第(2,4j’)番地の1×1素子を入れ替えた構成に相当する。   The matrix optical switch according to claim 7 of the present invention is the matrix optical switch according to claim 5, wherein the 1 × 1 element at the (2,4j ′ + 1) th address and the 1 × address at the (2,4j ′) address. This corresponds to a configuration in which one element is replaced.

また、本発明の請求項8に係るマトリクス光スイッチは、1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j−3)番地と第(2,4j)番地が1×2素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×1素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k+1)番地の1×1素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×1素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合には第(2,1)番地の1×2素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×2素子の入力に、kがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く偶数の場合は第(2,2k+1)番地の1×2素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが1の場合は第(n,1)番地の1×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の1×1素子の出力に、kがnの場合は第(n,2n)番地の1×1素子の出力に、kがnを除く偶数の場合は第(n,2k+1)番地の1×1素子の出力に接続して、第2段においては、第(2,4j−3)番地の1×2素子の出力の一方を第(3,4j−1)番地の1×2素子の入力に、他方を第(3,4j−3)番地の2×1素子の入力の一方に接続し、第(2,4j−2)番地の1×1素子の出力を該第(3,4j−3)番地の2×1素子の入力の他方に接続し、第(2,4j−1)番地の1×1素子の出力を第(3,4j)番地の2×1素子の入力の一方に接続し、第(2,4j)番地の1×2素子の出力の一方を第(3,4j−2)番地の1×2素子の入力に、他方を該第(3,4j)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,2n−1)番地の1×2素子の出力の一方を第(n,2n)番地の1×1素子の入力に、他方を第(n,2n−1)番地の2×1素子の入力の一方に接続し、第(n−1,2n)番地の2×1素子の出力を該第(n,2n−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’−1)番地の1×2素子の出力の一方を第(n,4j’)番地の1×1素子の入力に、他方を第(n,4j’−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j’+1)番地の2×1素子の出力を該第(n,4j’−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’)番地の2×1素子の出力を第(n,4j’+2)番地の2×1素子の入力の一方に接続して、第(n−1,4j’+2)番地の1×2素子の出力の一方を第(n,4j’+1)番地の1×1素子の入力に、他方を該第(n,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続して、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続したことを特徴とする。   The matrix optical switch according to claim 8 of the present invention includes 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n. An n input × n output matrix optical switch configured (in this invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, and the first stage is 1 × 2 It consists of n elements, the (n + 1) th stage consists of n 2 × 1 elements, the second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j-3) th address. And the (2,4j) address is a 1 × 2 element, the (2,4j-2) address and the (2,4j−1) address are 1 × 1 elements (where j is j ≦ n / 2 natural number), the nth stage consists of n 2 × 1 elements and n 1 × 1 elements, and the (n, 4j-3) and (n, 4j) addresses are 1 × 1 elements. And the (n, j-2) address and (n, 4j-1) address are 2 × 1 elements, and the i-th stage excluding the first stage, the second stage, the n-th stage and the (n + 1) -th stage is 1 × 2 It consists of n elements and 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), and when i is an odd number, the (i, 4j-3) th address and the (i, 4j) ) Address is 2 × 1 element, (i, 4j−2) address and (i, 4j−1) address are 1 × 2 elements, and i is an even number, (i, 4j− 3) The address and the (i, 4j) address are 1 × 2 elements, the (i, 4j−2) address and the (i, 4j−1) address are 2 × 1 elements, and the first stage N input meters of 1 × 2 elements of n are used as input terminals of the matrix optical switch, and n output meters of 2 × 1 elements of the (n + 1) -th stage are used as output terminals of the matrix optical switch. 1st stage k-th (k is k ≦ n One of the outputs of the 1 × 2 element of the (natural number of)) is the input of the 1 × 1 element of the (2,2k + 1) -th address when k is an odd number, and the (2,2k-2) -th address when k is an even number. And the other of the outputs of the kth 1 × 2 element of the first stage is the input of the 1 × 2 element of the (2,1) address when k is 1 When k is an odd number other than 1, it is input to the 1 × 2 element at the (2,2k−2) address, and when k is n, it is input to the 1 × 2 element at the (2,2n) address. , K is an even number excluding n, it is connected to the input of the 1 × 2 element at the (2, 2k + 1) th address, and k is connected to one of the inputs of the kth 2 × 1 element in the (n + 1) th stage. In the case of an odd number, it is connected to the output of the 2 × 1 element at the (n, 2k + 1) th address, and when k is an even number, it is connected to the output of the 2 × 1 element at the (n, 2k−2) th address. ) Of the kth 2 × 1 element of the stage When k is 1, the other of the forces is output to the 1 × 1 element at the (n, 1) address, and when k is an odd number excluding 1, the 1 × 1 element at the (n, 2k−2) address. Connect to the output of the 1 × 1 element at the (n, 2n) address when k is n, and to the output of the 1 × 1 element at the (n, 2k + 1) address when k is an even number excluding n. Then, in the second stage, one of the outputs of the 1 × 2 element at the (2,4j-3) th address is input to the input of the 1 × 2 element at the (3,4th-1) th address, and the other is the ( Connected to one of the inputs of the 2 × 1 element at address 3,4j-3), and the output of the 1 × 1 element at address (2,4j-2) is 2 × of the address (3,4j-3). The output of the 1 × 1 element at the (2,4j−1) th address is connected to one input of the 2 × 1 element at the (3,4j) th address, and the second (2 , 4j) One of the outputs of the 1 × 2 element at address In the (n-1) th stage, the input of the 1 × 2 element at the address 3, 4j-2) is connected to the other input of the 2 × 1 element at the address (3,4j). The output of the 2 × 1 element at the (n−1,1) address is connected to one input of the 2 × 1 element at the (n, 2) address, and 1 × 2 at the (n−1,2) address. One of the outputs of the element is connected to the input of the 1 × 1 element at the (n, 1) -th address, and the other is connected to the other of the inputs of the 2 × 1 element at the (n, 2) -th address. , 2n-1), one of the outputs of the 1 × 2 element at the address (n, 2n) is the input of the 1 × 1 element at the address (n, 2n), and the other is the input of the 2 × 1 element at the address (n, 2n−1). The output of the 2 × 1 element at the (n−1, 2n) -th address is connected to the other input of the 2 × 1 element at the (n, 2n−1) -th address, and the (n− One of the outputs of the 1 × 2 element at address 1,4j′−1) is the (n 4j ′) is connected to the input of the 1 × 1 element of the address, the other is connected to one of the inputs of the 2 × 1 element of the (n, 4j′−1) th address, and the (n−1,4j ′ + 1) th address The output of the 2 × 1 element is connected to the other input of the 2 × 1 element at the (n, 4j′-1) th address, and the output of the 2 × 1 element at the (n−1,4j ′) th address is connected to the second One of the 2 × 1 element inputs at address (n, 4j ′ + 2) is connected to one of the outputs of the 1 × 2 element at address (n−1, 4j ′ + 2) (n, 4j ′ + 1). ) Connect the input of the 1 × 1 element at the address and the other to the other input of the 2 × 1 element at the (n, 4j ′ + 2) th address (where j ′ is j ′ ≦ n / 2− 1), the first and second stages, the (n-1) th stage, the nth stage and the (n + 1) th stage except for the i-th stage, if i is an odd number, the (i, 1) th stage The output of the 2 × 1 element at the address is the (i + 1, 2) th Connected to one of the inputs of the 2 × 1 element of the ground, one of the outputs of the 1 × 2 element of the (i, 2) address is connected to the input of the 1 × 2 element of the (i + 1,1) address, and the other is Connect to the other input of the 2 × 1 element at the (i + 1, 2) address, and connect one output of the 1 × 2 element at the (i, 2n−1) address to the 1 × 2 of the (i + 1, 2n) address. The input of the element is connected to one of the inputs of the 2 × 1 element at the (i + 1, 2n−1) th address, and the output of the 2 × 1 element at the (i, 2n) th address is connected to the (i + 1, 2n). -1) Connect to the other input of the 2 × 1 element at the address, and one of the outputs of the 1 × 2 element at the (i, 4j′−1) th address is 1 × 2 at the (i + 1,4j ′ + 1) th address The input of the element is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j′−1) th address, and the output of the 2 × 1 element at the (i, 4j ′ + 1) th address is i + 1, 4j′− ) Connected to the other input of the 2 × 1 element at the address, and the output of the 2 × 1 element at the (i, 4j ′) address is connected to one of the inputs of the 2 × 1 element at the (i + 1, 4j ′ + 2) address. The output of the 1 × 2 element at the (i, 4j ′ + 2) th address is connected to the input of the 1 × 2 element at the (i + 1,4j ′) th address and the other is the (i + 1,4j ′ + 2). ) When connected to the other input of the 2 × 1 element at the address and i is an even number, one of the outputs of the 1 × 2 element at the (i, 4j−3) th address is the (i + 1, 4j−1) address. To the input of the 2 × 1 element at the (i + 1,4j-3) -th address and the output of the 2 × 1 element at the (i, 4j−1) -th address. The output of the 2 × 1 element at the (i, 4j−2) -th address is connected to the other input of the 2 × 1 element at the (i + 1, 4j−3) -th address, and 2 × at the (i + 1, 4j) address. Entering one element One of the outputs of the 1 × 2 element at the (i, 4j) address is connected to the input of the 1 × 2 element at the (i + 1,4j−2) address, and the other is the (i + 1,4j) address. It is connected to the other input of the 2 × 1 element of the address.

上記本発明の請求項8に係るマトリクス光スイッチは、請求項7記載のマトリクス光スイッチにおいて、入力端子と出力端子を入れ替えた構成に相当する。   The matrix optical switch according to an eighth aspect of the present invention corresponds to the matrix optical switch according to the seventh aspect, wherein the input terminal and the output terminal are interchanged.

また、本発明の請求項9に係るマトリクス光スイッチは、1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧3の奇数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j’−3)番地と第(2,4j)番地が1×1素子であり、第(2,4j’−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦(n−1)/2の自然数、j’はj’≦(n+1)/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j’−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j’−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j’−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j’−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが奇数の場合は第(2,2k−1)番地の1×1素子の入力に、kが偶数の場合は第(2,2k)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k−1)番地の1×1素子の出力に、kが偶数の場合は第(n,2k)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,4j−1)番地の1×2素子の出力の一方を第(3,4j+1)番地の1×2素子の入力に、他方を第(3,4j−1)番地の2×1素子の入力の一方に接続し、第(2,4j+1)番地の1×1素子の出力を該第(3,4j−1)番地の2×1素子の入力の他方に接続し、第(2,4j)番地の1×1素子の出力を第(3,4j+2)番地の2×1素子の入力の一方に接続し、第(2,4j+2)番地の1×2素子の出力の一方を第(3,4j)番地の1×2素子の入力に、他方を該第(3,4j+2)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,4j−1)番地の1×2素子の出力の一方を第(n,4j+1)番地の1×1素子の入力に、他方を第(n,4j−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j+1)番地の2×1素子の出力を該第(n,4j−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j)番地の2×1素子の出力を第(n,4j+2)番地の2×1素子の入力の一方に接続し、第(n−1,4j+2)番地の1×2素子の出力の一方を第(n,4j)番地の1×1素子の入力に、他方を該第(n,4j+2)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,4j−1)番地の1×2素子の出力の一方を第(i+1,4j+1)番地の1×2素子の入力に、他方を第(i+1,4j−1)番地の2×1素子の入力の一方に接続し、第(i,4j+1)番地の2×1素子の出力を該第(i+1,4j−1)番地の2×1素子の入力の他方に接続し、第(i,4j)番地の2×1素子の出力を第(i+1,4j+2)番地の2×1素子の入力の一方に接続し、第(i,4j+2)番地の1×2素子の出力の一方を第(i+1,4j)番地の1×2素子の入力に、他方を該第(i+1,4j+2)番地の2×1素子の入力の他方に接続したことを特徴とする。   The matrix optical switch according to claim 9 of the present invention includes 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n. An n input × n output matrix optical switch configured (in this invention, n is an odd number of n ≧ 3), the unit optical switch elements are arranged in (n + 1) stages, and the first stage is 1 × 2 It consists of n elements, the (n + 1) th stage consists of n 2 × 1 elements, the second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j′−3) th The address and the (2,4j) address are 1 × 1 elements, and the (2,4j′−2) address and the (2,4j−1) address are 1 × 2 elements (where j Is a natural number of j ≦ (n−1) / 2, j ′ is a natural number of j ′ ≦ (n + 1) / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements. n, 4j'-3) And the (n, 4j) address is a 1 × 1 element, the (n, 4j′−2) address and the (n, 4j−1) address are 2 × 1 elements, The i-th stage excluding the 2nd stage, the n-th stage, and the (n + 1) -th stage is composed of n 1 × 2 elements and n 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), When i is an odd number, the (i, 4j′-3) address and the (i, 4j) address are 1 × 2 elements, and the (i, 4j′−2) address and the (i, 4j−1) address. ) If the address is 2 × 1 element and i is an even number, the (i, 4j′-3) th address and the (i, 4j) th address are 2 × 1 elements and the (i, 4j′−) 2) The address and the (i, 4j-1) address are 1 × 2 elements, and n input totals of n 1 × 2 elements in the first stage are used as input terminals of the matrix optical switch, and (n + 1) th ) N output total of n 2 × 1 elements in the stage When one of the outputs of the k-th (k is a natural number of k ≦ n) of the first stage is used as an output terminal of the RIX optical switch, and k is n, the 1 × of the (2, 2n) address When k is an odd number excluding n, the input of the 1 × 2 element at the (2,2k + 1) -th address is used, and when k is an even number, 1 × 2 at the (2,2k-2) -th address The other of the outputs of the kth 1 × 2 element of the first stage is connected to the input of the element, and when k is an odd number, the input of the 1 × 1 element of the (2, 2k−1) address is k Is connected to the input of the 1 × 1 element at the (2,2k) address, and one of the inputs of the kth 2 × 1 element in the (n + 1) th stage is connected to the input when k is an odd number. The output of the 1 × 1 element at address (n, 2k−1) is connected to the output of the 1 × 1 element at address (n, 2k) when k is an even number. The other input of the second 2 × 1 element When k is n, the output of the 2 × 1 element at the (n, 2n) address, and when k is an odd number excluding n, the output of the 2 × 1 element at the (n, 2k + 1) address is k In the case of an even number, it is connected to the output of the 2 × 1 element at the (n, 2k−2) th address, and in the second stage, the output of the 1 × 1 element at the (2,1) th address is set to the (3, 2) Connect to one of the inputs of the 2 × 1 element at the address, and one of the outputs of the 1 × 2 element at the (2,2) address to the input of the 1 × 2 element at the (3,1) address Is connected to the other input of the 2 × 1 element at the (3,2) address, and one output of the 1 × 2 element at the (2,4j−1) address is 1 of the (3,4j + 1) address. The input of the × 2 element is connected to one of the inputs of the 2 × 1 element at the (3,4j−1) th address, and the output of the 1 × 1 element at the (2,4j + 1) th address is , 4j-1) 2 × 1 element input at address The output of the 1 × 1 element at the (2,4j) address is connected to one of the inputs of the 2 × 1 element at the (3,4j + 2) address, and 1 × at the (2,4j + 2) address. One of the outputs of the two elements is connected to the input of the 1 × 2 element at the (3, 4j) address, the other is connected to the other of the inputs of the 2 × 1 element at the (3, 4j + 2) address, and the (n In the (-1) stage, the output of the 2 × 1 element at the (n−1,1) th address is connected to one of the inputs of the 2 × 1 element at the (n, 2) th address, 2) Connect one of the outputs of the 1 × 2 element at the address to the input of the 1 × 1 element at the (n, 1) address, and connect the other to the other input of the 2 × 1 element at the (n, 2) address One of the outputs of the 1 × 2 element at the (n−1,4j−1) th address is input to the 1 × 1 element at the (n, 4j + 1) th address, and the other is the (n, 4j−1) th address. Connect to one of the 2 x 1 element inputs The output of the 2 × 1 element at the (n−1,4j + 1) th address is connected to the other input of the 2 × 1 element at the (n, 4j−1) th address, and the (n−1,4j) th address The output of the 2 × 1 element is connected to one of the inputs of the 2 × 1 element at the (n, 4j + 2) th address, and one of the outputs of the 1 × 2 element at the (n−1,4j + 2) th address is connected to the (n, 4 4j) the input of the 1 × 1 element at address No. 1 and the other connected to the other of the inputs of the 2 × 1 element at address (n, 4j + 2), the first stage, the second stage, and the (n−1) th stage In the i-th stage excluding the stage, the n-th stage, and the (n + 1) -th stage, when i is an odd number, one of the outputs of the 1 × 2 element at the (i, 4j-3) -th address is the (i + 1, 4j−) stage. 1) The input of the 1 × 2 element at the address, the other connected to one input of the 2 × 1 element at the (i + 1,4j-3) th address, and the 2 × 1 element at the (i, 4j−1) th address Output (i +) , 4j-3) is connected to the other input of the 2 × 1 element at address (i, 4j−2), and the output of the 2 × 1 element at address (i, 4j−2) is the input of the 2 × 1 element at address (i + 1, 4j). One of the outputs of the 1 × 2 element at the (i, 4j) address is connected to the input of the 1 × 2 element at the (i + 1,4j−2) address, and the other is the (i + 1,4j) address. Connected to the other input of the 2 × 1 element at the address, one of the outputs of the 1 × 2 element at the (i, 2n−1) th address is connected to the input of the 1 × 2 element at the (i + 1,2n) address, and the other Is connected to one of the inputs of the 2 × 1 element at the (i + 1, 2n−1) address, and the output of the 2 × 1 element at the (i, 2n) address is 2 of the (i + 1, 2n−1) address. When connected to the other input of the × 1 element and i is an even number, the output of the 2 × 1 element at the (i, 1) address is sent to one of the inputs of the 2 × 1 element at the (i + 1,2) address Connect and number ( One of the outputs of the 1 × 2 element at address i, 2) is the input of the 1 × 2 element at address (i + 1,1), and the other is the other input of the 2 × 1 element at address (i + 1,2) To the input of the 1 × 2 element at the (i + 1,4j + 1) th address and the other at the (i + 1,4j−1) th address. The output of the 2 × 1 element at the (i, 4j + 1) th address is connected to the other input of the 2 × 1 element at the (i + 1,4j−1) th address. The output of the 2 × 1 element at the (i, 4j) address is connected to one input of the 2 × 1 element at the (i + 1, 4j + 2) address, and the output of the 1 × 2 element at the (i, 4j + 2) address Is connected to the input of the 1 × 2 element at the (i + 1,4j) address, and the other is connected to the other input of the 2 × 1 element at the (i + 1,4j + 2) address. To.

また、本発明の請求項10に係るマトリクス光スイッチは、1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧3の奇数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j’−3)番地と第(2,4j)番地が1×1素子であり、第(2,4j’−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦(n−1)/2の自然数、j’はj’≦(n+1)/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j’−3)番地と第(n,4j)番地が2×1素子であり、第(n,4j’−2)番地と第(n,4j−1)番地が1×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j’−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j’−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが奇数の場合は第(2,2k−1)番地の1×1素子の入力に、kが偶数の場合は第(2,2k)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが1の場合は第(n,1)番地の1×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の1×1素子の出力に、kが偶数の場合は第(n,2k+1)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,4j−1)番地の1×2素子の出力の一方を第(3,4j+1)番地の1×2素子の入力に、他方を第(3,4j−1)番地の2×1素子の入力の一方に接続し、第(2,4j+1)番地の1×1素子の出力を該第(3,4j−1)番地の2×1素子の入力の他方に接続し、第(2,4j)番地の1×1素子の出力を第(3,4j+2)番地の2×1素子の入力の一方に接続し、第(2,4j+2)番地の1×2素子の出力の一方を第(3,4j)番地の1×2素子の入力に、他方を該第(3,4j+2)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,4j−1)番地の1×2素子の出力の一方を第(n,4j)番地の1×1素子の入力に、他方を第(n,4j−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j+1)番地の2×1素子の出力を該第(n,4j−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j)番地の2×1素子の出力を第(n,4j+2)番地の2×1素子の入力の一方に接続し、第(n−1,4j+2)番地の1×2素子の出力の一方を第(n,4j+1)番地の1×1素子の入力に、他方を該第(n,4j+2)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,4j−1)番地の1×2素子の出力の一方を第(i+1,4j+1)番地の1×2素子の入力に、他方を第(i+1,4j−1)番地の2×1素子の入力の一方に接続し、第(i,4j+1)番地の2×1素子の出力を該第(i+1,4j−1)番地の2×1素子の入力の他方に接続し、第(i,4j)番地の2×1素子の出力を第(i+1,4j+2)番地の2×1素子の入力の一方に接続し、第(i,4j+2)番地の1×2素子の出力の一方を第(i+1,4j)番地の1×2素子の入力に、他方を該第(i+1,4j+2)番地の2×1素子の入力の他方に接続したことを特徴とする。 The matrix optical switch according to claim 10 of the present invention includes 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n. An n input × n output matrix optical switch configured (in this invention, n is an odd number of n ≧ 3), the unit optical switch elements are arranged in (n + 1) stages, and the first stage is 1 × 2 It consists of n elements, the (n + 1) th stage consists of n 2 × 1 elements, the second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j′−3) th The address and the (2,4j) address are 1 × 1 elements, and the (2,4j′−2) address and the (2,4j−1) address are 1 × 2 elements (where j Is a natural number of j ≦ (n−1) / 2, j ′ is a natural number of j ′ ≦ (n + 1) / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements. n, 4j'-3) The ground and the (n, 4j) address are 2 × 1 elements, the (n, 4j′−2) address and the (n, 4j−1) address are 1 × 1 elements, and the first stage and The i-th stage, excluding the second stage, the n-th stage, and the (n + 1) -th stage, is composed of n 1 × 2 elements and n 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1). , I is an odd number, the (i, 4j′-3) address and the (i, 4j) address are 1 × 2 elements, the (i, 4j′−2) address and the (i, 4j−) address. 1) If the address is 2 × 1 element and i is an even number, the (i, 4j′-3) th address and the (i, 4j) th address are 2 × 1 elements, and the (i, 4j ′) -2) The address and the (i, 4j-1) address are 1 × 2 elements, and n input totals of 1 × 2 elements in the first stage are used as input terminals of the matrix optical switch. n + 1) stage 2 × 1 element n output total n When one of the outputs of the k-th (k is a natural number of k ≦ n) of the first stage is used as an output terminal of the trix optical switch, when k is n, 1 × of the (2, 2n) address When the input of 2 elements is an odd number excluding n, the input of the 1 × 2 element at the (2, 2k + 1) -th address is used, and when the number k is an even number, the 1 × 2 of the (2, 2k−2) -th address is used. The other of the outputs of the kth 1 × 2 element of the first stage is connected to the input of the element, and when k is an odd number, the input of the 1 × 1 element of the (2, 2k−1) address is k Is connected to the input of the 1 × 1 element at the (2,2k) address, and one of the inputs of the kth 2 × 1 element in the (n + 1) th stage is connected to the 1st element when k is 1. The output of the 1 × 1 element at the address (n, 1) is the output of the 1 × 1 element at the (n, 2k−2) address when k is an odd number excluding 1, and the output of the 1 × 1 element when the k is an even number ( 1 × 1 element at address n, 2k + 1) And the other input of the kth 2 × 1 element in the (n + 1) th stage is connected to the output of the 2 × 1 element at the (n, 2n) address when k is n, and k is In the case of an odd number excluding n, it is connected to the output of the 2 × 1 element at the (n, 2k + 1) address, and when k is an even number, it is connected to the output of the 2 × 1 element at the (n, 2k−2) address, In the second stage, the output of the 1 × 1 element at the (2,1) address is connected to one input of the 2 × 1 element at the (3,2) address, and 1 of the (2,2) address. One of the outputs of the × 2 element is connected to the input of the 1 × 2 element at the (3,1) address, and the other is connected to the other input of the 2 × 1 element at the (3,2) address, , 4j−1), one of the outputs of the 1 × 2 element at the address (3, 4j + 1) is input to the 1 × 2 element at the address (3, 4j + 1), and the other is the input of the 2 × 1 element at the address (3, 4j−1). Connected to one of the (No. 2,4j + 1) th Is connected to the other input of the 2 × 1 element at the (3,4j−1) th address, and the output of the 1 × 1 element at the (2,4j) th address is the (3,3 4j + 2) connected to one of the inputs of the 2 × 1 element at the address (2,4j + 2), one output of the 1 × 2 element at the (2,4j + 2) address to the input of the 1 × 2 element at the (3,4j) address, and the other Is connected to the other input of the 2 × 1 element at the (3, 4j + 2) th address, and in the (n−1) th stage, the output of the 2 × 1 element at the (n−1,1) th address is connected. Connect to one input of the 2 × 1 element at the (n, 2) address, and connect one output of the 1 × 2 element at the (n−1,2) address to 1 × 1 at the (n, 1) address. The other input is connected to the other input of the 2 × 1 element at the (n, 2) address, and one of the outputs of the 1 × 2 element at the (n−1, 4j−1) address is connected to the input of the element. For input of 1 × 1 element at address (n, 4j) The other is connected to one of the inputs of the 2 × 1 element at the (n, 4j−1) th address, and the output of the 2 × 1 element at the (n−1,4j + 1) th address is connected to the (n, 4j−1) th address. Connect to the other input of the 2 × 1 element at the address, and connect the output of the 2 × 1 element at the (n−1,4j) th address to one of the input of the 2 × 1 element at the (n, 4j + 2) th address. One of the outputs of the 1 × 2 element at the (n−1, 4j + 2) th address is input to the 1 × 1 element at the (n, 4j + 1) th address, and the other is 2 × 1 at the (n, 4j + 2) address. In the i-th stage excluding the first and second stages, the (n−1) th stage, the nth stage and the (n + 1) th stage, connected to the other input of the element, if i is an odd number, One of the outputs of the 1 × 2 element at the (i, 4j-3) address is input to the 1 × 2 element at the (i + 1, 4j−1) th address, and the other is 2 × at the (i + 1, 4j-3) address. 1 element input And the output of the 2 × 1 element at the (i, 4j−1) th address is connected to the other input of the 2 × 1 element at the (i + 1, 4j−3) th address, and the (i, 4jth) -2) Connect the output of the 2 × 1 element at address (i + 1,4j) to one of the inputs of the 2 × 1 element at address (i + 1,4j), and connect the output of the 1 × 2 element at address (i, 4j) to the first The input of the 1 × 2 element at the address (i + 1, 4j−2) is connected to the other input of the 2 × 1 element at the (i + 1, 4j) address, and the input of the (i, 2n−1) address. One of the outputs of the 1 × 2 element is connected to the input of the 1 × 2 element at the (i + 1, 2n) -th address, and the other is connected to one of the inputs of the 2 × 1 element at the (i + 1, 2n−1) -th address. When the output of the 2 × 1 element at the (i, 2n) address is connected to the other input of the 2 × 1 element at the (i + 1, 2n−1) address, and i is an even number, the (i, 1) th 2 × 1 element of the address Is connected to one of the inputs of the 2 × 1 element at the (i + 1,2) address, and one of the outputs of the 1 × 2 element at the (i, 2) address is 1 × of the (i + 1,1) address. The other input is connected to the other input of the 2 × 1 element at the (i + 1, 2) th address, and one of the outputs of the 1 × 2 element at the (i, 4j−1) th address is The input of the 1 × 2 element at the address (i + 1,4j + 1) is connected to one input of the 2 × 1 element at the (i + 1,4j−1) th address, and the 2 × 1 element at the (i, 4j + 1) th address Is connected to the other input of the 2 × 1 element at the (i + 1,4j−1) address, and the output of the 2 × 1 element at the (i, 4j) address is 2 of the (i + 1,4j + 2) address. Connected to one of the inputs of the × 1 element, one of the outputs of the 1 × 2 element at the (i, 4j + 2) th address is connected to the input of the 1 × 2 element at the (i + 1,4j) th address, and the other i + 1,4j + 2), characterized in that connected to the other of the 2 × 1 element input address.

上記本発明の請求項10に係るマトリクス光スイッチは、請求項9記載のマトリクス光スイッチにおいて、第(n,4j)番地の1×1素子と第(n,4j+1)番地の1×1素子を入れ替えた構成に相当する。   The matrix optical switch according to a tenth aspect of the present invention is the matrix optical switch according to the ninth aspect, wherein the 1 × 1 element at the (n, 4j) address and the 1 × 1 element at the (n, 4j + 1) address are provided. This corresponds to the replaced configuration.

また、本発明の請求項11に係るマトリクス光スイッチは、1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧3の奇数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j’−3)番地と第(2,4j)番地が1×1素子であり、第(2,4j’−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦(n−1)/2の自然数、j’はj’≦(n+1)/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j’−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j’−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j’−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j’−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合は第(2,1)番地の1×1素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×1素子の入力に、kが偶数の場合は第(2,2k+1)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k−1)番地の1×1素子の出力に、kが偶数の場合は第(n,2k)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,4j−1)番地の1×2素子の出力の一方を第(3,4j+1)番地の1×2素子の入力に、他方を第(3,4j−1)番地の2×1素子の入力の一方に接続し、第(2,4j)番地の1×1素子の出力を該第(3,4j−1)番地の2×1素子の入力の他方に接続し、第(2,4j+1)番地の1×1素子の出力を第(3,4j+2)番地の2×1素子の入力の一方に接続し、第(2,4j+2)番地の1×2素子の出力の一方を第(3,4j)番地の1×2素子の入力に、他方を該第(3,4j+2)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,4j−1)番地の1×2素子の出力の一方を第(n,4j+1)番地の1×1素子の入力に、他方を第(n,4j−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j+1)番地の2×1素子の出力を該第(n,4j−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j)番地の2×1素子の出力を第(n,4j+2)番地の2×1素子の入力の一方に接続し、第(n−1,4j+2)番地の1×2素子の出力の一方を第(n,4j)番地の1×1素子の入力に、他方を該第(n,4j+2)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,4j−1)番地の1×2素子の出力の一方を第(i+1,4j+1)番地の1×2素子の入力に、他方を第(i+1,4j−1)番地の2×1素子の入力の一方に接続し、第(i,4j+1)番地の2×1素子の出力を該第(i+1,4j−1)番地の2×1素子の入力の他方に接続し、第(i,4j)番地の2×1素子の出力を第(i+1,4j+2)番地の2×1素子の入力の一方に接続し、第(i,4j+2)番地の1×2素子の出力の一方を第(i+1,4j)番地の1×2素子の入力に、他方を該第(i+1,4j+2)番地の2×1素子の入力の他方に接続したことを特徴とする。   The matrix optical switch according to claim 11 of the present invention includes 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n. An n input × n output matrix optical switch configured (in this invention, n is an odd number of n ≧ 3), the unit optical switch elements are arranged in (n + 1) stages, and the first stage is 1 × 2 It consists of n elements, the (n + 1) th stage consists of n 2 × 1 elements, the second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j′−3) th The address and the (2,4j) address are 1 × 1 elements, and the (2,4j′−2) address and the (2,4j−1) address are 1 × 2 elements (where j Is a natural number of j ≦ (n−1) / 2, j ′ is a natural number of j ′ ≦ (n + 1) / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements. n, 4j'-3) The ground and the (n, 4j) address are 1 × 1 elements, the (n, 4j′−2) address and the (n, 4j−1) address are 2 × 1 elements, and the first stage and The i-th stage, excluding the second stage, the n-th stage, and the (n + 1) -th stage, is composed of n 1 × 2 elements and n 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1). , I is an odd number, the (i, 4j′-3) address and the (i, 4j) address are 1 × 2 elements, the (i, 4j′−2) address and the (i, 4j−) address. 1) If the address is 2 × 1 element and i is an even number, the (i, 4j′-3) th address and the (i, 4j) th address are 2 × 1 elements, and the (i, 4j ′) -2) The address and the (i, 4j-1) address are 1 × 2 elements, and n input totals of 1 × 2 elements in the first stage are used as input terminals of the matrix optical switch. n + 1) n output totals of 2 × 1 elements in n stages When one of the outputs of the k-th (k is a natural number of k ≦ n) of the first stage is used as an output terminal of the trix optical switch, when k is n, 1 × of the (2, 2n) address When the input of 2 elements is an odd number excluding n, the input of the 1 × 2 element at the (2,2k + 1) -th address is used. When k is an even number, the input of the 1 × 2 element at the (2,2k2) -th address is used. Connected to the input, if the other k output of the kth 1 × 2 element in the first stage is 1, the input of the 1 × 1 element at address (2,1) is excluded and k is 1 When odd, connect to the input of the 1 × 1 element at the (2,2k−2) th address, and when k is even, connect to the input of the 1 × 1 element at the (2,2k + 1) th address, ) One of the inputs of the k-th 2 × 1 element of the stage, when k is an odd number, the output of the 1 × 1 element at the (n, 2k−1) -th address, and when k is an even number, 2k) of address 1x1 element When the other input of the kth 2 × 1 element of the (n + 1) th stage is connected to the output and k is n, the output of the 2 × 1 element of the (n, 2n) address is In the case of odd numbers excluding, the output of the 2 × 1 element at the (n, 2k + 1) address is connected to the output of the 2 × 1 element at the (n, 2k−2) address when k is an even number. In the second stage, the output of the 1 × 1 element at the (2,1) address is connected to one of the inputs of the 2 × 1 element at the (3,2) address, and the 1 × at the (2,2) address. One of the outputs of the two elements is connected to the input of the 1 × 2 element at the (3, 1) address, the other is connected to the other of the inputs of the 2 × 1 element at the (3, 2) address, and the (2, One of the outputs of the 1 × 2 element at the address 4j−1) is input to the input of the 1 × 2 element at the address (3,4j + 1), and the other is input to the input of the 2 × 1 element at the address (3,4j−1). Connect to one, 1 at address (2,4j) The output of one element is connected to the other input of the 2 × 1 element at the (3,4j−1) address, and the output of the 1 × 1 element at the (2,4j + 1) address is the (3,4j + 2) address. Connected to one of the 2 × 1 element inputs, one of the outputs of the 1 × 2 element at the (2,4j + 2) address is connected to the input of the 1 × 2 element at the (3,4j) address, and the other In the (n−1) th stage, the output of the 2 × 1 element at the (n−1,1) th address is connected to the other of the inputs of the 2 × 1 element at the (3,4th + 2) address. , 2) connected to one of the inputs of the 2 × 1 element of the address, and one of the outputs of the 1 × 2 element of the (n−1, 2) address is input to the 1 × 1 element of the (n, 1) address The other is connected to the other of the inputs of the 2 × 1 element at the (n, 2) address, and one of the outputs of the 1 × 2 element at the (n−1,4j−1) address is connected to the (n, 2) 4j + 1) 1 × 1 element input at address The other is connected to one of the inputs of the 2 × 1 element at the (n, 4j−1) th address, and the output of the 2 × 1 element at the (n−1,4j + 1) th address is connected to the (n, 4j−1) th address. ) Connect to the other input of the 2 × 1 element at the address, and connect the output of the 2 × 1 element at the (n−1, 4j) address to one of the input of the 2 × 1 element at the (n, 4j + 2) address. Then, one of the outputs of the 1 × 2 element at the (n−1,4j + 2) th address is input to the 1 × 1 element at the (n, 4j) th address, and the other is 2 × at the (n, 4j + 2) th address. In the i-th stage excluding the first stage and the second stage, the (n−1) th stage, the nth stage and the (n + 1) th stage, connected to the other input of one element, when i is an odd number, One of the outputs of the 1 × 2 element at the (i, 4j-3) th address is input to the input of the 1 × 2 element at the (i + 1,4j−1) th address, and the other is 2 of the (i + 1,4j-3) th address. One input of × 1 element And the output of the 2 × 1 element at address (i, 4j−1) is connected to the other input of the 2 × 1 element at address (i + 1, 4j−3), and (i, 4j− 2) The output of the 2 × 1 element at the address is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j) th address, and one of the outputs of the 1 × 2 element at the (i, 4j) th address is The input of the 1 × 2 element at the address (i + 1,4j−2) is connected to the other input of the 2 × 1 element at the (i + 1,4j) th address, and 1 at the (i, 2n−1) th address. One of the outputs of the × 2 element is connected to the input of the 1 × 2 element at the (i + 1, 2n) th address, the other is connected to one of the inputs of the 2 × 1 element at the (i + 1, 2n−1) th address, If the output of the 2 × 1 element at the address (i, 2n) is connected to the other input of the 2 × 1 element at the (i + 1, 2n−1) address, and i is an even number, the (i, 1) address Of 2 × 1 elements The output is connected to one input of the 2 × 1 element at the (i + 1,2) address, and one output of the 1 × 2 element at the (i, 2) address is 1 × 2 at the (i + 1,1) address. The other input is connected to the other input of the 2 × 1 element at the (i + 1, 2) th address, and one of the outputs of the 1 × 2 element at the (i, 4j−1) th address is (i + 1). , 4j + 1) is connected to the input of the 1 × 2 element at address (i, 4j + 1), and the other is connected to one of the inputs of the 2 × 1 element at address (i + 1, 4j−1), The output is connected to the other input of the 2 × 1 element at the (i + 1,4j−1) address, and the output of the 2 × 1 element at the (i, 4j) address is 2 × at the (i + 1,4j + 2) address. One input of one element is connected, one of the outputs of the 1 × 2 element at the (i, 4j + 2) th address is connected to the input of the 1 × 2 element at the (i + 1,4j) th address, and the other is + 1,4j + 2), characterized in that connected to the other of the 2 × 1 element input address.

