JP2006291970A - Multistage compression rotary compressor - Google Patents

Multistage compression rotary compressor Download PDF

Info

Publication number
JP2006291970A
JP2006291970A JP2006175082A JP2006175082A JP2006291970A JP 2006291970 A JP2006291970 A JP 2006291970A JP 2006175082 A JP2006175082 A JP 2006175082A JP 2006175082 A JP2006175082 A JP 2006175082A JP 2006291970 A JP2006291970 A JP 2006291970A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
rotary
compression element
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006175082A
Other languages
Japanese (ja)
Other versions
JP4350107B2 (en
Inventor
Kenzo Matsumoto
兼三 松本
Kazuaki Fujiwara
一昭 藤原
Haruhisa Yamazaki
晴久 山崎
Yoshio Watabe
由夫 渡部
Kentaro Yamaguchi
賢太郎 山口
Noriyuki Tsuda
徳行 津田
Masaji Yamanaka
正司 山中
Kazuya Sato
里  和哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006175082A priority Critical patent/JP4350107B2/en
Publication of JP2006291970A publication Critical patent/JP2006291970A/en
Application granted granted Critical
Publication of JP4350107B2 publication Critical patent/JP4350107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the startability of a compressor when using an inflammable refrigerant for an internal intermediate pressure type multistage compression rotary compressor. <P>SOLUTION: This multistage compression rotary compressor using the inflammable refrigerant as a refrigerant, discharges the refrigerant compressed by a first rotary compression element 32, into a sealed container 12 and compresses the discharged intermediate pressure refrigerant by a second rotary compression element 34, wherein a pressure equalizing valve 101 is provided for allowing the refrigerant discharge side of the second rotary compression element 34 and the inside of the sealed container 12 to communicate with each other when the pressure on the refrigerant discharge side of the second rotary compression element 34 becomes lower than the pressure in the sealed container 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、密閉容器内に電動要素と、この電動要素の回転軸にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮された冷媒を第2の回転圧縮要素で圧縮する多段圧縮式ロータリコンプレッサに関するものである。   The present invention includes an electric element in a hermetic container and first and second rotary compression elements driven by a rotation shaft of the electric element, and the refrigerant compressed by the first rotary compression element is supplied to the second container. The present invention relates to a multistage compression rotary compressor that compresses with a rotary compression element.

従来この種ロータリコンプレッサは、特許文献1に示す如く、回転圧縮要素の吸入ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されてシリンダの高圧室側の吐出ポートより一旦密閉容器内に吐出され、この密閉容器から外部に吐出される構成とされている。また、前記ベーンはシリンダの半径方向に設けられた溝内に移動自在に取り付けられている。係るベーンはローラに押し付けられてシリンダ内を低圧室側と高圧室側に区画するものである。ベーンの後側には当該ベーンをローラ側に付勢するスプリングが設けられると共に、溝にはベーンをローラ側に付勢するための密閉容器内と連通する背圧室が設けられている。そして、背圧室には密閉容器内の高圧が加えられて、ベーンをローラ側に付勢している。   Conventionally, in this type of rotary compressor, as shown in Patent Document 1, refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the rotary compression element, and is compressed by the operation of the roller and vane to be discharged on the high pressure chamber side of the cylinder. It is configured such that it is once discharged into the sealed container and discharged from the sealed container to the outside. The vane is movably mounted in a groove provided in the radial direction of the cylinder. Such a vane is pressed against a roller to divide the cylinder into a low pressure chamber side and a high pressure chamber side. A spring for urging the vane toward the roller is provided on the rear side of the vane, and a back pressure chamber communicating with the inside of the sealed container for urging the vane toward the roller is provided in the groove. And the high pressure in the airtight container is applied to the back pressure chamber to urge the vane toward the roller.

一方、近年ではフロン冷媒によるオゾン層破壊の問題から、この種ロータリコンプレッサにおいてもフロン以外のHC冷媒、例えばプロパン(R290)などの可燃性の冷媒の使用が検討されている。   On the other hand, in recent years, the use of flammable refrigerants such as HC refrigerants other than Freon, such as propane (R290), has also been studied in this type of rotary compressor due to the problem of ozone layer destruction by CFC refrigerants.

ところで、プロパンなどの可燃性冷媒は、安全性等の問題から封入量を極力少なくする必要がある。通常プロパンを冷媒として使用する場合の安全上の限界量は150g程であり、実際には余裕を見て100g(冷蔵庫用では50g)程に抑える必要がある。   By the way, it is necessary to reduce the amount of flammable refrigerant such as propane as much as possible because of safety problems. In general, when propane is used as a refrigerant, the safety limit is about 150 g. In practice, it is necessary to limit the amount to 100 g (50 g for a refrigerator) with a margin.

一方、ロータリコンプレッサでは密閉容器内に圧縮後の冷媒が吐出されるため、同容量のレシプロタイプのコンプレッサに比較して、封入しなければならない冷媒量は30g〜50g程増加してしまう。そのため、可燃性冷媒を用いたロータリコンプレッサの実用化は非常に厳しいものとなっていた。
特許第2507047号公報
On the other hand, since the compressed refrigerant is discharged into the hermetic container in the rotary compressor, the amount of refrigerant to be sealed increases by about 30 g to 50 g as compared with a reciprocating type compressor having the same capacity. For this reason, the practical application of a rotary compressor using a flammable refrigerant has been very strict.
Japanese Patent No. 25007047

そこで、密閉容器内が中間圧となる多段圧縮式ロータリコンプレッサに可燃性冷媒を用いることが検討されている。この場合、密閉容器に高圧の冷媒を吐出する場合と比べて、密閉容器内の圧力が低くなる。即ち、圧力が低いほど冷媒の密度が低くなるため、密閉容器内に存在する冷媒量が少なくなり、密閉容器内に封入する冷媒量を減らすことができる。特に、第1の回転圧縮要素の排除容積に対して第2の回転圧縮要素の排除容積の比を大きくした場合には中間圧が上がりにくくなるので、密閉容器内に封入する冷媒量をより一層減らすことができるようになる。   Therefore, it has been studied to use a combustible refrigerant in a multistage compression rotary compressor in which the inside of the sealed container has an intermediate pressure. In this case, the pressure in the sealed container is lower than when high-pressure refrigerant is discharged into the sealed container. In other words, the lower the pressure, the lower the density of the refrigerant, so that the amount of refrigerant present in the sealed container is reduced, and the amount of refrigerant sealed in the sealed container can be reduced. In particular, when the ratio of the displacement volume of the second rotary compression element to the displacement volume of the first rotation compression element is increased, the intermediate pressure is less likely to increase, so that the amount of refrigerant sealed in the sealed container can be further increased. Can be reduced.

然し乍ら、内部中間圧型の場合、ロータリコンプレッサ停止後にコンプレッサ内が平衡圧に達するのに時間がかかるため、再起動時に始動性が悪化してしまうという問題も生じていた。   However, in the case of the internal intermediate pressure type, since it takes time to reach the equilibrium pressure in the compressor after the rotary compressor is stopped, there is also a problem that startability deteriorates at the time of restart.

本発明は、係る従来技術の課題を解決するために成されたものであり、内部中間圧型多段圧縮式ロータリコンプレッサに可燃性冷媒を用いた場合における、コンプレッサの始動性を改善することを目的とする。   The present invention was made to solve the problems of the related art, and aims to improve the startability of a compressor when a combustible refrigerant is used for an internal intermediate pressure type multistage compression rotary compressor. To do.