上記本発明の請求項11に係るマトリクス光スイッチは、請求項10記載のマトリクス光スイッチにおいて、入力端子と出力端子を入れ替えた構成に相当する。   The matrix optical switch according to an eleventh aspect of the present invention corresponds to the matrix optical switch according to the tenth aspect, wherein the input terminal and the output terminal are interchanged.

また、本発明の請求項12に係るマトリクス光スイッチは、1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧3の奇数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j’−3)番地と第(2,4j)番地が1×1素子であり、第(2,4j’−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦(n−1)/2の自然数、j’はj’≦(n+1)/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j’−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j’−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j’−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j’−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合は第(2,1)番地の1×1素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×1素子の入力に、kが偶数の場合は第(2,2k+1)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが1の場合は第(n,1)番地の1×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の1×1素子の出力に、kが偶数の場合は第(n,2k+1)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,4j−1)番地の1×2素子の出力の一方を第(3,4j+1)番地の1×2素子の入力に、他方を第(3,4j−1)番地の2×1素子の入力の一方に接続し、第(2,4j)番地の1×1素子の出力を該第(3,4j−1)番地の2×1素子の入力の他方に接続し、第(2,4j+1)番地の1×1素子の出力を第(3,4j+2)番地の2×1素子の入力の一方に接続し、第(2,4j+2)番地の1×2素子の出力の一方を第(3,4j)番地の1×2素子の入力に、他方を該第(3,4j+2)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,4j−1)番地の1×2素子の出力の一方を第(n,4j)番地の1×1素子の入力に、他方を第(n,4j−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j+1)番地の2×1素子の出力を該第(n,4j−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j)番地の2×1素子の出力を第(n,4j+2)番地の2×1素子の入力の一方に接続し、第(n−1,4j+2)番地の1×2素子の出力の一方を第(n,4j+1)番地の1×1素子の入力に、他方を該第(n,4j+2)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,4j−1)番地の1×2素子の出力の一方を第(i+1,4j+1)番地の1×2素子の入力に、他方を第(i+1,4j−1)番地の2×1素子の入力の一方に接続し、第(i,4j+1)番地の2×1素子の出力を該第(i+1,4j−1)番地の2×1素子の入力の他方に接続し、第(i,4j)番地の2×1素子の出力を第(i+1,4j+2)番地の2×1素子の入力の一方に接続し、第(i,4j+2)番地の1×2素子の出力の一方を第(i+1,4j)番地の1×2素子の入力に、他方を該第(i+1,4j+2)番地の2×1素子の入力の他方に接続したことを特徴とする。   The matrix optical switch according to claim 12 of the present invention includes 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n. An n input × n output matrix optical switch configured (in this invention, n is an odd number of n ≧ 3), the unit optical switch elements are arranged in (n + 1) stages, and the first stage is 1 × 2 It consists of n elements, the (n + 1) th stage consists of n 2 × 1 elements, the second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j′−3) th The address and the (2,4j) address are 1 × 1 elements, and the (2,4j′−2) address and the (2,4j−1) address are 1 × 2 elements (where j Is a natural number of j ≦ (n−1) / 2, j ′ is a natural number of j ′ ≦ (n + 1) / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements. n, 4j'-3) The ground and the (n, 4j) address are 1 × 1 elements, the (n, 4j′−2) address and the (n, 4j−1) address are 2 × 1 elements, and the first stage and The i-th stage, excluding the second stage, the n-th stage, and the (n + 1) -th stage, is composed of n 1 × 2 elements and n 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1). , I is an odd number, the (i, 4j′-3) address and the (i, 4j) address are 1 × 2 elements, the (i, 4j′−2) address and the (i, 4j−) address. 1) If the address is 2 × 1 element and i is an even number, the (i, 4j′-3) th address and the (i, 4j) th address are 2 × 1 elements, and the (i, 4j ′) -2) The address and the (i, 4j-1) address are 1 × 2 elements, and n input totals of 1 × 2 elements in the first stage are used as input terminals of the matrix optical switch. n + 1) n output totals of 2 × 1 elements in n stages When one of the outputs of the k-th (k is a natural number of k ≦ n) of the first stage is used as an output terminal of the trix optical switch, when k is n, 1 × of the (2, 2n) address When the input of 2 elements is an odd number excluding n, the input of the 1 × 2 element at the (2, 2k + 1) -th address is used, and when the number k is an even number, the 1 × 2 of the (2, 2k−2) -th address is used. If the other of the outputs of the kth 1 × 2 element of the first stage is connected to the input of the element and k is 1, the input of the 1 × 1 element of the (2,1) address is k = 1 In the case of odd numbers excluding, the input of the 1 × 1 element at the (2,2k−2) th address is connected, and when k is even, the input is connected to the input of the 1 × 1 element at the (2,2k + 1) th address. One of the inputs of the kth 2 × 1 element in the (n + 1) stage is the output of the 1 × 1 element at the (n, 1) address when k is 1, and the output of the 1 × 1 element at the (n, 1) address, 1 x 1 at (n, 2k-2) address When k is an even number, it is connected to the output of the 1 × 1 element at the (n, 2k + 1) -th address, and the other input of the kth 2 × 1 element of the (n + 1) -th stage is connected to k. Is n, the output of the 2 × 1 element at the (n, 2n) address, and when k is an odd number excluding n, the output is the 2 × 1 element at the (n, 2k + 1) address, and k is an even number. In this case, the output of the 2 × 1 element at the (n, 2k−2) -th address is connected to the output of the 1 × 1 element at the (2,1) -th address in the second stage. Connected to one input of the 2 × 1 element at the address, one output of the 1 × 2 element at the (2,2) address is connected to the input of the 1 × 2 element at the (3,1) address, and the other is Connect the other input of the 2 × 1 element at the (3, 2) address, and connect one output of the 1 × 2 element at the (2, 4j−1) address to the 1 × 2 of the (3, 4j + 1) address. The other input is the (3,4j- 1) Connect to one of the inputs of the 2 × 1 element at the address, and connect the output of the 1 × 1 element at the (2,4j) address to the other of the input of the 2 × 1 element at the (3,4j−1) address And the output of the 1 × 1 element at the (2,4j + 1) th address is connected to one of the inputs of the 2 × 1 element at the (3,4j + 2) th address, and 1 × 2 at the (2,4j + 2) th address One of the outputs of the element is connected to the input of the 1 × 2 element at the (3, 4j) address, the other is connected to the other input of the 2 × 1 element at the (3, 4j + 2) address, and the (n− In the 1) stage, the output of the 2 × 1 element at the (n−1,1) th address is connected to one of the inputs of the 2 × 1 element at the (n, 2) th address, and the (n−1,2) ) Connect one of the outputs of the 1 × 2 element at the address to the input of the 1 × 1 element at the (n, 1) address, and connect the other to the other input of the 2 × 1 element at the (n, 2) address. Of (n-1, 4j-1) One of the outputs of the × 2 elements is connected to the input of the 1 × 1 element at the (n, 4j) th address, the other is connected to one of the inputs of the 2 × 1 element at the (n, 4j−1) th address, The output of the 2 × 1 element at the (n−1,4j + 1) address is connected to the other input of the 2 × 1 element at the (n, 4j−1) address, and the 2 × of the (n−1,4j) address. The output of one element is connected to one input of the 2 × 1 element at the (n, 4j + 2) th address, and one output of the 1 × 2 element at the (n−1,4j + 2) th address is connected to the (n, 4j + 1) th address. The first stage and the second stage, the (n−1) th stage, the input of the 1 × 1 element at the address and the other connected to the other input of the 2 × 1 element at the (n, 4j + 2) th address, In the i-th stage excluding the n-th stage and the (n + 1) -th stage, when i is an odd number, one of the outputs of the 1 × 2 element at the (i, 4j-3) -th address is the (i + 1, 4j-1) -th stage. 1 × 2 element of the address The other input is connected to one input of the 2 × 1 element at the (i + 1,4j-3) th address, and the output of the 2 × 1 element at the (i, 4j−1) th address is connected to the (i + 1,4j). -3) connected to the other input of the 2 × 1 element at the address, and the output of the 2 × 1 element at the (i, 4j−2) th address is one of the inputs of the 2 × 1 element at the (i + 1, 4j) address To the input of the 1 × 2 element at the (i + 1,4j−2) th address and the other at the (i + 1,4j) th address. Connect to the other input of the 2 × 1 element, one of the outputs of the 1 × 2 element at the (i, 2n−1) th address is the input of the 1 × 2 element at the (i + 1,2n) th address, and the other It is connected to one input of the 2 × 1 element at the (i + 1, 2n−1) address, and the output of the 2 × 1 element at the (i, 2n) address is 2 × 1 at the (i + 1, 2n−1) address. Element input When i is an even number, the output of the 2 × 1 element at the (i, 1) address is connected to one of the inputs of the 2 × 1 element at the (i + 1,2) address, and the (i , 2) One of the outputs of the 1 × 2 element at the address is the input of the 1 × 2 element at the (i + 1,1) address, and the other is the other input of the 2 × 1 element at the (i + 1,2) address. Connect one of the outputs of the 1 × 2 element at the (i, 4j−1) th address to the input of the 1 × 2 element at the (i + 1,4j + 1) th address and the other at the (i + 1,4j−1) th address Connect to one of the inputs of the 2 × 1 element, connect the output of the 2 × 1 element at the (i, 4j + 1) th address to the other of the input of the 2 × 1 element at the (i + 1,4j−1) th address, The output of the 2 × 1 element at the (i, 4j) address is connected to one of the inputs of the 2 × 1 element at the (i + 1, 4j + 2) address, and the output of the 1 × 2 element at the (i, 4j + 2) address. One is connected to the input of the 1 × 2 element at the (i + 1,4j) address, and the other is connected to the other input of the 2 × 1 element at the (i + 1,4j + 2) address.

上記本発明の請求項12に係るマトリクス光スイッチは、請求項10記載のマトリクス光スイッチにおいて、第(2,4j)番地の1×1素子と第(2,4j+1)番地の1×1素子を入れ替えた構成に相当する。   The matrix optical switch according to a twelfth aspect of the present invention is the matrix optical switch according to the tenth aspect, wherein the 1 × 1 element at the (2,4j) address and the 1 × 1 element at the (2,4j + 1) address are provided. This corresponds to the replaced configuration.

本発明によるn入力×n出力のマトリクス光スイッチは、いずれも(n+1)段の光スイッチ素子で構成されており、従来の2n段で構成されたマトリクス光スイッチに比べて回路長を大幅に削減することができる。   Each of the n-input × n-output matrix optical switches according to the present invention is composed of (n + 1) stages of optical switch elements, and the circuit length is greatly reduced compared to the conventional matrix optical switch composed of 2n stages. can do.

したがって本発明によれば、n入力×n出力のマトリクス光スイッチにおいて、高消光比を維持したままで、光スイッチ素子の段数を2n段から(n+1)段にほぼ半減することができるので、チップサイズを小型化することができ、部品占有面積やコストの削減に大きく寄与する。   Therefore, according to the present invention, in an n-input × n-output matrix optical switch, the number of stages of optical switch elements can be almost halved from 2n stages to (n + 1) stages while maintaining a high extinction ratio. The size can be reduced, which greatly contributes to the reduction of component occupation area and cost.

本発明におけるマトリクス光スイッチを実施するにあたっては、多数の光スイッチ素子を単一の基板上に集積することが可能な導波路型光スイッチを用いることが望ましい。導波路型光スイッチの方式としては、熱光学効果を用いる方式、電気光学効果を用いる方式、電流注入による屈折率変化を用いる方式などがある。   In practicing the matrix optical switch in the present invention, it is desirable to use a waveguide type optical switch capable of integrating a large number of optical switch elements on a single substrate. As a method of the waveguide type optical switch, there are a method using a thermo-optic effect, a method using an electro-optic effect, a method using a refractive index change by current injection, and the like.

また、熱光学効果を用いる方式にも、用いる材料として、石英系ガラス、有機ポリマー、シリコンなどがある。そのなかでも石英系光導波路の熱光学効果を用いた光スイッチは、光ファイバとの整合性が良く、挿入損失が低いことに加えて、原理的な偏波依存性が小さく、構成材料が物理的、化学的に安定で信頼性に優れていることから、実用性が最も高く、本発明の実施に適している。   In addition, in the system using the thermo-optic effect, there are quartz glass, organic polymer, silicon, and the like as materials to be used. Among them, optical switches using the thermo-optic effect of silica-based optical waveguides have good compatibility with optical fibers, low insertion loss, low principle of polarization dependence, and physical components. Therefore, it is most practical and suitable for the implementation of the present invention.

なお、本発明におけるマトリクス光スイッチにおいて、同じ段に属する光スイッチ素子は、必ずしも横方向に同じ位置に配置されている必要はなく、接続関係が同じであれば、横方向にずらして配置することも可能である。同じ段に属する2つの光スイッチ素子において、右側に位置する光スイッチ素子の入力位置が、左側に位置する光スイッチ素子の出力位置より左側にあれば、本発明の効果を少なからず得ることができる。しかしながら、回路の全長を最短にするためには、同じ段に属する光スイッチ素子が横方向に同じ位置に配置されている形態が、最も望ましい形態である。   In the matrix optical switch according to the present invention, the optical switch elements belonging to the same stage do not necessarily need to be arranged at the same position in the horizontal direction. Is also possible. In the two optical switch elements belonging to the same stage, if the input position of the optical switch element located on the right side is on the left side of the output position of the optical switch element located on the left side, the effects of the present invention can be obtained. . However, in order to minimize the total length of the circuit, a form in which the optical switch elements belonging to the same stage are arranged at the same position in the horizontal direction is the most desirable form.

以下に、本発明における第一の実施形態を図1に基づいて説明する。図1は本発明の請求項1においてn=4とした、4×4マトリクス光スイッチを構成した例である。本実施形態によるマトリクス光スイッチは1×2素子12個および2×1素子12個および1×1素子8個で構成される。   Below, 1st embodiment in this invention is described based on FIG. FIG. 1 shows an example of a 4 × 4 matrix optical switch in which n = 4 in claim 1 of the present invention. The matrix optical switch according to the present embodiment includes 12 1 × 2 elements, 12 2 × 1 elements, and 8 1 × 1 elements.

本実施形態によるマトリクス光スイッチは、単位光スイッチ素子が5段に配置され、第1段は1×2素子である第(1,1),(1,2),(1,3),(1,4)番地からなり、これらの入力計4本を該マトリクス光スイッチの入力端子A−1,A−2,A−3,A−4とする。第2段は第(2,1),(2,4),(2,5)および(2,8)番地が1×1素子、第(2,2),(2,3),(2,6)および(2,7)番地が1×2素子である。   In the matrix optical switch according to the present embodiment, the unit optical switch elements are arranged in five stages, and the first stage is the (1, 1), (1, 2), (1, 3), (1, 2) elements. 1, 4), and these four total inputs are designated as input terminals A-1, A-2, A-3, and A-4 of the matrix optical switch. In the second stage, the (2,1), (2,4), (2,5) and (2,8) addresses are 1 × 1 elements, the (2,2), (2,3), (2 , 6) and (2, 7) are 1 × 2 elements.

第3段は第(3,1),(3,4),(3,5)および(3,8)番地が1×2素子、第(3,2),(3,3),(3,6)および(3,7)番地が2×1素子である。第4段は第(4,1),(4,4),(4,5)および(4,8)番地が2×1素子、第(4,2),(4,3),(4,6)および(4,7)番地が1×1素子である。第5段は2×1素子である(5,1),(5,2),(5,3),(5,4)からなり、これらの出力計4本を該マトリクス光スイッチの出力端子B−1,B−2,B−3,B−4とする。   In the third stage, the (3, 1), (3, 4), (3, 5) and (3, 8) addresses are 1 × 2 elements, and the (3, 2), (3, 3), (3 , 6) and (3, 7) are 2 × 1 elements. In the fourth stage, the (4,1), (4,4), (4,5) and (4,8) addresses are 2 × 1 elements, the (4,2), (4,3), (4 , 6) and (4, 7) are 1 × 1 elements. The fifth stage consists of (5,1), (5,2), (5,3), (5,4) which are 2 × 1 elements, and these four outputs are connected to the output terminals of the matrix optical switch. Let B-1, B-2, B-3, and B-4.

次に、それぞれの単位光スイッチ素子の接続経路を説明する。なお、上述した1×2素子および2×1素子の出力および入力をそれぞれ出力a,b、入力a,b(図中、上方向をa、下方向をbとする)として説明する。   Next, the connection path of each unit optical switch element will be described. The output and input of the 1 × 2 element and the 2 × 1 element described above will be described as outputs a and b and inputs a and b (in the drawing, the upper direction is a and the lower direction is b), respectively.

第1段においては、第(1,1)番地の出力a,bを第(2,1)および(2,3)番地の入力に、第(1,2)番地の出力a,bを第(2,2)および(2,4)番地の入力に、第(1,3)番地の出力a,bを第(2,5)および(2,7)番地の入力に、第(1,4)番地の出力a,bを第(2,6)および(2,8)番地の入力にそれぞれ接続する。   In the first stage, outputs a and b at address (1,1) are input to addresses (2,1) and (2,3), and outputs a and b at address (1,2) are Inputs (2, 2) and (2, 4), outputs (a, b) at addresses (1, 3), inputs (2, 5,) and (2, 7), inputs (1, 4) Connect the outputs a and b of the address to the inputs of the (2, 6) and (2, 8) addresses, respectively.

第2段においては、第(2,1)番地の出力を第(3,2)番地の入力aに、第(2,2)番地の出力a,bをそれぞれ第(3,1)番地の入力および第(3,2)番地の入力bに、第(2,3)番地の出力a,bをそれぞれ第(3,3)番地の入力aおよび第(3,5)番地の入力に、第(2,4)番地の出力を第(3,6)番地の入力aに、第(2,5)番地の出力を第(3,3)番地の入力bに、第(2,6)番地の出力a,bをそれぞれ第(3,4)番地の入力および第(3,6)番地の入力bに、第(2,7)番地の出力a,bをそれぞれ第(3,7)番地の入力aおよび第(3,8)番地の入力に、第(2,8)番地の出力を第(3,7)番地の入力bにそれぞれ接続する。   In the second stage, the output at address (2,1) is the input a at address (3,2), and the outputs a and b at address (2,2) are at address (3,1), respectively. The input and the input b of the (3, 2) address, the outputs a and b of the (2, 3) address are input to the input a of the (3, 3) address and the input of the (3, 5) address, respectively. The output at address (2,4) is input a at address (3,6), the output at address (2,5) is input b at address (3,3), and (2,6) The outputs a and b of the address are respectively input to the input of the (3, 4) address and the input b of the (3, 6) address, and the outputs a and b of the (2, 7) address are respectively (3, 7). The input at address (a) and address (3, 8) is connected to the input at address (2, 8) and input b at address (3, 7).

第3段においては、第(3,1)番地の出力a,bをそれぞれ第(4,1)番地の入力aおよび第(4,3)番地の入力に、第(3,2)番地の出力を第(4,4)番地の入力aに、第(3,3)番地の出力を第(4,1)番地の入力bに、第(3,4)番地の出力a,bをそれぞれ第(4,2)番地の入力および第(4,4)番地の入力bに、第(3,5)番地の出力a,bをそれぞれ第(4,5)番地の入力aおよび第(4,7)番地の入力に、第(3,6)番地の出力を第(4,8)番地の入力aに、第(3,7)番地の出力を第(4,5)番地の入力bに、第(3,8)番地の出力a,bをそれぞれ第(4,6)番地の入力および第(4,8)番地の入力bにそれぞれ接続する。   In the third stage, the outputs a and b of the (3, 1) address are respectively input to the inputs a and (4, 3) of the (4, 1) address, and to the inputs of the (3, 2) addresses. The output is the input a at address (4, 4), the output at address (3, 3) is the input b at address (4, 1), and the outputs a and b are at address (3, 4). The outputs a and b of the (3, 5) address are respectively input to the input (4, 5) and the input (4) of the (4, 5) address. , 7) address input, (3, 6) address output to (4, 8) address input a, (3, 7) address output to (4, 5) address input b The outputs a and b at the (3, 8) address are connected to the input at the (4, 6) address and the input b at the (4, 8) address, respectively.

第4段においては、第(4,1)および(4,2)番地の出力を第(5,1)番地の入力a,bに、第(4,3)および(4,5)番地の出力を第(5,2)番地の入力a,bに、第(4,4)および(4,6)番地の出力を第(5,3)番地の入力a,bに、第(4,7)および(4,8)番地の出力を第(5,4)番地の入力a,bにそれぞれ接続する。   In the fourth stage, the outputs of the addresses (4, 1) and (4, 2) are input to the inputs a and b of the address (5, 1), and the outputs of the addresses (4, 3) and (4, 5). Outputs are input to the inputs a and b at the address (5, 2), and outputs at addresses (4, 4) and (4, 6) are input to the inputs a and b at the address (5, 3). The outputs at addresses 7) and (4, 8) are connected to inputs a and b at address (5, 4), respectively.

上述したように、本発明の請求項1に係るマトリクス光スイッチによれば、5段に配置された光スイッチ素子で4×4マトリクス光スイッチを構成することができ、かつ、どの入力−出力端子間においても2段のスイッチ素子を通過するので高消光比を確保することができる。   As described above, according to the matrix optical switch according to the first aspect of the present invention, a 4 × 4 matrix optical switch can be constituted by the optical switch elements arranged in five stages, and which input-output terminal A high extinction ratio can be ensured because it passes through the two-stage switching elements.

次に、本発明における第二の実施形態を説明する。この第二の実施形態は、上述した第一の実施形態において、入力端子と出力端子を入れ替えた構成に相当する。本実施形態は、請求項2においてn=4とした、4×4マトリクス光スイッチを構成した例であり、1×2素子12個および2×1素子12個および1×1素子8個で構成される。   Next, a second embodiment of the present invention will be described. The second embodiment corresponds to a configuration in which the input terminal and the output terminal are interchanged in the first embodiment described above. This embodiment is an example in which a 4 × 4 matrix optical switch in which n = 4 in claim 2 is configured, and is configured by 12 1 × 2 elements, 12 2 × 1 elements, and 8 1 × 1 elements. Is done.

本実施形態によるマトリクス光スイッチは、単位光スイッチ素子が5段に配置され、第1段は1×2素子である第(1,1),(1,2),(1,3),(1,4)番地からなり、これらの入力計4本を該マトリクス光スイッチの入力端子とする。第2段は第(2,1),(2,4),(2,5)および(2,8)番地が1×2素子、第(2,2),(2,3),(2,6)および(2,7)番地が1×1素子である。   In the matrix optical switch according to the present embodiment, the unit optical switch elements are arranged in five stages, and the first stage is the (1, 1), (1, 2), (1, 3), (1, 2) elements. 1, 4), and these four inputs are used as input terminals of the matrix optical switch. In the second stage, the (2,1), (2,4), (2,5) and (2,8) addresses are 1 × 2 elements, the (2,2), (2,3), (2 , 6) and (2, 7) are 1 × 1 elements.

第3段は第(3,1),(3,4),(3,5)および(3,8)番地が2×1素子、第(3,2),(3,3),(3,6)および(3,7)番地が1×2素子である。第4段は第(4,1),(4,4),(4,5)および(4,8)番地が1×1素子、第(4,2),(4,3),(4,6)および(4,7)番地が2×1素子である。第5段は2×1素子である(5,1),(5,2),(5,3),(5,4)からなり、これらの出力計4本を該マトリクス光スイッチの出力端子とする。   In the third stage, the (3, 1), (3,4), (3, 5) and (3, 8) addresses are 2 × 1 elements, and the (3, 2), (3, 3), (3 , 6) and (3, 7) are 1 × 2 elements. In the fourth stage, the (4, 1), (4, 4), (4, 5) and (4, 8) addresses are 1 × 1 elements, and the (4, 2), (4, 3), (4 , 6) and (4, 7) are 2 × 1 elements. The fifth stage consists of (5,1), (5,2), (5,3), (5,4) which are 2 × 1 elements, and these four outputs are connected to the output terminals of the matrix optical switch. And

次に、それぞれの単位光スイッチ素子の接続経路を説明する。なお、上述した1×2素子および2×1素子の出力および入力をそれぞれ出力a,b、入力a,bとして説明する。   Next, the connection path of each unit optical switch element will be described. The output and input of the 1 × 2 element and 2 × 1 element described above will be described as outputs a and b and inputs a and b, respectively.

第1段においては、第(1,1)番地の出力a,bを第(2,1)および(2,2)番地の入力に、第(1,2)番地の出力a,bを第(2,3)および(2,5)番地の入力に、第(1,3)番地の出力a,bを第(2,4)および(2,6)番地の入力に、第(1,4)番地の出力a,bを第(2,7)および(2,8)番地の入力にそれぞれ接続する。   In the first stage, the outputs a and b of the (1,1) address are input to the inputs of the (2,1) and (2,2) addresses, and the outputs a and b of the (1,2) address are the first. The inputs (2,3) and (2,5) are input, and the outputs (a, b) of the (1,3) address are input to the inputs (2,4) and (2,6). 4) Connect outputs a and b of the address to the inputs of addresses (2, 7) and (2, 8), respectively.

第2段においては、第(2,1)番地の出力a,bをそれぞれ第(3,1)番地の入力および第(3,3)番地の入力aに、第(2,2)番地の出力を第(3,4)番地の入力aに、第(2,3)番地の出力を第(3,1)番地の入力bに、第(2,4)番地の出力a,bをそれぞれ第(3,2)番地の入力および第(3,4)番地の入力bに、第(2,5)番地の出力a,bをそれぞれ第(3,5)番地の入力aおよび第(3,7)番地の入力に、第(2,6)番地の出力を第(3,8)番地の入力aに、第(2,7)番地の出力を第(3,5)番地の入力bに、第(2,8)番地の出力a,bをそれぞれ第(3,6)番地の入力および第(3,8)番地の入力bにそれぞれ接続する。   In the second stage, the outputs a and b at the (2,1) address are respectively input to the input at the (3,1) address and the input a at the (3,3) address, at the (2,2) address. Output is input a at address (3, 4), output at address (2, 3) is input b at address (3, 1), output a and b at address (2, 4) The inputs a and b at the addresses (3 and 5) and the inputs a and b at the addresses (3 and 5) are input to the inputs a and b at the addresses (3 and 5), respectively. , 7) address input, (2,6) address output to (3,8) address input a, (2,7) address output to (3,5) address b The outputs a and b at the (2,8) th address are connected to the input at the (3,6) th address and the input b at the (3,8) th address, respectively.

第3段においては、第(3,1)番地の出力を第(4,2)番地の入力aに、第(3,2)番地の出力a,bをそれぞれ第(4,1)番地の入力および第(4,2)番地の入力bに、第(3,3)番地の出力a,bをそれぞれ第(4,3)番地の入力aおよび第(4,5)番地の入力に、第(3,4)番地の出力を第(4,6)番地の入力aに、第(3,5)番地の出力を第(4,3)番地の入力bに、第(3,6)番地の出力a,bをそれぞれ第(4,4)番地の入力および第(4,6)番地の入力bに、第(3,7)番地の出力a,bをそれぞれ第(4,7)番地の入力aおよび第(4,8)番地の入力に、第(3,8)番地の出力を第(4,7)番地の入力bにそれぞれ接続する。   In the third stage, the output at address (3,1) is the input a at address (4,2), and the outputs a and b at address (3,2) are respectively at address (4,1). Input and input b of address (4,2), output a and b of address (3,3), input a of address (4,3) and input of address (4,5), respectively The output at address (3, 4) is input a at address (4, 6), the output at address (3, 5) is input b at address (4, 3), and (3, 6) Outputs a and b at the address are input to the input at address (4, 4) and (4, 6), respectively, and outputs a and b at address (3, 7) are respectively (4, 7). The output at address (3, 8) is connected to the input b at address (4, 7), to the input at address a and address (4, 8).

第4段においては、第(4,1)および(4,3)番地の出力を第(5,1)番地の入力a,bに、第(4,2)および(4,4)番地の出力を第(5,2)番地の入力a,bに、第(4,5)および(4,7)番地の出力を第(5,3)番地の入力a,bに、第(4,6)および(4,8)番地の出力を第(5,4)番地の入力a,bにそれぞれ接続する。   In the fourth stage, the outputs of the addresses (4, 1) and (4, 3) are input to the inputs a and b of the address (5, 1), and the outputs of the addresses (4, 2) and (4, 4). Outputs are input to the inputs a and b at the address (5, 2), outputs at addresses (4, 5) and (4, 7) are input to the inputs a and b at the address (5, 3). The outputs at 6) and (4, 8) are connected to inputs a and b at (5, 4).

次に、本発明における第三の実施形態を図2に基づいて説明する。この第三の実施形態は、上述した第一の実施形態において、第(2,4)番地と第(2,5)番地を入れ替えた構成に相当する。図2は本発明の請求項3においてn=4とした、4×4マトリクス光スイッチを構成した例である。本実施形態によるマトリクス光スイッチは1×2素子12個および2×1素子12個および1×1素子8個で構成される。   Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment corresponds to a configuration in which the (2, 4) address and the (2, 5) address are interchanged in the first embodiment described above. FIG. 2 shows an example of a 4 × 4 matrix optical switch in which n = 4 in claim 3 of the present invention. The matrix optical switch according to the present embodiment includes 12 1 × 2 elements, 12 2 × 1 elements, and 8 1 × 1 elements.

本実施形態によるマトリクス光スイッチは、単位光スイッチ素子が5段に配置され、第1段は1×2素子である第(1,1),(1,2),(1,3),(1,4)番地からなり、これらの入力計4本を該マトリクス光スイッチの入力端子A−1,A−2,A−3,A−4とする。第2段は第(2,1),(2,4),(2,5)および(2,8)番地が1×1素子、第(2,2),(2,3),(2,6)および(2,7)番地が1×2素子である。   In the matrix optical switch according to the present embodiment, the unit optical switch elements are arranged in five stages, and the first stage is the (1, 1), (1, 2), (1, 3), (1, 2) elements. 1, 4), and these four total inputs are designated as input terminals A-1, A-2, A-3, and A-4 of the matrix optical switch. In the second stage, the (2,1), (2,4), (2,5) and (2,8) addresses are 1 × 1 elements, the (2,2), (2,3), (2 , 6) and (2, 7) are 1 × 2 elements.

第3段は第(3,1),(3,4),(3,5)および(3,8)番地が1×2素子、第(3,2),(3,3),(3,6)および(3,7)番地が2×1素子である。第4段は第(4,1),(4,4),(4,5)および(4,8)番地が2×1素子、第(4,2),(4,3),(4,6)および(4,7)番地が1×1素子である。第5段は2×1素子である(5,1),(5,2),(5,3),(5,4)からなり、これらの出力計4本を該マトリクス光スイッチの出力端子B−1,B−2,B−3,B−4とする。   In the third stage, the (3, 1), (3, 4), (3, 5) and (3, 8) addresses are 1 × 2 elements, and the (3, 2), (3, 3), (3 , 6) and (3, 7) are 2 × 1 elements. In the fourth stage, the (4,1), (4,4), (4,5) and (4,8) addresses are 2 × 1 elements, the (4,2), (4,3), (4 , 6) and (4, 7) are 1 × 1 elements. The fifth stage consists of (5,1), (5,2), (5,3), (5,4) which are 2 × 1 elements, and these four outputs are connected to the output terminals of the matrix optical switch. Let B-1, B-2, B-3, and B-4.

次に、それぞれの単位光スイッチ素子の接続経路を説明する。なお、上述した1×2素子および2×1素子の出力および入力をそれぞれ出力a,b、入力a,b(図中、上方向をa、下方向をbとする)として説明する。   Next, the connection path of each unit optical switch element will be described. The output and input of the 1 × 2 element and the 2 × 1 element described above will be described as outputs a and b and inputs a and b (in the figure, the upper direction is a and the lower direction is b), respectively.

第1段においては、第(1,1)番地の出力a,bを第(2,1)および(2,3)番地の入力に、第(1,2)番地の出力a,bを第(2,2)および(2,5)番地の入力に、第(1,3)番地の出力a,bを第(2,4)および(2,7)番地の入力に、第(1,4)番地の出力a,bを第(2,6)および(2,8)番地の入力にそれぞれ接続する。   In the first stage, outputs a and b at address (1,1) are input to addresses (2,1) and (2,3), and outputs a and b at address (1,2) are Inputs at addresses (2, 2) and (2, 5), outputs a and b at address (1, 3), inputs at addresses (2, 4) and (2, 7), 4) Address outputs a and b are connected to inputs of addresses (2, 6) and (2, 8), respectively.

第2段においては、第(2,1)番地の出力を第(3,2)番地の入力aに、第(2,2)番地の出力a,bをそれぞれ第(3,1)番地の入力および第(3,2)番地の入力bに、第(2,3)番地の出力a,bをそれぞれ第(3,3)番地の入力aおよび第(3,5)番地の入力に、第(2,4)番地の出力を第(3,3)番地の入力bに、第(2,5)番地の出力を第(3,6)番地の入力aに、第(2,6)番地の出力a,bをそれぞれ第(3,4)番地の入力および第(3,6)番地の入力bに、第(2,7)番地の出力a,bをそれぞれ第(3,7)番地の入力aおよび第(3,8)番地の入力に、第(2,8)番地の出力を第(3,7)番地の入力bにそれぞれ接続する。   In the second stage, the output at address (2,1) is the input a at address (3,2), and the outputs a and b at address (2,2) are at address (3,1), respectively. The input and the input b of the (3, 2) address, the outputs a and b of the (2, 3) address, respectively, the input a of the (3, 3) address and the input of the (3, 5) address, The output at address (2,4) is input b at address (3,3), the output at address (2,5) is input a at address (3,6), and (2,6) The outputs a and b of the address are respectively input to the input of the (3, 4) address and the input b of the (3, 6) address, and the outputs a and b of the (2, 7) address are respectively (3, 7). The input at address (a) and address (3, 8) is connected to the input at address (2, 8) and input b at address (3, 7).

第3段においては、第(3,1)番地の出力a,bをそれぞれ第(4,1)番地の入力aおよび第(4,3)番地の入力に、第(3,2)番地の出力を第(4,4)番地の入力aに、第(3,3)番地の出力を第(4,1)番地の入力bに、第(3,4)番地の出力a,bをそれぞれ第(4,2)番地の入力および第(4,4)番地の入力bに、第(3,5)番地の出力a,bをそれぞれ第(4,5)番地の入力aおよび第(4,7)番地の入力に、第(3,6)番地の出力を第(4,8)番地の入力aに、第(3,7)番地の出力を第(4,5)番地の入力bに、第(3,8)番地の出力a,bをそれぞれ第(4,6)番地の入力および第(4,8)番地の入力bにそれぞれ接続する。   In the third stage, the outputs a and b at the (3, 1) address are respectively input to the inputs a and (4, 3) at the (4, 1) address, and at the (3, 2) address. Output is input a at address (4,4), output at address (3,3) is input at input b at address (4,1), and outputs a and b at address (3,4) are respectively The outputs a and b of the (3, 5) address are respectively input to the input (4, 5) and the input (4) of the (4, 5) address. , 7) address input, (3, 6) address output to (4, 8) address input a, (3, 7) address output to (4, 5) address b The outputs a and b at the (3, 8) address are respectively connected to the input at the (4, 6) address and the input b at the (4, 8) address.

第4段においては、第(4,1)および(4,2)番地の出力を第(5,1)番地の入力a,bに、第(4,3)および(4,5)番地の出力を第(5,2)番地の入力a,bに、第(4,4)および(4,6)番地の出力を第(5,3)番地の入力a,bに、第(4,7)および(4,8)番地の出力を第(5,4)番地の入力a,bにそれぞれ接続する。   In the fourth stage, the outputs of the addresses (4, 1) and (4, 2) are input to the inputs a and b of the address (5, 1), and the outputs of the addresses (4, 3) and (4, 5). Outputs are input to the inputs a and b at the address (5, 2), and outputs at addresses (4, 4) and (4, 6) are input to the inputs a and b at the address (5, 3). The outputs at addresses 7) and (4, 8) are connected to inputs a and b at address (5, 4), respectively.

次に、本発明における第四の実施形態を説明する。この第四の実施形態は、上述した第三の実施形態において、入力端子と出力端子を入れ替えた構成に相当する。本実施形態は、請求項 においてn=4とした、4×4マトリクス光スイッチを構成した例であり、1×2素子12個および2×1素子12個および1×1素子8個で構成される。   Next, a fourth embodiment of the present invention will be described. The fourth embodiment corresponds to a configuration in which the input terminal and the output terminal are interchanged in the third embodiment described above. This embodiment is an example in which a 4 × 4 matrix optical switch in which n = 4 in the claims is configured, and is configured by 12 1 × 2 elements, 12 2 × 1 elements, and 8 1 × 1 elements. The

本実施形態によるマトリクス光スイッチは、単位光スイッチ素子が5段に配置され、第1段は1×2素子である第(1,1),(1,2),(1,3),(1,4)番地からなり、これらの入力計4本を該マトリクス光スイッチの入力端子とする。第2段は第(2,1),(2,4),(2,5)および(2,8)番地が1×2素子、第(2,2),(2,3),(2,6)および(2,7)番地が1×1素子である。   In the matrix optical switch according to the present embodiment, the unit optical switch elements are arranged in five stages, and the first stage is the (1, 1), (1, 2), (1, 3), (1, 2) elements. 1, 4), and these four inputs are used as input terminals of the matrix optical switch. In the second stage, the (2,1), (2,4), (2,5) and (2,8) addresses are 1 × 2 elements, the (2,2), (2,3), (2 , 6) and (2, 7) are 1 × 1 elements.

第3段は第(3,1),(3,4),(3,5)および(3,8)番地が2×1素子、第(3,2),(3,3),(3,6)および(3,7)番地が1×2素子である。第4段は第(4,1),(4,4),(4,5)および(4,8)番地が1×1素子、第(4,2),(4,3),(4,6)および(4,7)番地が2×1素子である。第5段は2×1素子である(5,1),(5,2),(5,3),(5,4)からなり、これらの出力計4本を該マトリクス光スイッチの出力端子とする。   In the third stage, the (3, 1), (3,4), (3, 5) and (3, 8) addresses are 2 × 1 elements, and the (3, 2), (3, 3), (3 , 6) and (3, 7) are 1 × 2 elements. In the fourth stage, the (4, 1), (4, 4), (4, 5) and (4, 8) addresses are 1 × 1 elements, and the (4, 2), (4, 3), (4 , 6) and (4, 7) are 2 × 1 elements. The fifth stage consists of (5,1), (5,2), (5,3), (5,4) which are 2 × 1 elements, and these four outputs are connected to the output terminals of the matrix optical switch. And

次に、それぞれの単位光スイッチ素子の接続経路を説明する。なお、上述した1×2素子および2×1素子の出力および入力をそれぞれ出力a,b、入力a,bとして説明する。   Next, the connection path of each unit optical switch element will be described. The output and input of the 1 × 2 element and 2 × 1 element described above will be described as outputs a and b and inputs a and b, respectively.

第1段においては、第(1,1)番地の出力a,bを第(2,1)および(2,2)番地の入力に、第(1,2)番地の出力a,bを第(2,3)および(2,5)番地の入力に、第(1,3)番地の出力a,bを第(2,4)および(2,6)番地の入力に、第(1,4)番地の出力a,bを第(2,7)および(2,8)番地の入力にそれぞれ接続する。   In the first stage, the outputs a and b of the (1,1) address are input to the inputs of the (2,1) and (2,2) addresses, and the outputs a and b of the (1,2) address are the first. The inputs (2,3) and (2,5) are input, and the outputs (a, b) of the (1,3) address are input to the inputs (2,4) and (2,6). 4) Address outputs a and b are connected to inputs at addresses (2, 7) and (2, 8), respectively.

第2段においては、第(2,1)番地の出力a,bをそれぞれ第(3,1)番地の入力aおよび第(3,3)番地の入力に、第(2,2)番地の出力を第(3,4)番地の入力bに、第(2,3)番地の出力を第(3,1)番地の入力aに、第(2,4)番地の出力a,bをそれぞれ第(3,2)番地の入力および第(3,4)番地の入力bに、第(2,5)番地の出力a,bをそれぞれ第(3,5)番地の入力aおよび第(3,7)番地の入力に、第(2,6)番地の出力を第(3,8)番地の入力bに、第(2,7)番地の出力を第(3,5)番地の入力aに、第(2,8)番地の出力a,bをそれぞれ第(3,6)番地の入力および第(3,8)番地の入力bにそれぞれ接続する。   In the second stage, the outputs a and b at the (2,1) address are respectively input to the input a and the (3,3) address at the (3,1) address, and at the (2,2) address. The output is input b at address (3, 4), the output at address (2, 3) is input at input a at address (3, 1), and the outputs a and b at address (2, 4) are respectively The inputs a and b at the addresses (3 and 5) and the inputs a and b at the addresses (3 and 5) are input to the inputs a and b at the addresses (3 and 5), respectively. , 7) to the input of the address, the output of the (2, 6) address to the input b of the (3, 8) address, and the output of the (2, 7) address to the input a of the (3, 5) address The outputs a and b at the (2,8) th address are connected to the input at the (3,6) th address and the input b at the (3,8) th address, respectively.

第3段においては、第(3,1)番地の出力を第(4,2)番地の入力aに、第(3,2)番地の出力a,bをそれぞれ第(4,1)番地の入力および第(4,2)番地の入力bに、第(3,3)番地の出力a,bをそれぞれ第(4,3)番地の入力aおよび第(4,4)番地の入力に、第(3,4)番地の出力を第(4,6)番地の入力aに、第(3,5)番地の出力を第(4,3)番地の入力bに、第(3,6)番地の出力a,bをそれぞれ第(4,5)番地の入力および第(4,6)番地の入力bに、第(3,7)番地の出力a,bをそれぞれ第(4,7)番地の入力aおよび第(4,8)番地の入力に、第(3,8)番地の出力を第(4,7)番地の入力bにそれぞれ接続する。   In the third stage, the output at address (3,1) is the input a at address (4,2), and the outputs a and b at address (3,2) are respectively at address (4,1). The input a and the input b at the address (4,2), the outputs a and b at the address (3,3), respectively, the input a at the address (4,3) and the input at the address (4,4), The output at address (3, 4) is input a at address (4, 6), the output at address (3, 5) is input b at address (4, 3), and (3, 6) The outputs a and b of the address are respectively input to the input of the (4, 5) address and the input b of the (4, 6) address, and the outputs a and b of the (3, 7) address are respectively (4, 7). The output at address (3, 8) is connected to the input b at address (4, 7), and the input at address a and address (4, 8).

第4段においては、第(4,1)および(4,3)番地の出力を第(5,1)番地の入力a,bに、第(4,2)および(4,5)番地の出力を第(5,2)番地の入力a,bに、第(4,4)および(4,7)番地の出力を第(5,3)番地の入力a,bに、第(4,6)および(4,8)番地の出力を第(5,4)番地の入力a,bにそれぞれ接続する。   In the fourth stage, the outputs of the addresses (4, 1) and (4, 3) are input to the inputs a and b of the address (5, 1), and the outputs of the addresses (4, 2) and (4, 5). Outputs are input to the inputs a and b at the address (5, 2), and outputs at addresses (4, 4) and (4, 7) are input to the inputs a and b at the address (5, 3). The outputs at 6) and (4, 8) are connected to inputs a and b at (5, 4).

次に、本発明における第五の実施形態を図3に基づいて説明する。この第五の実施形態は、上述した第一の実施形態において、第(4,2)番地と第(4,3)番地、第(4,6)番地と第(4,7)番地をそれぞれ入れ替えた構成に相当する。図3は本発明の請求項5においてn=4とした、4×4マトリクス光スイッチを構成した例である。本実施形態によるマトリクス光スイッチは1×2素子12個および2×1素子12個および1×1素子8個で構成される。   Next, a fifth embodiment of the present invention will be described with reference to FIG. In the fifth embodiment, the (4,2) address and the (4,3) address, the (4,6) address, and the (4,7) address in the first embodiment described above, respectively. This corresponds to the replaced configuration. FIG. 3 shows an example of a 4 × 4 matrix optical switch in which n = 4 in claim 5 of the present invention. The matrix optical switch according to the present embodiment includes 12 1 × 2 elements, 12 2 × 1 elements, and 8 1 × 1 elements.

本実施形態によるマトリクス光スイッチは、単位光スイッチ素子が5段に配置され、第1段は1×2素子である第(1,1),(1,2),(1,3),(1,4)番地からなり、これらの入力計4本を該マトリクス光スイッチの入力端子A−1,A−2,A−3,A−4とする。第2段は第(2,1),(2,4),(2,5)および(2,8)番地が1×1素子、第(2,2),(2,3),(2,6)および(2,7)番地が1×2素子である。   In the matrix optical switch according to the present embodiment, the unit optical switch elements are arranged in five stages, and the first stage is the (1, 1), (1, 2), (1, 3), (1, 2) elements. 1, 4), and these four total inputs are designated as input terminals A-1, A-2, A-3, and A-4 of the matrix optical switch. In the second stage, the (2,1), (2,4), (2,5) and (2,8) addresses are 1 × 1 elements, the (2,2), (2,3), (2 , 6) and (2, 7) are 1 × 2 elements.

第3段は第(3,1),(3,4),(3,5)および(3,8)番地が1×2素子、第(3,2),(3,3),(3,6)および(3,7)番地が2×1素子である。第4段は第(4,1),(4,4),(4,5)および(4,8)番地が2×1素子、第(4,2),(4,3),(4,6)および(4,7)番地が1×1素子である。第5段は2×1素子である(5,1),(5,2),(5,3),(5,4)からなり、これらの出力計4本を該マトリクス光スイッチの出力端子B−1,B−2,B−3,B−4とする。   In the third stage, the (3, 1), (3, 4), (3, 5) and (3, 8) addresses are 1 × 2 elements, and the (3, 2), (3, 3), (3 , 6) and (3, 7) are 2 × 1 elements. In the fourth stage, the (4,1), (4,4), (4,5) and (4,8) addresses are 2 × 1 elements, the (4,2), (4,3), (4 , 6) and (4, 7) are 1 × 1 elements. The fifth stage consists of (5,1), (5,2), (5,3), (5,4) which are 2 × 1 elements, and these four outputs are connected to the output terminals of the matrix optical switch. Let B-1, B-2, B-3, and B-4.

次に、それぞれの単位光スイッチ素子の接続経路を説明する。なお、上述した1×2素子および2×1素子の出力および入力をそれぞれ出力a,b、入力a,b(図中、上方向をa、下方向をbとする)として説明する。   Next, the connection path of each unit optical switch element will be described. The output and input of the 1 × 2 element and the 2 × 1 element described above will be described as outputs a and b and inputs a and b (in the figure, the upper direction is a and the lower direction is b), respectively.

第1段においては、第(1,1)番地の出力a,bを第(2,1)および(2,3)番地の入力に、第(1,2)番地の出力a,bを第(2,2)および(2,4)番地の入力に、第(1,3)番地の出力a,bを第(2,5)および(2,7)番地の入力に、第(1,4)番地の出力a,bを第(2,6)および(2,8)番地の入力にそれぞれ接続する。   In the first stage, outputs a and b at address (1,1) are input to addresses (2,1) and (2,3), and outputs a and b at address (1,2) are Inputs (2, 2) and (2, 4), outputs (a, b) at addresses (1, 3), inputs (2, 5,) and (2, 7), inputs (1, 4) Connect the outputs a and b of the address to the inputs of the (2, 6) and (2, 8) addresses, respectively.

第2段においては、第(2,1)番地の出力を第(3,2)番地の入力aに、第(2,2)番地の出力a,bをそれぞれ第(3,1)番地の入力aおよび第(3,2)番地の入力bに、第(2,3)番地の出力a,bをそれぞれ第(3,3)番地の入力aおよび第(3,5)番地の入力に、第(2,4)番地の出力を第(3,6)番地の入力aに、第(2,5)番地の出力を第(3,3)番地の入力bに、第(2,6)番地の出力a,bをそれぞれ第(3,4)番地の入力および第(3,6)番地の入力bに、第(2,7)番地の出力a,bをそれぞれ第(3,7)番地の入力aおよび第(3,8)番地の入力に、第(2,8)番地の出力を第(3,7)番地の入力bにそれぞれ接続する。   In the second stage, the output at address (2,1) is the input a at address (3,2), and the outputs a and b at address (2,2) are at address (3,1), respectively. The input a and the input b of the (3, 2) address, and the outputs a and b of the (2, 3) address are input to the input a of the (3, 3) address and the input of the (3, 5) address, respectively. The output at address (2,4) is input a at address (3,6), the output at address (2,5) is input b at address (3,3), and (2,6 ) Output a and b at address (3, 4) and input b at address (3, 6) and output a and b at address (2, 7) respectively (3, 7 ) The input of address a and the input of address (3, 8) are connected to the output of address (2, 8), and input b of address (3, 7).

第3段においては、第(3,1)番地の出力a,bをそれぞれ第(4,1)番地の入力aおよび第(4,2)番地の入力に、第(3,2)番地の出力を第(4,4)番地の入力aに、第(3,3)番地の出力を第(4,1)番地の入力bに、第(3,4)番地の出力a,bをそれぞれ第(4,3)番地の入力および第(4,4)番地の入力bに、第(3,5)番地の出力a,bをそれぞれ第(4,5)番地の入力aおよび第(4,6)番地の入力に、第(3,6)番地の出力を第(4,8)番地の入力aに、第(3,7)番地の出力を第(4,5)番地の入力bに、第(3,8)番地の出力a,bをそれぞれ第(4,7)番地の入力および第(4,8)番地の入力bにそれぞれ接続する。   In the third stage, the outputs a and b of the (3, 1) address are respectively input to the inputs a and (4, 2) of the (4, 1) address, and to the inputs of the (3, 2) addresses. The output is the input a at address (4, 4), the output at address (3, 3) is the input b at address (4, 1), and the outputs a and b are at address (3, 4). The outputs a and b of the (3, 5) address are respectively input to the input (4, 5) and the input (4) of the (4, 5) address. , 6) address input, (3, 6) address output to (4, 8) address input a, (3, 7) address output to (4, 5) address input b The outputs a and b at the (3, 8) address are respectively connected to the input at the (4, 7) address and the input b at the (4, 8) address.

第4段においては、第(4,1)および(4,3)番地の出力を第(5,1)番地の入力a,bに、第(4,2)および(4,5)番地の出力を第(5,2)番地の入力a,bに、第(4,4)および(4,7)番地の出力を第(5,3)番地の入力a,bに、第(4,6)および(4,8)番地の出力を第(5,4)番地の入力a,bにそれぞれ接続する。   In the fourth stage, the outputs of the addresses (4, 1) and (4, 3) are input to the inputs a and b of the address (5, 1), and the outputs of the addresses (4, 2) and (4, 5). Outputs are input to the inputs a and b at the address (5, 2), and outputs at addresses (4, 4) and (4, 7) are input to the inputs a and b at the address (5, 3). The outputs at 6) and (4, 8) are connected to inputs a and b at (5, 4).

次に、本発明における第六の実施形態を説明する。この第六の実施形態は、上述した第五の実施形態において、入力端子と出力端子を入れ替えた構成に相当する。本実施形態は、請求項6においてn=4とした、4×4マトリクス光スイッチを構成した例であり、1×2素子12個および2×1素子12個および1×1素子8個で構成される。   Next, a sixth embodiment of the present invention will be described. The sixth embodiment corresponds to a configuration in which the input terminal and the output terminal are interchanged in the fifth embodiment described above. The present embodiment is an example in which a 4 × 4 matrix optical switch in which n = 4 in claim 6 is configured, and includes 12 1 × 2 elements, 12 2 × 1 elements, and 8 1 × 1 elements. Is done.

本実施形態によるマトリクス光スイッチは、単位光スイッチ素子が5段に配置され、第1段は1×2素子である第(1,1),(1,2),(1,3),(1,4)番地からなり、これらの入力計4本を該マトリクス光スイッチの入力端子とする。第2段は第(2,1),(2,4),(2,5)および(2,8)番地が1×2素子、第(2,2),(2,3),(2,6)および(2,7)番地が1×1素子である。   In the matrix optical switch according to the present embodiment, the unit optical switch elements are arranged in five stages, and the first stage is the (1, 1), (1, 2), (1, 3), (1, 2) elements. 1, 4), and these four inputs are used as input terminals of the matrix optical switch. In the second stage, the (2,1), (2,4), (2,5) and (2,8) addresses are 1 × 2 elements, the (2,2), (2,3), (2 , 6) and (2, 7) are 1 × 1 elements.

第3段は第(3,1),(3,4),(3,5)および(3,8)番地が2×1素子、第(3,2),(3,3),(3,6)および(3,7)番地が1×2素子である。第4段は第(4,1),(4,4),(4,5)および(4,8)番地が1×1素子、第(4,2),(4,3),(4,6)および(4,7)番地が2×1素子である。第5段は2×1素子である(5,1),(5,2),(5,3),(5,4)からなり、これらの出力計4本を該マトリクス光スイッチの出力端子とする。   In the third stage, the (3, 1), (3,4), (3, 5) and (3, 8) addresses are 2 × 1 elements, and the (3, 2), (3, 3), (3 , 6) and (3, 7) are 1 × 2 elements. In the fourth stage, the (4, 1), (4, 4), (4, 5) and (4, 8) addresses are 1 × 1 elements, and the (4, 2), (4, 3), (4 , 6) and (4, 7) are 2 × 1 elements. The fifth stage consists of (5,1), (5,2), (5,3), (5,4) which are 2 × 1 elements, and these four outputs are connected to the output terminals of the matrix optical switch. And

次に、それぞれの単位光スイッチ素子の接続経路を説明する。なお、上述した1×2素子および2×1素子の出力および入力をそれぞれ出力a,b、入力a,bとして説明する。   Next, the connection path of each unit optical switch element will be described. The output and input of the 1 × 2 element and 2 × 1 element described above will be described as outputs a and b and inputs a and b, respectively.

第1段においては、第(1,1)番地の出力a,bを第(2,1)および(2,3)番地の入力に、第(1,2)番地の出力a,bを第(2,2)および(2,5)番地の入力に、第(1,3)番地の出力a,bを第(2,4)および(2,7)番地の入力に、第(1,4)番地の出力a,bを第(2,6)および(2,8)番地の入力にそれぞれ接続する。   In the first stage, outputs a and b at address (1,1) are input to addresses (2,1) and (2,3), and outputs a and b at address (1,2) are Inputs at addresses (2, 2) and (2, 5), outputs a and b at address (1, 3), inputs at addresses (2, 4) and (2, 7), 4) Address outputs a and b are connected to inputs of addresses (2, 6) and (2, 8), respectively.

第2段においては、第(2,1)番地の出力a,bをそれぞれ第(3,1)番地の入力aおよび第(3,3)番地の入力に、第(2,2)番地の出力を第(3,1)番地の入力bに、第(2,3)番地の出力を第(3,4)番地の入力aに、第(2,4)番地の出力a,bをそれぞれ第(3,2)番地の入力および第(3,4)番地の入力bに、第(2,5)番地の出力a,bをそれぞれ第(3,5)番地の入力aおよび第(3,7)番地の入力に、第(2,6)番地の出力を第(3,5)番地の入力bに、第(2,7)番地の出力を第(3,8)番地の入力aに、第(2,8)番地の出力a,bをそれぞれ第(3,6)番地の入力および第(3,8)番地の入力bにそれぞれ接続する。   In the second stage, the outputs a and b at the (2,1) address are respectively input to the inputs a and (3,3) at the (3,1) address, and the (2,2) address. The output is input b at address (3, 1), the output at address (2, 3) is input at input a at address (3, 4), and the outputs a and b at address (2, 4) are respectively The outputs a and b of the (2,5) address are respectively input to the input of the (3,2) address and the input (b) of the (3,4) address. , 7) address input, (2,6) address output to (3,5) address input b, (2,7) address output to (3,8) address a The outputs a and b at the (2,8) th address are connected to the input at the (3,6) th address and the input b at the (3,8) th address, respectively.

第3段においては、第(3,1)番地の出力を第(4,2)番地の入力aに、第(3,2)番地の出力a,bをそれぞれ第(4,1)番地の入力および第(4,2)番地の入力bに、第(3,3)番地の出力a,bをそれぞれ第(4,3)番地の入力aおよび第(4,5)番地の入力に、第(3,4)番地の出力を第(4,6)番地の入力aに、第(3,5)番地の出力を第(4,3)番地の入力bに、第(3,6)番地の出力a,bをそれぞれ第(4,4)番地の入力および第(4,6)番地の入力bに、第(3,7)番地の出力a,bをそれぞれ第(4,7)番地の入力aおよび第(4,8)番地の入力に、第(3,8)番地の出力を第(4,7)番地の入力bにそれぞれ接続する。   In the third stage, the output at address (3,1) is the input a at address (4,2), and the outputs a and b at address (3,2) are respectively at address (4,1). Input and input b of address (4,2), output a and b of address (3,3), input a of address (4,3) and input of address (4,5), respectively The output at address (3, 4) is input a at address (4, 6), the output at address (3, 5) is input b at address (4, 3), and (3, 6) Outputs a and b at the address are input to the input at address (4, 4) and (4, 6), respectively, and outputs a and b at address (3, 7) are respectively (4, 7). The output at address (3, 8) is connected to the input b at address (4, 7), to the input at address a and address (4, 8).

第4段においては、第(4,1)および(4,3)番地の出力を第(5,1)番地の入力a,bに、第(4,2)および(4,4)番地の出力を第(5,2)番地の入力a,bに、第(4,5)および(4,7)番地の出力を第(5,3)番地の入力a,bに、第(4,6)および(4,8)番地の出力を第(5,4)番地の入力a,bにそれぞれ接続する。   In the fourth stage, the outputs of the addresses (4, 1) and (4, 3) are input to the inputs a and b of the address (5, 1), and the outputs of the addresses (4, 2) and (4, 4). Outputs are input to the inputs a and b at the address (5, 2), outputs at addresses (4, 5) and (4, 7) are input to the inputs a and b at the address (5, 3). The outputs at 6) and (4, 8) are connected to inputs a and b at (5, 4).

次に、本発明における第七の実施形態を図4に基づいて説明する。この第七の実施形態は、上述した第五の実施形態において、第(2,4)番地と第(2,5)番地を入れ替えた構成に相当する。図4は本発明の請求項7においてn=4とした、4×4マトリクス光スイッチを構成した例である。本実施形態によるマトリクス光スイッチは1×2素子12個および2×1素子12個および1×1素子8個で構成される。   Next, a seventh embodiment of the present invention will be described with reference to FIG. The seventh embodiment corresponds to a configuration in which the (2, 4) address and the (2, 5) address are interchanged in the above-described fifth embodiment. FIG. 4 shows an example of a 4 × 4 matrix optical switch in which n = 4 in claim 7 of the present invention. The matrix optical switch according to the present embodiment includes 12 1 × 2 elements, 12 2 × 1 elements, and 8 1 × 1 elements.

本実施形態によるマトリクス光スイッチは、単位光スイッチ素子が5段に配置され、第1段は1×2素子である第(1,1),(1,2),(1,3),(1,4)番地からなり、これらの入力計4本を該マトリクス光スイッチの入力端子A−1,A−2,A−3,A−4とする。第2段は第(2,1),(2,4),(2,5)および(2,8)番地が1×1素子、第(2,2),(2,3),(2,6)および(2,7)番地が1×2素子である。   In the matrix optical switch according to the present embodiment, the unit optical switch elements are arranged in five stages, and the first stage is the (1, 1), (1, 2), (1, 3), (1, 2) elements. 1, 4), and these four total inputs are designated as input terminals A-1, A-2, A-3, and A-4 of the matrix optical switch. In the second stage, the (2,1), (2,4), (2,5) and (2,8) addresses are 1 × 1 elements, the (2,2), (2,3), (2 , 6) and (2, 7) are 1 × 2 elements.

第3段は第(3,1),(3,4),(3,5)および(3,8)番地が1×2素子、第(3,2),(3,3),(3,6)および(3,7)番地が2×1素子である。第4段は第(4,1),(4,4),(4,5)および(4,8)番地が2×1素子、第(4,2),(4,3),(4,6)および(4,7)番地が1×1素子である。第5段は2×1素子である(5,1),(5,2),(5,3),(5,4)からなり、これらの出力計4本を該マトリクス光スイッチの出力端子B−1,B−2,B−3,B−4とする。   In the third stage, the (3, 1), (3, 4), (3, 5) and (3, 8) addresses are 1 × 2 elements, and the (3, 2), (3, 3), (3 , 6) and (3, 7) are 2 × 1 elements. In the fourth stage, the (4,1), (4,4), (4,5) and (4,8) addresses are 2 × 1 elements, the (4,2), (4,3), (4 , 6) and (4, 7) are 1 × 1 elements. The fifth stage consists of (5,1), (5,2), (5,3), (5,4) which are 2 × 1 elements, and these four outputs are connected to the output terminals of the matrix optical switch. Let B-1, B-2, B-3, and B-4.

次に、それぞれの単位光スイッチ素子の接続経路を説明する。なお、上述した1×2素子および2×1素子の出力および入力をそれぞれ出力a,b、入力a,b(図中、上方向をa、下方向をbとする)として説明する。   Next, the connection path of each unit optical switch element will be described. The output and input of the 1 × 2 element and the 2 × 1 element described above will be described as outputs a and b and inputs a and b (in the figure, the upper direction is a and the lower direction is b), respectively.

第1段においては、第(1,1)番地の出力a,bを第(2,1)および(2,3)番地の入力に、第(1,2)番地の出力a,bを第(2,2)および(2,5)番地の入力に、第(1,3)番地の出力a,bを第(2,4)および(2,7)番地の入力に、第(1,4)番地の出力a,bを第(2,6)および(2,8)番地の入力にそれぞれ接続する。   In the first stage, outputs a and b at address (1,1) are input to addresses (2,1) and (2,3), and outputs a and b at address (1,2) are Inputs at addresses (2, 2) and (2, 5), outputs a and b at address (1, 3), inputs at addresses (2, 4) and (2, 7), 4) Address outputs a and b are connected to inputs of addresses (2, 6) and (2, 8), respectively.

第2段においては、第(2,1)番地の出力を第(3,2)番地の入力aに、第(2,2)番地の出力a,bをそれぞれ第(3,1)番地の入力および第(3,2)番地の入力bに、第(2,3)番地の出力a,bをそれぞれ第(3,3)番地の入力aおよび第(3,5)番地の入力に、第(2,4)番地の出力を第(3,3)番地の入力bに、第(2,5)番地の出力を第(3,6)番地の入力aに、第(2,6)番地の出力a,bをそれぞれ第(3,4)番地の入力および第(3,6)番地の入力bに、第(2,7)番地の出力a,bをそれぞれ第(3,7)番地の入力aおよび第(3,8)番地の入力に、第(2,8)番地の出力を第(3,7)番地の入力bにそれぞれ接続する。   In the second stage, the output at address (2,1) is the input a at address (3,2), and the outputs a and b at address (2,2) are at address (3,1), respectively. The input and the input b of the (3, 2) address, the outputs a and b of the (2, 3) address, respectively, the input a of the (3, 3) address and the input of the (3, 5) address, The output at address (2,4) is input b at address (3,3), the output at address (2,5) is input a at address (3,6), and (2,6) The outputs a and b of the address are respectively input to the input of the (3, 4) address and the input b of the (3, 6) address, and the outputs a and b of the (2, 7) address are respectively (3, 7). The input at address (a) and address (3, 8) is connected to the input at address (2, 8) and input b at address (3, 7).

第3段においては、第(3,1)番地の出力a,bをそれぞれ第(4,1)番地の入力aおよび第(4,2)番地の入力に、第(3,2)番地の出力を第(4,4)番地の入力aに、第(3,3)番地の出力を第(4,1)番地の入力bに、第(3,4)番地の出力a,bをそれぞれ第(4,3)番地の入力および第(4,4)番地の入力bに、第(3,5)番地の出力a,bをそれぞれ第(4,5)番地の入力aおよび第(4,6)番地の入力に、第(3,6)番地の出力を第(4,8)番地の入力aに、第(3,7)番地の出力を第(4,5)番地の入力bに、第(3,8)番地の出力a,bをそれぞれ第(4,7)番地の入力および第(4,8)番地の入力bにそれぞれ接続する。   In the third stage, the outputs a and b of the (3, 1) address are respectively input to the inputs a and (4, 2) of the (4, 1) address, and to the inputs of the (3, 2) addresses. The output is the input a at address (4, 4), the output at address (3, 3) is the input b at address (4, 1), and the outputs a and b are at address (3, 4). The outputs a and b of the (3, 5) address are respectively input to the input (4, 5) and the input (4) of the (4, 5) address. , 6) address input, (3, 6) address output to (4, 8) address input a, (3, 7) address output to (4, 5) address input b The outputs a and b at the (3, 8) address are respectively connected to the input at the (4, 7) address and the input b at the (4, 8) address.

第4段においては、第(4,1)および(4,3)番地の出力を第(5,1)番地の入力a,bに、第(4,2)および(4,5)番地の出力を第(5,2)番地の入力a,bに、第(4,4)および(4,7)番地の出力を第(5,3)番地の入力a,bに、第(4,6)および(4,8)番地の出力を第(5,4)番地の入力a,bにそれぞれ接続する。   In the fourth stage, the outputs of the addresses (4, 1) and (4, 3) are input to the inputs a and b of the address (5, 1), and the outputs of the addresses (4, 2) and (4, 5). Outputs are input to the inputs a and b at the address (5, 2), and outputs at addresses (4, 4) and (4, 7) are input to the inputs a and b at the address (5, 3). The outputs at 6) and (4, 8) are connected to inputs a and b at (5, 4).

次に、本発明における第八の実施形態を説明する。この第八の実施形態は、上述した第七の実施形態において、入力端子と出力端子を入れ替えた構成に相当する。本実施形態は、請求項8においてn=4とした、4×4マトリクス光スイッチを構成した例であり、1×2素子12個および2×1素子12個および1×1素子8個で構成される。   Next, an eighth embodiment of the present invention will be described. The eighth embodiment corresponds to a configuration in which the input terminal and the output terminal are interchanged in the seventh embodiment described above. The present embodiment is an example in which a 4 × 4 matrix optical switch in which n = 4 in claim 8 is configured, and includes 12 1 × 2 elements, 12 2 × 1 elements, and 8 1 × 1 elements. Is done.

本実施形態によるマトリクス光スイッチは、単位光スイッチ素子が5段に配置され、第1段は1×2素子である第(1,1),(1,2),(1,3),(1,4)番地からなり、これらの入力計4本を該マトリクス光スイッチの入力端子とする。第2段は第(2,1),(2,4),(2,5)および(2,8)番地が1×2素子、第(2,2),(2,3),(2,6)および(2,7)番地が1×1素子である。   In the matrix optical switch according to the present embodiment, the unit optical switch elements are arranged in five stages, and the first stage is the (1, 1), (1, 2), (1, 3), (1, 2) elements. 1, 4), and these four inputs are used as input terminals of the matrix optical switch. In the second stage, the (2,1), (2,4), (2,5) and (2,8) addresses are 1 × 2 elements, the (2,2), (2,3), (2 , 6) and (2, 7) are 1 × 1 elements.

第3段は第(3,1),(3,4),(3,5)および(3,8)番地が2×1素子、第(3,2),(3,3),(3,6)および(3,7)番地が1×2素子である。第4段は第(4,1),(4,4),(4,5)および(4,8)番地が1×1素子、第(4,2),(4,3),(4,6)および(4,7)番地が2×1素子である。第5段は2×1素子である(5,1),(5,2),(5,3),(5,4)からなり、これらの出力計4本を該マトリクス光スイッチの出力端子とする。   In the third stage, the (3, 1), (3,4), (3, 5) and (3, 8) addresses are 2 × 1 elements, and the (3, 2), (3, 3), (3 , 6) and (3, 7) are 1 × 2 elements. In the fourth stage, the (4, 1), (4, 4), (4, 5) and (4, 8) addresses are 1 × 1 elements, and the (4, 2), (4, 3), (4 , 6) and (4, 7) are 2 × 1 elements. The fifth stage consists of (5,1), (5,2), (5,3), (5,4) which are 2 × 1 elements, and these four outputs are connected to the output terminals of the matrix optical switch. And

次に、それぞれの単位光スイッチ素子の接続経路を説明する。なお、上述した1×2素子および2×1素子の出力および入力をそれぞれ出力a,b、入力a,bとして説明する。   Next, the connection path of each unit optical switch element will be described. The output and input of the 1 × 2 element and 2 × 1 element described above will be described as outputs a and b and inputs a and b, respectively.

第1段においては、第(1,1)番地の出力a,bを第(2,1)および(2,3)番地の入力に、第(1,2)番地の出力a,bを第(2,2)および(2,5)番地の入力に、第(1,3)番地の出力a,bを第(2,4)および(2,7)番地の入力に、第(1,4)番地の出力a,bを第(2,6)および(2,8)番地の入力にそれぞれ接続する。   In the first stage, outputs a and b at address (1,1) are input to addresses (2,1) and (2,3), and outputs a and b at address (1,2) are Inputs at addresses (2, 2) and (2, 5), outputs a and b at address (1, 3), inputs at addresses (2, 4) and (2, 7), 4) Address outputs a and b are connected to inputs of addresses (2, 6) and (2, 8), respectively.

第2段においては、第(2,1)番地の出力a,bをそれぞれ第(3,1)番地の入力aおよび第(3,3)番地の入力に、第(2,2)番地の出力を第(3,1)番地の入力bに、第(2,3)番地の出力を第(3,4)番地の入力aに、第(2,4)番地の出力a,bをそれぞれ第(3,2)番地の入力および第(3,4)番地の入力bに、第(2,5)番地の出力a,bをそれぞれ第(3,5)番地の入力aおよび第(3,7)番地の入力に、第(2,6)番地の出力を第(3,5)番地の入力bに、第(2,7)番地の出力を第(3,8)番地の入力aに、第(2,8)番地の出力a,bをそれぞれ第(3,6)番地の入力および第(3,8)番地の入力bにそれぞれ接続する。   In the second stage, the outputs a and b at the (2,1) address are respectively input to the inputs a and (3,3) at the (3,1) address, and the (2,2) address. The output is input b at address (3, 1), the output at address (2, 3) is input at input a at address (3, 4), and the outputs a and b at address (2, 4) are respectively The outputs a and b of the (2,5) address are respectively input to the input of the (3,2) address and the input (b) of the (3,4) address. , 7) address input, (2,6) address output to (3,5) address input b, (2,7) address output to (3,8) address a The outputs a and b at the (2,8) th address are connected to the input at the (3,6) th address and the input b at the (3,8) th address, respectively.