即ち、本発明の請求項1の多段圧縮式ロータリコンプレッサでは、冷媒として可燃性冷媒を用い、第1の回転圧縮要素で圧縮された冷媒を密閉容器内に吐出し、この吐出された中間圧の冷媒を第2の回転圧縮要素で圧縮すると共に、第2の回転圧縮要素の冷媒吐出側の圧力が密閉容器内の圧力より低くなった場合に、当該第2の回転圧縮要素の冷媒吐出側と密閉容器内とを連通させる均圧弁を備えるので、コンプレッサ停止後に、密閉容器内の均圧を早めることができるようになる。   That is, in the multistage compression rotary compressor according to claim 1 of the present invention, the combustible refrigerant is used as the refrigerant, the refrigerant compressed by the first rotary compression element is discharged into the sealed container, and the discharged intermediate pressure is reduced. When the refrigerant is compressed by the second rotary compression element and the pressure on the refrigerant discharge side of the second rotary compression element becomes lower than the pressure in the sealed container, the refrigerant discharge side of the second rotary compression element Since the pressure equalizing valve that communicates with the inside of the sealed container is provided, the pressure equalization in the sealed container can be accelerated after the compressor is stopped.

請求項2の発明では、第2の回転圧縮要素を構成するシリンダと、このシリンダの開口面を閉塞する支持部材と、この支持部材内に構成され、シリンダ内で圧縮された冷媒が吐出される吐出消音室と、この吐出消音室と密閉容器内とを区画するカバーと、このカバー内に形成された均圧用通路とを備え、均圧弁は、吐出消音室内に設けられて均圧用通路を開閉するので、構造を簡素化し、且つ、スペース効率を向上させることができるようになる。   According to the second aspect of the present invention, a cylinder constituting the second rotary compression element, a support member for closing the opening surface of the cylinder, and a refrigerant constituted in the support member and compressed in the cylinder are discharged. A discharge silencing chamber, a cover that partitions the discharge silencing chamber and the sealed container, and a pressure equalizing passage formed in the cover are provided. A pressure equalizing valve is provided in the discharge silencing chamber to open and close the pressure equalizing passage. Thus, the structure can be simplified and the space efficiency can be improved.

本発明の請求項1によれば、冷媒として可燃性冷媒を用い、第1の回転圧縮要素で圧縮された冷媒を密閉容器内に吐出し、この吐出された中間圧の冷媒を第2の回転圧縮要素で圧縮すると共に、第2の回転圧縮要素の冷媒吐出側の圧力が密閉容器内の圧力より低くなった場合に、当該第2の回転圧縮要素の冷媒吐出側と密閉容器内とを連通させる均圧弁を備えるので、コンプレッサ停止後に、第1の回転圧縮要素と第2の回転圧縮要素及び密閉容器内の圧力の平衡を早めることができるようになる。   According to the first aspect of the present invention, the combustible refrigerant is used as the refrigerant, the refrigerant compressed by the first rotary compression element is discharged into the sealed container, and the discharged intermediate pressure refrigerant is discharged to the second rotation. When the pressure is compressed by the compression element and the pressure on the refrigerant discharge side of the second rotary compression element becomes lower than the pressure in the sealed container, the refrigerant discharge side of the second rotary compression element communicates with the inside of the sealed container. Since the pressure equalizing valve is provided, after the compressor is stopped, the balance of the pressure in the first rotary compression element, the second rotary compression element, and the sealed container can be accelerated.

これにより、ロータリコンプレッサ内の高低圧差を短時間で解消することができるようになり、ロータリコンプレッサの始動性を著しく高めることができるようになる。   As a result, the high-low pressure difference in the rotary compressor can be eliminated in a short time, and the startability of the rotary compressor can be remarkably improved.

また、請求項2の発明では、第2の回転圧縮要素を構成するシリンダと、このシリンダの開口面を閉塞する支持部材と、この支持部材内に構成され、シリンダ内で圧縮された冷媒が吐出される吐出消音室と、この吐出消音室と密閉容器内とを区画するカバーと、このカバー内に形成された均圧用通路とを備え、均圧弁は、吐出消音室内に設けられて均圧用通路を開閉するので、生産性とスペース効率を改善することができるようになるものである。   According to a second aspect of the present invention, a cylinder constituting the second rotary compression element, a support member that closes the opening surface of the cylinder, and a refrigerant that is configured in the support member and compressed in the cylinder are discharged. A discharge silencing chamber, a cover that partitions the discharge silencing chamber and the sealed container, and a pressure equalizing passage formed in the cover, and the pressure equalizing valve is provided in the discharge silencing chamber and is a pressure equalizing passage. As the door is opened and closed, productivity and space efficiency can be improved.

次に、図面に基づき本発明の実施の形態を詳述する。図1は本発明の多段圧縮式ロータリコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式ロータリコンプレッサ10の縦断面図を示している。   Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of the multi-stage compression rotary compressor of the present invention. ing.

図1において、実施例のロータリコンプレッサ10はプロパン(R290)を冷媒として使用する内部中間圧型多段圧縮式ロータリコンプレッサで、この多段圧縮式ロータリコンプレッサ10は、鋼板からなる円筒状の密閉容器12A、及びこの密閉容器12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで形成されるケースとしての密閉容器12と、この密閉容器12の容器本体12Aの内部空間の上側に配置収納された電動要素14と、この電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32及び第2の回転圧縮要素34からなる回転圧縮機構部18とにより構成されている。   In FIG. 1, a rotary compressor 10 of the embodiment is an internal intermediate pressure type multi-stage compression rotary compressor that uses propane (R290) as a refrigerant. The multi-stage compression rotary compressor 10 includes a cylindrical sealed container 12A made of a steel plate, and The sealed container 12 as a case formed by a substantially bowl-shaped end cap (lid body) 12B that closes the upper opening of the sealed container 12A, and disposed and stored above the internal space of the container body 12A of the sealed container 12 And a rotary compression mechanism unit including a first rotary compression element 32 and a second rotary compression element 34 which are arranged below the electric element 14 and are driven by the rotary shaft 16 of the electric element 14. 18.

尚、密閉容器12は底部をオイル溜めとする。また、前記容器本体12Aの側面には電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。   The closed container 12 has an oil reservoir at the bottom. Further, a terminal (wiring is omitted) 20 for supplying electric power to the electric element 14 is attached to the side surface of the container body 12A.

電動要素14は、密閉容器12の上部空間の内面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の隙間を設けて挿入設置されたロータ24とからなる。そして、このロータ24には鉛直方向に延びる回転軸16が固定されている。   The electric element 14 includes a stator 22 that is annularly attached along the inner surface of the upper space of the hermetic container 12, and a rotor 24 that is inserted and installed with a slight gap inside the stator 22. A rotating shaft 16 extending in the vertical direction is fixed to the rotor 24.

ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、分布巻き方式により巻装されたステータコイル28を有している。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成されている。   The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound by a distributed winding method. Similarly to the stator 22, the rotor 24 is also formed of a laminated body 30 of electromagnetic steel plates.

前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が狭持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ(第2のシリンダ)38、下シリンダ(第1のシリンダ)40と、上下シリンダ38、40内を180度の位相差を有して回転するように回転軸16に設けられた偏心部42、44に嵌合されて偏心回転する上ローラ(第2のローラ)46、下ローラ(第1のローラ)48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン(第2のベーン)50、ベーン(第1のべーン)52と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成される。   An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder (second cylinder) 38, a lower cylinder (first cylinder) 38 disposed above and below the intermediate partition plate 36. 1 cylinder) 40 and an upper roller (which is eccentrically rotated by being fitted to eccentric parts 42 and 44 provided on the rotary shaft 16 so as to rotate in the upper and lower cylinders 38 and 40 with a phase difference of 180 degrees. Second vane (second roller) 46, lower roller (first roller) 48, and vanes (second second) in contact with the upper and lower rollers 46, 48 to divide the upper and lower cylinders 38, 40 into a low pressure chamber side and a high pressure chamber side, respectively. As a support member that also serves as a bearing for the rotary shaft 16 by closing the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40. Upper support member 54 and lower support part Constructed at 56.