第3段においては、第(3,1)番地の出力を第(4,2)番地の入力aに、第(3,2)番地の出力a,bをそれぞれ第(4,1)番地の入力および第(4,2)番地の入力bに、第(3,3)番地の出力a,bをそれぞれ第(4,3)番地の入力aおよび第(4,4)番地の入力に、第(3,4)番地の出力を第(4,6)番地の入力aに、第(3,5)番地の出力を第(4,3)番地の入力bに、第(3,6)番地の出力a,bをそれぞれ第(4,5)番地の入力および第(4,6)番地の入力bに、第(3,7)番地の出力a,bをそれぞれ第(4,7)番地の入力aおよび第(4,8)番地の入力に、第(3,8)番地の出力を第(4,7)番地の入力bにそれぞれ接続する。   In the third stage, the output at address (3,1) is the input a at address (4,2), and the outputs a and b at address (3,2) are respectively at address (4,1). The input a and the input b at the address (4,2), the outputs a and b at the address (3,3), respectively, the input a at the address (4,3) and the input at the address (4,4), The output at address (3, 4) is input a at address (4, 6), the output at address (3, 5) is input b at address (4, 3), and (3, 6) The outputs a and b of the address are respectively input to the input of the (4, 5) address and the input b of the (4, 6) address, and the outputs a and b of the (3, 7) address are respectively (4, 7). The output at address (3, 8) is connected to the input b at address (4, 7), and the input at address a and address (4, 8).

第4段においては、第(4,1)および(4,3)番地の出力を第(5,1)番地の入力a,bに、第(4,2)および(4,5)番地の出力を第(5,2)番地の入力a,bに、第(4,4)および(4,7)番地の出力を第(5,3)番地の入力a,bに、第(4,6)および(4,8)番地の出力を第(5,4)番地の入力a,bにそれぞれ接続する。   In the fourth stage, the outputs of the addresses (4, 1) and (4, 3) are input to the inputs a and b of the address (5, 1), and the outputs of the addresses (4, 2) and (4, 5). Outputs are input to the inputs a and b at the address (5, 2), and outputs at addresses (4, 4) and (4, 7) are input to the inputs a and b at the address (5, 3). The outputs at 6) and (4, 8) are connected to inputs a and b at (5, 4).

次に、本発明における第九の実施形態を図5に基づいて説明する。図5は本発明の請求項9においてn=5とした、5×5マトリクス光スイッチを構成した例である。本実施形態によるマトリクス光スイッチは1×2素子20個および2×1素子20個および1×1素子10個で構成される。   Next, a ninth embodiment of the present invention will be described with reference to FIG. FIG. 5 shows an example of a 5 × 5 matrix optical switch in which n = 5 in claim 9 of the present invention. The matrix optical switch according to this embodiment includes 20 1 × 2 elements, 20 2 × 1 elements, and 10 1 × 1 elements.

本実施形態によるマトリクス光スイッチは、単位光スイッチ素子が6段に配置され、第1段は1×2素子である第(1,1),(1,2),(1,3),(1,4),(1,5)番地からなり、これらの入力計5本を該マトリクス光スイッチの入力端子A−1,A−2,A−3,A−4,A−5とする。第2段は第(2,1),(2,4),(2,5),(2,8)および(2,9)番地が1×1素子、第(2,2),(2,3),(2,6),(2,7)および(2,10)番地が1×2素子である。   In the matrix optical switch according to the present embodiment, the unit optical switch elements are arranged in six stages, and the first stage is 1 × 2 elements (1, 1), (1, 2), (1, 3), ( 1, 4) and (1, 5) addresses, and these five inputs are the input terminals A-1, A-2, A-3, A-4, and A-5 of the matrix optical switch. In the second stage, the (2,1), (2,4), (2,5), (2,8) and (2,9) addresses are 1 × 1 elements, and the (2,2), (2 , 3), (2, 6), (2, 7) and (2, 10) are 1 × 2 elements.

第3段は第(3,1),(3,4),(3,5),(3,8)および(3,9)番地が1×2素子、第(3,2),(3,3),(3,6),(3,7)および(3,10)番地が2×1素子である。第4段は第(4,1),(4,4),(4,5),(4,8)および(4,9)番地が2×1素子、第(4,2),(4,3),(4,6),(4,7)および(4,10)番地が1×2素子である。   In the third stage, the (3, 1), (3,4), (3, 5), (3, 8) and (3, 9) addresses are 1 × 2 elements, and the (3, 2), (3 , 3), (3, 6), (3, 7) and (3, 10) are 2 × 1 elements. In the fourth stage, the (4, 1), (4, 4), (4, 5), (4, 8) and (4, 9) addresses are 2 × 1 elements, and the (4, 2), (4 , 3), (4, 6), (4, 7) and (4, 10) are 1 × 2 elements.

第5段は第(5,1),(5,4),(5,5),(5,8)および(5,9)番地が1×1素子、第(5,2),(5,3),(5,6),(5,7)および(5,10)番地が2×1素子である。第6段は2×1素子である(6,1),(6,2),(6,3),(6,4),(6,5)からなり、これらの出力計5本を該マトリクス光スイッチの出力端子B−1,B−2,B−3,B−4,B−5とする。   In the fifth stage, the (5, 1), (5, 4), (5, 5), (5, 8) and (5, 9) addresses are 1 × 1 elements, and the (5, 2), (5 , 3), (5, 6), (5, 7) and (5, 10) are 2 × 1 elements. The sixth stage is composed of (6, 1), (6, 2), (6, 3), (6, 4), (6, 5) which are 2 × 1 elements, The output terminals B-1, B-2, B-3, B-4, and B-5 of the matrix optical switch are used.

次に、それぞれの単位光スイッチ素子の接続経路を説明する。なお、上述した1×2素子および2×1素子の出力および入力をそれぞれ出力a,b、入力a,b(図中、上方向をa、下方向をbとする)として説明する。   Next, the connection path of each unit optical switch element will be described. The output and input of the 1 × 2 element and the 2 × 1 element described above will be described as outputs a and b and inputs a and b (in the figure, the upper direction is a and the lower direction is b), respectively.

第1段においては、第(1,1)番地の出力a,bを第(2,1)および(2,3)番地の入力に、第(1,2)番地の出力a,bを第(2,2)および(2,4)番地の入力に、第(1,3)番地の出力a,bを第(2,5)および(2,7)番地の入力に、第(1,4)番地の出力a,bを第(2,6)および(2,8)番地の入力に、第(1,5)番地の出力a,bを第(2,9)および(2,10)番地の入力にそれぞれ接続する。   In the first stage, outputs a and b at address (1,1) are input to addresses (2,1) and (2,3), and outputs a and b at address (1,2) are Inputs (2, 2) and (2, 4), outputs (a, b) at addresses (1, 3), inputs (2, 5,) and (2, 7), inputs (1, 4) Address outputs a and b are input to addresses (2, 6) and (2, 8), and outputs a and b at address (1, 5) are (2, 9) and (2, 10). ) Connect to each address input.

第2段においては、第(2,1)番地の出力を第(3,2)番地の入力aに、第(2,2)番地の出力a,bをそれぞれ第(3,1)番地の入力および第(3,2)番地の入力bに、第(2,3)番地の出力a,bをそれぞれ第(3,3)番地の入力aおよび第(3,5)番地の入力に、第(2,4)番地の出力を第(3,6)番地の入力aに、第(2,5)番地の出力を第(3,3)番地の入力bに、第(2,6)番地の出力a,bをそれぞれ第(3,4)番地の入力および第(3,6)番地の入力bに、第(2,7)番地の出力a,bをそれぞれ第(3,7)番地の入力aおよび第(3,9)番地の入力に、第(2,8)番地の出力を第(3,10)番地の入力aに、第(2,9)番地の出力を第(3,7)番地の入力bに、第(2,10)番地の出力a,bをそれぞれ第(3,8)番地の入力および第(3,10)番地の入力bにそれぞれ接続する。   In the second stage, the output at address (2,1) is the input a at address (3,2), and the outputs a and b at address (2,2) are at address (3,1), respectively. The input and the input b of the (3, 2) address, the outputs a and b of the (2, 3) address are input to the input a of the (3, 3) address and the input of the (3, 5) address, respectively. The output at address (2,4) is input a at address (3,6), the output at address (2,5) is input b at address (3,3), and (2,6) The outputs a and b of the address are respectively input to the input of the (3, 4) address and the input b of the (3, 6) address, and the outputs a and b of the (2, 7) address are respectively (3, 7). Address input a and address (3, 9), input of address (2, 8), input a of address (3, 10), output of address (2, 9) The input b of the address (3, 7) is the second (2,1). ) Output a street address, a b, respectively (3,8) address of the input and the (3, 10) is connected to the input b of the address.

第3段においては、第(3,1)番地の出力a,bをそれぞれ第(4,1)番地の入力aおよび第(4,3)番地の入力に、第(3,2)番地の出力を第(4,4)番地の入力aに、第(3,3)番地の出力を第(4,1)番地の入力bに、第(3,4)番地の出力a,bをそれぞれ第(4,2)番地の入力および第(4,4)番地の入力bに、第(3,5)番地の出力a,bをそれぞれ第(4,5)番地の入力aおよび第(4,7)番地の入力に、第(3,6)番地の出力を第(4,8)番地の入力aに、第(3,7)番地の出力を第(4,5)番地の入力bに、第(3,8)番地の出力a,bをそれぞれ第(4,6)番地の入力および第(4,8)番地の入力bに、第(3,9)番地の出力a,bをそれぞれ第(4,9)番地の入力aおよび第(4,10)番地の入力に、第(3,10)番地の出力を第(4,9)番地の入力bにそれぞれ接続する。   In the third stage, the outputs a and b at the (3, 1) address are respectively input to the inputs a and (4, 3) at the (4, 1) address, and at the (3, 2) address. Output is input a at address (4,4), output at address (3,3) is input at input b at address (4,1), and outputs a and b at address (3,4) are respectively The outputs a and b of the (3, 5) address are respectively input to the input (4, 5) and the input (4) of the (4, 5) address. , 7) address input, (3, 6) address output to (4, 8) address input a, (3, 7) address output to (4, 5) address b The outputs a and b at the (3, 8) address are respectively input to the input at the (4, 6) address and the input b at the (4, 8) address, and the outputs a and b at the (3, 9) address. Are input to address (4, 9) respectively. To the input of the beauty first (4,10) address, connects the outputs of the first (3,10) address to the input b of the (4,9) address.

第4段においては、第(4,1)番地の出力を第(5,2)番地の入力aに、第(4,2)番地の出力a,bをそれぞれ第(5,1)番地の入力および第(5,2)番地の入力bに、第(4,3)番地の出力a,bをそれぞれ第(5,3)番地の入力aおよび第(5,5)番地の入力に、第(4,4)番地の出力を第(5,6)番地の入力aに、第(4,5)番地の出力を第(5,3)番地の入力bに、第(4,6)番地の出力a,bをそれぞれ第(5,4)番地の入力および第(5,6)番地の入力bに、第(4,7)番地の出力a,bをそれぞれ第(5,7)番地の入力aおよび第(5,9)番地の入力に、第(4,8)番地の出力を第(5,10)番地の入力aに、第(4,9)番地の出力を第(5,7)番地の入力bに、第(4,10)番地の出力a,bをそれぞれ第(5,8)番地の入力および第(5,10)番地の入力bにそれぞれ接続する。   In the fourth stage, the output at address (4,1) is the input a at address (5,2), and the outputs a and b at address (4,2) are at address (5,1), respectively. The input and the input b at the address (5,2), the outputs a and b at the address (4,3), the input a at the address (5,3) and the input at the address (5,5), respectively. The output at address (4,4) is input a at address (5,6), the output at address (4,5) is input b at address (5,3), and (4,6) The outputs a and b of the address are respectively input to the input of the (5, 4) address and the input b of the (5, 6) address, and the outputs a and b of the (4, 7) address are respectively (5, 7). Address input a and address (5, 9), input (4, 8), output (5, 10) to input a, (4, 9) output ( The (4,1) is input to the input b of the address 5,7). ) Output a street address, b respectively second (5,8) inputs and first (5, 10 address) is connected to the input b of the address.

第5段においては、第(5,1)および(5,3)番地の出力を第(6,1)番地の入力a,bに、第(5,2)および(5,4)番地の出力を第(6,2)番地の入力a,bに、第(5,5)および(5,7)番地の出力を第(6,3)番地の入力a,bに、第(5,6)および(5,8)番地の出力を第(6,4)番地の入力a,bに、第(5,9)および(5,10)番地の出力を第(6,5)番地の入力a,bにそれぞれ接続する。   In the fifth stage, the outputs of the addresses (5, 1) and (5, 3) are input to the inputs a and b of the address (6, 1), and the outputs of the addresses (5, 2) and (5, 4). Outputs are input to the inputs a and b at the address (6, 2), outputs at addresses (5, 5) and (5, 7) are input to the inputs a and b at the address (6, 3). 6) and (5,8) outputs to the (6,4) address inputs a and b, and (5,9) and (5,10) outputs to the (6,5) address. Connect to inputs a and b respectively.

次に、本発明における第十の実施形態を図6に基づいて説明する。この第十の実施形態は、上述した第九の実施形態において、第(5,4)番地と第(5,5)番地、第(5,8)番地と第(5,9)番地を入れ替えた構成に相当する。図6は本発明の請求項10においてn=5とした、5×5マトリクス光スイッチを構成した例である。本実施形態によるマトリクス光スイッチは1×2素子20個および2×1素子20個および1×1素子10個で構成される。   Next, a tenth embodiment of the present invention will be described with reference to FIG. In the tenth embodiment, the (5, 4) address and the (5, 5) address, and the (5, 8) address and the (5, 9) address are exchanged in the ninth embodiment described above. This corresponds to the configuration. FIG. 6 shows an example of a 5 × 5 matrix optical switch in which n = 5 in claim 10 of the present invention. The matrix optical switch according to this embodiment includes 20 1 × 2 elements, 20 2 × 1 elements, and 10 1 × 1 elements.

本実施形態によるマトリクス光スイッチは、単位光スイッチ素子が6段に配置され、第1段は1×2素子である第(1,1),(1,2),(1,3),(1,4),(1,5)番地からなり、これらの入力計5本を該マトリクス光スイッチの入力端子A−1,A−2,A−3,A−4,A−5とする。第2段は第(2,1),(2,4),(2,5),(2,8)および(2,9)番地が1×1素子、第(2,2),(2,3),(2,6),(2,7)および(2,10)番地が1×2素子である。   In the matrix optical switch according to the present embodiment, the unit optical switch elements are arranged in six stages, and the first stage is 1 × 2 elements (1, 1), (1, 2), (1, 3), ( 1, 4) and (1, 5) addresses, and these five inputs are the input terminals A-1, A-2, A-3, A-4, and A-5 of the matrix optical switch. In the second stage, the (2,1), (2,4), (2,5), (2,8) and (2,9) addresses are 1 × 1 elements, and the (2,2), (2 , 3), (2, 6), (2, 7) and (2, 10) are 1 × 2 elements.

第3段は第(3,1),(3,4),(3,5),(3,8)および(3,9)番地が1×2素子、第(3,2),(3,3),(3,6),(3,7)および(3,10)番地が2×1素子である。第4段は第(4,1),(4,4),(4,5),(4,8)および(4,9)番地が2×1素子、第(4,2),(4,3),(4,6),(4,7)および(4,10)番地が1×2素子である。   In the third stage, the (3, 1), (3,4), (3, 5), (3, 8) and (3, 9) addresses are 1 × 2 elements, and the (3, 2), (3 , 3), (3, 6), (3, 7) and (3, 10) are 2 × 1 elements. In the fourth stage, the (4, 1), (4, 4), (4, 5), (4, 8) and (4, 9) addresses are 2 × 1 elements, and the (4, 2), (4 , 3), (4, 6), (4, 7) and (4, 10) are 1 × 2 elements.

第5段は第(5,1),(5,4),(5,5),(5,8)および(5,9)番地が1×1素子、第(5,2),(5,3),(5,6),(5,7)および(5,10)番地が2×1素子である。第6段は2×1素子である(6,1),(6,2),(6,3),(6,4),(6,5)からなり、これらの出力計5本を該マトリクス光スイッチの出力端子B−1,B−2,B−3,B−4,B−5とする。   In the fifth stage, the (5, 1), (5, 4), (5, 5), (5, 8) and (5, 9) addresses are 1 × 1 elements, and the (5, 2), (5 , 3), (5, 6), (5, 7) and (5, 10) are 2 × 1 elements. The sixth stage consists of (6,1), (6,2), (6,3), (6,4), (6,5), which are 2 × 1 elements, The output terminals B-1, B-2, B-3, B-4, and B-5 of the matrix optical switch are used.

次に、それぞれの単位光スイッチ素子の接続経路を説明する。なお、上述した1×2素子および2×1素子の出力および入力をそれぞれ出力a,b、入力a,b(図中、上方向をa、下方向をbとする)として説明する。   Next, the connection path of each unit optical switch element will be described. The output and input of the 1 × 2 element and the 2 × 1 element described above will be described as outputs a and b and inputs a and b (in the drawing, the upper direction is a and the lower direction is b), respectively.

第1段においては、第(1,1)番地の出力a,bを第(2,1)および(2,3)番地の入力に、第(1,2)番地の出力a,bを第(2,2)および(2,4)番地の入力に、第(1,3)番地の出力a,bを第(2,5)および(2,7)番地の入力に、第(1,4)番地の出力a,bを第(2,6)および(2,8)番地の入力に、第(1,5)番地の出力a,bを第(2,9)および(2,10)番地の入力にそれぞれ接続する。   In the first stage, outputs a and b at address (1,1) are input to addresses (2,1) and (2,3), and outputs a and b at address (1,2) are Inputs (2, 2) and (2, 4), outputs (a, b) at addresses (1, 3), inputs (2, 5,) and (2, 7), inputs (1, 4) Address outputs a and b are input to addresses (2, 6) and (2, 8), and outputs a and b at address (1, 5) are (2, 9) and (2, 10). ) Connect to each address input.

第2段においては、第(2,1)番地の出力を第(3,2)番地の入力aに、第(2,2)番地の出力a,bをそれぞれ第(3,1)番地の入力および第(3,2)番地の入力bに、第(2,3)番地の出力a,bをそれぞれ第(3,3)番地の入力aおよび第(3,5)番地の入力に、第(2,4)番地の出力を第(3,6)番地の入力aに、第(2,5)番地の出力を第(3,3)番地の入力bに、第(2,6)番地の出力a,bをそれぞれ第(3,4)番地の入力および第(3,6)番地の入力bに、第(2,7)番地の出力a,bをそれぞれ第(3,7)番地の入力aおよび第(3,9)番地の入力に、第(2,8)番地の出力を第(3,10)番地の入力aに、第(2,9)番地の出力を第(3,7)番地の入力bに、第(2,10)番地の出力a,bをそれぞれ第(3,8)番地の入力および第(3,10)番地の入力bにそれぞれ接続する。   In the second stage, the output at address (2,1) is the input a at address (3,2), and the outputs a and b at address (2,2) are at address (3,1), respectively. The input and the input b of the (3, 2) address, the outputs a and b of the (2, 3) address are input to the input a of the (3, 3) address and the input of the (3, 5) address, respectively. The output at address (2,4) is input a at address (3,6), the output at address (2,5) is input b at address (3,3), and (2,6) The outputs a and b of the address are respectively input to the input of the (3, 4) address and the input b of the (3, 6) address, and the outputs a and b of the (2, 7) address are respectively (3, 7). Address input a and address (3, 9), input of address (2, 8), input a of address (3, 10), output of address (2, 9) The input b of the address (3, 7) is the second (2,1). ) Output a street address, a b, respectively (3,8) address of the input and the (3, 10) is connected to the input b of the address.

第3段においては、第(3,1)番地の出力a,bをそれぞれ第(4,1)番地の入力aおよび第(4,3)番地の入力に、第(3,2)番地の出力を第(4,4)番地の入力aに、第(3,3)番地の出力を第(4,1)番地の入力bに、第(3,4)番地の出力a,bをそれぞれ第(4,2)番地の入力および第(4,4)番地の入力bに、第(3,5)番地の出力a,bをそれぞれ第(4,5)番地の入力aおよび第(4,7)番地の入力に、第(3,6)番地の出力を第(4,8)番地の入力aに、第(3,7)番地の出力を第(4,5)番地の入力bに、第(3,8)番地の出力a,bをそれぞれ第(4,6)番地の入力および第(4,8)番地の入力bに、第(3,9)番地の出力a,bをそれぞれ第(4,9)番地の入力aおよび第(4,10)番地の入力に、第(3,10)番地の出力を第(4,9)番地の入力bにそれぞれ接続する。   In the third stage, the outputs a and b at the (3, 1) address are respectively input to the inputs a and (4, 3) at the (4, 1) address, and at the (3, 2) address. Output is input a at address (4,4), output at address (3,3) is input at input b at address (4,1), and outputs a and b at address (3,4) are respectively The outputs a and b of the (3, 5) address are respectively input to the input (4, 5) and the input (4) of the (4, 5) address. , 7) address input, (3, 6) address output to (4, 8) address input a, (3, 7) address output to (4, 5) address b The outputs a and b at the (3, 8) address are respectively input to the input at the (4, 6) address and the input b at the (4, 8) address, and the outputs a and b at the (3, 9) address. Are input to address (4, 9) respectively. To the input of the beauty first (4,10) address, connects the outputs of the first (3,10) address to the input b of the (4,9) address.

第4段においては、第(4,1)番地の出力を第(5,2)番地の入力aに、第(4,2)番地の出力a,bをそれぞれ第(5,1)番地の入力および第(5,2)番地の入力bに、第(4,3)番地の出力a,bをそれぞれ第(5,3)番地の入力aおよび第(5,4)番地の入力に、第(4,4)番地の出力を第(5,6)番地の入力aに、第(4,5)番地の出力を第(5,3)番地の入力bに、第(4,6)番地の出力a,bをそれぞれ第(5,5)番地の入力および第(5,6)番地の入力bに、第(4,7)番地の出力a,bをそれぞれ第(5,7)番地の入力aおよび第(5,8)番地の入力に、第(4,8)番地の出力を第(5,10)番地の入力aに、第(4,9)番地の出力を第(5,7)番地の入力bに、第(4,10)番地の出力a,bをそれぞれ第(5,9)番地の入力および第(5,10)番地の入力bにそれぞれ接続する。   In the fourth stage, the output at address (4,1) is input a at address (5,2) and output a and b at address (4,2) is at address (5,1). The input and the input b of the (5,2) address, the outputs a and b of the (4,3) address, respectively, the input a of the (5,3) address and the input of the (5,4) address, The output at address (4,4) is input a at address (5,6), the output at address (4,5) is input b at address (5,3), and (4,6) The outputs a and b of the address are respectively input to the input b of the (5, 5) address and the input b of the (5, 6) address, and the outputs a and b of the (4, 7) address are respectively (5, 7). Address input a and address (5,8), input of address (4,8), input a of address (5,10), output of address (4,9) ( The (4,1) is input to the input b of address 5,7) ) Output a street address, b respectively first (5,9) inputs and first (5, 10 address) is connected to the input b of the address.

第5段においては、第(5,1)および(5,3)番地の出力を第(6,1)番地の入力a,bに、第(5,2)および(5,5)番地の出力を第(6,2)番地の入力a,bに、第(5,4)および(5,7)番地の出力を第(6,3)番地の入力a,bに、第(5,6)および(5,9)番地の出力を第(6,4)番地の入力a,bに、第(5,8)および(5,10)番地の出力を第(6,5)番地の入力a,bにそれぞれ接続する。   In the fifth stage, the outputs of the addresses (5, 1) and (5, 3) are input to the inputs a and b of the address (6, 1), and the outputs of the addresses (5, 2) and (5, 5). Outputs are input to the inputs a and b of the (6, 2) address, outputs of the (5, 4) and (5, 7) addresses are input to the inputs a and b of the (6, 3) address, 6) and (5, 9) outputs to the (6, 4) address inputs a and b, and (5, 8) and (5, 10) outputs to the (6, 5) addresses. Connect to inputs a and b respectively.

次に、本発明における第十一の実施形態を説明する。この第十一の実施形態は、上述した第十の実施形態において、入力端子と出力端子を入れ替えた構成に相当する。本実施形態は、請求項11においてn=5とした、5×5マトリクス光スイッチを構成した例であり、1×2素子20個および2×1素子20個および1×1素子10個で構成される。   Next, an eleventh embodiment of the present invention will be described. The eleventh embodiment corresponds to a configuration in which the input terminal and the output terminal are interchanged in the tenth embodiment described above. This embodiment is an example in which a 5 × 5 matrix optical switch in which n = 5 in claim 11 is configured, and includes 20 1 × 2 elements, 20 2 × 1 elements, and 10 1 × 1 elements. Is done.

本実施形態によるマトリクス光スイッチは、単位光スイッチ素子が6段に配置され、第1段は1×2素子である第(1,1),(1,2),(1,3),(1,4),(1,5)番地からなり、これらの入力計5本を該マトリクス光スイッチの入力端子とする。第2段は第(2,1),(2,4),(2,5),(2,8)および(2,9)番地が1×1素子、第(2,2),(2,3),(2,6),(2,7)および(2,10)番地が1×2素子である。   In the matrix optical switch according to the present embodiment, the unit optical switch elements are arranged in six stages, and the first stage is 1 × 2 elements (1, 1), (1, 2), (1, 3), ( 1, 4) and (1, 5) addresses, and these five inputs are used as input terminals of the matrix optical switch. In the second stage, the (2,1), (2,4), (2,5), (2,8) and (2,9) addresses are 1 × 1 elements, and the (2,2), (2 , 3), (2, 6), (2, 7) and (2, 10) are 1 × 2 elements.

第3段は第(3,1),(3,4),(3,5),(3,8)および(3,9)番地が1×2素子、第(3,2),(3,3),(3,6),(3,7)および(3,10)番地が2×1素子である。第4段は第(4,1),(4,4),(4,5),(4,8)および(4,9)番地が2×1素子、第(4,2),(4,3),(4,6),(4,7)および(4,10)番地が1×2素子である。   In the third stage, the (3, 1), (3,4), (3, 5), (3, 8) and (3, 9) addresses are 1 × 2 elements, and the (3, 2), (3 , 3), (3, 6), (3, 7) and (3, 10) are 2 × 1 elements. In the fourth stage, the (4, 1), (4, 4), (4, 5), (4, 8) and (4, 9) addresses are 2 × 1 elements, and the (4, 2), (4 , 3), (4, 6), (4, 7) and (4, 10) are 1 × 2 elements.

第5段は第(5,1),(5,4),(5,5),(5,8)および(5,9)番地が1×1素子、第(5,2),(5,3),(5,6),(5,7)および(5,10)番地が2×1素子である。第6段は2×1素子である(6,1),(6,2),(6,3),(6,4),(6,5)からなり、これらの出力計5本を該マトリクス光スイッチの出力端子とする。   In the fifth stage, the (5, 1), (5, 4), (5, 5), (5, 8) and (5, 9) addresses are 1 × 1 elements, and the (5, 2), (5 , 3), (5, 6), (5, 7) and (5, 10) are 2 × 1 elements. The sixth stage is composed of (6, 1), (6, 2), (6, 3), (6, 4), (6, 5) which are 2 × 1 elements, The output terminal of the matrix optical switch.

次に、それぞれの単位光スイッチ素子の接続経路を説明する。なお、上述した1×2素子および2×1素子の出力および入力をそれぞれ出力a,b、入力a,bとして説明する。   Next, the connection path of each unit optical switch element will be described. The output and input of the 1 × 2 element and 2 × 1 element described above will be described as outputs a and b and inputs a and b, respectively.

第1段においては、第(1,1)番地の出力a,bを第(2,1)および(2,3)番地の入力に、第(1,2)番地の出力a,bを第(2,2)および(2,5)番地の入力に、第(1,3)番地の出力a,bを第(2,4)および(2,7)番地の入力に、第(1,4)番地の出力a,bを第(2,6)および(2,9)番地の入力に、第(1,5)番地の出力a,bを第(2,8)および(2,10)番地の入力にそれぞれ接続する。   In the first stage, outputs a and b at address (1,1) are input to addresses (2,1) and (2,3), and outputs a and b at address (1,2) are Inputs at addresses (2, 2) and (2, 5), outputs a and b at address (1, 3), inputs at addresses (2, 4) and (2, 7), 4) Address outputs a and b are input to addresses (2, 6) and (2, 9), and outputs a and b at address (1, 5) are (2, 8) and (2, 10). ) Connect to each address input.

第2段においては、第(2,1)番地の出力を第(3,2)番地の入力aに、第(2,2)番地の出力a,bをそれぞれ第(3,1)番地の入力および第(3,2)番地の入力bに、第(2,3)番地の出力a,bをそれぞれ第(3,3)番地の入力aおよび第(3,5)番地の入力に、第(2,4)番地の出力を第(3,3)番地の入力bに、第(2,5)番地の出力を第(3,6)番地の入力aに、第(2,6)番地の出力a,bをそれぞれ第(3,4)番地の入力および第(3,6)番地の入力bに、第(2,7)番地の出力a,bをそれぞれ第(3,7)番地の入力aおよび第(3,9)番地の入力に、第(2,8)番地の出力を第(3,7)番地の入力bに、第(2,9)番地の出力を第(3,10)番地の入力aに、第(2,10)番地の出力a,bをそれぞれ第(3,8)番地の入力および第(3,10)番地の入力bにそれぞれ接続する。   In the second stage, the output at address (2,1) is the input a at address (3,2), and the outputs a and b at address (2,2) are at address (3,1), respectively. The input and the input b of the (3, 2) address, the outputs a and b of the (2, 3) address, respectively, the input a of the (3, 3) address and the input of the (3, 5) address, The output at address (2,4) is input b at address (3,3), the output at address (2,5) is input a at address (3,6), and (2,6) The outputs a and b of the address are respectively input to the input of the (3, 4) address and the input b of the (3, 6) address, and the outputs a and b of the (2, 7) address are respectively (3, 7). Address input a and address (3, 9) are input, output at address (2, 8) is input to address b at address (3, 7), and output at address (2, 9) is ( (3, 10) to the input a of the address, the (2,1 ) Output a street address, a b, respectively (3,8) address of the input and the (3, 10) is connected to the input b of the address.

第3段においては、第(3,1)番地の出力a,bをそれぞれ第(4,1)番地の入力aおよび第(4,3)番地の入力に、第(3,2)番地の出力を第(4,4)番地の入力aに、第(3,3)番地の出力を第(4,1)番地の入力bに、第(3,4)番地の出力a,bをそれぞれ第(4,2)番地の入力および第(4,4)番地の入力bに、第(3,5)番地の出力a,bをそれぞれ第(4,5)番地の入力aおよび第(4,7)番地の入力に、第(3,6)番地の出力を第(4,8)番地の入力aに、第(3,7)番地の出力を第(4,5)番地の入力bに、第(3,8)番地の出力a,bをそれぞれ第(4,6)番地の入力および第(4,8)番地の入力bに、第(3,9)番地の出力a,bをそれぞれ第(4,9)番地の入力aおよび第(4,10)番地の入力に、第(3,10)番地の出力を第(4,9)番地の入力bにそれぞれ接続する。   In the third stage, the outputs a and b at the (3, 1) address are respectively input to the inputs a and (4, 3) at the (4, 1) address, and at the (3, 2) address. Output is input a at address (4,4), output at address (3,3) is input at input b at address (4,1), and outputs a and b at address (3,4) are respectively The outputs a and b of the (3, 5) address are respectively input to the input (4, 5) and the input (4) of the (4, 5) address. , 7) address input, (3, 6) address output to (4, 8) address input a, (3, 7) address output to (4, 5) address b The outputs a and b at the (3, 8) address are respectively input to the input at the (4, 6) address and the input b at the (4, 8) address, and the outputs a and b at the (3, 9) address. Are input to address (4, 9) respectively To the input of the beauty first (4,10) address, connects the outputs of the first (3,10) address to the input b of the (4,9) address.

第4段においては、第(4,1)番地の出力を第(5,2)番地の入力aに、第(4,2)番地の出力a,bをそれぞれ第(5,1)番地の入力および第(5,2)番地の入力bに、第(4,3)番地の出力a,bをそれぞれ第(5,3)番地の入力aおよび第(5,5)番地の入力に、第(4,4)番地の出力を第(5,6)番地の入力aに、第(4,5)番地の出力を第(5,3)番地の入力bに、第(4,6)番地の出力a,bをそれぞれ第(5,4)番地の入力および第(5,6)番地の入力bに、第(4,7)番地の出力a,bをそれぞれ第(5,7)番地の入力aおよび第(5,9)番地の入力に、第(4,8)番地の出力を第(5,10)番地の入力aに、第(4,9)番地の出力を第(5,7)番地の入力bに、第(4,10)番地の出力a,bをそれぞれ第(5,8)番地の入力および第(5,10)番地の入力bにそれぞれ接続する。   In the fourth stage, the output at address (4,1) is the input a at address (5,2), and the outputs a and b at address (4,2) are at address (5,1), respectively. The input and the input b at the address (5,2), the outputs a and b at the address (4,3), the input a at the address (5,3) and the input at the address (5,5), respectively. The output at address (4,4) is input a at address (5,6), the output at address (4,5) is input b at address (5,3), and (4,6) The outputs a and b of the address are respectively input to the input of the (5, 4) address and the input b of the (5, 6) address, and the outputs a and b of the (4, 7) address are respectively (5, 7). Address input a and address (5, 9), input (4, 8), output (5, 10) to input a, (4, 9) output ( The (4,1) is input to the input b of the address 5,7). ) Output a street address, b respectively second (5,8) inputs and first (5, 10 address) is connected to the input b of the address.

第5段においては、第(5,1)および(5,3)番地の出力を第(6,1)番地の入力a,bに、第(5,2)および(5,4)番地の出力を第(6,2)番地の入力a,bに、第(5,5)および(5,7)番地の出力を第(6,3)番地の入力a,bに、第(5,6)および(5,8)番地の出力を第(6,4)番地の入力a,bに、第(5,9)および(5,10)番地の出力を第(6,5)番地の入力a,bにそれぞれ接続する。   In the fifth stage, the outputs of the addresses (5, 1) and (5, 3) are input to the inputs a and b of the address (6, 1), and the outputs of the addresses (5, 2) and (5, 4). Outputs are input to the inputs a and b at the address (6, 2), outputs at addresses (5, 5) and (5, 7) are input to the inputs a and b at the address (6, 3). 6) and (5,8) outputs to the (6,4) address inputs a and b, and (5,9) and (5,10) outputs to the (6,5) address. Connect to inputs a and b respectively.

次に、本発明における第十二の実施形態を図7に基づいて説明する。この第十二の実施形態は、上述した第十の実施形態において、第(2,4)番地と第(2,5)番地、第(2,8)番地と第(2,9)番地を入れ替えた構成に相当する。図7は本発明の請求項12においてn=5とした、5×5マトリクス光スイッチを構成した例である。本実施形態によるマトリクス光スイッチは1×2素子20個および2×1素子20個および1×1素子10個で構成される。   Next, a twelfth embodiment of the present invention will be described with reference to FIG. In the twelfth embodiment, the (2,4) address and the (2,5) address, the (2,8) address and the (2,9) address in the tenth embodiment described above. This corresponds to the replaced configuration. FIG. 7 shows an example of a 5 × 5 matrix optical switch in which n = 5 in claim 12 of the present invention. The matrix optical switch according to this embodiment includes 20 1 × 2 elements, 20 2 × 1 elements, and 10 1 × 1 elements.

本実施形態によるマトリクス光スイッチは、単位光スイッチ素子が6段に配置され、第1段は1×2素子である第(1,1),(1,2),(1,3),(1,4),(1,5)番地からなり、これらの入力計5本を該マトリクス光スイッチの入力端子A−1,A−2,A−3,A−4,A−5とする。第2段は第(2,1),(2,4),(2,5),(2,8)および(2,9)番地が1×1素子、第(2,2),(2,3),(2,6),(2,7)および(2,10)番地が1×2素子である。   In the matrix optical switch according to the present embodiment, the unit optical switch elements are arranged in six stages, and the first stage is 1 × 2 elements (1, 1), (1, 2), (1, 3), ( 1, 4) and (1, 5) addresses, and these five inputs are the input terminals A-1, A-2, A-3, A-4, and A-5 of the matrix optical switch. In the second stage, the (2,1), (2,4), (2,5), (2,8) and (2,9) addresses are 1 × 1 elements, and the (2,2), (2 , 3), (2, 6), (2, 7) and (2, 10) are 1 × 2 elements.

第3段は第(3,1),(3,4),(3,5),(3,8)および(3,9)番地が1×2素子、第(3,2),(3,3),(3,6),(3,7)および(3,10)番地が2×1素子である。第4段は第(4,1),(4,4),(4,5),(4,8)および(4,9)番地が2×1素子、第(4,2),(4,3),(4,6),(4,7)および(4,10)番地が1×2素子である。   In the third stage, the (3, 1), (3,4), (3, 5), (3, 8) and (3, 9) addresses are 1 × 2 elements, and the (3, 2), (3 , 3), (3, 6), (3, 7) and (3, 10) are 2 × 1 elements. In the fourth stage, the (4, 1), (4, 4), (4, 5), (4, 8) and (4, 9) addresses are 2 × 1 elements, and the (4, 2), (4 , 3), (4, 6), (4, 7) and (4, 10) are 1 × 2 elements.

第5段は第(5,1),(5,4),(5,5),(5,8)および(5,9)番地が1×1素子、第(5,2),(5,3),(5,6),(5,7)および(5,10)番地が2×1素子である。第6段は2×1素子である(6,1),(6,2),(6,3),(6,4),(6,5)からなり、これらの出力計5本を該マトリクス光スイッチの出力端子B−1,B−2,B−3,B−4,B−5とする。   In the fifth stage, the (5, 1), (5, 4), (5, 5), (5, 8) and (5, 9) addresses are 1 × 1 elements, and the (5, 2), (5 , 3), (5, 6), (5, 7) and (5, 10) are 2 × 1 elements. The sixth stage consists of (6,1), (6,2), (6,3), (6,4), (6,5), which are 2 × 1 elements, The output terminals B-1, B-2, B-3, B-4, and B-5 of the matrix optical switch are used.

次に、それぞれの単位光スイッチ素子の接続経路を説明する。なお、上述した1×2素子および2×1素子の出力および入力をそれぞれ出力a,b、入力a,b(図中、上方向をa、下方向をbとする)として説明する。   Next, the connection path of each unit optical switch element will be described. The output and input of the 1 × 2 element and the 2 × 1 element described above will be described as outputs a and b and inputs a and b (in the figure, the upper direction is a and the lower direction is b), respectively.

第1段においては、第(1,1)番地の出力a,bを第(2,1)および(2,3)番地の入力に、第(1,2)番地の出力a,bを第(2,2)および(2,5)番地の入力に、第(1,3)番地の出力a,bを第(2,4)および(2,7)番地の入力に、第(1,4)番地の出力a,bを第(2,6)および(2,9)番地の入力に、第(1,5)番地の出力a,bを第(2,8)および(2,10)番地の入力にそれぞれ接続する。   In the first stage, outputs a and b at address (1,1) are input to addresses (2,1) and (2,3), and outputs a and b at address (1,2) are Inputs at addresses (2, 2) and (2, 5), outputs a and b at address (1, 3), inputs at addresses (2, 4) and (2, 7), 4) Address outputs a and b are input to addresses (2, 6) and (2, 9), and outputs a and b at address (1, 5) are (2, 8) and (2, 10). ) Connect to each address input.

第2段においては、第(2,1)番地の出力を第(3,2)番地の入力aに、第(2,2)番地の出力a,bをそれぞれ第(3,1)番地の入力および第(3,2)番地の入力bに、第(2,3)番地の出力a,bをそれぞれ第(3,3)番地の入力aおよび第(3,5)番地の入力に、第(2,4)番地の出力を第(3,6)番地の入力bに、第(2,5)番地の出力を第(3,6)番地の入力aに、第(2,6)番地の出力a,bをそれぞれ第(3,4)番地の入力および第(3,6)番地の入力bに、第(2,7)番地の出力a,bをそれぞれ第(3,7)番地の入力aおよび第(3,9)番地の入力に、第(2,8)番地の出力を第(3,7)番地の入力bに、第(2,9)番地の出力を第(3,10)番地の入力aに、第(2,10)番地の出力a,bをそれぞれ第(3,8)番地の入力および第(3,10)番地の入力bにそれぞれ接続する。   In the second stage, the output at address (2,1) is the input a at address (3,2), and the outputs a and b at address (2,2) are at address (3,1), respectively. The input and the input b of the (3, 2) address, the outputs a and b of the (2, 3) address, respectively, the input a of the (3, 3) address and the input of the (3, 5) address, The output at address (2,4) is input b at address (3,6), the output at address (2,5) is input a at address (3,6), and (2,6) The outputs a and b of the address are respectively input to the input of the (3, 4) address and the input b of the (3, 6) address, and the outputs a and b of the (2, 7) address are respectively (3, 7). Address input a and address (3, 9) are input, output at address (2, 8) is input to address b at address (3, 7), and output at address (2, 9) is ( (3, 10) to the input a of the address, the (2,1 ) Output a street address, a b, respectively (3,8) address of the input and the (3, 10) is connected to the input b of the address.

第3段においては、第(3,1)番地の出力a,bをそれぞれ第(4,1)番地の入力aおよび第(4,3)番地の入力に、第(3,2)番地の出力を第(4,4)番地の入力aに、第(3,3)番地の出力を第(4,1)番地の入力bに、第(3,4)番地の出力a,bをそれぞれ第(4,2)番地の入力および第(4,4)番地の入力bに、第(3,5)番地の出力a,bをそれぞれ第(4,5)番地の入力aおよび第(4,7)番地の入力に、第(3,6)番地の出力を第(4,8)番地の入力aに、第(3,7)番地の出力を第(4,5)番地の入力bに、第(3,8)番地の出力a,bをそれぞれ第(4,6)番地の入力および第(4,8)番地の入力bに、第(3,9)番地の出力a,bをそれぞれ第(4,9)番地の入力aおよび第(4,10)番地の入力に、第(3,10)番地の出力を第(4,9)番地の入力bにそれぞれ接続する。   In the third stage, the outputs a and b of the (3, 1) address are respectively input to the inputs a and (4, 3) of the (4, 1) address, and to the inputs of the (3, 2) addresses. The output is the input a at address (4, 4), the output at address (3, 3) is the input b at address (4, 1), and the outputs a and b are at address (3, 4). The outputs a and b of the (3, 5) address are respectively input to the input (4, 5) and the input (4) of the (4, 5) address. , 7) address input, (3, 6) address output to (4, 8) address input a, (3, 7) address output to (4, 5) address input b The outputs a and b at the (3, 8) address are respectively input to the input at the (4, 6) address and the input b at the (4, 8) address, and the outputs a and b at the (3, 9) address. Are input to address (4, 9) respectively. To the input of the beauty first (4,10) address, connects the outputs of the first (3,10) address to the input b of the (4,9) address.

第4段においては、第(4,1)番地の出力を第(5,2)番地の入力aに、第(4,2)番地の出力a,bをそれぞれ第(5,1)番地の入力および第(5,2)番地の入力bに、第(4,3)番地の出力a,bをそれぞれ第(5,3)番地の入力aおよび第(5,4)番地の入力に、第(4,4)番地の出力を第(5,6)番地の入力aに、第(4,5)番地の出力を第(5,3)番地の入力bに、第(4,6)番地の出力a,bをそれぞれ第(5,5)番地の入力および第(5,6)番地の入力bに、第(4,7)番地の出力a,bをそれぞれ第(5,7)番地の入力aおよび第(5,8)番地の入力に、第(4,8)番地の出力を第(5,10)番地の入力aに、第(4,9)番地の出力を第(5,7)番地の入力bに、第(4,10)番地の出力a,bをそれぞれ第(5,9)番地の入力および第(5,10)番地の入力bにそれぞれ接続する。   In the fourth stage, the output at address (4,1) is the input a at address (5,2), and the outputs a and b at address (4,2) are at address (5,1), respectively. The input and the input b of the (5,2) address, the outputs a and b of the (4,3) address, respectively, the input a of the (5,3) address and the input of the (5,4) address, The output at address (4,4) is input a at address (5,6), the output at address (4,5) is input b at address (5,3), and (4,6) The outputs a and b of the address are respectively input to the input b of the (5, 5) address and the input b of the (5, 6) address, and the outputs a and b of the (4, 7) address are respectively (5, 7). The input of address a and the input of address (5,8), the output of address (4,8), the input a of address (5,10), the output of address (4,9) The (4,1) is input to the input b of the address 5,7). ) Output a street address, b respectively first (5,9) inputs and first (5, 10 address) is connected to the input b of the address.

第5段においては、第(5,1)および(5,3)番地の出力を第(6,1)番地の入力a,bに、第(5,2)および(5,5)番地の出力を第(6,2)番地の入力a,bに、第(5,4)および(5,7)番地の出力を第(6,3)番地の入力a,bに、第(5,6)および(5,9)番地の出力を第(6,4)番地の入力a,bに、第(5,8)および(5,10)番地の出力を第(6,5)番地の入力a,bにそれぞれ接続する。   In the fifth stage, the outputs of the addresses (5, 1) and (5, 3) are input to the inputs a and b of the address (6, 1), and the outputs of the addresses (5, 2) and (5, 5). Outputs are input to the inputs a and b of the (6, 2) address, outputs of the (5, 4) and (5, 7) addresses are input to the inputs a and b of the (6, 3) address, 6) and (5, 9) outputs to the (6, 4) address inputs a and b, and (5, 8) and (5, 10) outputs to the (6, 5) addresses. Connect to inputs a and b respectively.

上記第一から第十二の実施形態におけるn入力×n出力のマトリクス光スイッチは、いずれも(n+1)段の光スイッチ素子で構成されており、従来の2n段で構成されたマトリクス光スイッチに比べて回路長を大幅に削減することができる。   Each of the n-input × n-output matrix optical switches in the first to twelfth embodiments is composed of (n + 1) stages of optical switch elements, and is a conventional matrix optical switch composed of 2n stages. In comparison, the circuit length can be greatly reduced.

本発明に基づくマトリクス光スイッチを以下のような光回路により作製した。   The matrix optical switch based on this invention was produced with the following optical circuits.

厚さ1mm、直径6インチのシリコン基板上に石英系ガラスによって形成されるクラッド層および埋め込み型コア部を有する単一モード光導波路をSiCI4やGeC14などの原料ガスの火炎加水分解反応を利用した石英系ガラス膜の堆積技術と反応性イオンエッチング技術の組合せにより作製し、薄膜ヒータおよび給電のための電極をクラッド層の表面上に真空蒸着およびパターン化により作製した。作製した光導波路のコア寸法は7μm×7μmであり、クラッド層との比屈折率差Δは0.75%とした。本実施例におけるマトリクス光スイッチは、この光導波路を用い、直線導波路および曲線導波路を組み合わせることによって形成した。 Thickness 1 mm, utilizing a flame hydrolysis reaction of raw material gas such as SICI 4 or GeC1 4 single-mode optical waveguide having a cladding layer and embedded core portion formed by a silica-based glass on a silicon substrate of 6 inches in diameter A thin film heater and a power supply electrode were fabricated by vacuum deposition and patterning on the surface of the cladding layer. The core size of the manufactured optical waveguide was 7 μm × 7 μm, and the relative refractive index difference Δ with the cladding layer was 0.75%. The matrix optical switch in this example was formed by using this optical waveguide and combining a linear waveguide and a curved waveguide.

本実施例に用いる光スイッチ素子の構成例を図8に示す。図中、11,12は入力ポート、21,22は方向性結合器、31はアーム導波路(短アーム)、32はアーム導波路(長アーム)、41,42は薄膜ヒータ、51,52,53は断熱溝、61,62は出力ポート、71はシリコン基板、81は石英系ガラスクラッド層(以下、単にクラッド層という)である。   A configuration example of the optical switch element used in this embodiment is shown in FIG. In the figure, 11 and 12 are input ports, 21 and 22 are directional couplers, 31 is an arm waveguide (short arm), 32 is an arm waveguide (long arm), 41 and 42 are thin film heaters, 51, 52, 53 is a heat insulating groove, 61 and 62 are output ports, 71 is a silicon substrate, and 81 is a quartz glass clad layer (hereinafter simply referred to as a clad layer).

光スイッチ素子は、図8(a)に示すように、アーム導波路31および32の実効光路長差が信号光波長の1/2のマッハ−ツェンダー干渉計回路である。本実施例において、信号光波長は1.55μmであり、石英系ガラスの屈折率は1.45であるので、アーム光導波路31とアーム光導波路32との実際のアーム光導波路長の差は0.534μmとした。熱光学効果による位相シフタとしてクラッド層81の表面上に厚さ0.3μm、幅20μm、長さ2mmの薄膜ヒータ41および42を形成した。さらに図8(b)に示すように、薄膜ヒータ41および42に沿ってシリコン基板71が露出するまでの深さの断熱溝51,52および53を形成した。   As shown in FIG. 8A, the optical switch element is a Mach-Zehnder interferometer circuit in which the effective optical path length difference between the arm waveguides 31 and 32 is ½ of the signal light wavelength. In this embodiment, the signal light wavelength is 1.55 μm, and the refractive index of the silica-based glass is 1.45. 534 μm. Thin film heaters 41 and 42 having a thickness of 0.3 μm, a width of 20 μm, and a length of 2 mm were formed on the surface of the clad layer 81 as a phase shifter by the thermo-optic effect. Further, as shown in FIG. 8B, the heat insulating grooves 51, 52 and 53 having a depth until the silicon substrate 71 is exposed are formed along the thin film heaters 41 and 42.

図9に本発明の請求項1においてn=8とした、8×8マトリクス光スイッチの回路構成例を示す。図8のマッハ−ツェンダー干渉計回路によって構成される光スイッチ素子の長さは6.5mmであった。この光スイッチ素子を最小曲げ半径R=5mmの曲線導波路で接続し、図9の構成で配置したところ、8×8マトリクス光スイッチのチップサイズは106mm×15mmとなり、直径6インチのウェハ内に6チップを配置することができた。   FIG. 9 shows a circuit configuration example of an 8 × 8 matrix optical switch in which n = 8 in claim 1 of the present invention. The length of the optical switch element constituted by the Mach-Zehnder interferometer circuit of FIG. 8 was 6.5 mm. When these optical switch elements are connected by a curved waveguide having a minimum bending radius R = 5 mm and arranged in the configuration shown in FIG. Six chips could be placed.

従来の構成による8×8マトリクス光スイッチのチップサイズは、同一の導波路構造を用いた場合、67mm×45mmであり、直径6インチのウェハ内に配置できるのは2チップであったので、本発明により1ウェハあたりのチップ数を3倍にすることができた。   The chip size of the conventional 8 × 8 matrix optical switch is 67 mm × 45 mm when the same waveguide structure is used, and only 2 chips can be placed in a 6-inch diameter wafer. According to the invention, the number of chips per wafer can be tripled.

上記の方法により作製した図9に示す8×8マトリクス光スイッチチップの入力端子A−1〜A−8および出力端子B−1〜B−8に光ファイバを接続して光学特性を測定したところ、挿入損失は2dB、消光比は45dB以上であった。また、入力と出力を入れ替えて、出力端子B−1〜B−8側から光を入力し、入力端子A−1〜A−8へ出力される光の光学特性を測定したところ、挿入損失や消光比は同じ特性であった。   When the optical characteristics are measured by connecting optical fibers to the input terminals A-1 to A-8 and the output terminals B-1 to B-8 of the 8 × 8 matrix optical switch chip shown in FIG. 9 manufactured by the above method. The insertion loss was 2 dB and the extinction ratio was 45 dB or more. Also, when the input and output are switched, light is input from the output terminals B-1 to B-8, and the optical characteristics of the light output to the input terminals A-1 to A-8 are measured. The extinction ratio was the same characteristic.

本発明の請求項5に係るマトリクス光スイッチの回路構成に基づく4×4マトリクス光スイッチを実施例1と同様の導波路構造の光回路により作製した。チップサイズは65mm×12mmであり、直径6インチのウェハ内に10チップを配置することができた。作製した4×4マトリクス光スイッチチップの入力端子および出力端子に光ファイバを接続して光学特性を測定したところ、挿入損失は1.5dB、消光比は45dB以上であった。また、入力と出力を入れ替えて、出力端子側から光を入力し、入力端子へ出力される光の光学特性を測定したところ、挿入損失や消光比は同じ特性であった。   A 4 × 4 matrix optical switch based on the circuit configuration of the matrix optical switch according to claim 5 of the present invention was manufactured by an optical circuit having a waveguide structure similar to that of the first embodiment. The chip size was 65 mm × 12 mm, and 10 chips could be placed in a 6-inch diameter wafer. When optical characteristics were measured by connecting optical fibers to the input terminal and output terminal of the fabricated 4 × 4 matrix optical switch chip, the insertion loss was 1.5 dB and the extinction ratio was 45 dB or more. Further, when the input and output were switched, light was input from the output terminal side, and the optical characteristics of the light output to the input terminal were measured, and the insertion loss and extinction ratio were the same characteristics.

本発明の請求項7に係るマトリクス光スイッチの回路構成に基づく16×16マトリクス光スイッチを実施例1と同様の導波路構造の光回路により作製した。ただし、本実施例においては、光導波路のコア寸法を5μm×5μm、クラッド層との比屈折率差Δは1.5%とし、光スイッチ素子間を接続する曲線導波路の最小曲げ半径Rを2mmとした。チップサイズは85mm×35mmであり、直径6インチのウェハ内に3チップを配置することができた。   A 16 × 16 matrix optical switch based on the circuit configuration of the matrix optical switch according to claim 7 of the present invention was manufactured by an optical circuit having a waveguide structure similar to that of the first embodiment. However, in this embodiment, the core dimension of the optical waveguide is 5 μm × 5 μm, the relative refractive index difference Δ with the cladding layer is 1.5%, and the minimum bending radius R of the curved waveguide connecting the optical switch elements is It was 2 mm. The chip size was 85 mm × 35 mm, and 3 chips could be placed in a 6 inch diameter wafer.

同一の導波路構造を用いた場合、従来の回路構成による16×16マトリクス光スイッチのチップサイズは85mm×45mmであり、直径6インチのウェハ内に配置できるのは2チップであったので、本発明により1ウェハあたりのチップ数を1.5倍にすることができた。   When the same waveguide structure is used, the chip size of a conventional 16 × 16 matrix optical switch having a circuit configuration is 85 mm × 45 mm, and two chips can be arranged in a 6-inch diameter wafer. According to the invention, the number of chips per wafer can be increased 1.5 times.

作製した8×8マトリクス光スイッチチップの入力端子および出力端子に光ファイバを接続して光学特性を測定したところ、挿入損失は4dB、消光比は45dB以上であった。また、入力と出力を入れ替えて、出力端子側から光を入力し、入力端子へ出力される光の光学特性を測定したところ、挿入損失や消光比は同じ特性であった。   When optical characteristics were measured by connecting optical fibers to the input terminal and output terminal of the produced 8 × 8 matrix optical switch chip, the insertion loss was 4 dB and the extinction ratio was 45 dB or more. Further, when the input and output were switched, light was input from the output terminal side, and the optical characteristics of the light output to the input terminal were measured, and the insertion loss and extinction ratio were the same characteristics.

本発明の請求項9に係るマトリクス光スイッチの回路構成に基づく7×7マトリクス光スイッチを実施例1と同様の導波路構造の光回路により作製した。本実施例においては、光導波路のコア寸法やクラッド層との比屈折率差Δ、曲線導波路の最小曲げ半径Rは実施例1と同じとし、それぞれ、コア寸法7μm×7μm、Δ=0.75%、R=5mmとした。チップサイズは95mm×15mmであり、直径6インチのウェハ内に7チップを配置することができた。作製した7×7マトリクス光スイッチチップの入力端子および出力端子に光ファイバを接続して光学特性を測定したところ、挿入損失は2dB、消光比は45dB以上であった。   A 7 × 7 matrix optical switch based on the circuit configuration of the matrix optical switch according to claim 9 of the present invention was manufactured by an optical circuit having a waveguide structure similar to that of the first embodiment. In this embodiment, the core dimension of the optical waveguide, the relative refractive index difference Δ with the cladding layer, and the minimum bending radius R of the curved waveguide are the same as those in the first embodiment, and the core dimensions are 7 μm × 7 μm and Δ = 0. 75%, R = 5 mm. The chip size was 95 mm × 15 mm, and 7 chips could be placed in a 6 inch diameter wafer. When optical characteristics were measured by connecting optical fibers to the input terminal and output terminal of the manufactured 7 × 7 matrix optical switch chip, the insertion loss was 2 dB and the extinction ratio was 45 dB or more.

本発明の請求項10に係るマトリクス光スイッチの回路構成に基づく7×7マトリクス光スイッチを実施例1と同様の導波路構造の光回路により作製した。本実施例においては、光導波路のコア寸法やクラッド層との比屈折率差Δ、曲線導波路の最小曲げ半径Rは実施例1と同じとし、それぞれ、コア寸法7μm×7μm、Δ=0.75%、R=5mmとした。チップサイズは95mm×15mmであり、直径6インチのウェハ内に7チップを配置することができた。   A 7 × 7 matrix optical switch based on the circuit configuration of the matrix optical switch according to claim 10 of the present invention was manufactured by an optical circuit having a waveguide structure similar to that of the first embodiment. In this embodiment, the core dimension of the optical waveguide, the relative refractive index difference Δ with the cladding layer, and the minimum bending radius R of the curved waveguide are the same as those in the first embodiment, and the core dimensions are 7 μm × 7 μm and Δ = 0. 75%, R = 5 mm. The chip size was 95 mm × 15 mm, and 7 chips could be placed in a 6 inch diameter wafer.

作製した7×7マトリクス光スイッチチップの入力端子および出力端子に光ファイバを接続して光学特性を測定したところ、挿入損失は2dB、消光比は45dB以上であった。また、入力と出力を入れ替えて、出力端子側から光を入力し、入力端子へ出力される光の光学特性を測定したところ、挿入損失や消光比は同じ特性であった。   When optical characteristics were measured by connecting optical fibers to the input terminal and output terminal of the manufactured 7 × 7 matrix optical switch chip, the insertion loss was 2 dB and the extinction ratio was 45 dB or more. Further, when the input and output were switched, light was input from the output terminal side, and the optical characteristics of the light output to the input terminal were measured, and the insertion loss and extinction ratio were the same characteristics.

本発明の請求項12に係るマトリクス光スイッチの発明の回路構成に基づく5×5マトリクス光スイッチを実施例1と同様の導波路構造の光回路により作製した。本実施例においては、光導波路のコア寸法やクラッド層との比屈折率差Δ、曲線導波路の最小曲げ半径Rは実施例1と同じとし、それぞれ、コア寸法7μm×7μm、Δ=0.75%、R=5mmとした。チップサイズは75mm×15mmであり、直径6インチのウェハ内に8チップを配置することができた。作製した5×5マトリクス光スイッチチップの入力端子および出力端子に光ファイバを接続して光学特性を測定したところ、挿入損失は1.5dB、消光比は45dB以上であった。   A 5 × 5 matrix optical switch based on the circuit configuration of the matrix optical switch according to the twelfth aspect of the present invention was manufactured by an optical circuit having a waveguide structure similar to that of the first embodiment. In this embodiment, the core dimension of the optical waveguide, the relative refractive index difference Δ with the cladding layer, and the minimum bending radius R of the curved waveguide are the same as those in the first embodiment, and the core dimensions are 7 μm × 7 μm and Δ = 0. 75%, R = 5 mm. The chip size was 75 mm × 15 mm, and 8 chips could be placed in a 6-inch diameter wafer. When optical characteristics were measured by connecting optical fibers to the input terminal and output terminal of the produced 5 × 5 matrix optical switch chip, the insertion loss was 1.5 dB and the extinction ratio was 45 dB or more.

本発明は、光通信等で用いられる光スイッチに関するものであり、特に、入出力数が1または2の光スイッチ素子を複数集積して構成されるマトリクス光スイッチに関して、消光比が高く、かつ小型な回路構成を実現するための技術に利用可能である。   The present invention relates to an optical switch used in optical communication and the like, and in particular, with respect to a matrix optical switch configured by integrating a plurality of optical switch elements having 1 or 2 inputs / outputs, the extinction ratio is high and the size is small. The present invention can be used for a technique for realizing a simple circuit configuration.

本発明の第一の実施形態による4×4マトリクス光スイッチの回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure of the 4x4 matrix optical switch by 1st embodiment of this invention. 本発明の第三の実施形態による4×4マトリクス光スイッチの回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure of the 4x4 matrix optical switch by 3rd embodiment of this invention. 本発明の第五の実施形態による4×4マトリクス光スイッチの回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure of the 4x4 matrix optical switch by the 5th embodiment of this invention. 本発明の第七の実施形態による4×4マトリクス光スイッチの回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure of the 4x4 matrix optical switch by the 7th embodiment of this invention. 本発明の第九の実施形態による5×5マトリクス光スイッチの回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure of the 5 * 5 matrix optical switch by 9th embodiment of this invention. 本発明の第十の実施形態による5×5マトリクス光スイッチの回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure of the 5 * 5 matrix optical switch by the 10th Embodiment of this invention. 本発明の第十二の実施形態による5×5マトリクス光スイッチの回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure of the 5 * 5 matrix optical switch by 12th Embodiment of this invention. 図8(a)は本発明に用いられる光スイッチ素子の構成例の上面図、図8(b)は図8(a)におけるA−A’断面図である。FIG. 8A is a top view of a configuration example of the optical switch element used in the present invention, and FIG. 8B is a cross-sectional view taken along line A-A ′ in FIG. 本発明の実施例1による8×8マトリクス光スイッチの回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure of the 8x8 matrix optical switch by Example 1 of this invention. 従来技術による4×4マトリクス光スイッチの回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure of the 4x4 matrix optical switch by a prior art. 別の従来技術による4×4マトリクス光スイッチの回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure of the 4x4 matrix optical switch by another prior art. 従来のマトリクス光スイッチに用いられる2入力×2出力光スイッチ要素の構成を示す図である。It is a figure which shows the structure of the 2 input x 2 output optical switch element used for the conventional matrix optical switch. 別の従来技術による4×4マトリクス光スイッチの回路構成を示す図である。It is a figure which shows the circuit structure of the 4x4 matrix optical switch by another prior art. 別の従来技術による4×4マトリクス光スイッチの回路構成を示す図である。It is a figure which shows the circuit structure of the 4x4 matrix optical switch by another prior art.

符号の説明Explanation of symbols

A−1〜A−4 入力端子
B−1〜B−4 出力端子
11,12 入力ポート
21,22 方向性結合器
31,32 アーム導波路
41,42 薄膜ヒータ
51,52,53 断熱溝
61,62 出力ポート
71 シリコン基板
A-1 to A-4 input terminals B-1 to B-4 output terminals 11, 12 input ports 21, 22 directional couplers 31, 32 arm waveguides 41, 42 thin film heaters 51, 52, 53 heat insulating grooves 61, 62 Output port 71 Silicon substrate

Claims (12)