上記第1及び第2の回転圧縮要素32、34を構成する上下シリンダ38、40内には、図2で示すようにベーン50、52を収納する案内溝70、72が形成されており、この案内溝70、72の外側、即ち、ベーン50、52の背面側には、バネ部材としてのスプリング74、76を収納する収納部70A、72Aが形成されている。このスプリング74、76はベーン50、52の背面側端部に当接し、常時ベーン50、52をローラ46、48側に付勢する。そして、この収納部70A、72Aは案内溝70、72側と密閉容器12(容器本体12A)側に開口しており、収納部70A、72Aに収納されたスプリング74、76の密閉容器12側には図示しないプラグが設けられ、スプリング74、76の抜け止めの役目を果たす。また、プラグの周面には各プラグと収納部70A、72Aの内面間をシールするために図示しないOリングが取り付けられている。   As shown in FIG. 2, guide grooves 70 and 72 for accommodating the vanes 50 and 52 are formed in the upper and lower cylinders 38 and 40 constituting the first and second rotary compression elements 32 and 34, respectively. On the outside of the guide grooves 70 and 72, that is, on the back side of the vanes 50 and 52, storage portions 70A and 72A for storing springs 74 and 76 as spring members are formed. The springs 74 and 76 are in contact with the rear end portions of the vanes 50 and 52, and always bias the vanes 50 and 52 toward the rollers 46 and 48. The storage portions 70A and 72A are open to the guide grooves 70 and 72 side and the closed container 12 (container body 12A) side, and the springs 74 and 76 stored in the storage portions 70A and 72A are connected to the closed container 12 side. Is provided with a plug (not shown) and serves to prevent the springs 74 and 76 from coming off. Further, an O-ring (not shown) is attached to the peripheral surface of the plug in order to seal between each plug and the inner surfaces of the accommodating portions 70A and 72A.

また、案内溝70と収納部70Aの間には、スプリング74と共にベーン50を常時ローラ46側に付勢するため、第2の回転圧縮要素34の冷媒吐出圧をベーン50に加える第2の背圧室80が設けられている。この第2の背圧室80の上面は後述する連通路90に連通する。また、第2の背圧室80の下面は中間仕切板36に形成された連通孔110にて後述する第1の背圧室82と連通している。   Further, between the guide groove 70 and the accommodating portion 70A, the vane 50 is always urged to the roller 46 side together with the spring 74. Therefore, the second back which applies the refrigerant discharge pressure of the second rotary compression element 34 to the vane 50 is provided. A pressure chamber 80 is provided. The upper surface of the second back pressure chamber 80 communicates with a communication passage 90 described later. Further, the lower surface of the second back pressure chamber 80 communicates with a first back pressure chamber 82 described later through a communication hole 110 formed in the intermediate partition plate 36.

このように、吐出消音室62と第2の背圧室80とを連通路90にて連通させることにより、第2の回転圧縮要素34で圧縮され、吐出消音室62内に吐出された高圧の冷媒が連通路90から第2の背圧室80に加えられる。これにより、ベーン50がローラ46側に充分に付勢されるので、ベーン飛び等の第2の回転圧縮要素34の不安定な運転挙動を回避することができるようになる。   In this way, by connecting the discharge silencer chamber 62 and the second back pressure chamber 80 through the communication passage 90, the high pressure pressure compressed by the second rotary compression element 34 and discharged into the discharge silencer chamber 62 is obtained. The refrigerant is added from the communication passage 90 to the second back pressure chamber 80. As a result, the vane 50 is sufficiently urged toward the roller 46, so that unstable operation behavior of the second rotary compression element 34 such as vane jumping can be avoided.

前記下シリンダ40のベーン52を収納する案内溝72と収納部72Aの間には、スプリング76と共にベーン52を常時ローラ48側に付勢するための前述する第1の背圧室82が設けられている。この第1の背圧室82の上面は前述する連通孔110にて前記第2の背圧室80と連通している。   Between the guide groove 72 for accommodating the vane 52 of the lower cylinder 40 and the accommodating portion 72A, the first back pressure chamber 82 described above for urging the vane 52 to the roller 48 side together with the spring 76 is provided. ing. The upper surface of the first back pressure chamber 82 communicates with the second back pressure chamber 80 through the communication hole 110 described above.

このように、第2の背圧室80と第1の背圧室82とを連通孔110にて連通させることにより、前記連通路90を経て第2の背圧室80に加えられる吐出消音室62内の高圧を第1の背圧室82内に導入することができるようになる。これにより、ベーン52がローラ48側に充分に付勢されるようになるので、始動時に第1の背圧室82内の圧力上昇が迅速となり、ベーン飛びなどの第1の回転圧縮要素32の不安定な運転挙動を回避することができるようになる。   In this way, the second back pressure chamber 80 and the first back pressure chamber 82 are communicated with each other through the communication hole 110, thereby allowing the discharge silencer chamber to be applied to the second back pressure chamber 80 through the communication path 90. The high pressure in 62 can be introduced into the first back pressure chamber 82. As a result, the vane 52 is sufficiently biased toward the roller 48, so that the pressure rise in the first back pressure chamber 82 is quick at the time of start-up, and the first rotary compression element 32 such as vane jumping is performed. Unstable driving behavior can be avoided.

特に、本発明では密閉容器12内を中間圧とすると共に、後述する如く密閉容器12内の中間圧が低くなるように第1の回転圧縮要素32の排除容積に対する第2の回転圧縮要素34の排除容積の比を大きく設定しているので、ロータリコンプレッサ10の起動時に、密閉容器12内の圧力が上がりにくいために、ベーン52に充分な背圧がかからなくなるという不都合を回避することができるようになる。これにより、ロータリコンプレッサ10の信頼性の向上を図ることができるようになる。   In particular, in the present invention, the inside of the sealed container 12 is set to an intermediate pressure, and the second rotary compression element 34 with respect to the excluded volume of the first rotary compression element 32 is set so that the intermediate pressure in the closed container 12 is lowered as will be described later. Since the ratio of the excluded volume is set to be large, it is difficult to increase the pressure in the hermetic container 12 when the rotary compressor 10 is started, so that it is possible to avoid the disadvantage that sufficient back pressure is not applied to the vane 52. It becomes like this. As a result, the reliability of the rotary compressor 10 can be improved.

また、上部支持部材54に連通路90を形成して、中間仕切板36に連通孔110を形成するだけで、特別な機構を用いずに各ベーン50、52に充分な背圧をかけることができるようになるので、加工コストを低減しながら信頼性の高いロータリコンプレッサ10を生産できるようになる。   In addition, by simply forming the communication path 90 in the upper support member 54 and forming the communication hole 110 in the intermediate partition plate 36, sufficient back pressure can be applied to the vanes 50 and 52 without using a special mechanism. Therefore, the highly reliable rotary compressor 10 can be produced while reducing the processing cost.

そして、上下シリンダ38、40には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路58、60が設けられている。また、上部支持部材54には、上シリンダ38内で圧縮された冷媒を吐出ポート39から上部支持部材54の凹陥部を壁としてのカバーによって閉塞することにより形成された吐出消音室62が設けられている。即ち、吐出消音室62は当該吐出消音室62を画成する壁としての上部カバー66にて閉塞される。   The upper and lower cylinders 38 and 40 are provided with suction passages 58 and 60 that communicate with the inside of the upper and lower cylinders 38 and 40, respectively, through a suction port (not shown). Further, the upper support member 54 is provided with a discharge silencer chamber 62 formed by blocking the refrigerant compressed in the upper cylinder 38 from the discharge port 39 with a cover serving as a wall from the upper support member 54. ing. That is, the discharge silencer chamber 62 is closed by the upper cover 66 as a wall that defines the discharge silencer chamber 62.

上部支持部材54内には前述する連通路90が形成されている。この連通路90は、第2の回転圧縮要素34の上シリンダ38の吐出ポート39に連通する吐出消音室62と前記第2の背圧室80とを連通する通路である。   The communication path 90 described above is formed in the upper support member 54. The communication passage 90 is a passage that connects the discharge silencing chamber 62 that communicates with the discharge port 39 of the upper cylinder 38 of the second rotary compression element 34 and the second back pressure chamber 80.

また、前記上部カバー66には、図3に示すように密閉容器12内と吐出消音室62内とを連通する均圧用通路100が形成されている。この均圧用通路100は上部カバー66を上下に貫通する孔であり、均圧用通路100の下面は吐出消音室62内に取り付けられた均圧弁101にて開閉可能に閉塞されている。   Further, as shown in FIG. 3, the upper cover 66 is formed with a pressure equalizing passage 100 that allows the inside of the sealed container 12 and the inside of the discharge silencer chamber 62 to communicate with each other. The pressure equalizing passage 100 is a hole penetrating the upper cover 66 in the vertical direction, and the lower surface of the pressure equalizing passage 100 is closed by a pressure equalizing valve 101 mounted in the discharge silencer chamber 62 so as to be opened and closed.

この均圧弁101は縦長略矩形状の金属板からなる弾性部材にて構成されており、この均圧弁101の下側には均圧弁抑え板としてのバッカーバルブ102が配置され、上部カバー66の下面に取り付けられている。そして、均圧弁101の一側が均圧用通路100に当接して密閉すると共に、他側は均圧用通路100と所定の間隔を存して設けられた上部カバー66の取付孔103にカシメピン104により固着されている。   The pressure equalizing valve 101 is formed of an elastic member made of a vertically long, substantially rectangular metal plate. A backer valve 102 serving as a pressure equalizing valve restraining plate is disposed below the pressure equalizing valve 101, and the lower surface of the upper cover 66. Is attached. One side of the pressure equalizing valve 101 is in contact with the pressure equalizing passage 100 to be sealed, and the other side is fixed to the mounting hole 103 of the upper cover 66 provided with a predetermined distance from the pressure equalizing passage 100 by a caulking pin 104. Has been.

そして、ロータリコンプレッサ10停止後に、吐出消音室62の圧力が密閉容器12内の圧力より低くなると、密閉容器12内の圧力が図3の上方から均圧用通路100を閉じている均圧弁101を押して均圧用通路100を開き、吐出消音室62へ吐出させる。このとき、均圧弁101は他側を上部カバー66に固着されているので均圧用通路100に当接している一側が反り下がり、均圧弁の開き量を規制しているバッカーバルブ102に当接する。そして、吐出消音室62内の圧力が密閉容器12内の圧力と同じ圧力、若しくは、それより高くなると、均圧弁101がバッカーバルブ102から離れ、均圧用通路100を閉塞する。   When the pressure in the discharge silencer chamber 62 becomes lower than the pressure in the sealed container 12 after the rotary compressor 10 is stopped, the pressure in the sealed container 12 pushes the pressure equalizing valve 101 that closes the pressure equalizing passage 100 from above in FIG. The pressure equalizing passage 100 is opened and discharged to the discharge silencer chamber 62. At this time, since the pressure equalizing valve 101 is fixed to the upper cover 66 on the other side, one side contacting the pressure equalizing passage 100 warps and contacts the backer valve 102 that regulates the opening amount of the pressure equalizing valve. When the pressure in the discharge silencing chamber 62 becomes equal to or higher than the pressure in the sealed container 12, the pressure equalizing valve 101 moves away from the backer valve 102 and closes the pressure equalizing passage 100.

このように、吐出消音室62の圧力が密閉容器12内の圧力より低くなると、均圧用通路100を開き、吐出消音室62へ吐出させるようにしたので、ロータリコンプレッサ10停止後に密閉容器12内の中間圧が下がりにくいという不都合を回避することができるようになる。これにより、吐出消音室62内と密閉容器12内の均圧を早めることができるようになる。   As described above, when the pressure in the discharge muffler chamber 62 becomes lower than the pressure in the sealed container 12, the pressure equalizing passage 100 is opened and discharged to the discharge muffler chamber 62. The inconvenience that the intermediate pressure is difficult to decrease can be avoided. Thereby, the pressure equalization in the discharge silencing chamber 62 and the sealed container 12 can be accelerated.

更に、均圧弁101を吐出消音室62内に設けたので、上方の電動要素14を上部カバー66に接近させても干渉しなくなる。従って、スペース効率が向上し、ロータリコンプレッサ10の小型化を図ることができるようになる。また、均圧弁101を上部カバー66下面に取り付けているので、取付作業も容易に行うことができる。   Furthermore, since the pressure equalizing valve 101 is provided in the discharge silencing chamber 62, interference does not occur even if the upper electric element 14 is brought close to the upper cover 66. Accordingly, space efficiency is improved and the rotary compressor 10 can be reduced in size. Further, since the pressure equalizing valve 101 is attached to the lower surface of the upper cover 66, the attaching operation can be easily performed.

また、吐出消音室62の下面には、吐出ポート39を開閉可能に閉塞する吐出弁127が設けられている(図1、図2では図示せず)。この吐出弁127は縦長略矩形状の金属板からなる弾性部材にて構成されており、この吐出弁127の上側には吐出弁抑え板としてのバッカーバルブ128が配置され、上部支持部材54に取り付けられている。そして、吐出弁127の一側が吐出ポート39に当接して密閉すると共に、他側は吐出ポート39と所定の間隔を存して設けられた上部支持部材54の取付孔129にカシメピン130により固着されている。   A discharge valve 127 that closes the discharge port 39 so as to be openable and closable is provided on the lower surface of the discharge silencer chamber 62 (not shown in FIGS. 1 and 2). The discharge valve 127 is composed of an elastic member made of a vertically long, substantially rectangular metal plate. A backer valve 128 serving as a discharge valve restraining plate is disposed above the discharge valve 127 and is attached to the upper support member 54. It has been. One side of the discharge valve 127 abuts on the discharge port 39 to be sealed, and the other side is fixed to the mounting hole 129 of the upper support member 54 provided at a predetermined distance from the discharge port 39 by the caulking pin 130. ing.

そして、上シリンダ38内で圧縮され、所定の圧力に達した冷媒ガスが、図の下方から吐出ポート39を閉じている吐出弁127を押し上げて吐出ポート39を開き、吐出消音室62へ吐出させる。このとき、吐出弁127は他側を上部支持部材54に固着されているので吐出ポート39に当接している一側が反り上がり、吐出弁127の開き量を規制している図示しないバッカーバルブに当接する。冷媒ガスの吐出が終了する時期になると、吐出弁127がバッカーバルブから離れ、吐出ポート39を閉塞する。   Then, the refrigerant gas that has been compressed in the upper cylinder 38 and has reached a predetermined pressure pushes up the discharge valve 127 that closes the discharge port 39 from below in the drawing to open the discharge port 39 and discharge it to the discharge silencing chamber 62. . At this time, since the other side of the discharge valve 127 is fixed to the upper support member 54, one side in contact with the discharge port 39 is warped, and the discharge valve 127 contacts a backer valve (not shown) that regulates the opening amount of the discharge valve 127. Touch. When it is time to finish the discharge of the refrigerant gas, the discharge valve 127 is separated from the backer valve, and the discharge port 39 is closed.

一方、下シリンダ40内で圧縮された冷媒ガスは図示しない吐出ポートから下部支持部材56の電動要素14とは反対側(密閉容器12の底部側)に形成された吐出消音室64に吐出される。この吐出消音室64は、中心に回転軸16及び前述した回転軸16の軸受けを兼用する下部支持部材56が貫通するための孔を有すると共に、下部支持部材56の電動要素14とは反対側を覆うカップ65にて構成されている。   On the other hand, the refrigerant gas compressed in the lower cylinder 40 is discharged from a discharge port (not shown) into a discharge silencer chamber 64 formed on the side opposite to the electric element 14 of the lower support member 56 (the bottom side of the sealed container 12). . The discharge silencing chamber 64 has a hole through which the lower shaft 56 and the lower support member 56 that also serves as a bearing of the rotary shaft 16 penetrate, and the lower support member 56 is opposite to the electric element 14. It is comprised by the cup 65 to cover.

この場合、上部支持部材54の中央には軸受け54Aが起立形成されている。又、下部支持部材56の中央には軸受け56Aが貫通形成されており、回転軸16は上部支持部材54の軸受け54Aと下部支持部材56の軸受け56Aにて保持されている。   In this case, a bearing 54 </ b> A is formed upright at the center of the upper support member 54. A bearing 56A is formed through the center of the lower support member 56, and the rotary shaft 16 is held by a bearing 54A of the upper support member 54 and a bearing 56A of the lower support member 56.