1入力2出力の単位光スイッチ素子(これを以下、1×2素子と表わす)n・(n−1)個および2入力1出力の単位光スイッチ素子(これを以下、2×1素子と表わす)n・(n−1)個および1入力1出力の単位光スイッチ素子(これを以下、1×1素子と表わす)2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、該第2段の第(4j−3)番目(これを以下、第(2,4j−3)番地と表わす)と第(2,4j)番地が1×1素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が2×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が1×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが奇数の場合は第(2,2k−1)番地の1×1素子の入力に、kが偶数の場合は第(2,2k)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k)番地の1×1素子の出力に、kが偶数の場合は第(n,2k−1)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが1の場合には第(n,1)番地の2×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の2×1素子の出力に、kがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く偶数の場合は第(n,2k+1)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,2n−1)番地の1×2素子の出力の一方を第(3,2n)番地の1×2素子の入力に、他方を第(3,2n−1)番地の2×1素子の入力の一方に接続し、第(2,2n)番地の1×1素子の出力を該第(3,2n−1)番地の2×1素子の入力の他方に接続し、第(2,4j’−1)番地の1×2素子の出力の一方を第(3,4j’+1)番地の1×2素子の入力に、他方を第(3,4j’−1)番地の2×1素子の入力の一方に接続し、第(2,4j’+1)番地の1×1素子の出力を該第(3,4j’−1)番地の2×1素子の入力の他方に接続し、第(2,4j’)番地の1×1素子の出力を第(3,4j’+2)番地の2×1素子の入力の一方に接続し、第(2,4j’+2)番地の1×2素子の出力の一方を第(3,4j’)番地の1×2素子の入力に、他方を該第(3,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第(n−1)段においては、第(n−1,4j−3)番地の1×2素子の出力の一方を第(n,4j−1)番地の1×1素子の入力に、他方を第(n,4j−3)番地の2×1素子の入力の一方に接続し、第(n−1,4j−1)番地の2×1素子の出力を該第(n,4j−3)番地の2×1素子の入力の他方に接続し、第(n−1,4j−2)番地の2×1素子の出力を第(n,4j)番地の2×1素子の入力の一方に接続し、第(n−1,4j)番地の1×2素子の出力の一方を第(n,4j−2)番地の1×1素子の入力に、他方を該第(n,4j)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続し、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続したことを特徴とするマトリクス光スイッチ。   1 × 2 unit optical switch elements (hereinafter referred to as 1 × 2 elements) and 2 × 1 unit optical switch elements (hereinafter referred to as 2 × 1 elements) ) An n-input × n-output matrix optical switch composed of 2 · n unit optical switch elements (hereinafter referred to as 1 × 1 element) of n · (n−1) and 1 input 1 output. (In this invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, the first stage is composed of n 1 × 2 elements, and the (n + 1) th stage is 2 × The second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the second stage is the (4j-3) th (hereinafter referred to as the (2,4j− 3) and (2,4j) address are 1 × 1 elements, and (2,4j-2) address and (2,4j-1) address are 1 2 elements (where j is a natural number of j ≦ n / 2), and the n-th stage is composed of 2 2 × 1 elements and 1 × 1 elements, and the (n, 4j−3) -th address The (n, 4j) address is a 2 × 1 element, the (n, 4j−2) address and the (n, 4j−1) address are 1 × 1 elements, and the first and second stages The i-th stage excluding the n-th stage and the (n + 1) -th stage consists of n 1 × 2 elements and n 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), and i is In the case of an odd number, the (i, 4j-3) address and the (i, 4j) address are 1 × 2 elements, and the (i, 4j-2) address and the (i, 4j-1) address are 2. If x is 1 element and i is an even number, the (i, 4j-3) address and the (i, 4j) address are 2 x 1 elements, the (i, 4j-2) address and the ( i, 4j-1) address is 1 × 2 element, and 1 × 2 of the first stage N input totals of n children are input terminals of the matrix optical switch, n output totals of 2 × 1 elements of the (n + 1) th stage are output terminals of the matrix optical switch, and the first stage of the first stage One of the outputs of the k-th (k is a natural number of k ≦ n) 1 × 2 element is input to the (2 × 2k + 1) th 1 × 2 element when k is an odd number, and when k is an even number, Connect to the input of the 1 × 2 element at address (2,2k−2), and if the other of the outputs of the kth 1 × 2 element in the first stage is an odd number, (2,2k−1) ) Input to the 1 × 1 element at the address, and if k is an even number, it is connected to the input of the 1 × 1 element at the (2,2k) address, and the kth 2 × 1 element at the (n + 1) th stage When k is an odd number, the output of the 1 × 1 element at the (n, 2k) address is output, and when k is an even number, the output is the 1 × 1 element at the (n, 2k−1) address. Connect The other of the inputs of the kth 2 × 1 element in the (n + 1) stage is the output of the 2 × 1 element at the (n, 1) address when k is 1, and when k is an odd number except 1 The output of the 2 × 1 element at address (n, 2k−2), the output of the 2 × 1 element at address (n, 2n) when k is n, and the output when k is an even number excluding n. In the second stage, the output of the 1 × 1 element at the (2,1) address is connected to the output of the 2 × 1 element at the (3,2) address at the (n, 2k + 1) address. Connect to one of the input of the element, one of the outputs of the 1 × 2 element at address (2,2) is the input of the 1 × 2 element at address (3,1), and the other is the (3,2) ) Connected to the other input of the 2 × 1 element of the address, and one of the outputs of the 1 × 2 element of the (2,2n−1) th address is input to the 1 × 2 element of the (3,2n) address, The other side is a 2 × 1 element at address (3,2n-1) The output of the 1 × 1 element at the (2,2n) address is connected to the other input of the 2 × 1 element at the (3,2n−1) address, and the (2,4j One of the outputs of the 1 × 2 element at the address “−1” is input to the 1 × 2 element at the (3,4j ′ + 1) th address, and the other is the 2 × 1 element at the (3,4j′−1) address. The output of the 1 × 1 element at the (2,4j ′ + 1) th address is connected to the other input of the 2 × 1 element at the (3,4j′−1) th address, The output of the 1 × 1 element at address (2,4j ′) is connected to one of the inputs of the 2 × 1 element at address (3,4j ′ + 2), and 1 × 2 at the address (2,4j ′ + 2). One of the element outputs is connected to the input of the 1 × 2 element at the (3,4j ′) address, and the other is connected to the other input of the 2 × 1 element at the (3,4j ′ + 2) address (here Where j ′ is a natural number where j ′ ≦ n / 2-1. In the (n−1) th stage, one of the outputs of the 1 × 2 element at the (n−1,4j-3) th address is input to the 1 × 1 element at the (n, 4j−1) th address. The other is connected to one of the inputs of the 2 × 1 element at the (n, 4j−3) th address, and the output of the 2 × 1 element at the (n−1, 4j−1) th address is connected to the (n, 4j−) address. 3) Connect to the other input of the 2 × 1 element at the address, and output the 2 × 1 element at the (n−1,4j−2) th address to the input of the 2 × 1 element at the (n, 4j) address. One of the outputs of the 1 × 2 element at the (n−1,4j) address is connected to one input to the input of the 1 × 1 element at the (n, 4j−2) address, and the other is the (n, 4j) ) Connected to the other input of the 2 × 1 element of the address, i in the i-th stage excluding the first and second stages, the (n−1) th stage, the nth stage and the (n + 1) th stage Is an odd number, the 1 × 2 prime of the (i, 4j-3) th address One of the outputs is connected to the input of the 1 × 2 element at the (i + 1,4j−1) th address, and the other is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j-3) th address. , 4j-1) of the 2 × 1 element at the address (i + 1,4j-3) is connected to the other input of the 2 × 1 element at the address (i + 1,4j-3), and 2 × 1 at the (i, 4j-2) address. The output of the element is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j) address, and one of the outputs of the 1 × 2 element at the (i, 4j) address is the (i + 1,4j−2) address. When the other is connected to the other input of the 2 × 1 element at the (i + 1,4j) -th address, and i is an even number, the 2 × 1 at the (i, 1) -th address The output of the element is connected to one of the inputs of the 2 × 1 element at the (i + 1, 2) address, and one of the outputs of the 1 × 2 element at the (i, 2) address is 1 of the (i + 1, 1) address. × 2 input elements The other is connected to the other input of the 2 × 1 element at the (i + 1,2) th address, and one of the outputs of the 1 × 2 element at the (i, 2n−1) th address is the (i + 1,2n) th address. The input of the 1 × 2 element at the address is connected to one input of the 2 × 1 element at the (i + 1, 2n−1) th address, and the output of the 2 × 1 element at the (i, 2n) th address Connect to the other input of the 2 × 1 element at the (i + 1, 2n−1) th address, and connect one of the outputs of the 1 × 2 element at the (i, 4j′−1) th address to the (i + 1, 4j ′ + 1) th The input of the 1 × 2 element at the address is connected to one input of the 2 × 1 element at the (i + 1,4j′−1) th address, and the 2 × 1 element at the (i, 4j ′ + 1) th address. The output is connected to the other input of the 2 × 1 element at the (i + 1,4j′−1) th address, and the output of the 2 × 1 element at the (i, 4j ′) th address is (i + 1,4j ′ + 2). Address 2 × One of the input of the element is connected, one of the outputs of the 1 × 2 element at the (i, 4j ′ + 2) address is connected to the input of the 1 × 2 element at the (i + 1,4j ′) address, and the other is A matrix optical switch connected to the other input of 2 × 1 elements at address i + 1,4j ′ + 2). 1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j−3)番地と第(2,4j)番地が1×2素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×1素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k)番地の1×1素子の入力に、kが偶数の場合は第(2,2k−1)番地の1×1素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合には第(2,1)番地の1×2素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×2素子の入力に、kがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く偶数の場合は第(2,2k+1)番地の1×2素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが奇数の場合は第(n,2k−1)番地の1×1素子の出力に、kが偶数の場合は第(n,2k)番地の1×1素子の出力に接続して、第2段においては、第(2,4j−3)番地の1×2素子の出力の一方を第(3,4j−1)番地の1×2素子の入力に、他方を第(3,4j−3)番地の2×1素子の入力の一方に接続し、第(2,4j−1)番地の1×1素子の出力を該第(3,4j−3)番地の2×1素子の入力の他方に接続し、第(2,4j−2)番地の1×1素子の出力を第(3,4j)番地の2×1素子の入力の一方に接続し、第(2,4j)番地の1×2素子の出力の一方を第(3,4j−2)番地の1×2素子の入力に、他方を該第(3,4j)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,2n−1)番地の1×2素子の出力の一方を第(n,2n)番地の1×1素子の入力に、他方を第(n,2n−1)番地の2×1素子の入力の一方に接続し、第(n−1,2n)番地の2×1素子の出力を該第(n,2n−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’−1)番地の1×2素子の出力の一方を第(n,4j’+1)番地の1×1素子の入力に、他方を第(n,4j’−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j’+1)番地の2×1素子の出力を該第(n,4j’−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’)番地の2×1素子の出力を第(n,4j’+2)番地の2×1素子の入力の一方に接続して、第(n−1,4j’+2)番地の1×2素子の出力の一方を第(n,4j’)番地の1×1素子の入力に、他方を該第(n,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続して、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続したことを特徴とするマトリクス光スイッチ。   An n-input × n-output matrix optical switch composed of 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n (In the present invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, the first stage is composed of n 1 × 2 elements, and the (n + 1) th stage is 2 × 1. The second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j-3) and (2,4j) addresses are 1 × 2 elements. The (2,4j-2) address and the (2,4j-1) address are 1 × 1 elements (where j is a natural number of j ≦ n / 2), and the nth stage is 2 × 1. It consists of n elements and 1 × 1 elements, the (n, 4j-3) address and the (n, 4j) address are 1 × 1 elements, the (n, 4j−2) address and the ( n, 4j-1) address is 2 × 1 element Thus, the i-th stage excluding the first stage, the second stage, the n-th stage, and the (n + 1) -th stage is composed of n 1 × 2 elements and n 2 × 1 elements (where i is 3 ≦ i ≦ n−1 natural number), i is an odd number, the (i, 4j-3) address and the (i, 4j) address are 2 × 1 elements, the (i, 4j-2) address and the If the (i, 4j-1) address is 1 × 2 elements and i is an even number, the (i, 4j-3) th address and the (i, 4j) address are 1 × 2 elements, The i, 4j-2) address and the (i, 4j-1) address are 2 × 1 elements, and the total number n of 1 × 2 elements in the first stage is used as the input terminal of the matrix optical switch. The total output of n outputs of 2 × 1 elements in the (n + 1) th stage is used as the output terminal of the matrix optical switch, and the kth (k is a natural number of k ≦ n) of the 1st stage. If one of the outputs is an odd k Connect to the input of the 1 × 1 element at the address (2,2k), and when k is an even number, connect to the input of the 1 × 1 element at the (2,2k−1) th address, When the other of the outputs of the 1 × 2 element is k, the input of the 1 × 2 element at the (2,1) address is when k is 1, and the (2,2k−2) address when k is an odd number excluding 1 1 × 2 elements of input, if k is n, input of 1 × 2 elements at address (2,2n), and if k is an even number excluding n, 1 × of address (2,2k + 1) When one of the inputs of the kth 2 × 1 element in the (n + 1) th stage is connected to the input of the two elements and k is an odd number, the output of the 2 × 1 element at the (n, 2k + 1) th address is When k is an even number, it is connected to the output of the 2 × 1 element at the (n, 2k−2) th address, and the other of the inputs of the kth 2 × 1 element at the (n + 1) th stage is connected to an odd number of k. In the case, 1x of the (n, 2k-1) address When k is an even number, the output is connected to the output of the 1 × 1 element at the (n, 2k) address, and in the second stage, the 1 × 2 element at the (2, 4j-3) address. Is connected to the input of the 1 × 2 element at the (3,4j−1) th address, and the other is connected to one input of the 2 × 1 element at the (3,4j-3) th address. , 4j-1) is connected to the other input of the 2 × 1 element at address (3, 4j-3), and 1 × 1 at address (2, 4j-2). The output of the element is connected to one of the inputs of the 2 × 1 element at the (3, 4j) address, and one of the outputs of the 1 × 2 element at the (2, 4j) address is connected to the (3, 4j-2) address. Are connected to the other input of the 2 × 1 element at the (3,4th) address, and in the (n−1) th stage, (n−1,1) ) The output of the 2 × 1 element at address No. (n, 2) Connected to one of the inputs of the 2 × 1 element of the ground, one of the outputs of the 1 × 2 element of the (n−1, 2) address is connected to the input of the 1 × 1 element of the (n, 1) address, and the other Is connected to the other input of the 2 × 1 element at the (n, 2) address, and one of the outputs of the 1 × 2 element at the (n−1,2n−1) address is connected to the (n, 2n) address. To the input of the 1 × 1 element, the other is connected to one input of the 2 × 1 element at the (n, 2n−1) th address, and the output of the 2 × 1 element at the (n−1,2n) th address This is connected to the other input of the 2 × 1 element at the (n, 2n−1) th address, and one of the outputs of the 1 × 2 element at the (n−1,4j′−1) th address is the (n, 4j). The input of the 1 × 1 element at the address “+1” is connected to one input of the 2 × 1 element at the (n, 4j′−1) th address, and the address of the (n−1,4j ′ + 1) th address. The output of 2 × 1 element is 2 × of the (n, 4j′−1) address. Connect to the other input of one element and connect the output of the 2 × 1 element at address (n−1,4j ′) to one of the input of the 2 × 1 element at address (n, 4j ′ + 2) One of the outputs of the 1 × 2 element at the (n−1,4j ′ + 2) th address is input to the 1 × 1 element at the (n, 4j ′) th address, and the other is the (n, 4j ′ + 2). Connected to the other input of the 2 × 1 element of the address (where j ′ is a natural number of j ′ ≦ n / 2-1), the first stage, the second stage, the (n−1) stage, In the i-th stage excluding the n-th stage and the (n + 1) -th stage, when i is an odd number, the output of the 2 × 1 element at the (i, 1) address is the output of the 2 × 1 element at the (i + 1,2) address. Connected to one of the inputs, one of the outputs of the 1 × 2 element at the (i, 2) address is connected to the input of the 1 × 2 element at the (i + 1,1) address, and the other is the (i + 1,2) address Connected to the other input of the 2 × 1 element One of the outputs of the 1 × 2 element at the (i, 2n−1) address is input to the 1 × 2 element at the (i + 1, 2n) address, and the other is the 2 × 1 element at the (i + 1, 2n−1) address. And the output of the 2 × 1 element at the (i, 2n) address is connected to the other input of the 2 × 1 element at the (i + 1, 2n−1) address, and the (i, One of the outputs of the 1 × 2 element at address 4j′−1) is input to the input of the 1 × 2 element at address (i + 1,4j ′ + 1), and the other is 2 × 1 at address (i + 1,4j′−1). Connected to one of the input of the element, the output of the 2 × 1 element at the (i, 4j ′ + 1) th address is connected to the other of the input of the 2 × 1 element at the (i + 1,4j′−1) th address, The output of the 2 × 1 element at the (i, 4j ′) address is connected to one of the inputs of the 2 × 1 element at the (i + 1, 4j ′ + 2) address, and 1 at the (i, 4j ′ + 2) address. × 2 elements One of the forces is connected to the input of the 1 × 2 element at the (i + 1,4j ′) address, the other is connected to the other input of the 2 × 1 element at the (i + 1,4j ′ + 2) address, and i is an even number In this case, one of the outputs of the 1 × 2 element at the (i, 4j-3) th address is input to the 1 × 2 element at the (i + 1,4j−1) th address, and the other is the (i + 1,4j-3) th. The output of the 2 × 1 element at the (i, 4j−1) -th address is connected to one of the inputs of the 2 × 1 element at the address, and the other of the 2 × 1 element inputs at the (i + 1, 4j−3) -th address And the output of the 2 × 1 element at the (i, 4j−2) th address is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j) th address, and 1 of the (i, 4j) address. One of the outputs of the × 2 element is connected to the input of the 1 × 2 element at the (i + 1,4j−2) th address, and the other is connected to the other input of the 2 × 1 element at the (i + 1,4j) th address. Special Matrix optical switch to. 1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、該第2段の第(4j−3)番目(これを以下、第(2,4j−3)番地と表わす)と第(2,4j)番地が1×2素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×1素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が2×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が1×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合は第(2,1)番地の1×1素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×1素子の入力に、kがnの場合は第(2,2n)番地の1×1素子の入力に、kがnを除く偶数の場合は第(2,2k+1)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k)番地の1×1素子の出力に、kが偶数の場合は第(n,2k−1)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが1の場合には第(n,1)番地の2×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の2×1素子の出力に、kがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く偶数の場合は第(n,2k+1)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,2n−1)番地の1×2素子の出力の一方を第(3,2n)番地の1×2素子の入力に、他方を第(3,2n−1)番地の2×1素子の入力の一方に接続し、第(2,2n)番地の1×1素子の出力を該第(3,2n−1)番地の2×1素子の入力の他方に接続し、第(2,4j’−1)番地の1×2素子の出力の一方を第(3,4j’+1)番地の1×2素子の入力に、他方を第(3,4j’−1)番地の2×1素子の入力の一方に接続し、第(2,4j’)番地の1×1素子の出力を該第(3,4j’−1)番地の2×1素子の入力の他方に接続し、第(2,4j’+1)番地の1×1素子の出力を第(3,4j’+2)番地の2×1素子の入力の一方に接続し、第(2,4j’+2)番地の1×2素子の出力の一方を第(3,4j’)番地の1×2素子の入力に、他方を該第(3,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第(n−1)段においては、第(n−1,4j−3)番地の1×2素子の出力の一方を第(n,4j−1)番地の1×1素子の入力に、他方を第(n,4j−3)番地の2×1素子の入力の一方に接続し、第(n−1,4j−1)番地の2×1素子の出力を該第(n,4j−3)番地の2×1素子の入力の他方に接続し、第(n−1,4j−2)番地の2×1素子の出力を第(n,4j)番地の2×1素子の入力の一方に接続し、第(n−1,4j)番地の1×2素子の出力の一方を第(n,4j−2)番地の1×1素子の入力に、他方を該第(n,4j)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続し、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続したことを特徴とするマトリクス光スイッチ。   An n-input × n-output matrix optical switch composed of 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n (In the present invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, the first stage is composed of n 1 × 2 elements, and the (n + 1) th stage is 2 × 1. The second stage is composed of n 1 × 2 elements and n 1 × 1 elements, and the second stage is the (4j-3) th (hereinafter referred to as (2,4j-3). Address) and the (2,4j) address are 1 × 2 elements, the (2,4j-2) address and the (2,4j-1) address are 1 × 1 elements (here J is a natural number of j ≦ n / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements, and the (n, 4j-3) and (n, 4j) addresses. Is a 2 × 1 element, and the (n, j-2) address and (n, 4j-1) address are 1 × 1 elements, and the i-th stage excluding the first stage, second stage, n-th stage and (n + 1) -th stage is 1 × 2 It consists of n elements and 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), and when i is an odd number, the (i, 4j-3) th address and the (i, 4j) ) Address is 1 × 2 elements, and (i, 4j−2) and (i, 4j−1) addresses are 2 × 1 elements, and i is an even number, (i, 4j− 3) The address and the (i, 4j) address are 2 × 1 elements, the (i, 4j−2) address and the (i, 4j−1) address are 1 × 2 elements, and the first stage N input meters of 1 × 2 elements of n are used as input terminals of the matrix optical switch, and n output meters of 2 × 1 elements of the (n + 1) -th stage are used as output terminals of the matrix optical switch. The k-th stage (k is k ≦ n) One of the outputs of the 1 × 2 element of (natural number of 2), when k is an odd number, it is the input of the 1 × 2 element of the (2,2k + 1) th address, and when k is an even number, the (2,2k-2) th address And the other output of the kth 1 × 2 element of the first stage is connected to the input of the 1 × 1 element at the (2,1) address when k is 1. , When k is an odd number other than 1, input to the 1 × 1 element at the (2,2k−2) address, and when k is n, input to the 1 × 1 element at the (2,2n) address, When k is an even number excluding n, it is connected to the input of the 1 × 1 element at the (2,2k + 1) th address, and k is an odd number of one of the inputs of the kth 2 × 1 element in the (n + 1) th stage. Is connected to the output of the 1 × 1 element at the (n, 2k) address, and when k is an even number, it is connected to the output of the 1 × 1 element at the (n, 2k−1) address. The input of the kth 2 × 1 element of the stage On the other hand, when k is 1, the output of the 2 × 1 element at the (n, 1) address, and when k is an odd number other than 1, the output of the 2 × 1 element at the (n, 2k−2) address. When k is n, it is connected to the output of the 2 × 1 element at the (n, 2n) address, and when k is an even number excluding n, it is connected to the output of the 2 × 1 element at the (n, 2k + 1) address. In the second stage, the output of the 1 × 1 element at the (2,1) address is connected to one input of the 2 × 1 element at the (3,2) address, and the (2,2) address. One of the outputs of the 1 × 2 element is connected to the input of the 1 × 2 element at the (3,1) address, the other is connected to the other input of the 2 × 1 element at the (3,2) address, One of the outputs of the 1 × 2 element at the address (2,2n−1) is input to the input of the 1 × 2 element at the address (3,2n), and the other is the 2 × 1 element at the address (3,2n−1). 1 × 1 at the (2,2n) th address The output of the element is connected to the other input of the 2 × 1 element at the (3,2n−1) th address, and one output of the 1 × 2 element at the (2,4j′−1) th address is connected to the third (3 , 4j ′ + 1) at the input of the 1 × 2 element at the address, and the other is connected to one of the inputs at the 2 × 1 element at the (3,4j′−1) th address, and 1 at the (2,4j ′) address. The output of the × 1 element is connected to the other input of the 2 × 1 element at the (3,4j′−1) th address, and the output of the 1 × 1 element at the (2,4j ′ + 1) th address is the (3rd). , 4j ′ + 2) is connected to one input of the 2 × 1 element at the address (2j), and one output of the 1 × 2 element at the (2,4j ′ + 2) address is 1 × 2 at the (3,4j ′) address. Connect the other input to the input of the element and the other input of the 2 × 1 element at address (3,4j ′ + 2) (where j ′ is a natural number of j ′ ≦ n / 2-1), In the (n-1) th stage, the (n-1, 4th) j-3) One of the outputs of the 1 × 2 element at the address is the input of the 1 × 1 element at the (n, 4j−1) th address, and the other is the output of the 2 × 1 element at the (n, 4j-3) th address. Connected to one of the inputs, the output of the 2 × 1 element at address (n−1,4j−1) is connected to the other input of the 2 × 1 element at address (n, 4j−3), and The output of the 2 × 1 element at address (n−1,4j−2) is connected to one of the inputs of the 2 × 1 element at address (n, 4j), and 1 × at the (n−1,4j) address. One of the outputs of the two elements is connected to the input of the 1 × 1 element at the (n, 4j−2) -th address, and the other is connected to the other input of the 2 × 1 element at the (n, 4j) -th address. In the i-th stage excluding the 1st stage, the 2nd stage, the (n-1) th stage, the nth stage, and the (n + 1) th stage, when i is an odd number, 1 × of the (i, 4j-3) address One of the outputs of the two elements is assigned to the (i + 1,4j-1) th address The input of the 1 × 2 element is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j-3) th address, and the output of the 2 × 1 element at the (i, 4j−1) th address Connect to the other input of the 2 × 1 element at the (i + 1,4j-3) th address, and output the 2 × 1 element at the (i, 4j-2) th address to 2 × 1 at the (i + 1,4j) th address. The output of the 1 × 2 element at address (i, 4j) is connected to the input of the 1 × 2 element at address (i + 1, 4j−2), and the other is connected to the (i + 1) th element. , 4j) is connected to the other input of the 2 × 1 element at the address, and when i is an even number, the output of the 2 × 1 element at the (i, 1) address is 2 × 1 at the (i + 1, 2) address. The output of the 1 × 2 element at address (i, 2) is connected to the input of the 1 × 2 element at address (i + 1,1) and the other is connected to the (i + 1,2). ) Address 2 × 1 element Is connected to the other input, one of the outputs of the 1 × 2 element at the (i, 2n−1) th address is connected to the input of the 1 × 2 element at the (i + 1,2n) th address, and the other is the (i + 1,2n). -1) Connect to one input of the 2 × 1 element at the address, and output the 2 × 1 element at the (i, 2n) address to the input of the 2 × 1 element at the (i + 1,2n−1) address. Connected to the other, one of the outputs of the 1 × 2 element at the (i, 4j′−1) th address is the input of the 1 × 2 element at the (i + 1,4j ′ + 1) th address, and the other is the (i + 1,4j) The output of the 2 × 1 element at the (i, 4j ′ + 1) th address is connected to one of the inputs of the 2 × 1 element at the “−1” address, and 2 × 1 at the (i + 1,4j′−1) address. The output of the 2 × 1 element at the (i, 4j ′) address is connected to one of the inputs of the 2 × 1 element at the (i + 1, 4j ′ + 2) address, and the (i , 4j '+ ) One of the outputs of the 1 × 2 element at the address is input to the 1 × 2 element at the (i + 1,4j ′) address, and the other is the other input of the 2 × 1 element at the (i + 1,4j ′ + 2) address. A matrix optical switch characterized by being connected to 1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j−3)番地と第(2,4j)番地が1×2素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×1素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k)番地の1×1素子の入力に、kが偶数の場合は第(2,2k−1)番地の1×1素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合には第(2,1)番地の1×2素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×2素子の入力に、kがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く偶数の場合は第(2,2k+1)番地の1×2素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが1の場合は第(n,1)番地の1×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の1×1素子の出力に、kがnの場合は第(n,2n)番地の1×1素子の出力に、kがnを除く偶数の場合は第(n,2k+1)番地の1×1素子の出力に接続して、第2段においては、第(2,4j−3)番地の1×2素子の出力の一方を第(3,4j−1)番地の1×2素子の入力に、他方を第(3,4j−3)番地の2×1素子の入力の一方に接続し、第(2,4j−1)番地の1×1素子の出力を該第(3,4j−3)番地の2×1素子の入力の他方に接続し、第(2,4j−2)番地の1×1素子の出力を第(3,4j)番地の2×1素子の入力の一方に接続し、第(2,4j)番地の1×2素子の出力の一方を第(3,4j−2)番地の1×2素子の入力に、他方を該第(3,4j)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,2n−1)番地の1×2素子の出力の一方を第(n,2n)番地の1×1素子の入力に、他方を第(n,2n−1)番地の2×1素子の入力の一方に接続し、第(n−1,2n)番地の2×1素子の出力を該第(n,2n−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’−1)番地の1×2素子の出力の一方を第(n,4j’)番地の1×1素子の入力に、他方を第(n,4j’−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j’+1)番地の2×1素子の出力を該第(n,4j’−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’)番地の2×1素子の出力を第(n,4j’+2)番地の2×1素子の入力の一方に接続して、第(n−1,4j’+2)番地の1×2素子の出力の一方を第(n,4j’+1)番地の1×1素子の入力に、他方を該第(n,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続して、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続したことを特徴とするマトリクス光スイッチ。   An n-input × n-output matrix optical switch composed of 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n (In the present invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, the first stage is composed of n 1 × 2 elements, and the (n + 1) th stage is 2 × 1. The second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j-3) and (2,4j) addresses are 1 × 2 elements. The (2,4j-2) address and the (2,4j-1) address are 1 × 1 elements (where j is a natural number of j ≦ n / 2), and the nth stage is 2 × 1. It consists of n elements and 1 × 1 elements, the (n, 4j-3) address and the (n, 4j) address are 1 × 1 elements, the (n, 4j−2) address and the ( n, 4j-1) address is 2 × 1 element Thus, the i-th stage excluding the first stage, the second stage, the n-th stage, and the (n + 1) -th stage is composed of n 1 × 2 elements and n 2 × 1 elements (where i is 3 ≦ i ≦ n−1 natural number), i is an odd number, the (i, 4j-3) address and the (i, 4j) address are 2 × 1 elements, the (i, 4j-2) address and the If the (i, 4j-1) address is 1 × 2 elements and i is an even number, the (i, 4j-3) th address and the (i, 4j) address are 1 × 2 elements, The i, 4j-2) address and the (i, 4j-1) address are 2 × 1 elements, and the total number n of 1 × 2 elements in the first stage is used as the input terminal of the matrix optical switch. The total output of n outputs of 2 × 1 elements in the (n + 1) th stage is used as the output terminal of the matrix optical switch, and the kth (k is a natural number of k ≦ n) of the 1st stage. If one of the outputs is an odd k Connect to the input of the 1 × 1 element at the address (2,2k), and when k is an even number, connect to the input of the 1 × 1 element at the (2,2k−1) th address, When the other of the outputs of the 1 × 2 element is k, the input of the 1 × 2 element at the (2,1) address is when k is 1, and the (2,2k−2) address when k is an odd number excluding 1 1 × 2 elements of input, if k is n, input of 1 × 2 elements at address (2,2n), and if k is an even number excluding n, 1 × of address (2,2k + 1) When one of the inputs of the kth 2 × 1 element in the (n + 1) th stage is connected to the input of the two elements and k is an odd number, the output of the 2 × 1 element at the (n, 2k + 1) th address is When k is an even number, it is connected to the output of the 2 × 1 element at the (n, 2k−2) th address, and the other input of the kth 2 × 1 element of the (n + 1) th stage is connected to k = 1 In the case of 1 × 1 element at the (n, 1) address When k is an odd number excluding 1, the output of the 1 × 1 element at the (n, 2k−2) address, and when k is n, the output of the 1 × 1 element at the (n, 2n) address. When k is an even number excluding n, it is connected to the output of the 1 × 1 element at the (n, 2k + 1) address, and in the second stage, the 1 × 2 element at the (2, 4j-3) address. Is connected to the input of the 1 × 2 element at the (3,4j−1) th address, and the other is connected to one input of the 2 × 1 element at the (3,4j-3) th address. , 4j-1) is connected to the other input of the 2 × 1 element at address (3, 4j-3), and 1 × 1 at address (2, 4j-2). The output of the element is connected to one of the inputs of the 2 × 1 element at the (3, 4j) address, and one of the outputs of the 1 × 2 element at the (2, 4j) address is connected to the (3, 4j-2) address. To the input of the 1 × 2 element and the other (3, 4j) connected to the other input of the 2 × 1 element at the address, and in the (n−1) th stage, the output of the 2 × 1 element at the (n−1,1) th address is the (n, 2) th output. Connected to one of the inputs of the 2 × 1 element at the address, one of the outputs of the 1 × 2 element at the (n−1,2) address is connected to the input of the 1 × 1 element at the (n, 1) address, and the other Is connected to the other input of the 2 × 1 element at the (n, 2) address, and one of the outputs of the 1 × 2 element at the (n−1,2n−1) address is connected to the (n, 2n) address. To the input of the 1 × 1 element, the other is connected to one input of the 2 × 1 element at the (n, 2n−1) th address, and the output of the 2 × 1 element at the (n−1,2n) th address This is connected to the other input of the 2 × 1 element at the (n, 2n−1) th address, and one of the outputs of the 1 × 2 element at the (n−1,4j′−1) th address is the (n, 4j). ') The input of the 1 × 1 element at address is the other (n, 4j') 1) Connect to one of the inputs of the 2 × 1 element at the address, and output the 2 × 1 element at the (n−1,4j ′ + 1) th address to 2 × 1 at the (n, 4j′−1) th address Connected to the other input of the element, the output of the 2 × 1 element at address (n−1,4j ′) is connected to one of the inputs of the 2 × 1 element at address (n, 4j ′ + 2), One of the outputs of the 1 × 2 element at the (n−1,4j ′ + 2) th address is input to the input of the 1 × 1 element at the (n, 4j ′ + 1) th address, and the other is the (n, 4j ′ + 2). Connected to the other input of the 2 × 1 element of the address (where j ′ is a natural number of j ′ ≦ n / 2-1), the first stage, the second stage, the (n−1) stage, In the i-th stage excluding the n-th stage and the (n + 1) -th stage, when i is an odd number, the output of the 2 × 1 element at the (i, 1) address is the output of the 2 × 1 element at the (i + 1,2) address. Connect to one of the inputs, 1 at address (i, 2) One of the outputs of the two elements is connected to the input of the 1 × 2 element at the (i + 1,1) address, the other is connected to the other of the inputs of the 2 × 1 element at the (i + 1,2) address, and the (i, One of the outputs of the 1 × 2 element at the address 2n−1) is input to the input of the 1 × 2 element at the address (i + 1, 2n), and the other is input to the input of the 2 × 1 element at the address (i + 1, 2n−1). The output of the 2 × 1 element at the (i, 2n) address is connected to the other input of the 2 × 1 element at the (i + 1, 2n−1) address, and the (i, 4j′−) is connected. 1) One of the outputs of the 1 × 2 element at the address is input to the 1 × 2 element at the (i + 1,4j ′ + 1) th address, and the other is the input of the 2 × 1 element at the (i + 1,4j′−1) th address. The output of the 2 × 1 element at the (i, 4j ′ + 1) th address is connected to the other input of the 2 × 1 element at the (i + 1,4j′−1) th address, and the (i , 4j ') The output of the 2 × 1 element at the address is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j ′ + 2) th address, and one of the outputs of the 1 × 2 element at the (i, 4j ′ + 2) address Is connected to the input of the 1 × 2 element at the (i + 1,4j ′) address, the other is connected to the other input of the 2 × 1 element at the (i + 1,4j ′ + 2) address, and i is an even number, One of the outputs of the 1 × 2 element at the (i, 4j-3) th address is input to the input of the 1 × 2 element at the (i + 1,4j−1) th address, and the other is 2 of the (i + 1,4j-3) th address. Connect to one of the inputs of the x1 element, and connect the output of the 2x1 element at the (i, 4j-1) th address to the other input of the 2x1 element at the (i + 1,4j-3) th address. The output of the 2 × 1 element at the (i, 4j-2) th address is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j) th address, and the 1 × 2 element at the (i, 4j) th address Of output A matrix optical switch characterized in that one side is connected to the input of the 1 × 2 element at the (i + 1,4j−2) th address and the other is connected to the other input of the 2 × 1 element at the (i + 1,4j) th address . 1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、該第2段の第(4j−3)番目(これを以下、第(2,4j−3)番地と表わす)と第(2,4j)番地が1×1素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が2×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が1×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが奇数の場合は第(2,2k−1)番地の1×1素子の入力に、kが偶数の場合は第(2,2k)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k+1)番地の1×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが1の場合には第(n,1)番地の2×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の2×1素子の出力に、kがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く偶数の場合は第(n,2k+1)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,2n−1)番地の1×2素子の出力の一方を第(3,2n)番地の1×2素子の入力に、他方を第(3,2n−1)番地の2×1素子の入力の一方に接続し、第(2,2n)番地の1×1素子の出力を該第(3,2n−1)番地の2×1素子の入力の他方に接続し、第(2,4j’−1)番地の1×2素子の出力の一方を第(3,4j’+1)番地の1×2素子の入力に、他方を第(3,4j’−1)番地の2×1素子の入力の一方に接続し、第(2,4j’+1)番地の1×1素子の出力を該第(3,4j’−1)番地の2×1素子の入力の他方に接続し、第(2,4j’)番地の1×1素子の出力を第(3,4j’+2)番地の2×1素子の入力の一方に接続し、第(2,4j’+2)番地の1×2素子の出力の一方を第(3,4j’)番地の1×2素子の入力に、他方を該第(3,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第(n−1)段においては、第(n−1,4j−3)番地の1×2素子の出力の一方を第(n,4j−2)番地の1×1素子の入力に、他方を第(n,4j−3)番地の2×1素子の入力の一方に接続し、第(n−1,4j−1)番地の2×1素子の出力を該第(n,4j−3)番地の2×1素子の入力の他方に接続し、第(n−1,4j−2)番地の2×1素子の出力を第(n,4j)番地の2×1素子の入力の一方に接続し、第(n−1,4j)番地の1×2素子の出力の一方を第(n,4j−1)番地の1×1素子の入力に、他方を該第(n,4j)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続し、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続したことを特徴とするマトリクス光スイッチ。   An n-input × n-output matrix optical switch composed of 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n (In the present invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, the first stage is composed of n 1 × 2 elements, and the (n + 1) th stage is 2 × 1. The second stage is composed of n 1 × 2 elements and n 1 × 1 elements, and the second stage is the (4j-3) th (hereinafter referred to as (2,4j-3). Address) and the (2,4j) address are 1 × 1 elements, and the (2,4j-2) and (2,4j-1) addresses are 1 × 2 elements (here J is a natural number of j ≦ n / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements, and the (n, 4j-3) and (n, 4j) addresses. Is a 2 × 1 element, and the (n, j-2) address and (n, 4j-1) address are 1 × 1 elements, and the i-th stage excluding the first stage, second stage, n-th stage and (n + 1) -th stage is 1 × 2 It consists of n elements and 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), and when i is an odd number, the (i, 4j-3) th address and the (i, 4j) ) Address is 1 × 2 elements, and (i, 4j−2) and (i, 4j−1) addresses are 2 × 1 elements, and i is an even number, (i, 4j− 3) The address and the (i, 4j) address are 2 × 1 elements, the (i, 4j−2) address and the (i, 4j−1) address are 1 × 2 elements, and the first stage N input meters of 1 × 2 elements of n are used as input terminals of the matrix optical switch, and n output meters of 2 × 1 elements of the (n + 1) -th stage are used as output terminals of the matrix optical switch. 1st stage k-th (k is k ≦ n One of the outputs of the 1 × 2 element of (natural number of 2), when k is an odd number, it is the input of the 1 × 2 element of the (2,2k + 1) th address, and when k is an even number, the (2,2k-2) th address And the other output of the k-th 1 × 2 element of the first stage is connected to the input of the 1 × 1 element at the (2,2k−1) -th address when k is an odd number. When k is an even number, the input is connected to the input of the 1 × 1 element at the (2,2k) address, and one of the inputs of the kth 2 × 1 element in the (n + 1) th stage is odd. Is connected to the output of the 1 × 1 element at the (n, 2k + 1) th address, and when k is an even number, it is connected to the output of the 1 × 1 element at the (n, 2k−2) th address. The other of the inputs of the k-th 2 × 1 element of the stage is the output of the 2 × 1 element at the (n, 1) address when k is 1, and the (n) when k is an odd number excluding 1 , 2k-2) 2 × 1 element output When k is n, it is connected to the output of the 2 × 1 element at the (n, 2n) address, and when k is an even number excluding n, it is connected to the output of the 2 × 1 element at the (n, 2k + 1) address. In the second stage, the output of the 1 × 1 element at the (2,1) address is connected to one input of the 2 × 1 element at the (3,2) address, and the (2,2) address. One of the outputs of the 1 × 2 element is connected to the input of the 1 × 2 element at the (3,1) address, the other is connected to the other input of the 2 × 1 element at the (3,2) address, One of the outputs of the 1 × 2 element at the address (2,2n−1) is input to the input of the 1 × 2 element at the address (3,2n), and the other is the 2 × 1 element at the address (3,2n−1). And the output of the 1 × 1 element at the (2,2n) address is connected to the other input of the 2 × 1 element at the (3,2n−1) address, and the (2, 4j'-1) One of the outputs of 1x2 elements at address The input of the 1 × 2 element at address (3,4j ′ + 1) is connected to one of the inputs of the 2 × 1 element at address (3,4j′−1), and the (2,4j ′ + 1) th address. The output of the 1 × 1 element at the address is connected to the other input of the 2 × 1 element at the (3,4j′−1) th address, and the output of the 1 × 1 element at the (2,4j ′) address is One of the 2 × 1 element inputs at address (3, 4j ′ + 2) is connected to one of the outputs of the 1 × 2 element at address (2, 4j ′ + 2), and 1 of the address (3, 4j ′). Connect the input of the × 2 element to the other input of the 2 × 1 element at the (3,4j ′ + 2) address (where j ′ is a natural number of j ′ ≦ n / 2-1) In the (n−1) th stage, one of the outputs of the 1 × 2 element at the (n−1,4j−3) th address is input to the 1 × 1 element at the (n, 4j−2) th address. The other is the 2 × 1 element at the (n, 4j-3) address Connected to one of the inputs, the output of the 2 × 1 element at address (n−1,4j−1) is connected to the other input of the 2 × 1 element at address (n, 4j−3), and The output of the 2 × 1 element at address (n−1,4j−2) is connected to one of the inputs of the 2 × 1 element at address (n, 4j), and 1 × at the (n−1,4j) address. One of the outputs of the two elements is connected to the input of the 1 × 1 element at the (n, 4j−1) th address, and the other is connected to the other of the inputs of the 2 × 1 element at the (n, 4j) th address. In the i-th stage excluding the 1st stage, the 2nd stage, the (n-1) th stage, the nth stage, and the (n + 1) th stage, when i is an odd number, 1 × of the (i, 4j-3) address One of the outputs of the two elements is connected to the input of the 1 × 2 element at the (i + 1,4j−1) th address, the other is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j-3) th address, (I, 4j-1) of 2 × 1 elements at address Is connected to the other input of the 2 × 1 element at the (i + 1,4j-3) address, and the output of the 2 × 1 element at the (i, 4j-2) th address is connected to the (i + 1,4j) address. Connect to one of the inputs of the 2 × 1 element, one of the outputs of the 1 × 2 element at the (i, 4j) address is the input of the 1 × 2 element at the (i + 1, 4j−2) address, and the other When i is an even number connected to the other input of the 2 × 1 element at the (i + 1,4j) address, the output of the 2 × 1 element at the (i, 1) address is the address of the (i + 1,2) address. Connected to one of the inputs of the 2 × 1 element, one of the outputs of the 1 × 2 element at the (i, 2) address is connected to the input of the 1 × 2 element at the (i + 1,1) address, and the other is Connect to the other input of the 2 × 1 element at the address i + 1, 2), and connect one output of the 1 × 2 element at the (i, 2n−1) th address to the 1 × 2 element at the (i + 1, 2n) address. Input, the other It is connected to one input of the 2 × 1 element at the (i + 1, 2n−1) address, and the output of the 2 × 1 element at the (i, 2n) address is 2 × 1 at the (i + 1, 2n−1) address. Connect to the other input of the element, one of the outputs of the 1 × 2 element at the (i, 4j′−1) th address is the input of the 1 × 2 element at the (i + 1,4j ′ + 1) th address, and the other Connected to one input of the 2 × 1 element at the address (i + 1, 4j′−1), and outputs the 2 × 1 element at the (i, 4j ′ + 1) th address to the (i + 1, 4j′−1) address. Connected to the other input of the 2 × 1 element, and the output of the 2 × 1 element at the (i, 4j ′) address is connected to one of the input of the 2 × 1 element at the (i + 1,4j ′ + 2) address. , One of the outputs of the 1 × 2 element at the (i, 4j ′ + 2) th address is input to the input of the 1 × 2 element at the (i + 1,4j ′) th address, and the other is the address of the (i + 1,4j ′ + 2) th address. 2x Matrix optical switch, characterized in that connected to the other input of the device. 1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j−3)番地と第(2,4j)番地が1×2素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×1素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k+1)番地の1×1素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×1素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合には第(2,1)番地の1×2素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×2素子の入力に、kがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く偶数の場合は第(2,2k+1)番地の1×2素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k2)番地の2×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが奇数の場合は第(n,2k−1)番地の1×1素子の出力に、kが偶数の場合は第(n,2k)番地の1×1素子の出力に接続して、第2段においては、第(2,4j−3)番地の1×2素子の出力の一方を第(3,4j−1)番地の1×2素子の入力に、他方を第(3,4j−3)番地の2×1素子の入力の一方に接続し、第(2,4j−2)番地の1×1素子の出力を該第(3,4j−3)番地の2×1素子の入力の他方に接続し、第(2,4j−1)番地の1×1素子の出力を第(3,4j)番地の2×1素子の入力の一方に接続し、第(2,4j)番地の1×2素子の出力の一方を第(3,4j−2)番地の1×2素子の入力に、他方を該第(3,4j)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,2n−1)番地の1×2素子の出力の一方を第(n,2n)番地の1×1素子の入力に、他方を第(n,2n−1)番地の2×1素子の入力の一方に接続し、第(n−1,2n)番地の2×1素子の出力を該第(n,2n−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’−1)番地の1×2素子の出力の一方を第(n,4j’+1)番地の1×1素子の入力に、他方を第(n,4j’−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j’+1)番地の2×1素子の出力を該第(n,4j’−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’)番地の2×1素子の出力を第(n,4j’+2)番地の2×1素子の入力の一方に接続して、第(n−1,4j’+2)番地の1×2素子の出力の一方を第(n,4j’)番地の1×1素子の入力に、他方を該第(n,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続して、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続したことを特徴とするマトリクス光スイッチ。   An n-input × n-output matrix optical switch composed of 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n (In the present invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, the first stage is composed of n 1 × 2 elements, and the (n + 1) th stage is 2 × 1. The second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j-3) and (2,4j) addresses are 1 × 2 elements. The (2,4j-2) address and the (2,4j-1) address are 1 × 1 elements (where j is a natural number of j ≦ n / 2), and the nth stage is 2 × 1. It consists of n elements and 1 × 1 elements, the (n, 4j-3) address and the (n, 4j) address are 1 × 1 elements, the (n, 4j−2) address and the ( n, 4j-1) address is 2 × 1 element Thus, the i-th stage excluding the first stage, the second stage, the n-th stage, and the (n + 1) -th stage is composed of n 1 × 2 elements and n 2 × 1 elements (where i is 3 ≦ i ≦ n−1 natural number), i is an odd number, the (i, 4j-3) address and the (i, 4j) address are 2 × 1 elements, the (i, 4j-2) address and the If the (i, 4j-1) address is 1 × 2 elements and i is an even number, the (i, 4j-3) th address and the (i, 4j) address are 1 × 2 elements, The i, 4j-2) address and the (i, 4j-1) address are 2 × 1 elements, and the total number n of 1 × 2 elements in the first stage is used as the input terminal of the matrix optical switch. The total output of n outputs of 2 × 1 elements in the (n + 1) th stage is used as the output terminal of the matrix optical switch, and the kth (k is a natural number of k ≦ n) of the 1st stage. If one of the outputs is an odd k Connect to the input of the 1 × 1 element at the (2,2k + 1) address, and when k is an even number, connect to the input of the 1 × 1 element at the (2,2k−2) th address, When the other of the outputs of the 1 × 2 element is k, the input of the 1 × 2 element at the (2,1) address is when k is 1, and the (2,2k−2) address when k is an odd number excluding 1 1 × 2 elements of input, if k is n, input of 1 × 2 elements at address (2,2n), and if k is an even number excluding n, 1 × of address (2,2k + 1) When one of the inputs of the kth 2 × 1 element in the (n + 1) th stage is connected to the input of the two elements and k is an odd number, the output of the 2 × 1 element at the (n, 2k + 1) th address is When k is an even number, it is connected to the output of the 2 × 1 element at the (n, 2k2) address, and when the other input of the kth 2 × 1 element at the (n + 1) th stage is odd, 1 of the (n, 2k-1) address When k is an even number, the output of one element is connected to the output of the 1 × 1 element at the (n, 2k) address, and in the second stage, 1 × 2 at the (2, 4j-3) address. One of the outputs of the element is connected to the input of the 1 × 2 element at address (3,4j−1), the other is connected to one of the inputs of the 2 × 1 element at address (3,4j-3), The output of the 1 × 1 element at address 2,4j-2) is connected to the other input of the 2 × 1 element at address (3,4j-3), and 1 × at address (2,4j−1). The output of one element is connected to one of the inputs of the 2 × 1 element at the (3, 4j) address, and one of the outputs of the 1 × 2 element at the (2, 4j) address is the (3, 4j−2) The input of the 1 × 2 element at the address is connected to the other input of the 2 × 1 element at the (3,4th) address, and the (n−1, 1) The output of the 2 × 1 element at the address is (n, 2) Connected to one of the inputs of the 2 × 1 element at the address, one of the outputs of the 1 × 2 element at the (n−1,2) address is connected to the input of the 1 × 1 element at the (n, 1) address, and the other Is connected to the other input of the 2 × 1 element at the (n, 2) address, and one of the outputs of the 1 × 2 element at the (n−1,2n−1) address is connected to the (n, 2n) address. To the input of the 1 × 1 element, the other is connected to one input of the 2 × 1 element at the (n, 2n−1) th address, and the output of the 2 × 1 element at the (n−1,2n) th address This is connected to the other input of the 2 × 1 element at the (n, 2n−1) th address, and one of the outputs of the 1 × 2 element at the (n−1,4j′−1) th address is the (n, 4j). The input of the 1 × 1 element at the address “+1” is connected to one input of the 2 × 1 element at the (n, 4j′−1) th address, and the address of the (n−1,4j ′ + 1) th address. The output of 2 × 1 element is assigned to the (n, 4j′−1) th address Connect to the other input of the × 1 element and connect the output of the 2 × 1 element at the (n−1,4j ′) address to one of the input of the 2 × 1 element at the (n, 4j ′ + 2) address. Thus, one of the outputs of the 1 × 2 element at the (n−1,4j ′ + 2) th address is input to the input of the 1 × 1 element at the (n, 4j ′) th address, and the other is the (n, 4j ′ + 2). ) Connected to the other input of the 2 × 1 element of the address (where j ′ is a natural number of j ′ ≦ n / 2-1), the first stage and the second stage, the (n−1) stage, In the i-th stage excluding the n-th stage and the (n + 1) -th stage, when i is an odd number, the output of the 2 × 1 element at the (i, 1) address is the 2 × 1 element at the (i + 1,2) address. One of the outputs of the 1 × 2 element at address (i, 2) is connected to the input of the 1 × 2 element at address (i + 1,1) and the other is the (i + 1,2). Connect to the other input of the 2 × 1 element at the address One of the outputs of the 1 × 2 element at the (i, 2n−1) address is the input of the 1 × 2 element at the (i + 1, 2n) address, and the other is the 2 × 1 of the (i + 1, 2n−1) address. The output of the 2 × 1 element at the (i, 2n) address is connected to the other input of the 2 × 1 element at the (i + 1, 2n−1) address, and , 4j′−1), one output of the 1 × 2 element at address (i + 1,4j ′ + 1) is the input of the 1 × 2 element at address (i + 1,4j ′ + 1), and the other is 2 × at address (i + 1,4j′−1). Connect to one of the inputs of one element and connect the output of the 2 × 1 element at address (i, 4j ′ + 1) to the other of the input of the 2 × 1 element at address (i + 1,4j′−1). The output of the 2 × 1 element at the (i, 4j ′) address is connected to one input of the 2 × 1 element at the (i + 1, 4j ′ + 2) address, and the output of the (i, 4j ′ + 2) address 1 x 2 elements One of the outputs is connected to the input of the 1 × 2 element at the (i + 1,4j ′) address, the other is connected to the other input of the 2 × 1 element at the (i + 1,4j ′ + 2) address, and i is an even number In this case, one of the outputs of the 1 × 2 element at the (i, 4j-3) th address is input to the 1 × 2 element at the (i + 1,4j−1) th address, and the other is the (i + 1,4j-3) th. The output of the 2 × 1 element at the (i, 4j−1) -th address is connected to one of the inputs of the 2 × 1 element at the address, and the other of the 2 × 1 element inputs at the (i + 1, 4j−3) -th address And the output of the 2 × 1 element at the (i, 4j−2) th address is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j) th address, and 1 at the (i, 4j) address. One of the outputs of the × 2 element is connected to the input of the 1 × 2 element at the (i + 1,4j−2) th address, and the other is connected to the other input of the 2 × 1 element at the (i + 1,4j) th address. Matrix optical switch to the butterflies. 1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、該第2段の第(4j−3)番目(これを以下、第(2,4j−3)番地と表わす)と第(2,4j)番地が1×1素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が2×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が1×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合は第(2,1)番地の1×1素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×1素子の入力に、kがnの場合は第(2,2n)番地の1×1素子の入力に、kがnを除く偶数の場合は第(2,2k+1)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k+1)番地の1×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが1の場合には第(n,1)番地の2×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の2×1素子の出力に、kがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く偶数の場合は第(n,2k+1)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,2n−1)番地の1×2素子の出力の一方を第(3,2n)番地の1×2素子の入力に、他方を第(3,2n−1)番地の2×1素子の入力の一方に接続し、第(2,2n)番地の1×1素子の出力を該第(3,2n−1)番地の2×1素子の入力の他方に接続し、第(2,4j’−1)番地の1×2素子の出力の一方を第(3,4j’+1)番地の1×2素子の入力に、他方を第(3,4j’−1)番地の2×1素子の入力の一方に接続し、第(2,4j’)番地の1×1素子の出力を該第(3,4j’−1)番地の2×1素子の入力の他方に接続し、第(2,4j’+1)番地の1×1素子の出力を第(3,4j’+2)番地の2×1素子の入力の一方に接続し、第(2,4j’+2)番地の1×2素子の出力の一方を第(3,4j’)番地の1×2素子の入力に、他方を該第(3,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第(n−1)段においては、第(n−1,4j−3)番地の1×2素子の出力の一方を第(n,4j−2)番地の1×1素子の入力に、他方を第(n,4j−3)番地の2×1素子の入力の一方に接続し、第(n−1,4j−1)番地の2×1素子の出力を該第(n,4j−3)番地の2×1素子の入力の他方に接続し、第(n−1,4j−2)番地の2×1素子の出力を第(n,4j)番地の2×1素子の入力の一方に接続し、第(n−1,4j)番地の1×2素子の出力の一方を第(n,4j−1)番地の1×1素子の入力に、他方を該第(n,4j)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続し、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続したことを特徴とするマトリクス光スイッチ。   An n-input × n-output matrix optical switch composed of 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n (In the present invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, the first stage is composed of n 1 × 2 elements, and the (n + 1) th stage is 2 × 1. The second stage is composed of n 1 × 2 elements and n 1 × 1 elements, and the second stage is the (4j-3) th (hereinafter referred to as (2,4j-3). Address) and the (2,4j) address are 1 × 1 elements, and the (2,4j-2) and (2,4j-1) addresses are 1 × 2 elements (here J is a natural number of j ≦ n / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements, and the (n, 4j-3) and (n, 4j) addresses. Is a 2 × 1 element, and the (n, j-2) address and (n, 4j-1) address are 1 × 1 elements, and the i-th stage excluding the first stage, second stage, n-th stage and (n + 1) -th stage is 1 × 2 It consists of n elements and 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), and when i is an odd number, the (i, 4j-3) th address and the (i, 4j) ) Address is 1 × 2 elements, and (i, 4j−2) and (i, 4j−1) addresses are 2 × 1 elements, and i is an even number, (i, 4j− 3) The address and the (i, 4j) address are 2 × 1 elements, the (i, 4j−2) address and the (i, 4j−1) address are 1 × 2 elements, and the first stage N input meters of 1 × 2 elements of n are used as input terminals of the matrix optical switch, and n output meters of 2 × 1 elements of the (n + 1) -th stage are used as output terminals of the matrix optical switch. 1st stage k-th (k is k ≦ n One of the outputs of the 1 × 2 element of (natural number of 2), when k is an odd number, it is the input of the 1 × 2 element of the (2,2k + 1) th address, and when k is an even number, the (2,2k-2) th address And the other output of the kth 1 × 2 element of the first stage is connected to the input of the 1 × 1 element at the (2,1) address when k is 1. , When k is an odd number other than 1, input to the 1 × 1 element at the (2,2k−2) address, and when k is n, input to the 1 × 1 element at the (2,2n) address, When k is an even number excluding n, it is connected to the input of the 1 × 1 element at the (2,2k + 1) -th address, and k is an odd number of one of the inputs of the kth 2 × 1 element at the (n + 1) -th stage. Is connected to the output of the 1 × 1 element at the (n, 2k + 1) th address, and when k is an even number, it is connected to the output of the 1 × 1 element at the (n, 2k−2) th address. Entering the kth 2 × 1 element of the stage When k is 1, the output of the 2 × 1 element at the (n, 1) address is used, and when k is an odd number other than 1, the 2 × 1 element at the (n, 2k−2) address is output. Output is connected to the output of the 2 × 1 element at the (n, 2n) address when k is n, and connected to the output of the 2 × 1 element at the (n, 2k + 1) address when k is an even number excluding n. In the second stage, the output of the 1 × 1 element at the (2,1) address is connected to one input of the 2 × 1 element at the (3,2) address, and the (2,2) One of the outputs of the 1 × 2 element at the address is connected to the input of the 1 × 2 element at the (3,1) address, and the other is connected to the other input of the 2 × 1 element at the (3,2) address, One of the outputs of the 1 × 2 element at address (2,2n−1) is input to the input of the 1 × 2 element at address (3,2n) and the other is 2 × 1 at address (3,2n−1). Connect to one of the input of the element, the (2,2n) address The output of the × 1 element is connected to the other input of the 2 × 1 element at the (3,2n−1) th address, and the output of the 1 × 2 element at the (2,4j′−1) th address is connected to the second Connect the input of the 1 × 2 element at the (3, 4j ′ + 1) address and the other to the input of the 2 × 1 element at the (3, 4j′−1) th address, and the (2, 4j ′) address. Is connected to the other input of the 2 × 1 element at the (3,4j′−1) th address, and the output of the 1 × 1 element at the (2,4j ′ + 1) th address is One of the 2 × 1 element inputs at address (3, 4j ′ + 2) is connected to one of the outputs of the 1 × 2 element at address (2, 4j ′ + 2), and 1 of the address (3, 4j ′). Connect the input of the × 2 element to the other input of the 2 × 1 element at the (3,4j ′ + 2) address (where j ′ is a natural number of j ′ ≦ n / 2-1) In the (n-1) th stage, the (n-1) th stage , 4j-3) One of the outputs of the 1 × 2 element at address (n, 4j−2) is the input of the 1 × 1 element at the address (n, 4j−2), and the other is the 2 × 1 element at address (n, 4j−3). And the output of the 2 × 1 element at the (n−1,4j−1) th address is connected to the other input of the 2 × 1 element at the (n, 4j-3) th address, The output of the 2 × 1 element at the (n−1,4j-2) th address is connected to one of the inputs of the 2 × 1 element at the (n, 4j) th address, and 1 of the (n−1,4j) address. One of the outputs of the × 2 element is connected to the input of the 1 × 1 element at the (n, 4j−1) address, and the other is connected to the other input of the 2 × 1 element at the (n, 4j) address, In the i-th stage excluding the first and second stages, the (n-1) -th stage, the n-th stage, and the (n + 1) -th stage, when i is an odd number, 1 of the (i, 4j-3) -th address × One of the outputs of 2 elements is the (i + 1,4j-1) th Connect the other input to the input of the 2 × 1 element at the (i + 1,4j-3) th address and the output of the 2 × 1 element at the (i, 4j−1) th address. Is connected to the other input of the 2 × 1 element at the (i + 1,4j-3) th address, and the output of the 2 × 1 element at the (i, 4j-2) th address is 2 of the (i + 1,4j) th address. Connected to one of the inputs of the x1 element, one of the outputs of the 1x2 element at the (i, 4j) th address is connected to the input of the 1x2 element at the (i + 1,4j-2) th address, and the other When i is an even number connected to the other input of the 2 × 1 element at the (i + 1,4j) address, the output of the 2 × 1 element at the (i, 1) address is 2 at the (i + 1,2) address. Connected to one of the inputs of the × 1 element, one of the outputs of the 1 × 2 element at the (i, 2) address is connected to the input of the 1 × 2 element at the (i + 1,1) address, and the other is the (i + 1) th , 2) Address 2 × 1 Connected to the other input of the element, one of the outputs of the 1 × 2 element at the (i, 2n−1) th address is connected to the input of the 1 × 2 element at the (i + 1,2n) th address, and the other is the (i + 1,2th) 2n-1) is connected to one input of the 2 × 1 element at the address (2n−1), and the output of the 2 × 1 element at the (i, 2n) address is input to the 2 × 1 element at the (i + 1,2n−1) address. The output of the 1 × 2 element at the (i, 4j′−1) th address is connected to the input of the 1 × 2 element at the (i + 1,4j ′ + 1) th address, and the other is connected to the (i + 1,4th). 4j′−1) is connected to one input of the 2 × 1 element at address (i, 4j ′ + 1) and the output of the 2 × 1 element at address (i, 4j ′ + 1) is 2 × at the address (i + 1, 4j′−1). Connect the output of the 2 × 1 element at the (i, 4j ′) address to the other input of the 2 × 1 element at the (i + 1,4j ′ + 2) address, i, 4j +2) One of the outputs of the 1 × 2 element at the address is the input of the 1 × 2 element at the (i + 1,4j ′) address, and the other is the input of the 2 × 1 element at the (i + 1,4j ′ + 2) address. A matrix optical switch characterized by being connected to the other. 1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧4の偶数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j−3)番地と第(2,4j)番地が1×2素子であり、第(2,4j−2)番地と第(2,4j−1)番地が1×1素子であって(ここで、jはj≦n/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j−2)番地と第(i,4j−1)番地が1×2素子であって、iが偶数の場合、第(i,4j−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j−2)番地と第(i,4j−1)番地が2×1素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkが奇数の場合は第(2,2k+1)番地の1×1素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×1素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合には第(2,1)番地の1×2素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×2素子の入力に、kがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く偶数の場合は第(2,2k+1)番地の1×2素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkが1の場合は第(n,1)番地の1×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の1×1素子の出力に、kがnの場合は第(n,2n)番地の1×1素子の出力に、kがnを除く偶数の場合は第(n,2k+1)番地の1×1素子の出力に接続して、第2段においては、第(2,4j−3)番地の1×2素子の出力の一方を第(3,4j−1)番地の1×2素子の入力に、他方を第(3,4j−3)番地の2×1素子の入力の一方に接続し、第(2,4j−2)番地の1×1素子の出力を該第(3,4j−3)番地の2×1素子の入力の他方に接続し、第(2,4j−1)番地の1×1素子の出力を第(3,4j)番地の2×1素子の入力の一方に接続し、第(2,4j)番地の1×2素子の出力の一方を第(3,4j−2)番地の1×2素子の入力に、他方を該第(3,4j)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,2n−1)番地の1×2素子の出力の一方を第(n,2n)番地の1×1素子の入力に、他方を第(n,2n−1)番地の2×1素子の入力の一方に接続し、第(n−1,2n)番地の2×1素子の出力を該第(n,2n−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’−1)番地の1×2素子の出力の一方を第(n,4j’)番地の1×1素子の入力に、他方を第(n,4j’−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j’+1)番地の2×1素子の出力を該第(n,4j’−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j’)番地の2×1素子の出力を第(n,4j’+2)番地の2×1素子の入力の一方に接続して、第(n−1,4j’+2)番地の1×2素子の出力の一方を第(n,4j’+1)番地の1×1素子の入力に、他方を該第(n,4j’+2)番地の2×1素子の入力の他方に接続して(ここで、j’はj’≦n/2−1の自然数)、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続し、第(i,4j’−1)番地の1×2素子の出力の一方を第(i+1,4j’+1)番地の1×2素子の入力に、他方を第(i+1,4j’−1)番地の2×1素子の入力の一方に接続し、第(i,4j’+1)番地の2×1素子の出力を該第(i+1,4j’−1)番地の2×1素子の入力の他方に接続し、第(i,4j’)番地の2×1素子の出力を第(i+1,4j’+2)番地の2×1素子の入力の一方に接続して、第(i,4j’+2)番地の1×2素子の出力の一方を第(i+1,4j’)番地の1×2素子の入力に、他方を該第(i+1,4j’+2)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続したことを特徴とするマトリクス光スイッチ。   An n-input × n-output matrix optical switch composed of 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n (In the present invention, n is an even number of n ≧ 4), the unit optical switch elements are arranged in (n + 1) stages, the first stage is composed of n 1 × 2 elements, and the (n + 1) th stage is 2 × 1. The second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j-3) and (2,4j) addresses are 1 × 2 elements. The (2,4j-2) address and the (2,4j-1) address are 1 × 1 elements (where j is a natural number of j ≦ n / 2), and the nth stage is 2 × 1. It consists of n elements and 1 × 1 elements, the (n, 4j-3) address and the (n, 4j) address are 1 × 1 elements, the (n, 4j−2) address and the ( n, 4j-1) address is 2 × 1 element Thus, the i-th stage excluding the first stage, the second stage, the n-th stage, and the (n + 1) -th stage is composed of n 1 × 2 elements and n 2 × 1 elements (where i is 3 ≦ i ≦ n−1 natural number), i is an odd number, the (i, 4j-3) address and the (i, 4j) address are 2 × 1 elements, the (i, 4j-2) address and the If the (i, 4j-1) address is 1 × 2 elements and i is an even number, the (i, 4j-3) th address and the (i, 4j) address are 1 × 2 elements, The i, 4j-2) address and the (i, 4j-1) address are 2 × 1 elements, and the total number n of 1 × 2 elements in the first stage is used as the input terminal of the matrix optical switch. The total output of n outputs of 2 × 1 elements in the (n + 1) th stage is used as the output terminal of the matrix optical switch, and the kth (k is a natural number of k ≦ n) of the 1st stage. If one of the outputs is an odd k Connect to the input of the 1 × 1 element at the (2,2k + 1) address, and when k is an even number, connect to the input of the 1 × 1 element at the (2,2k−2) th address, When the other of the outputs of the 1 × 2 element is k, the input of the 1 × 2 element at the (2,1) address is when k is 1, and the (2,2k−2) address when k is an odd number excluding 1 1 × 2 elements of input, if k is n, input of 1 × 2 elements at address (2,2n), and if k is an even number excluding n, 1 × of address (2,2k + 1) When one of the inputs of the kth 2 × 1 element in the (n + 1) th stage is connected to the input of the two elements and k is an odd number, the output of the 2 × 1 element at the (n, 2k + 1) th address is When k is an even number, it is connected to the output of the 2 × 1 element at the (n, 2k−2) th address, and the other input of the kth 2 × 1 element of the (n + 1) th stage is connected to k = 1 In case, 1x1 prime of the (n, 1) address When k is an odd number excluding 1, the output of the 1 × 1 element at the (n, 2k−2) address, and when k is n, the output of the 1 × 1 element at the (n, 2n) address When k is an even number excluding n, it is connected to the output of the 1 × 1 element at the (n, 2k + 1) address, and in the second stage, it is 1 × 2 at the (2, 4j-3) address. One of the outputs of the element is connected to the input of the 1 × 2 element at address (3,4j−1), the other is connected to one of the inputs of the 2 × 1 element at address (3,4j-3), The output of the 1 × 1 element at address 2,4j-2) is connected to the other input of the 2 × 1 element at address (3,4j-3), and 1 × at address (2,4j−1). The output of one element is connected to one of the inputs of the 2 × 1 element at the (3, 4j) address, and one of the outputs of the 1 × 2 element at the (2, 4j) address is the (3, 4j−2) The input of the 1 × 2 element of the address is the other ( 3, 4j) is connected to the other input of the 2 × 1 element at the address (n−1), and in the (n−1) th stage, the output of the 2 × 1 element at the (n−1,1) th address is (n, 2) Connect to one of the inputs of the 2 × 1 element at the address, and one of the outputs of the 1 × 2 element at the (n−1,2) address to the input of the 1 × 1 element at the (n, 1) address The other is connected to the other input of the 2 × 1 element at the (n, 2) address, and one of the outputs of the 1 × 2 element at the (n−1, 2n−1) address is the (n, 2n). ) Address 1 × 1 element input, the other connected to one of (n, 2n−1) address 2 × 1 element input, and (n−1, 2n) address 2 × 1 element input The output is connected to the other input of the 2 × 1 element at the (n, 2n−1) th address, and one of the outputs of the 1 × 2 element at the (n−1,4j′−1) th address is the (nth , 4j ′) at the input of the 1 × 1 element at the address, and the other at the (n, 4th) The output of the 2 × 1 element at the (n−1,4j ′ + 1) th address is connected to one of the inputs of the 2 × 1 element at the “−1” address, and 2 at the (n, 4j′−1) address. Connect to the other input of the × 1 element and connect the output of the 2 × 1 element at the (n−1,4j ′) address to one of the input of the 2 × 1 element at the (n, 4j ′ + 2) address. Thus, one of the outputs of the 1 × 2 element at the (n−1,4j ′ + 2) th address is input to the 1 × 1 element at the (n, 4j ′ + 1) th address and the other is the (n, 4j ′). +2) connected to the other input of the 2 × 1 element at address (where j ′ is a natural number of j ′ ≦ n / 2-1), the first stage, the second stage, and the (n−1) stage In the i-th stage excluding the n-th stage and the (n + 1) -th stage, when i is an odd number, the output of the 2 × 1 element at the (i, 1) address is 2 × 1 at the (i + 1,2) address. Connect to one of the input of the element, address (i, 2) One of the outputs of the 1 × 2 element is connected to the input of the 1 × 2 element at the (i + 1,1) address, the other is connected to the other input of the 2 × 1 element at the (i + 1,2) address, One of the outputs of the 1 × 2 element at address i, 2n−1) is input to the input of the 1 × 2 element at address (i + 1, 2n), and the other is output from the 2 × 1 element at address (i + 1, 2n−1). Connect to one of the inputs, connect the output of the 2 × 1 element at address (i, 2n) to the other of the input of the 2 × 1 element at address (i + 1, 2n−1), and (i, 4j One of the outputs of the 1 × 2 element at the address “−1” is the input of the 1 × 2 element at the (i + 1,4j ′ + 1) th address, and the other is the 2 × 1 element at the (i + 1,4j′−1) th address. And the output of the 2 × 1 element at the (i, 4j ′ + 1) th address is connected to the other input of the 2 × 1 element at the (i + 1,4j′−1) th address, (I, 4j ') The output of the 2 × 1 element at the address is connected to one input of the 2 × 1 element at the (i + 1,4j ′ + 2) th address, and the output of the 1 × 2 element at the (i, 4j ′ + 2) th address Is connected to the input of the 1 × 2 element at the (i + 1,4j ′) address, the other is connected to the other input of the 2 × 1 element at the (i + 1,4j ′ + 2) address, and i is an even number In this case, one of the outputs of the 1 × 2 element at the (i, 4j-3) th address is input to the 1 × 2 element at the (i + 1,4j−1) th address, and the other is the (i + 1,4j-3) address. And the output of the 2 × 1 element at the (i, 4j−1) th address is connected to the other input of the 2 × 1 element at the (i + 1,4j−3) th address. Connect the output of the 2 × 1 element at the (i, 4j-2) th address to one of the inputs of the 2 × 1 element at the (i + 1,4j) th address, and 1 × at the (i, 4j) th address Output of two elements 1 is connected to the input of the 1 × 2 element at the (i + 1,4j−2) -th address, and the other is connected to the other input of the 2 × 1 element at the (i + 1,4j) -th address. switch. 1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧3の奇数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j’−3)番地と第(2,4j)番地が1×1素子であり、第(2,4j’−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦(n−1)/2の自然数、j’はj’≦(n+1)/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j’−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j’−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j’−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j’−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが奇数の場合は第(2,2k−1)番地の1×1素子の入力に、kが偶数の場合は第(2,2k)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k−1)番地の1×1素子の出力に、kが偶数の場合は第(n,2k)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,4j−1)番地の1×2素子の出力の一方を第(3,4j+1)番地の1×2素子の入力に、他方を第(3,4j−1)番地の2×1素子の入力の一方に接続し、第(2,4j+1)番地の1×1素子の出力を該第(3,4j−1)番地の2×1素子の入力の他方に接続し、第(2,4j)番地の1×1素子の出力を第(3,4j+2)番地の2×1素子の入力の一方に接続し、第(2,4j+2)番地の1×2素子の出力の一方を第(3,4j)番地の1×2素子の入力に、他方を該第(3,4j+2)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,4j−1)番地の1×2素子の出力の一方を第(n,4j+1)番地の1×1素子の入力に、他方を第(n,4j−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j+1)番地の2×1素子の出力を該第(n,4j−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j)番地の2×1素子の出力を第(n,4j+2)番地の2×1素子の入力の一方に接続し、第(n−1,4j+2)番地の1×2素子の出力の一方を第(n,4j)番地の1×1素子の入力に、他方を該第(n,4j+2)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,4j−1)番地の1×2素子の出力の一方を第(i+1,4j+1)番地の1×2素子の入力に、他方を第(i+1,4j−1)番地の2×1素子の入力の一方に接続し、第(i,4j+1)番地の2×1素子の出力を該第(i+1,4j−1)番地の2×1素子の入力の他方に接続し、第(i,4j)番地の2×1素子の出力を第(i+1,4j+2)番地の2×1素子の入力の一方に接続し、第(i,4j+2)番地の1×2素子の出力の一方を第(i+1,4j)番地の1×2素子の入力に、他方を該第(i+1,4j+2)番地の2×1素子の入力の他方に接続したことを特徴とするマトリクス光スイッチ。   An n-input × n-output matrix optical switch composed of 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n (In the present invention, n is an odd number of n ≧ 3), the unit optical switch elements are arranged in (n + 1) stages, the first stage is composed of n 1 × 2 elements, and the (n + 1) th stage is 2 × 1. The second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j′-3) and (2,4j) addresses are 1 × 1 elements. Yes, the (2,4j′−2) address and the (2,4j−1) address are 1 × 2 elements, where j is a natural number of j ≦ (n−1) / 2, j ′ Is a natural number of j ′ ≦ (n + 1) / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements, and the (n, 4j′−3) -th address and (n, 4j) -th. The address is 1 × 1 element, and the (n, 4th) '-2) address and (n, 4j-1) address are 2 × 1 elements, and the i-th stage excluding the first stage, the second stage, the n-th stage and the (n + 1) -th stage is 1 × 2 It is composed of n elements and 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), and when i is an odd number, the (i, 4j′−3) -th address and (i, 4j) If the address is 1 × 2 elements, the (i, 4j′−2) th address and the (i, 4j−1) th address are 2 × 1 elements, and i is an even number, 4j′-3) and (i, 4j) addresses are 2 × 1 elements, and (i, 4j′-2) and (i, 4j−1) addresses are 1 × 2 elements. The n input meters of 1 × 2 elements in the first stage are used as input terminals of the matrix optical switch, and the n output meters of 2 × 1 elements in the (n + 1) stage are output of the matrix optical switch. Terminal, kth (k Is one of the outputs of the 1 × 2 element of k ≦ n), when k is n, the input of the 1 × 2 element at the (2,2n) th address, and when k is an odd number excluding n, 2 × 2 elements at the address (2,2k + 1), and when k is an even number, it is connected to the input of the 1 × 2 element at the address (2,2k−2), and the k-th 1st element of the first stage is connected. The other of the outputs of the × 2 elements is input to the 1 × 1 element at the (2,2k−1) address when k is an odd number, and the 1 × 1 element at the (2,2k) address when k is an even number. One of the inputs of the kth 2 × 1 element in the (n + 1) th stage to the output of the 1 × 1 element at the (n, 2k−1) th address when k is an odd number, When k is an even number, it is connected to the output of the 1 × 1 element at the (n, 2k) address, and when the other input of the kth 2 × 1 element at the (n + 1) th stage is k, Output of 2 × 1 element at address (n, 2n) When k is an odd number excluding n, it is connected to the output of the 2 × 1 element at the (n, 2k + 1) address, and when k is an even number, it is connected to the output of the 2 × 1 element at the (n, 2k−2) address. In the second stage, the output of the 1 × 1 element at the (2,1) address is connected to one input of the 2 × 1 element at the (3,2) address, and the (2,2) One of the outputs of the 1 × 2 element at the address is connected to the input of the 1 × 2 element at the (3,1) address, and the other is connected to the other input of the 2 × 1 element at the (3,2) address, One of the outputs of the 1 × 2 element at the (2,4j−1) th address is input to the input of the 1 × 2 element at the (3,4th + 1) th address, and the other is 2 × 1 at the (3,4j−1) th address. The output of the 1 × 1 element at the (2,4j + 1) th address is connected to the other input of the 2 × 1 element at the (3,4j−1) th address, and the second (2 , 4j) The output of the 1 × 1 element at address Connect to one input of 2 × 1 element at address (3,4j + 2), and input one input of 1 × 2 element at address (2,4j + 2) to input of 1 × 2 element at address (3,4j) The other is connected to the other input of the 2 × 1 element at the (3,4j + 2) th address, and in the (n−1) th stage, the 2 × 1 element at the (n−1,1) th address. Is connected to one of the inputs of the 2 × 1 element at the (n, 2) address, and one of the outputs of the 1 × 2 element at the (n−1,2) address is connected to the (n, 1) address. The input of the 1 × 1 element is connected to the other input of the 2 × 1 element at the (n, 2) address, and the output of the 1 × 2 element at the (n−1,4j−1) address. One is connected to the input of the 1 × 1 element at the (n, 4j + 1) th address, the other is connected to one of the inputs of the 2 × 1 element at the (n, 4j−1) th address, and the (n−1,4j + 1) th 2 × 1 element output at the address connected to the other input of the 2 × 1 element at address n, 4j−1), and the output of the 2 × 1 element at address (n−1,4j) is connected to the 2 × 1 element at address (n, 4j + 2). Connected to one of the inputs, one of the outputs of the 1 × 2 element at the (n−1,4j + 2) th address is connected to the input of the 1 × 1 element at the (n, 4j) th address, and the other is the (n, 4j + 2) ) Connected to the other input of the 2 × 1 element of the address, i in the i-th stage excluding the first and second stages, the (n−1) th stage, the nth stage and the (n + 1) th stage Is odd, one of the outputs of the 1 × 2 element at the (i, 4j-3) th address is the input of the 1 × 2 element at the (i + 1,4j−1) th address, and the other is the (i + 1,4j−). 3) Connect to one of the inputs of the 2 × 1 element at the address, and input the 2 × 1 element at the (i, 4j−1) th address to the input of the 2 × 1 element at the (i + 1,4j-3) address Connected to the other of The output of the 2 × 1 element at address (i, 4j−2) is connected to one of the inputs of the 2 × 1 element at address (i + 1, 4j), and the output of the 1 × 2 element at address (i, 4j). Are connected to the input of the 1 × 2 element at the (i + 1,4j−2) th address, the other is connected to the other input of the 2 × 1 element at the (i + 1,4j) th address, and the (i, 2n− 1) One of the outputs of the 1 × 2 element at the address is input to the 1 × 2 element at the (i + 1, 2n) address, and the other is one of the inputs of the 2 × 1 element at the (i + 1, 2n−1) address. When the output of the 2 × 1 element at the (i, 2n) address is connected to the other input of the 2 × 1 element at the (i + 1, 2n−1) address, and i is an even number, The output of the 2 × 1 element at address i, 1) is connected to one input of the 2 × 1 element at address (i + 1,2), and one output of the 1 × 2 element at address (i, 2) is connected. (I + 1,1) The input of the 1 × 2 element at the address is connected to the other input of the 2 × 1 element at the (i + 1, 2) th address, and the output of the 1 × 2 element at the (i, 4j−1) th address. One is connected to the input of the 1 × 2 element at the (i + 1,4j + 1) th address, the other is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j−1) th address, and the (i, 4j + 1) th address The output of the 2 × 1 element is connected to the other input of the 2 × 1 element at the (i + 1,4j−1) -th address, and the output of the 2 × 1 element at the (i, 4j) -th address is (i + 1,4j + 2). ) Connected to one of the inputs of the 2 × 1 element at the address, one of the outputs of the 1 × 2 element at the (i, 4j + 2) th address is connected to the input of the 1 × 2 element at the (i + 1,4j) address, and the other A matrix optical switch characterized by being connected to the other input of the 2 × 1 element at the (i + 1,4j + 2) -th address. 1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧3の奇数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j’−3)番地と第(2,4j)番地が1×1素子であり、第(2,4j’−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦(n−1)/2の自然数、j’はj’≦(n+1)/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j’−3)番地と第(n,4j)番地が2×1素子であり、第(n,4j’−2)番地と第(n,4j−1)番地が1×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j’−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j’−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが奇数の場合は第(2,2k−1)番地の1×1素子の入力に、kが偶数の場合は第(2,2k)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが1の場合は第(n,1)番地の1×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の1×1素子の出力に、kが偶数の場合は第(n,2k+1)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,4j−1)番地の1×2素子の出力の一方を第(3,4j+1)番地の1×2素子の入力に、他方を第(3,4j−1)番地の2×1素子の入力の一方に接続し、第(2,4j+1)番地の1×1素子の出力を該第(3,4j−1)番地の2×1素子の入力の他方に接続し、第(2,4j)番地の1×1素子の出力を第(3,4j+2)番地の2×1素子の入力の一方に接続し、第(2,4j+2)番地の1×2素子の出力の一方を第(3,4j)番地の1×2素子の入力に、他方を該第(3,4j+2)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,4j−1)番地の1×2素子の出力の一方を第(n,4j)番地の1×1素子の入力に、他方を第(n,4j−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j+1)番地の2×1素子の出力を該第(n,4j−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j)番地の2×1素子の出力を第(n,4j+2)番地の2×1素子の入力の一方に接続し、第(n−1,4j+2)番地の1×2素子の出力の一方を第(n,4j+1)番地の1×1素子の入力に、他方を該第(n,4j+2)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,4j−1)番地の1×2素子の出力の一方を第(i+1,4j+1)番地の1×2素子の入力に、他方を第(i+1,4j−1)番地の2×1素子の入力の一方に接続し、第(i,4j+1)番地の2×1素子の出力を該第(i+1,4j−1)番地の2×1素子の入力の他方に接続し、第(i,4j)番地の2×1素子の出力を第(i+1,4j+2)番地の2×1素子の入力の一方に接続し、第(i,4j+2)番地の1×2素子の出力の一方を第(i+1,4j)番地の1×2素子の入力に、他方を該第(i+1,4j+2)番地の2×1素子の入力の他方に接続したことを特徴とするマトリクス光スイッチ。   An n-input × n-output matrix optical switch composed of 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n (In the present invention, n is an odd number of n ≧ 3), the unit optical switch elements are arranged in (n + 1) stages, the first stage is composed of n 1 × 2 elements, and the (n + 1) th stage is 2 × 1. The second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j′-3) and (2,4j) addresses are 1 × 1 elements. Yes, the (2,4j′−2) address and the (2,4j−1) address are 1 × 2 elements, where j is a natural number of j ≦ (n−1) / 2, j ′ Is a natural number of j ′ ≦ (n + 1) / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements, and the (n, 4j′−3) -th address and (n, 4j) -th. The address is 2 × 1 element, and the (n, 4th) '-2) address and (n, 4j-1) address are 1 × 1 elements, and the i-th stage excluding the first stage, the second stage, the n-th stage and the (n + 1) -th stage is 1 × 2 It is composed of n elements and 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), and when i is an odd number, the (i, 4j′−3) -th address and (i, 4j) If the address is 1 × 2 elements, the (i, 4j′−2) th address and the (i, 4j−1) th address are 2 × 1 elements, and i is an even number, 4j′-3) and (i, 4j) addresses are 2 × 1 elements, and (i, 4j′-2) and (i, 4j−1) addresses are 1 × 2 elements. The n input meters of 1 × 2 elements in the first stage are used as input terminals of the matrix optical switch, and the n output meters of 2 × 1 elements in the (n + 1) stage are output of the matrix optical switch. Terminal, k-th (k Is one of the outputs of the 1 × 2 element of k ≦ n), when k is n, the input of the 1 × 2 element at the (2,2n) th address, and when k is an odd number excluding n, 2 × 2 elements at the address (2,2k + 1), and when k is an even number, it is connected to the input of the 1 × 2 element at the address (2,2k−2), and the k-th 1st element of the first stage is connected. The other of the outputs of the × 2 elements is input to the 1 × 1 element at the (2,2k−1) address when k is an odd number, and the 1 × 1 element at the (2,2k) address when k is an even number. When k is 1, one of the inputs of the kth 2 × 1 element in the (n + 1) th stage is connected to the output of the 1 × 1 element at the (n, 1) address, and k is In the case of an odd number other than 1, the output of the 1 × 1 element at the (n, 2k−2) address is connected to the output of the 1 × 1 element at the (n, 2k + 1) address when k is an even number, (N + 1) th k-th 2 × 1 element The other of the inputs is the output of the 2 × 1 element at the (n, 2n) address when k is n, and the output of the 2 × 1 element at the (n, 2k + 1) address when k is an odd number excluding n. , K is an even number, it is connected to the output of the 2 × 1 element at the (n, 2k−2) th address, and in the second stage, the output of the 1 × 1 element at the (2,1) th address is Connect to one input of 2 × 1 element at address (3,2), and input one output of 1 × 2 element at address (2,2) to input of 1 × 2 element at address (3,1) The other is connected to the other input of the 2 × 1 element at the (3, 2) address, and one of the outputs of the 1 × 2 element at the (2, 4j−1) address is connected to the (3, 4j + 1) th. The input of the 1 × 2 element at the address is connected to one input of the 2 × 1 element at the (3,4j−1) th address, and the output of the 1 × 1 element at the (2,4j + 1) th address 2 × 1 prime of address (3,4j-1) The output of the 1 × 1 element at the (2,4j) address is connected to one input of the 2 × 1 element at the (3,4j + 2) address, and connected to the other of the child inputs. One of the outputs of the 1 × 2 element at the address is connected to the input of the 1 × 2 element at the (3, 4j) address, and the other is connected to the other input of the 2 × 1 element at the (3, 4j + 2) address. In the (n−1) th stage, the output of the 2 × 1 element at the (n−1,1) address is connected to one of the inputs of the 2 × 1 element at the (n, 2) address, One of the outputs of the 1 × 2 element at the address n−1, 2) is input to the 1 × 1 element at the (n, 1) address, and the other is input to the 2 × 1 element at the (n, 2) address. One of the outputs of the 1 × 2 element at the (n−1,4j−1) th address is connected to the input of the 1 × 1 element at the (n, 4j) th address and the other is the (n, 4jth) -1) One of the 2 × 1 element inputs at the address The output of the 2 × 1 element at the (n−1,4j + 1) th address is connected to the other input of the 2 × 1 element at the (n, 4j−1) th address, and the (n−1,4jth) ) The output of the 2 × 1 element at the address is connected to one of the inputs of the 2 × 1 element at the (n, 4j + 2) th address, and the output of the 1 × 2 element at the (n−1,4j + 2) th address is connected to the first Connect the input of the 1 × 1 element at address (n, 4j + 1) to the other input of the 2 × 1 element at address (n, 4j + 2), the first and second stages, (n In the i-th stage excluding the (−1) -th stage, the n-th stage, and the (n + 1) -th stage, when i is an odd number, one of the outputs of the 1 × 2 element at the (i, 4j-3) -th address is (i + 1). , 4j-1) is connected to the input of the 1 × 2 element at the address, the other is connected to one of the inputs of the 2 × 1 element at the (i + 1,4j-3) th address, and 2 at the (i, 4j−1) th address. × 1 element output The output of the 2 × 1 element at the (i, 4j−2) -th address is connected to the other input of the 2 × 1 element at the (i + 1, 4j−3) -th address, and 2 × at the (i + 1, 4j) address. One of the inputs of one element is connected, one of the outputs of the 1 × 2 element at the (i, 4j) address is connected to the input of the 1 × 2 element at the (i + 1, 4j−2) address, and the other is i + 1,4j) is connected to the other input of the 2 × 1 element at address (i + 1,4j), and one of the outputs of the 1 × 2 element at address (i, 2n−1) is connected to the 1 × 2 element at address (i + 1,2n). The other input is connected to one of the inputs of the 2 × 1 element at the (i + 1, 2n−1) -th address, and the output of the 2 × 1 element at the (i, 2n) -th address is connected to the (i + 1, 2n−1). ) When connected to the other input of the 2 × 1 element at the address, and i is an even number, the output of the 2 × 1 element at the (i, 1) address is the output of the 2 × 1 element at the (i + 1,2) address. On one of the inputs Subsequently, one of the outputs of the 1 × 2 element at the (i, 2) address is input to the 1 × 2 element at the (i + 1,1) address, and the other is 2 × 1 of the (i + 1,2) address. One of the outputs of the 1 × 2 element at the (i, 4j−1) th address is connected to the input of the 1 × 2 element at the (i + 1,4j + 1) th address, and the other is connected to the (i + 1,4th + 1) th element. 4j-1) connected to one of the 2 × 1 element inputs at address (i, 4j + 1) and the 2 × 1 element output at address (i, 4j + 1) to the input of the 2 × 1 element at address (i + 1,4j−1). The output of the 2 × 1 element at the (i, 4j) address is connected to one of the inputs of the 2 × 1 element at the (i + 1, 4j + 2) address, and 1 at the (i, 4j + 2) address. One of the outputs of the × 2 element is connected to the input of the 1 × 2 element at the (i + 1,4j) address, and the other is connected to the other input of the 2 × 1 element at the (i + 1,4j + 2) address. A matrix optical switch characterized by that. 1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧3の奇数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j’−3)番地と第(2,4j)番地が1×1素子であり、第(2,4j’−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦(n−1)/2の自然数、j’はj’≦(n+1)/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j’−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j’−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j’−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j’−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合は第(2,1)番地の1×1素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×1素子の入力に、kが偶数の場合は第(2,2k+1)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが奇数の場合は第(n,2k−1)番地の1×1素子の出力に、kが偶数の場合は第(n,2k)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,4j−1)番地の1×2素子の出力の一方を第(3,4j+1)番地の1×2素子の入力に、他方を第(3,4j−1)番地の2×1素子の入力の一方に接続し、第(2,4j)番地の1×1素子の出力を該第(3,4j−1)番地の2×1素子の入力の他方に接続し、第(2,4j+1)番地の1×1素子の出力を第(3,4j+2)番地の2×1素子の入力の一方に接続し、第(2,4j+2)番地の1×2素子の出力の一方を第(3,4j)番地の1×2素子の入力に、他方を該第(3,4j+2)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,4j−1)番地の1×2素子の出力の一方を第(n,4j+1)番地の1×1素子の入力に、他方を第(n,4j−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j+1)番地の2×1素子の出力を該第(n,4j−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j)番地の2×1素子の出力を第(n,4j+2)番地の2×1素子の入力の一方に接続し、第(n−1,4j+2)番地の1×2素子の出力の一方を第(n,4j)番地の1×1素子の入力に、他方を該第(n,4j+2)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,4j−1)番地の1×2素子の出力の一方を第(i+1,4j+1)番地の1×2素子の入力に、他方を第(i+1,4j−1)番地の2×1素子の入力の一方に接続し、第(i,4j+1)番地の2×1素子の出力を該第(i+1,4j−1)番地の2×1素子の入力の他方に接続し、第(i,4j)番地の2×1素子の出力を第(i+1,4j+2)番地の2×1素子の入力の一方に接続し、第(i,4j+2)番地の1×2素子の出力の一方を第(i+1,4j)番地の1×2素子の入力に、他方を該第(i+1,4j+2)番地の2×1素子の入力の他方に接続したことを特徴とするマトリクス光スイッチ。   An n-input × n-output matrix optical switch composed of 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n (In the present invention, n is an odd number of n ≧ 3), the unit optical switch elements are arranged in (n + 1) stages, the first stage is composed of n 1 × 2 elements, and the (n + 1) th stage is 2 × 1. The second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j′-3) and (2,4j) addresses are 1 × 1 elements. Yes, the (2,4j′−2) address and the (2,4j−1) address are 1 × 2 elements, where j is a natural number of j ≦ (n−1) / 2, j ′ Is a natural number of j ′ ≦ (n + 1) / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements, and the (n, 4j′−3) -th address and (n, 4j) -th. The address is 1 × 1 element, and the (n, 4th) '-2) address and (n, 4j-1) address are 2 × 1 elements, and the i-th stage excluding the first stage, the second stage, the n-th stage and the (n + 1) -th stage is 1 × 2 It is composed of n elements and 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), and when i is an odd number, the (i, 4j′−3) -th address and (i, 4j) If the address is 1 × 2 elements, the (i, 4j′−2) th address and the (i, 4j−1) th address are 2 × 1 elements, and i is an even number, 4j′-3) and (i, 4j) addresses are 2 × 1 elements, and (i, 4j′-2) and (i, 4j−1) addresses are 1 × 2 elements. The n input meters of 1 × 2 elements in the first stage are used as input terminals of the matrix optical switch, and the n output meters of 2 × 1 elements in the (n + 1) stage are output of the matrix optical switch. Terminal, kth (k Is one of the outputs of the 1 × 2 element of k ≦ n), when k is n, the input of the 1 × 2 element at the (2,2n) th address, and when k is an odd number excluding n, 2 × 2 elements at the address 2,2k + 1), and when k is an even number, it is connected to the input of the elements 1 × 2 at the address (2,2k2), and the kth 1 × 2 of the first stage. The other output of the element is the input of the 1 × 1 element at the (2,1) address when k is 1, and the 1 × 1 of the (2,2k−2) address when k is an odd number other than 1. If k is an even number, the input of the 1 × 1 element at the (2, 2k + 1) th address is connected to one of the inputs of the kth 2 × 1 element in the (n + 1) th stage. Is connected to the output of the 1 × 1 element at the (n, 2k−1) -th address, and when k is even, it is connected to the output of the 1 × 1 element at the (n, 2k) -th address. n + 1) stage k-th 2 × 1 element The other of the forces is the output of the 2 × 1 element at the (n, 2n) address when k is n, and the output of the 2 × 1 element at the (n, 2k + 1) address when k is an odd number excluding n. , K is an even number, it is connected to the output of the 2 × 1 element at the (n, 2k−2) th address, and in the second stage, the output of the 1 × 1 element at the (2,1) th address is Connect to one input of 2 × 1 element at address (3,2), and input one output of 1 × 2 element at address (2,2) to input of 1 × 2 element at address (3,1) The other is connected to the other input of the 2 × 1 element at the (3, 2) address, and one of the outputs of the 1 × 2 element at the (2, 4j−1) address is connected to the (3, 4j + 1) th. The input of the 1 × 2 element at the address is connected to one input of the 2 × 1 element at the (3,4j−1) th address, and the output of the 1 × 1 element at the (2,4j) address is Enter 2 × 1 element at address (3,4j-1) The output of the 1 × 1 element at the (2,4j + 1) th address is connected to one of the inputs of the 2 × 1 element at the (3,4j + 2) th address, and the (2,4j + 2) th address One of the outputs of the 1 × 2 element is connected to the input of the 1 × 2 element at the (3, 4j) address, and the other is connected to the other input of the 2 × 1 element at the (3, 4j + 2) address. In the (n−1) th stage, the output of the 2 × 1 element at the (n−1,1) th address is connected to one input of the 2 × 1 element at the (n, 2) th address, and the (n− One of the outputs of the 1 × 2 element at address 1, 2) is the input of the 1 × 1 element at address (n, 1), and the other is the other input of the 2 × 1 element at address (n, 2). To the input of the 1 × 1 element at the (n, 4j + 1) th address and the other at the (n, 4j−1) th address. ) One input of 2 × 1 element at the address And the output of the 2 × 1 element at the (n−1,4j + 1) th address is connected to the other input of the 2 × 1 element at the (n, 4j−1) th address, 4j) The output of the 2 × 1 element at address (n) is connected to one of the inputs of the 2 × 1 element at address (n, 4j + 2), and one of the outputs of the 1 × 2 element at address (n−1,4j + 2) is connected. Connect the input of the 1 × 1 element at address (n, 4j) to the other input of the 2 × 1 element at address (n, 4j + 2), In the i-th stage excluding the (n-1) -th stage, the n-th stage, and the (n + 1) -th stage, when i is an odd number, one of the outputs of the 1 × 2 element at the (i, 4j-3) -th address is ( The input of the 1 × 2 element at the address (i + 1,4j−1) is connected to one input of the 2 × 1 element at the (i + 1,4j−3) th address, and the address of the (i, 4j−1) th address. 2 × 1 element output Connect to the other input of the 2 × 1 element at the (i + 1,4j-3) th address, and output the 2 × 1 element at the (i, 4j-2) th address to 2 × 1 at the (i + 1,4j) th address. The output of the 1 × 2 element at address (i, 4j) is connected to the input of the 1 × 2 element at address (i + 1, 4j−2), and the other is connected to the (i + 1) th element. , 4j) is connected to the other input of the 2 × 1 element at address (i, 2n−1), and one output of the 1 × 2 element at address (i, 2n−1) is the input of the 1 × 2 element at address (i + 1, 2n). The other is connected to one of the inputs of the 2 × 1 element at the (i + 1, 2n−1) th address, and the output of the 2 × 1 element at the (i, 2n) th address is connected to the (i + 1, 2n−1) th address. When i is an even number connected to the other input of the 2 × 1 element at the address, the output of the 2 × 1 element at the (i, 1) address is the input of the 2 × 1 element at the (i + 1,2) address One side of One of the outputs of the 1 × 2 element at the (i, 2) address is input to the input of the 1 × 2 element at the (i + 1,1) address, and the other is the 2 × 1 element at the (i + 1,2) address. Is connected to the other input, one of the outputs of the 1 × 2 element at the (i, 4j−1) -th address is connected to the input of the 1 × 2 element at the (i + 1,4j + 1) -th address, and the other is the (i + 1,4j) -1) Connect to one of the inputs of the 2 × 1 element at the address, and output the 2 × 1 element at the (i, 4j + 1) th address to the input of the 2 × 1 element at the (i + 1,4j−1) th address The output of the 2 × 1 element at the (i, 4j) address is connected to one of the inputs of the 2 × 1 element at the (i + 1, 4j + 2) address, and 1 × at the (i, 4j + 2) address. One of the outputs of the two elements is connected to the input of the 1 × 2 element at the (i + 1,4j) address, and the other is connected to the other input of the 2 × 1 element at the (i + 1,4j + 2) address. A matrix optical switch characterized by that. 1×2素子n・(n−1)個および2×1素子n・(n−1)個および1×1素子2・n個で構成されるn入力×n出力のマトリクス光スイッチであって(この発明では、nはn≧3の奇数)、該単位光スイッチ素子が(n+1)段に配置され、第1段は1×2素子n個からなり、第(n+1)段は2×1素子n個からなり、第2段は1×2素子n個と1×1素子n個からなり、第(2,4j’−3)番地と第(2,4j)番地が1×1素子であり、第(2,4j’−2)番地と第(2,4j−1)番地が1×2素子であって(ここで、jはj≦(n−1)/2の自然数、j’はj’≦(n+1)/2の自然数)、第n段は2×1素子n個と1×1素子n個からなり、第(n,4j’−3)番地と第(n,4j)番地が1×1素子であり、第(n,4j’−2)番地と第(n,4j−1)番地が2×1素子であって、第1段および第2段と第n段および第(n+1)段を除く第i段は1×2素子n個と2×1素子n個からなり(ここで、iは3≦i≦n−1の自然数)、iが奇数の場合、第(i,4j’−3)番地と第(i,4j)番地が1×2素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が2×1素子であって、iが偶数の場合、第(i,4j’−3)番地と第(i,4j)番地が2×1素子であり、第(i,4j’−2)番地と第(i,4j−1)番地が1×2素子であって、第1段の1×2素子n個の入力計n本を該マトリクス光スイッチの入力端子とし、第(n+1)段の2×1素子n個の出力計n本を該マトリクス光スイッチの出力端子とし、第1段の第k番目(kはk≦nの自然数)の1×2素子の出力の一方をkがnの場合は第(2,2n)番地の1×2素子の入力に、kがnを除く奇数の場合は第(2,2k+1)番地の1×2素子の入力に、kが偶数の場合は第(2,2k−2)番地の1×2素子の入力に接続し、該第1段の第k番目の1×2素子の出力の他方をkが1の場合は第(2,1)番地の1×1素子の入力に、kが1を除く奇数の場合は第(2,2k−2)番地の1×1素子の入力に、kが偶数の場合は第(2,2k+1)番地の1×1素子の入力に接続して、第(n+1)段の第k番目の2×1素子の入力の一方をkが1の場合は第(n,1)番地の1×1素子の出力に、kが1を除く奇数の場合は第(n,2k−2)番地の1×1素子の出力に、kが偶数の場合は第(n,2k+1)番地の1×1素子の出力に接続し、該第(n+1)段の第k番目の2×1素子の入力の他方をkがnの場合は第(n,2n)番地の2×1素子の出力に、kがnを除く奇数の場合は第(n,2k+1)番地の2×1素子の出力に、kが偶数の場合は第(n,2k−2)番地の2×1素子の出力に接続して、第2段においては、第(2,1)番地の1×1素子の出力を第(3,2)番地の2×1素子の入力の一方に接続し、第(2,2)番地の1×2素子の出力の一方を第(3,1)番地の1×2素子の入力に、他方を該第(3,2)番地の2×1素子の入力の他方に接続し、第(2,4j−1)番地の1×2素子の出力の一方を第(3,4j+1)番地の1×2素子の入力に、他方を第(3,4j−1)番地の2×1素子の入力の一方に接続し、第(2,4j)番地の1×1素子の出力を該第(3,4j−1)番地の2×1素子の入力の他方に接続し、第(2,4j+1)番地の1×1素子の出力を第(3,4j+2)番地の2×1素子の入力の一方に接続し、第(2,4j+2)番地の1×2素子の出力の一方を第(3,4j)番地の1×2素子の入力に、他方を該第(3,4j+2)番地の2×1素子の入力の他方に接続して、第(n−1)段においては、第(n−1,1)番地の2×1素子の出力を第(n,2)番地の2×1素子の入力の一方に接続し、第(n−1,2)番地の1×2素子の出力の一方を第(n,1)番地の1×1素子の入力に、他方を該第(n,2)番地の2×1素子の入力の他方に接続し、第(n−1,4j−1)番地の1×2素子の出力の一方を第(n,4j)番地の1×1素子の入力に、他方を第(n,4j−1)番地の2×1素子の入力の一方に接続し、第(n−1,4j+1)番地の2×1素子の出力を該第(n,4j−1)番地の2×1素子の入力の他方に接続し、第(n−1,4j)番地の2×1素子の出力を第(n,4j+2)番地の2×1素子の入力の一方に接続し、第(n−1,4j+2)番地の1×2素子の出力の一方を第(n,4j+1)番地の1×1素子の入力に、他方を該第(n,4j+2)番地の2×1素子の入力の他方に接続して、第1段と第2段、第(n−1)段、第n段および第(n+1)段を除く第i段においては、iが奇数の場合、第(i,4j−3)番地の1×2素子の出力の一方を第(i+1,4j−1)番地の1×2素子の入力に、他方を第(i+1,4j−3)番地の2×1素子の入力の一方に接続し、第(i,4j−1)番地の2×1素子の出力を該第(i+1,4j−3)番地の2×1素子の入力の他方に接続し、第(i,4j−2)番地の2×1素子の出力を第(i+1,4j)番地の2×1素子の入力の一方に接続し、第(i,4j)番地の1×2素子の出力の一方を第(i+1,4j−2)番地の1×2素子の入力に、他方を該第(i+1,4j)番地の2×1素子の入力の他方に接続し、第(i,2n−1)番地の1×2素子の出力の一方を第(i+1,2n)番地の1×2素子の入力に、他方を第(i+1,2n−1)番地の2×1素子の入力の一方に接続し、第(i,2n)番地の2×1素子の出力を該第(i+1,2n−1)番地の2×1素子の入力の他方に接続して、iが偶数の場合、第(i,1)番地の2×1素子の出力を第(i+1,2)番地の2×1素子の入力の一方に接続し、第(i,2)番地の1×2素子の出力の一方を第(i+1,1)番地の1×2素子の入力に、他方を該第(i+1,2)番地の2×1素子の入力の他方に接続し、第(i,4j−1)番地の1×2素子の出力の一方を第(i+1,4j+1)番地の1×2素子の入力に、他方を第(i+1,4j−1)番地の2×1素子の入力の一方に接続し、第(i,4j+1)番地の2×1素子の出力を該第(i+1,4j−1)番地の2×1素子の入力の他方に接続し、第(i,4j)番地の2×1素子の出力を第(i+1,4j+2)番地の2×1素子の入力の一方に接続し、第(i,4j+2)番地の1×2素子の出力の一方を第(i+1,4j)番地の1×2素子の入力に、他方を該第(i+1,4j+2)番地の2×1素子の入力の他方に接続したことを特徴とするマトリクス光スイッチ。   An n-input × n-output matrix optical switch composed of 1 × 2 elements n · (n−1), 2 × 1 elements n · (n−1), and 1 × 1 elements 2 · n (In the present invention, n is an odd number of n ≧ 3), the unit optical switch elements are arranged in (n + 1) stages, the first stage is composed of n 1 × 2 elements, and the (n + 1) th stage is 2 × 1. The second stage consists of n 1 × 2 elements and n 1 × 1 elements, and the (2,4j′-3) and (2,4j) addresses are 1 × 1 elements. Yes, the (2,4j′−2) address and the (2,4j−1) address are 1 × 2 elements, where j is a natural number of j ≦ (n−1) / 2, j ′ Is a natural number of j ′ ≦ (n + 1) / 2), and the n-th stage is composed of n 2 × 1 elements and n 1 × 1 elements, and the (n, 4j′−3) -th address and (n, 4j) -th. The address is 1 × 1 element, and the (n, 4th) '-2) address and (n, 4j-1) address are 2 × 1 elements, and the i-th stage excluding the first stage, the second stage, the n-th stage and the (n + 1) -th stage is 1 × 2 It is composed of n elements and 2 × 1 elements (where i is a natural number of 3 ≦ i ≦ n−1), and when i is an odd number, the (i, 4j′−3) -th address and (i, 4j) If the address is 1 × 2 elements, the (i, 4j′−2) th address and the (i, 4j−1) th address are 2 × 1 elements, and i is an even number, 4j′-3) and (i, 4j) addresses are 2 × 1 elements, and (i, 4j′-2) and (i, 4j−1) addresses are 1 × 2 elements. The n input meters of 1 × 2 elements in the first stage are used as input terminals of the matrix optical switch, and the n output meters of 2 × 1 elements in the (n + 1) stage are output of the matrix optical switch. Terminal, kth (k Is one of the outputs of the 1 × 2 element of k ≦ n), when k is n, the input of the 1 × 2 element at the (2,2n) th address, and when k is an odd number excluding n, 2 × 2 elements at the address (2,2k + 1), and when k is an even number, it is connected to the input of the 1 × 2 element at the address (2,2k−2), and the k-th 1st element of the first stage is connected. The other of the outputs of the × 2 elements is input to the 1 × 1 element at the (2,1) address when k is 1, and 1 at the (2,2k−2) address when k is an odd number other than 1. When x is an even number input and k is an even number, it is connected to the input of the 1 × 1 element at the (2, 2k + 1) th address, and one of the inputs of the kth 2 × 1 element at the (n + 1) th stage. When k is 1, the output of the 1 × 1 element at the (n, 1) address, and when k is an odd number other than 1, the output of the 1 × 1 element at the (n, 2k−2) address, If k is an even number, the (n, 2k + 1) th address Connected to the output of the × 1 element, and when the other input of the kth 2 × 1 element of the (n + 1) th stage is k, the output of the 2 × 1 element at the (n, 2n) address When k is an odd number excluding n, it is connected to the output of the 2 × 1 element at the (n, 2k + 1) address, and when k is an even number, it is connected to the output of the 2 × 1 element at the (n, 2k−2) address. In the second stage, the output of the 1 × 1 element at the (2,1) address is connected to one input of the 2 × 1 element at the (3,2) address, and the (2,2) One of the outputs of the 1 × 2 element at the address is connected to the input of the 1 × 2 element at the (3,1) address, and the other is connected to the other input of the 2 × 1 element at the (3,2) address, One of the outputs of the 1 × 2 element at the (2,4j−1) th address is input to the input of the 1 × 2 element at the (3,4th + 1) th address, and the other is 2 × 1 at the (3,4j−1) th address. Connect to one of the input of the element, the (2,4j) th The output of the 1 × 1 element at the address is connected to the other input of the 2 × 1 element at the (3,4j−1) th address, and the output of the 1 × 1 element at the (2,4j + 1) th address is (3 , 4j + 2) is connected to one input of the 2 × 1 element at the address (2,4j + 2), and one output of the 1 × 2 element at the (2,4j + 2) address is input to the 1 × 2 element at the (3,4j) address, The other is connected to the other input of the 2 × 1 element at the (3, 4j + 2) th address, and in the (n−1) th stage, the output of the 2 × 1 element at the (n−1,1) th address. Is connected to one of the inputs of the 2 × 1 element at the (n, 2) address, and one of the outputs of the 1 × 2 element at the (n−1,2) address is connected to 1 × of the (n, 1) address. Connect one input to the other input of the 2 × 1 element at the (n, 2) address, and one of the outputs from the 1 × 2 element at the (n−1,4j−1) address. 1 × 1 element at address (n, 4j) The other input is connected to one input of the 2 × 1 element at the (n, 4j−1) th address, and the output of the 2 × 1 element at the (n−1,4j + 1) th address is connected to the (n, 4j) address. -1) Connected to the other input of the 2 × 1 element at the address, and the output of the 2 × 1 element at the (n−1,4j) th address is one of the inputs of the 2 × 1 element at the (n, 4j + 2) th address To the input of the 1 × 1 element at the (n, 4j + 1) th address and the other at the (n, 4j + 2) th address. In the i-th stage excluding the first stage and the second stage, the (n−1) th stage, the nth stage and the (n + 1) th stage, connected to the other input of the 2 × 1 element, i is an odd number In this case, one of the outputs of the 1 × 2 element at the (i, 4j-3) th address is input to the 1 × 2 element at the (i + 1,4j−1) th address, and the other is the (i + 1,4j-3) address. Of 2 × 1 elements The output of the 2 × 1 element at the (i, 4j−1) -th address is connected to the other input of the 2 × 1 element at the (i + 1, 4j−3) -th address, and the (i , 4j-2) The output of the 2 × 1 element at address (i + 1,4j) is connected to one of the inputs of the 2 × 1 element at address (i + 1,4j), and one of the outputs of the 1 × 2 element at address (i, 4j) Is connected to the input of the 1 × 2 element at the (i + 1,4j−2) th address, and the other is connected to the other input of the 2 × 1 element at the (i + 1,4j) th address, to the (i, 2n−1) th One of the outputs of the 1 × 2 element at the address is connected to the input of the 1 × 2 element at the (i + 1, 2n) address, and the other is connected to one of the inputs of the 2 × 1 element at the (i + 1, 2n−1) address. , The output of the 2 × 1 element at the (i, 2n) address is connected to the other input of the 2 × 1 element at the (i + 1, 2n−1) address, and when i is an even number, 1) Address 2 The output of one element is connected to one of the inputs of the 2 × 1 element at the (i + 1,2) th address, and one of the outputs of the 1 × 2 element at the (i, 2) th address is connected to the (i + 1,1) address. Connect the other input to the input of the 2 × 1 element at the (i + 1, 2) -th address and one of the outputs of the 1 × 2 element at the (i, 4j−1) -th address to the input of the 1 × 2 element. The input of the 1 × 2 element at the (i + 1,4j + 1) th address is connected to one input of the 2 × 1 element at the (i + 1,4j−1) th address, and the 2 × at the (i, 4j + 1) th address. The output of one element is connected to the other input of the 2 × 1 element at the (i + 1,4j−1) address, and the output of the 2 × 1 element at the (i, 4j) address is the (i + 1,4j + 2) address. Connected to one of the inputs of the 2 × 1 element, and one of the outputs of the 1 × 2 element at the (i, 4j + 2) th address is connected to the input of the 1 × 2 element at the (i + 1,4j) th address Matrix optical switch, characterized in that connected to the other of said (i + 1,4j + 2) input of the 2 × 1 element address.
JP2005110880A 2005-04-07 2005-04-07 Matrix optical switch Active JP4727279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005110880A JP4727279B2 (en) 2005-04-07 2005-04-07 Matrix optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110880A JP4727279B2 (en) 2005-04-07 2005-04-07 Matrix optical switch