そして、第1の回転圧縮要素32の吐出消音室64と密閉容器12内とは連通路にて連通されており、この連通路は下部支持部材56、上部支持部材54、上部カバー66、上下シリンダ38、40、中間仕切板36を貫通する図示しない孔である。この場合、連通路の上端には中間吐出管121が立設されており、この中間吐出管121から密閉容器12内に中間圧の冷媒が吐出される。   The discharge silencer chamber 64 of the first rotary compression element 32 and the inside of the sealed container 12 are communicated with each other through a communication path. The communication path includes a lower support member 56, an upper support member 54, an upper cover 66, and upper and lower cylinders. 38 and 40 are holes (not shown) penetrating the intermediate partition plate 36. In this case, an intermediate discharge pipe 121 is erected at the upper end of the communication path, and an intermediate pressure refrigerant is discharged from the intermediate discharge pipe 121 into the sealed container 12.

このように、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスを密閉容器12内に吐出するので、密閉容器12に高圧の冷媒を吐出する場合と比べて、密閉容器12内に吐出される冷媒量が少なくなる。即ち、圧力が低いほど冷媒の密度が低くなるため、中間圧の冷媒を密閉容器12内に吐出した方が、高圧の冷媒を密閉容器12内に吐出するより、冷媒のガス密度が低くなり、密閉容器12内に存在する冷媒量が少なくなる。   As described above, since the intermediate pressure refrigerant gas compressed by the first rotary compression element 32 is discharged into the sealed container 12, compared with the case where high-pressure refrigerant is discharged into the sealed container 12, The amount of refrigerant discharged is reduced. That is, the lower the pressure, the lower the density of the refrigerant, so that the medium pressure refrigerant discharged into the sealed container 12 has a lower refrigerant gas density than the high pressure refrigerant discharged into the sealed container 12, The amount of refrigerant present in the sealed container 12 is reduced.

この様子を図4及び図5を参照して説明する。図4は冷媒の蒸発温度に対する本発明の内部中間圧型多段圧縮式ロータリコンプレッサ10の第1の回転圧縮要素32の吸入圧(低圧)と、密閉容器12内の中間圧(ケース内圧)と、第2の回転圧縮要素34が吐出する高圧(吐出圧)を示し、図5は単気筒のロータリコンプレッサの場合に同様の高圧を密閉容器内に吐出した場合の蒸発温度に対する吸入圧と高圧(ケース内圧)を示している。両図からも明らかな如く、本発明の内部中間圧型多段圧縮式ロータリコンプレッサ10では、密閉容器内の圧力は単気筒のロータリコンプレッサの場合に比較して著しく低くなる。このため、密閉容器12内に封入する冷媒量を減らすことができるようになるものである。   This will be described with reference to FIGS. 4 and 5. FIG. FIG. 4 shows the suction pressure (low pressure) of the first rotary compression element 32 of the internal intermediate pressure type multistage compression rotary compressor 10 of the present invention with respect to the refrigerant evaporation temperature, the intermediate pressure (case internal pressure) in the sealed container 12, 2 shows the high pressure (discharge pressure) discharged by the rotary compression element 34, and FIG. 5 shows the suction pressure and the high pressure (case internal pressure) with respect to the evaporation temperature when the same high pressure is discharged into the sealed container in the case of a single cylinder rotary compressor. ). As is apparent from both figures, in the internal intermediate pressure type multi-stage compression rotary compressor 10 of the present invention, the pressure in the hermetic container is significantly lower than that in the case of a single cylinder rotary compressor. For this reason, the amount of refrigerant sealed in the sealed container 12 can be reduced.

更に、実施例では、第1の回転圧縮要素32の排除容積に対する第2の回転圧縮要素34の排除容積の比を大きく、例えば、第1の回転圧縮要素32の排除容積に対する第2の回転圧縮要素34の排除容積の比を60%以上90%以下に設定している。図5のBは60%の場合の中間圧と、Aは90%の場合の中間圧を示している。   Furthermore, in the embodiment, the ratio of the displacement volume of the second rotary compression element 34 to the displacement volume of the first rotation compression element 32 is increased, for example, the second rotation compression with respect to the displacement volume of the first rotation compression element 32. The ratio of the excluded volume of the element 34 is set to 60% or more and 90% or less. FIG. 5B shows the intermediate pressure at 60%, and A shows the intermediate pressure at 90%.

従来多段圧縮式ロータリコンプレッサにおいて、第1の回転圧縮要素32の排除容積に対する第2の回転圧縮要素34の排除容積の比は57%程度であったが、このような値とした場合、中間圧が高くなり、これによって密閉容器12内に吐出される冷媒のガス密度も高くなるため、ロータリコンプレッサ10に封入する冷媒量も多くしなければならないが、実施例のように第1の回転圧縮要素32の排除容積に対する第2の回転圧縮要素34の排除容積の比を60%以上とすれば、密閉容器12内の冷媒量が少なくなる。   In the conventional multi-stage compression type rotary compressor, the ratio of the displacement volume of the second rotary compression element 34 to the displacement volume of the first rotation compression element 32 is about 57%. As a result, the density of the refrigerant discharged into the hermetic container 12 also increases, so the amount of refrigerant enclosed in the rotary compressor 10 must be increased. However, as in the embodiment, the first rotary compression element If the ratio of the excluded volume of the second rotary compression element 34 to the excluded volume of 32 is 60% or more, the amount of refrigerant in the sealed container 12 is reduced.

また、第1の回転圧縮要素32に対する第2の回転圧縮要素34の排除容積の比を90%より大きくした場合には、図5からも明らかな如く第1の回転圧縮要素に吸入される冷媒の圧力(吸入圧)と密閉容器12内の中間圧が殆ど同じ圧力になるため、第1の回転圧縮要素32で充分に圧縮されなくなり、または、第1の回転圧縮要素32のベーンの付勢力が不足してベーン飛びが生じる。また、密閉容器12内底部に設けられたオイル溜めからのオイルの差圧給油が充分に行えなくなるなど、ロータリコンプレッサ10の挙動が不安定になるという問題が生じる。   Further, when the ratio of the excluded volume of the second rotary compression element 34 to the first rotary compression element 32 is larger than 90%, the refrigerant sucked into the first rotary compression element as is apparent from FIG. Pressure (suction pressure) and the intermediate pressure in the sealed container 12 are almost the same pressure, so that the first rotary compression element 32 is not sufficiently compressed, or the biasing force of the vanes of the first rotary compression element 32 There is a shortage of vanes. Further, there arises a problem that the behavior of the rotary compressor 10 becomes unstable, such as the fact that the differential pressure oil supply of the oil from the oil reservoir provided at the inner bottom portion of the sealed container 12 cannot be sufficiently performed.

従って、第1の回転圧縮要素32に対する第2の回転圧縮要素34の排除容積の比を実施例の如く60%以上90%以下とすることで、第2の回転圧縮要素34のベーン飛び等の不安定な運転挙動を回避しながら、1段目の差圧(第1の回転圧縮要素32の吸込圧力(吸入圧)と第1の回転圧縮要素32の吐出圧力(中間圧))を小さくして、密閉容器12内に吐出される冷媒ガスの密度を低くすることができるようになる。   Accordingly, by setting the ratio of the excluded volume of the second rotary compression element 34 to the first rotary compression element 32 to be 60% or more and 90% or less as in the embodiment, vane jumping of the second rotary compression element 34 and the like. While avoiding unstable driving behavior, the first-stage differential pressure (the suction pressure (suction pressure) of the first rotary compression element 32 and the discharge pressure (intermediate pressure) of the first rotary compression element 32) is reduced. Thus, the density of the refrigerant gas discharged into the sealed container 12 can be lowered.