Publications (2)

Publication Number Publication Date
JP2006292872A true JP2006292872A (en) 2006-10-26
JP4727279B2 JP4727279B2 (en) 2011-07-20

Family

ID=37413541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110880A Active JP4727279B2 (en) 2005-04-07 2005-04-07 Matrix optical switch

Country Status (1)

Country Link
JP (1) JP4727279B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111316A1 (en) * 2011-02-15 2012-08-23 日本電信電話株式会社 Waveguide-type optical switch
WO2016157819A1 (en) * 2015-03-30 2016-10-06 日本電気株式会社 Optical circuit, and optical switch using same
JP2017521910A (en) * 2014-05-28 2017-08-03 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Scalable silicon photonic switching architecture for optical networks
CN110456455A (en) * 2018-07-20 2019-11-15 西安电子科技大学 Based on plasma-optical switch module on piece optical exchange structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941349B (en) * 2014-04-24 2016-08-24 中国科学院半导体研究所 A kind of N-port optical router based on Mach once moral photoswitch

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500140A (en) * 1986-01-31 1988-01-14 富士通株式会社 optical space switch
JPH0651354A (en) * 1992-07-29 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Waveguide type matrix optical switch
JPH09297230A (en) * 1996-04-30 1997-11-18 Nippon Telegr & Teleph Corp <Ntt> Waveguide type modified 2x2 optical switch and waveguide type matrix optical switch
JP2002006347A (en) * 2000-04-07 2002-01-09 Lynx Photonic Networks Inc Integrated optical switch array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500140A (en) * 1986-01-31 1988-01-14 富士通株式会社 optical space switch
JPH0651354A (en) * 1992-07-29 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Waveguide type matrix optical switch
JPH09297230A (en) * 1996-04-30 1997-11-18 Nippon Telegr & Teleph Corp <Ntt> Waveguide type modified 2x2 optical switch and waveguide type matrix optical switch
JP2002006347A (en) * 2000-04-07 2002-01-09 Lynx Photonic Networks Inc Integrated optical switch array

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111316A1 (en) * 2011-02-15 2012-08-23 日本電信電話株式会社 Waveguide-type optical switch
CN103370650A (en) * 2011-02-15 2013-10-23 日本电信电话株式会社 Waveguide-type optical switch
JP5913139B2 (en) * 2011-02-15 2016-04-27 日本電信電話株式会社 Waveguide type optical switch
US9360629B2 (en) 2011-02-15 2016-06-07 Nippon Telegraph And Telephone Corporation Waveguide type optical switch
JP2017521910A (en) * 2014-05-28 2017-08-03 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Scalable silicon photonic switching architecture for optical networks
WO2016157819A1 (en) * 2015-03-30 2016-10-06 日本電気株式会社 Optical circuit, and optical switch using same
US10248002B2 (en) 2015-03-30 2019-04-02 Nec Corporation Optical circuit, and optical switch using same
CN110456455A (en) * 2018-07-20 2019-11-15 西安电子科技大学 Based on plasma-optical switch module on piece optical exchange structure
CN110456455B (en) * 2018-07-20 2020-08-04 西安电子科技大学 On-chip optical switching structure based on plasma-optical switching module

Also Published As

Publication number Publication date
JP4727279B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
US7974502B2 (en) Optical module and optical switch
JP5913139B2 (en) Waveguide type optical switch
JP3842511B2 (en) Optical spatial switch using multiport coupler
JP4727279B2 (en) Matrix optical switch
JP6345874B2 (en) Optical switch based on liquid crystal grating
JP2006038897A (en) Waveguide type optical switch unit element and waveguide type matrix optical switch
JP4916489B2 (en) Optical circuit
JP4146211B2 (en) Optical module, optical switch constituting the same, and optical matrix switch
JP2004177515A (en) 1xN OPTICAL SWITCH
JP5642132B2 (en) Waveguide type optical interferometer circuit
JP4803746B2 (en) Waveguide type optical switch
US6459828B1 (en) Rearrangeable optical add/drop multiplexor switch with low loss
JPH09297230A (en) Waveguide type modified 2x2 optical switch and waveguide type matrix optical switch
Zhou et al. Broadband 4× 4 non-blocking optical switch fabric based on Mach-Zehnder interferometers
JP2009157114A (en) Waveguide type optical interferometer circuit
JP5168905B2 (en) Optical switch and path switching method
JP6950593B2 (en) Optical input / output device and its manufacturing method
Takahashi et al. High performance 8-arrayed 1× 8 optical switch based on planar lightwave circuit for photonic networks
JP2003005231A (en) Optical matrix switch
JP7028445B2 (en) Completely non-blocking optical switch
JP2004077854A (en) Light switch and method for using the same
Earnshaw et al. 8× 8 optical switch matrix in silica-on-silicon
JP2000258808A (en) Interference type optical switch
CA2361509A1 (en) High-performance nxn optical matrix switch using double-size butterfly network of 2x2 switching units
Shen 2D MEMS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R150 Certificate of patent or registration of utility model

Ref document number: 4727279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350