即ち、密閉容器12内に吐出されるガス密度が低くなることにより、密閉容器12内にある冷媒ガスの量をより一層減らすことができるようになるので、密閉容器12内に封入する冷媒ガスの量を削減することができるようになる。   In other words, since the density of the gas discharged into the sealed container 12 is reduced, the amount of refrigerant gas in the sealed container 12 can be further reduced. The amount can be reduced.

また、上部カバー66は第2の回転圧縮要素34の上シリンダ38内部と吐出ポート39にて連通する吐出消音室62を画成し、この上部カバー66の上側には、上部カバー66と所定間隔を存して、電動要素14が設けられている。この上部カバー66は前記上部支持部材54の軸受け54Aが貫通する孔が形成された略ドーナッツ状の円形鋼板から構成されている。   The upper cover 66 defines a discharge silencing chamber 62 that communicates with the inside of the upper cylinder 38 of the second rotary compression element 34 at the discharge port 39. The electric element 14 is provided. The upper cover 66 is formed of a substantially donut-shaped circular steel plate in which a hole through which the bearing 54A of the upper support member 54 passes is formed.

そして、この場合冷媒として、本実施例では可燃性冷媒であるプロパン(R290)を使用している。尚、本発明に適応可能な他の可燃性冷媒としてはイソブタン(R600a)やASHRAE Std 34 Safety groupに基づき、高燃焼性(Level3)と区分されている冷媒であるメタン(R50)、エタン(R170)、プロパン(R290)、ブタン(R600)、プロピレン(R1270)等があげられる。   In this case, propane (R290), which is a combustible refrigerant, is used as the refrigerant in this case. As other combustible refrigerants applicable to the present invention, methane (R50) and ethane (R170), which are refrigerants classified as high combustibility (Level 3) based on isobutane (R600a) and ASHRAE Std 34 Safety group. ), Propane (R290), butane (R600), propylene (R1270) and the like.

また、密閉容器12の容器本体12Aの側面には、シリンダ38、40の吸込通路58、60、シリンダ38の吸込通路58とは反対側、ロータ24の下側(電動要素14の直下)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に隣接すると共に、スリーブ143はスリーブ141の略対角線上にある。また、スリーブ144はスリーブ141の上方に位置する。   Further, the side surface of the container body 12A of the sealed container 12 corresponds to the suction passages 58 and 60 of the cylinders 38 and 40, the opposite side of the suction passage 58 of the cylinder 38, and the lower side of the rotor 24 (just below the electric element 14). The sleeves 141, 142, 143, and 144 are fixed by welding at the positions where they are placed. The sleeves 141 and 142 are adjacent to each other vertically, and the sleeve 143 is substantially diagonal to the sleeve 141. The sleeve 144 is located above the sleeve 141.

そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の吸込通路58と連通する。この冷媒導入管92は密閉容器12の外側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。   One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted into and connected to the sleeve 141, and one end of the refrigerant introduction pipe 92 communicates with the suction passage 58 of the upper cylinder 38. The refrigerant introduction pipe 92 passes through the outside of the sealed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 to communicate with the sealed container 12.

また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60と連通する。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒導入管96の一端は吐出消音室62と連通する。   In addition, one end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected in the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. In addition, a refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant introduction pipe 96 communicates with the discharge silencer chamber 62.

以上の構成で次に動作を説明する。ターミナル20及び図示されない配線を介して電動要素14のステータコイル28に商用電源が通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けられた上下偏心部42、44に嵌合されて上下ローラ46、48が上下シリンダ38、40内を偏心回転する。   Next, the operation of the above configuration will be described. When commercial power is supplied to the stator coil 28 of the electric element 14 via the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 are eccentrically rotated in the upper and lower cylinders 38 and 40 by being fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16.

これにより、冷媒導入管94及びシリンダ40に形成された吸込通路60を経由して図示しない吸込ポートから下シリンダ40の低圧室側に吸入された低圧(第1の回転回転圧縮要素32の吸入圧:380KPa)の冷媒は、ローラ48とベーン52の動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない吐出ポート、下部支持部材56に形成された吐出消音室64から図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧(第1の回転圧縮要素32の吐出圧力:第1の回転圧縮要素32の排除容積に対する第2の回転圧縮要素34の排除容積比を60%とした場合は710KPa、第1の回転圧縮要素32の排除容積に対する第2の回転圧縮要素34の排除容積比を90%とした場合は450KPa)となる。   As a result, the low pressure (the suction pressure of the first rotary rotation compression element 32) sucked from the suction port (not shown) to the low pressure chamber side of the lower cylinder 40 via the refrigerant introduction pipe 94 and the suction passage 60 formed in the cylinder 40. : 380 KPa) refrigerant is compressed by the operation of the roller 48 and the vane 52 to become an intermediate pressure, and from the high pressure chamber side of the lower cylinder 40, the discharge port (not shown) and the discharge silencer chamber 64 formed in the lower support member 56 are not shown. The liquid is discharged from the intermediate discharge pipe 121 into the sealed container 12 through the passage. As a result, the inside of the sealed container 12 has an intermediate pressure (the discharge pressure of the first rotary compression element 32: the excluded volume ratio of the second rotary compression element 34 to the excluded volume of the first rotary compression element 32 is 60%. Is 710 KPa, and 450 KPa) when the ratio of the displacement volume of the second rotary compression element 34 to the displacement volume of the first rotation compression element 32 is 90%.

そして、密閉容器12内の中間圧の冷媒ガスは、スリーブ144から出て冷媒導入管92及びシリンダ38に形成された吸込通路58を経由して図示しない吸込ポートから上シリンダ38の低圧室側に吸入される。吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により2段目の圧縮が行われて高温高圧の冷媒ガスとなる(第2の回転圧縮要素34の吐出圧力(高圧):1890KPa)。これにより、吐出消音室62内に設けられた吐出弁127が開放され、吐出消音室62と吐出ポート39とが連通するため、上シリンダ38の高圧室側から吐出ポート39内を通り上部支持部材54に形成された吐出消音室62に吐出される。   Then, the intermediate-pressure refrigerant gas in the sealed container 12 exits from the sleeve 144 and passes through a refrigerant introduction pipe 92 and a suction passage 58 formed in the cylinder 38 from a suction port (not shown) to the low pressure chamber side of the upper cylinder 38. Inhaled. The sucked intermediate-pressure refrigerant gas is compressed in the second stage by the operation of the roller 46 and the vane 50 to become a high-temperature and high-pressure refrigerant gas (discharge pressure (high pressure) of the second rotary compression element 34: 1890 KPa). ). As a result, the discharge valve 127 provided in the discharge silencer chamber 62 is opened, and the discharge silencer chamber 62 and the discharge port 39 communicate with each other. Therefore, the upper support member passes through the discharge port 39 from the high pressure chamber side of the upper cylinder 38. The ink is discharged into a discharge silencer chamber 62 formed in 54.

そして、吐出消音室62に吐出された高圧の冷媒ガスの一部は、前述する連通路90から第2の背圧室80内に流入して、ベーン50をローラ46側に付勢する。更に、中間仕切板36に形成された連通孔110を経て第1の背圧室82内に流入して、ベーン52をローラ48側に付勢する。他方、吐出消音室62内に吐出された他の冷媒ガスは冷媒吐出管96を経て外部に吐出される。   A part of the high-pressure refrigerant gas discharged to the discharge silencer chamber 62 flows into the second back pressure chamber 80 from the communication passage 90 described above, and biases the vane 50 toward the roller 46 side. Further, the air flows into the first back pressure chamber 82 through the communication hole 110 formed in the intermediate partition plate 36 and urges the vane 52 toward the roller 48 side. On the other hand, the other refrigerant gas discharged into the discharge silencer chamber 62 is discharged to the outside through the refrigerant discharge pipe 96.

ここで、ロータリコンプレッサ10の運転が停止すると、吐出消音室62と第2の回転圧縮要素34の第2の背圧室80とが連通路90にて連通され、第1の回転圧縮要素32の第1の背圧室82と第2の回転圧縮要素34の第2の背圧室80とが連通孔110にて連通されているため、これら背圧室80、82からベーン50、52と案内溝70、72及びスプリング74、76と収納部70A、72Aの隙間を通ってシリンダ38内の高圧の冷媒ガスがシリンダ40にバイパスされる。これにより、シリンダ38内の高圧の冷媒ガスは短時間で平衡圧に達する。   Here, when the operation of the rotary compressor 10 is stopped, the discharge silencing chamber 62 and the second back pressure chamber 80 of the second rotary compression element 34 are communicated with each other through the communication passage 90, and the first rotary compression element 32 Since the first back pressure chamber 82 and the second back pressure chamber 80 of the second rotary compression element 34 are communicated with each other through the communication hole 110, the vanes 50 and 52 are guided from these back pressure chambers 80 and 82. The high-pressure refrigerant gas in the cylinder 38 is bypassed to the cylinder 40 through the grooves 70 and 72 and the gaps between the springs 74 and 76 and the storage portions 70A and 72A. Thereby, the high-pressure refrigerant gas in the cylinder 38 reaches the equilibrium pressure in a short time.

また、ロータリコンプレッサ10の停止後、吐出消音室62の圧力が低下して密閉容器12内の圧力より低くなると、前述する如く均圧弁101が密閉容器12内の圧力により下方に押されて均圧用通路100を開放する。これにより、密閉容器12内の中間圧の冷媒ガスが吐出消音室62内に流入する。   Further, after the rotary compressor 10 is stopped, when the pressure in the discharge silencing chamber 62 decreases and becomes lower than the pressure in the sealed container 12, the pressure equalizing valve 101 is pushed downward by the pressure in the sealed container 12 as described above and is used for pressure equalization. The passage 100 is opened. As a result, the intermediate-pressure refrigerant gas in the sealed container 12 flows into the discharge silencing chamber 62.

係る圧力導入によって吐出消音室62内の圧力が上昇し、吐出消音室62内の圧力が密閉容器12内の圧力と同じ圧力となると、前述の如く均圧弁101が均圧用通路100を閉じる。一方、吐出消音室62と各背圧室80、82内は連通路90及び連通孔110にて連通しているので、これらにより、密閉容器12内、吐出消音室62、背圧室80、82、各シリンダ40、38内の圧力は迅速に平衡することになる。従って、次回の再起動時における始動性が改善される。   When the pressure in the discharge silencing chamber 62 rises due to the introduction of such pressure, and the pressure in the discharge silencing chamber 62 becomes the same as the pressure in the sealed container 12, the pressure equalizing valve 101 closes the pressure equalizing passage 100 as described above. On the other hand, the discharge silencing chamber 62 and the back pressure chambers 80 and 82 communicate with each other through the communication passage 90 and the communication hole 110, so that the inside of the sealed container 12, the discharge silencing chamber 62, and the back pressure chambers 80 and 82 are communicated. The pressure in each cylinder 40, 38 will quickly equilibrate. Therefore, the startability at the next restart is improved.

このように、冷媒として可燃性冷媒を用い、第1の回転圧縮要素32で圧縮された冷媒を密閉容器12内に吐出し、この吐出された中間圧の冷媒を第2の回転圧縮要素34で圧縮すると共に、第2の回転圧縮要素34の吐出消音室62と第2の背圧室80とを連通路90で連通し、更に、第2の背圧室80と第1の背圧室82とを中間仕切板36に形成した連通孔110にて連通させたので、第1及び第2の背圧室80、82に吐出消音室62の高圧の冷媒ガスが加えられる。   In this way, the combustible refrigerant is used as the refrigerant, the refrigerant compressed by the first rotary compression element 32 is discharged into the sealed container 12, and the discharged intermediate pressure refrigerant is discharged by the second rotary compression element 34. While compressing, the discharge silencing chamber 62 of the second rotary compression element 34 and the second back pressure chamber 80 are communicated with each other through the communication passage 90, and further, the second back pressure chamber 80 and the first back pressure chamber 82 are communicated. Are communicated with each other through the communication hole 110 formed in the intermediate partition plate 36, the high-pressure refrigerant gas in the discharge silencing chamber 62 is added to the first and second back pressure chambers 80 and 82.

これにより、係る内部中間圧型のロータリコンプレッサ10を使用した場合にも、ベーン50、52がローラ46、48側に充分に付勢されるので、ベーン飛び等の第1及び第2の回転圧縮要素32、34の不安定な運転挙動を回避することができるようになる。   As a result, even when the internal intermediate pressure type rotary compressor 10 is used, the vanes 50 and 52 are sufficiently biased toward the rollers 46 and 48, so that the first and second rotary compression elements such as vane jumps are obtained. The unstable driving behaviors 32 and 34 can be avoided.

特に、本発明では密閉容器12内を中間圧とすると共に、後述する如く密閉容器12内の中間圧が低くなるように第1の回転圧縮要素32の排除容積に対する第2の回転圧縮要素34の排除容積の比を大きく設定しているので、ロータリコンプレッサ10の起動時に、密閉容器12内の圧力が上がりにくなるが、背圧室80、82には第2の回転圧縮要素34から吐出される高圧が加えられるので、始動時からベーン52に充分な背圧がかかるようになり、ロータリコンプレッサ10の信頼性の向上を図ることができるようになる。   In particular, in the present invention, the inside of the sealed container 12 is set to an intermediate pressure, and the second rotary compression element 34 with respect to the excluded volume of the first rotary compression element 32 is set so that the intermediate pressure in the closed container 12 is lowered as will be described later. Since the ratio of the excluded volume is set to be large, the pressure in the hermetic container 12 increases when the rotary compressor 10 is started, but is discharged from the second rotary compression element 34 into the back pressure chambers 80 and 82. Therefore, a sufficient back pressure is applied to the vane 52 from the start, and the reliability of the rotary compressor 10 can be improved.

また、ロータリコンプレッサ10の運転を停止後には、前述する如く吐出消音室62内と第2の背圧室80とが連通路90にて連通されており、第2の背圧室80と第1の背圧室82とが連通孔110にて連通されていると共に、密閉容器12内と吐出消音室62内とが均圧用通路100にて連通されるので、ロータリコンプレッサ10内が平衡圧に達するのを早めることができる。   In addition, after the operation of the rotary compressor 10 is stopped, the discharge silencing chamber 62 and the second back pressure chamber 80 communicate with each other through the communication passage 90 as described above, and the second back pressure chamber 80 and the first back pressure chamber 80 communicate with each other. The back pressure chamber 82 is communicated with the communication hole 110, and the inside of the sealed container 12 and the discharge silencing chamber 62 are communicated with each other through the pressure equalizing passage 100, so that the inside of the rotary compressor 10 reaches an equilibrium pressure. Can be accelerated.

これにより、ロータリコンプレッサ10内の差圧を短時間でなくすことができるようになり、ロータリコンプレッサ10の始動性を著しく高めることができるようになる。   Thereby, the differential pressure in the rotary compressor 10 can be eliminated in a short time, and the startability of the rotary compressor 10 can be remarkably improved.

尚、実施例では回転軸16を縦置型とした多段圧縮式ロータリコンプレッサ10について説明したが、この発明は回転軸を横置型とした多段圧縮式ロータリコンプレッサにも適応できることは云うまでもない。   In the embodiment, the multi-stage compression rotary compressor 10 with the rotary shaft 16 as a vertical type has been described. However, it goes without saying that the present invention can also be applied to a multi-stage compression rotary compressor with a rotary shaft as a horizontal type.

更に、多段圧縮式ロータリコンプレッサを第1及び第2の回転圧縮要素を備えた2段圧縮式ロータリコンプレッサで説明したが、これに限らず回転圧縮要素を3段、4段或いはそれ以上の回転圧縮要素を備えた多段圧縮式ロータリコンプレッサに適応しても差し支えない。   Further, the multi-stage compression rotary compressor has been described with the two-stage compression rotary compressor including the first and second rotary compression elements. However, the rotary compression element is not limited to this, and the rotary compression element has three, four or more rotary compressions. The present invention can be applied to a multi-stage compression rotary compressor having elements.

本発明の実施例の内部中間圧型多段圧縮式ロータリコンプレッサの縦断面図である。It is a longitudinal cross-sectional view of the internal intermediate pressure type multistage compression type rotary compressor of the Example of this invention. 本発明の内部中間圧型多段圧縮式ロータリコンプレッサの第1及び第2の回転圧縮機構部の拡大縦断面図である。It is an expansion longitudinal cross-sectional view of the 1st and 2nd rotary compression mechanism part of the internal intermediate pressure type multistage compression type rotary compressor of this invention. 本発明の第2の回転圧縮要素の吐出消音室の拡大縦断面図である。It is an expansion longitudinal cross-sectional view of the discharge silencing chamber of the 2nd rotation compression element of this invention. 本発明の内部中間圧型多段圧縮式ロータリコンプレッサにおける蒸発温度に対する吸入圧と中間圧と高圧の関係を示す図である。It is a figure which shows the relationship between the suction pressure with respect to the evaporation temperature, the intermediate pressure, and the high pressure in the internal intermediate pressure type multistage compression rotary compressor of the present invention. 単気筒のロータリコンプレッサにおける蒸発温度に対する吸入圧と高圧の関係を示す図である。It is a figure which shows the relationship between the suction pressure with respect to the evaporation temperature in a single cylinder rotary compressor, and a high pressure | voltage.

符号の説明Explanation of symbols

10 多段圧縮式ロータリコンプレッサ
12 密閉容器
14 電動要素
16 回転軸
18 回転圧縮機構部
22 ステータ
24 ロータ
26 積層体
28 ステータコイル
30 積層体
32 第1の回転圧縮要素
34 第2の回転圧縮要素
38、40 シリンダ
54 上部支持部材
56 下部支持部材
62、64 吐出消音室
65 カップ
66 上部カバー
80 第2の背圧室
82 第1の背圧室
90 連通路
100 均圧用通路
101 均圧弁
110 連通孔
DESCRIPTION OF SYMBOLS 10 Multistage compression rotary compressor 12 Airtight container 14 Electric element 16 Rotating shaft 18 Rotation compression mechanism part 22 Stator 24 Rotor 26 Laminated body 28 Stator coil 30 Laminated body 32 1st rotation compression element 34 2nd rotation compression element 38,40 Cylinder 54 Upper support member 56 Lower support member 62, 64 Discharge silencer chamber 65 Cup 66 Upper cover 80 Second back pressure chamber 82 First back pressure chamber 90 Communication passage 100 Pressure equalizing passage 101 Pressure equalizing valve 110 Communication hole

Claims (2)

密閉容器内に電動要素と、該電動要素の回転軸にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮された冷媒を前記第2の回転圧縮要素で圧縮する多段圧縮式ロータリコンプレッサにおいて、
前記冷媒として可燃性冷媒を用い、前記第1の回転圧縮要素で圧縮された冷媒を前記密閉容器内に吐出し、この吐出された中間圧の冷媒を前記第2の回転圧縮要素で圧縮すると共に、前記第2の回転圧縮要素の冷媒吐出側の圧力が前記密閉容器内の圧力より低くなった場合に、当該第2の回転圧縮要素の冷媒吐出側と密閉容器内とを連通させる均圧弁を備えることを特徴とする多段圧縮式ロータリコンプレッサ。
An electric element and first and second rotary compression elements driven by a rotary shaft of the electric element are provided in the sealed container, and the refrigerant compressed by the first rotary compression element is supplied to the second rotary compression element. In a multistage compression rotary compressor that compresses with elements,
A combustible refrigerant is used as the refrigerant, the refrigerant compressed by the first rotary compression element is discharged into the sealed container, and the discharged intermediate pressure refrigerant is compressed by the second rotary compression element. A pressure equalizing valve for communicating between the refrigerant discharge side of the second rotary compression element and the inside of the sealed container when the pressure on the refrigerant discharge side of the second rotary compression element becomes lower than the pressure in the closed container. A multi-stage compression rotary compressor characterized by comprising:
前記第2の回転圧縮要素を構成するシリンダと、
該シリンダの開口面を閉塞する支持部材と、
該支持部材内に構成され、前記シリンダ内で圧縮された冷媒が吐出される吐出消音室と、
該吐出消音室と前記密閉容器内とを区画するカバーと、
該カバー内に形成された均圧用通路とを備え、
前記均圧弁は、前記吐出消音室内に設けられて前記均圧用通路を開閉することを特徴とする請求項1の多段圧縮式ロータリコンプレッサ。
A cylinder constituting the second rotary compression element;
A support member for closing the opening surface of the cylinder;
A discharge silencer chamber configured in the support member, in which refrigerant compressed in the cylinder is discharged;
A cover that partitions the discharge silencer chamber and the sealed container;
A pressure equalizing passage formed in the cover,
2. The multistage compression rotary compressor according to claim 1, wherein the pressure equalizing valve is provided in the discharge silencing chamber to open and close the pressure equalizing passage.
JP2006175082A 2006-06-26 2006-06-26 Multi-stage rotary compressor Expired - Fee Related JP4350107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006175082A JP4350107B2 (en) 2006-06-26 2006-06-26 Multi-stage rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006175082A JP4350107B2 (en) 2006-06-26 2006-06-26 Multi-stage rotary compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002250927A Division JP3857967B2 (en) 2002-08-27 2002-08-29 Multi-stage rotary compressor

Publications (2)

Publication Number Publication Date
JP2006291970A true JP2006291970A (en) 2006-10-26
JP4350107B2 JP4350107B2 (en) 2009-10-21

Family

ID=37412745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006175082A Expired - Fee Related JP4350107B2 (en) 2006-06-26 2006-06-26 Multi-stage rotary compressor

Country Status (1)

Country Link
JP (1) JP4350107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001710A (en) * 2012-06-20 2014-01-09 Toyota Industries Corp Tandem vane type compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9381588B2 (en) 2013-03-08 2016-07-05 Lotus BioEFx, LLC Multi-metal particle generator and method
JP7320312B2 (en) 2021-09-09 2023-08-03 杉山重工株式会社 Method for producing ultrafine particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001710A (en) * 2012-06-20 2014-01-09 Toyota Industries Corp Tandem vane type compressor
CN103511268A (en) * 2012-06-20 2014-01-15 株式会社丰田自动织机 Tandem blade compressor

Also Published As

Publication number Publication date
JP4350107B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
KR100985672B1 (en) Multi-stage compression type rotary compressor and a setting method of displacement volume ratio for the same
JP4350107B2 (en) Multi-stage rotary compressor
KR101233853B1 (en) Multistage compression type rotary compressor
JP3857967B2 (en) Multi-stage rotary compressor
JP2006348951A (en) Compressor
WO2011125652A1 (en) Rotary compressor
JP2004027970A (en) Multistage compression type rotary compressor
JP4289975B2 (en) Multi-stage rotary compressor
JP3762693B2 (en) Multi-stage rotary compressor
JP3895976B2 (en) Multistage rotary compressor
JP4902189B2 (en) Multi-stage rotary compressor
JP2019120149A (en) Scroll compressor
JP4902188B2 (en) Multi-stage rotary compressor
JP2006348952A (en) Compressor
JP2003293971A (en) Rotary compressor
JP3863799B2 (en) Multi-stage rotary compressor
JP2003293972A (en) Rotary compressor
JP5134886B2 (en) Hermetic electric compressor
JP4404708B2 (en) Compression system and refrigeration system using the same
WO2012117598A1 (en) Rotary compressor
JP4909584B2 (en) Multi-stage rotary compressor
JP2004084567A (en) Multistage compression type rotary compressor
JP2003286984A (en) Internal intermediate pressure type multi-stage compression rotary compressor
JP2003269352A (en) Rotary compressor
JP2003106276A (en) Two-stage compression type rotary compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4350107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees