JP2006291900A - Preceding stand-by type vertical shaft pump - Google Patents

Preceding stand-by type vertical shaft pump Download PDF

Info

Publication number
JP2006291900A
JP2006291900A JP2005115838A JP2005115838A JP2006291900A JP 2006291900 A JP2006291900 A JP 2006291900A JP 2005115838 A JP2005115838 A JP 2005115838A JP 2005115838 A JP2005115838 A JP 2005115838A JP 2006291900 A JP2006291900 A JP 2006291900A
Authority
JP
Japan
Prior art keywords
air
casing
suction
water
air hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005115838A
Other languages
Japanese (ja)
Other versions
JP4824335B2 (en
Inventor
Sadao Uchida
貞雄 内田
Manabu Arimura
学 有村
Toshiyuki Sugamura
利行 菅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torishima Pump Manufacturing Co Ltd
Original Assignee
Torishima Pump Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torishima Pump Manufacturing Co Ltd filed Critical Torishima Pump Manufacturing Co Ltd
Priority to JP2005115838A priority Critical patent/JP4824335B2/en
Publication of JP2006291900A publication Critical patent/JP2006291900A/en
Application granted granted Critical
Publication of JP4824335B2 publication Critical patent/JP4824335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of hunting in a preceding stand-by type vertical shaft pump. <P>SOLUTION: The preceding stand-by type vertical shaft pump 1 comprises a main air supply pipe 16 and an auxiliary air supply pipe 17. The main air supply pipe 16 has a lower end 16a communicated with a main air hole 6a formed in a suction casing 6 under the lower end of an impeller 11 and an upper end 16b opened to the atmosphere at the upper side of an assumed maximum water level WL1 in a suction water tank 2. The auxiliary air supply pipe 17 has a lower end 17a communicated with an auxiliary air hole 6b formed in the suction casing 6 above the main air hole 7a and under the lower end of the impeller 11 and an upper end 17b opened to the atmosphere at the upper side of the assumed maximum water level WL1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、先行待機型立軸ポンプに関する。   The present invention relates to a prior standby vertical shaft pump.

吸込水槽への短時間かつ多量の雨水等の流入に対処するために、種々の先行待機型立軸ポンプが提案されている。先行待機型立軸ポンプは吸込水槽内の水位が大幅に低下しても運転状態を継続可能であり、降雨情報等に基づいて予め始動しておいて吸込水槽への雨水流入と同時に揚水を開始できる   In order to cope with the inflow of a large amount of rainwater or the like into the suction tank for a short time, various types of stand-by type vertical shaft pumps have been proposed. The stand-by type vertical shaft pump can continue operating even if the water level in the suction tank drops significantly, can start in advance based on rainfall information, etc., and can start pumping simultaneously with the inflow of rainwater into the suction tank

先行待機運転では、低水位での水位変動による急激な流量変動を防止し、それによって原動機の電気的な負荷や、ポンプを構成する個々の要素に作用する機械的な負荷を安定させ、かつ振動や騒音を低減することが重要である。この目的のために、特許文献1及び2に記載の先行待機型立軸ポンプは、ポンプのケーシングの羽根車よりも下方に形成された給気孔に一端が連通し、他端が大気に常に開放された給気管を備えている。吸込水槽内がある水位まで低下すると吸気管を介してケーシング内に空気が供給され、揚水される水に空気の泡が混じる(気水混合運転)。水位が低下する程供給される空気の量が増加し、それに対応して水の流量が減少するので、前述の急激な流量変動の影響が緩和される。この気水混合運転において水位が給気孔まで低下すると、揚水が停止する。この揚水停止時には、ケーシング内の羽根車と給気孔の間の領域に空気溜まりが形成される一方、ケーシング内の羽根車よりも上方の領域には水柱が形成される(エアロック運転)。   Pre-standby operation prevents sudden flow fluctuations due to fluctuations in the water level at low water levels, thereby stabilizing the electrical load on the prime mover and the mechanical loads acting on the individual elements that make up the pump, and vibration. It is important to reduce noise. For this purpose, the stand-by type vertical shaft pumps described in Patent Documents 1 and 2 have one end communicating with an air supply hole formed below the impeller of the pump casing and the other end being always open to the atmosphere. Equipped with an air supply pipe. When the suction water tank falls to a certain water level, air is supplied into the casing via the intake pipe, and air bubbles are mixed with the pumped water (air-water mixing operation). As the water level decreases, the amount of air supplied increases, and the flow rate of water correspondingly decreases. Therefore, the influence of the aforementioned rapid flow rate fluctuation is alleviated. In this air / water mixing operation, when the water level drops to the air supply holes, the pumping stops. When the pumping is stopped, an air pocket is formed in a region between the impeller and the air supply hole in the casing, while a water column is formed in a region above the impeller in the casing (air lock operation).

しかし、特許文献1及び2に記載の先行待機型立軸ポンプでは、前述のエアロック運転と通常の揚水運転を短い時間間隔で繰り返えす現象(いわゆるハンチング現象)が生じる。このハンチング現象は大きな負荷変動を生じ、振動や騒音の原因となる。以下、ハンチング現象のメカニズムを説明する。エアロック運転中の吸水槽への少量の雨水等の流入や、羽根車上方の水柱から漏れた水の吸込水槽への落下により、水位が僅かに上昇して給気孔を塞ぐ。給気孔が塞がれると空気溜まりを形成していた空気が排気され、吸込ベル内の水位が上昇する。吸込ベル内の水位が羽根車まで上昇すると、再び揚水が開始される。しかし、水位の上昇が吸込水槽への少量の雨水の流入や水柱からの水の漏れに起因する場合、揚水運転が開始されると直ちに水位が低下して給気孔が開放される。その結果、揚水運転が開始されても直ぐにエアロック運転の状態に戻る。以上の動作の繰り返しでハンチング現象が起こる。   However, the prior standby vertical shaft pumps described in Patent Documents 1 and 2 cause a phenomenon (so-called hunting phenomenon) in which the above-described air lock operation and normal pumping operation are repeated at short time intervals. This hunting phenomenon causes large load fluctuations and causes vibration and noise. Hereinafter, the mechanism of the hunting phenomenon will be described. The water level slightly rises and closes the air supply holes due to the inflow of a small amount of rainwater or the like into the water absorption tank during the air lock operation or the fall of the water leaked from the water column above the impeller into the suction water tank. When the air supply hole is closed, the air forming the air reservoir is exhausted, and the water level in the suction bell rises. When the water level in the suction bell rises to the impeller, pumping is started again. However, when the rise in water level is caused by a small amount of rainwater flowing into the suction tank or water leakage from the water column, the water level is lowered immediately after the pumping operation is started, and the air supply holes are opened. As a result, even if the pumping operation is started, the state immediately returns to the air lock operation state. A hunting phenomenon occurs by repeating the above operations.

特許第2899873号明細書Japanese Patent No. 2899873 特許第3191099号明細書Japanese Patent No. 3191099

本発明は、先行待機型立軸ポンプにおけるハンチング現象の発生を防止することを課題とする。   An object of the present invention is to prevent the occurrence of a hunting phenomenon in a prior standby vertical shaft pump.

本発明は、吸込水槽内で開口する吸込口を下端に有すると共に、吐出口を上端に有するケーシングと、このケーシング内に配置された羽根車とを備える先行待機型立軸ポンプにおいて、前記羽根車の下端よりも下方の前記ケーシングに形成された第1の空気孔に一端が連通し、他端が前記吸込水槽の想定最高水位よりも上方で大気に開放している第1の空気流路と、前記第1の空気孔より上方、かつ前記羽根車の下端よりも下方の前記ケーシングに形成された第2の空気孔に一端が連通し、他端が前記想定最高水位よりも上方で大気に開放している第2の空気流路とを備えることを特徴とする先行待機型立軸ポンプを提供する。   The present invention relates to a stand-by-stand vertical pump including a casing having a suction port opened in a suction water tank at a lower end, a casing having a discharge port at an upper end, and an impeller disposed in the casing. A first air flow path having one end communicating with the first air hole formed in the casing below the lower end and the other end being open to the atmosphere above the assumed maximum water level of the suction water tank; One end communicates with the second air hole formed in the casing above the first air hole and below the lower end of the impeller, and the other end is open to the atmosphere above the assumed maximum water level. And a second stand-by type vertical shaft pump characterized by comprising a second air flow path.

吸込水槽内の水位が十分高い場合には、第1及び第2の空気孔は共にケーシング内を吸込口から羽根車に向けて流れる水により塞がれ、回転する羽根車によって吸込口から吐出口へ揚水される水に空気は混ざらない(通常揚水運転)。第1の空気孔より所定量(例えば、V/2g:Vはケーシング中の水の速度、gは重力加速度)だけ上方の高さ位置まで吸込水槽内の水位が低下すると、第1の空気流路から第1の空気孔を介してケーシング内への空気の流入が始まり、羽根車によって吸込口から吐出口へ揚水される水に空気の泡が混ざる(気水混合運転)。第1の空気孔が開放されるまで水位が低下すると、第1の空気孔からの空気の流入量が増加して揚水が停止する。揚水が停止すると、ケーシング内の羽根車と第1の空気孔の間の領域に空気溜まりが形成される一方、ケーシング内の羽根車よりも上方の領域には水柱が形成される(エアロック運転)。空気溜まりを形成する空気は羽根車により徐々に水柱側へ排気されるが、第1の空気流路から第1の空気孔を介してケーシング内に流入する空気、及び第2の空気流路から第2の空気孔を介してケーシング内に流入する空気により空気溜まりが維持される。 When the water level in the suction tank is sufficiently high, both the first and second air holes are blocked by water flowing in the casing from the suction port toward the impeller, and then the discharge port is opened from the suction port by the rotating impeller. Air is not mixed with the water pumped (normal pumping operation). When the water level in the suction tank drops to a height above the first air hole by a predetermined amount (for example, V 2 / 2g: V is the speed of water in the casing and g is the acceleration of gravity), the first air Inflow of air into the casing starts from the flow path through the first air hole, and air bubbles are mixed with water pumped from the suction port to the discharge port by the impeller (air-water mixing operation). When the water level decreases until the first air hole is opened, the inflow amount of air from the first air hole increases and pumping stops. When the pumping is stopped, an air pool is formed in a region between the impeller in the casing and the first air hole, while a water column is formed in a region above the impeller in the casing (air lock operation). ). The air forming the air pool is gradually exhausted to the water column side by the impeller, but the air flowing into the casing from the first air flow path through the first air hole and the second air flow path The air pocket is maintained by the air flowing into the casing through the second air hole.

エアロック運転の状態となった後、第1の空気孔を塞ぐだけでなく第2の空気孔までケーシング内の水位が上昇すると、空気溜まりへの空気の流入が停止するので空気溜まりを形成していた空気が羽根車により排気され、ケーシング内の水位が羽根車まで上昇すると気水混合運転を経て通常揚水運転が開始される。換言すれば、エアロック運転の状態となった後は、ケーシング内の水位が第2の空気孔に達するまでは通常揚水運転に移行せず、エアロック運転が維持される。いったんエアロック運転状態となった後は、ケーシング内の水位が第1の空気孔に対応する水位と第2の空気孔の対応する水位の間であればエアロック運転が維持され、エアロック運転から通常揚水運転への移行に要する水位上昇量が大きい。従って、エアロック運転中に吸込水槽への少量の水の流入や水柱からの水の漏れにより吸込水槽内の水位が僅かに上昇しても、エアロック運転の状態が維持され、ハンチング現象の発生を防止できる。   After the air lock operation state is reached, not only the first air hole is blocked, but also when the water level in the casing rises to the second air hole, the inflow of air to the air pool stops, so that an air pool is formed. When the air that has been discharged is exhausted by the impeller and the water level in the casing rises to the impeller, the normal pumping operation is started through the air-water mixing operation. In other words, after the airlock operation state is reached, the normal lockup operation is not performed and the airlock operation is maintained until the water level in the casing reaches the second air hole. Once the air lock operation state is established, the air lock operation is maintained if the water level in the casing is between the water level corresponding to the first air hole and the corresponding water level of the second air hole, and the air lock operation is performed. The amount of water level rise required for the transition from normal to pumping operation is large. Therefore, even if the water level in the suction water tank rises slightly due to the inflow of a small amount of water into the suction water tank or the leakage of water from the water column during the air lock operation, the air lock operation state is maintained and hunting occurs. Can be prevented.

第1及び第2の空気流路は全体が空気管により構成されていてもよいが、その全部又は一部がケーシングの内部に形成された流路であってもよい。   The first and second air flow paths may be entirely constituted by an air pipe, but may be a flow path formed entirely or partially inside the casing.

前記第1の空気流路から前記第1の空気孔を介して前記ケーシング内に流入可能な空気の流量である第1の空気流量よりも、前記第2の空気流路から前記第2の空気孔を介して前記ケーシング内に流入可能な空気で第2の空気流量が少ない。例えば、第1の空気流量が8〜10m/分程度である場合、第2の空気流量0.8〜1.0m/分程度に設定される。第1及び第2の空気流路が空気管からなる場合、空気管の内径を異ならせることで第1の空気流量よりも第2の空気流量を少なく設定できる。また、第2の空気流路に流量調整弁を設ければ、この流量調整弁の操作によって第2の空気量の調節が可能となり、第2の空気流量を確実に第1の空気流量よりも少なく設定できる。 The second air from the second air flow path is higher than the first air flow rate that is the flow rate of air that can flow into the casing from the first air flow path through the first air hole. The second air flow rate is small with the air that can flow into the casing through the hole. For example, when the first air flow rate is about 8 to 10 m 3 / min, the second air flow rate is set to about 0.8 to 1.0 m 3 / min. When the first and second air flow paths are formed of air tubes, the second air flow rate can be set lower than the first air flow rate by making the inner diameters of the air tubes different. Further, if a flow rate adjusting valve is provided in the second air flow path, the second air amount can be adjusted by operating the flow rate adjusting valve, and the second air flow rate can be more reliably set than the first air flow rate. Can be set less.

第1の空気流量よりも第2の空気流量が十分小さく設定されていれば、通常揚水運転から気水混合運転に移行するまで及び気水混合運転中、第2の空気流路から第2の空気孔を介してケーシング内に流入する空気は無視できる程度に少量である。換言すれば、第2の空気流路から第2の空気孔を介してケーシング内に流入する空気によって、通常揚水運転から気水混合運転に移行することはない。また、気水混合運転の状態は、第1の空気流路から第1の空気孔を介してケーシング内に流入する空気によって維持される。   If the second air flow rate is set to be sufficiently smaller than the first air flow rate, the second air flow path is changed from the second air flow path until the transition from the normal pumping operation to the air / water mixing operation and during the air / water mixing operation. The amount of air flowing into the casing through the air holes is negligibly small. In other words, the normal pumping operation does not shift to the air / water mixing operation by the air flowing into the casing from the second air flow path through the second air hole. The state of the air / water mixing operation is maintained by the air flowing into the casing from the first air flow path through the first air hole.

前記吸込口から流入する水の旋回を防止するための複数の整流板を前記吸込口側の前記ケーシングの内部に備える場合、前記整流板の上端は前記第2の空気孔よりも下方に位置することが好ましい。   In the case where a plurality of rectifying plates for preventing swirling of water flowing in from the suction port are provided in the casing on the suction port side, the upper end of the rectification plate is positioned below the second air hole. It is preferable.

整流板の上端が第2の空気孔よりも下方に位置していれば、揚水運転時及び気水混合運転時に、ケーシング内の第2の空気孔を含む領域に旋回流が形成される。揚水運転時及び気水混合運転時には、この旋回流により第2の空気孔が閉鎖された状態で維持されるので、第2の空気通路から第2の空気孔を介したケーシング内への空気の流入をより一層低減し、ないしは流入をなくすことができる。   If the upper end of the current plate is positioned below the second air hole, a swirl flow is formed in a region including the second air hole in the casing during the pumping operation and the air / water mixing operation. During the pumping operation and the air-water mixing operation, the second air hole is maintained closed by this swirling flow, so that the air from the second air passage to the casing through the second air hole is maintained. Inflow can be further reduced, or inflow can be eliminated.

本発明の先行待機型立軸ポンプは、第1の空気孔及び第1の空気流路に加え、第2の空気孔及び第2の空気流路を備えるので、エアロック運転中に吸込水槽への少量の雨水の流入や水柱からの水の漏れにより吸込水槽内の水位が僅かに上昇しても、エアロック運転の状態が維持され、ハンチング現象の発生を防止できる。   The preceding standby type vertical shaft pump of the present invention includes the second air hole and the second air flow path in addition to the first air hole and the first air flow path. Even if the water level in the suction tank rises slightly due to the inflow of a small amount of rainwater or the leakage of water from the water column, the air lock operation state is maintained and the occurrence of the hunting phenomenon can be prevented.

添付図面を参照して本発明の実施形態を詳細に説明する。   Embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1から図4に示す本実施形態の先行待機型立軸ポンプ(以下、単に立軸ポンプという)1は、図示しない流入側管路から排水ポンプ場の吸込水槽2内に流入する雨水等の水を下流側に排水するためのものであり、鉛直方向に延びるケーシング3を備えている。ケーシング3は、直管状の揚水管4、揚水管4の下端に連結されたポンプケーシング5、ポンプケーシング5の下端に連結された吸込ケーシング6、及び揚水管4の上端に連結されて鉛直方向から水平方向に湾曲した吐出エルボ7を備えている。吸込ケーシング6は下端に吸込口8を備え得る。一方、吐出エルボ7には吐出管9が連結されている。ポンプケーシング5内に羽根車11が配設されている。この羽根車11が下端に固定されている主軸12は、鉛直方向に延びて上端がケーシング3の外部に突出している。主軸12の上端側は概略的に示すモータ、減速機構等からなる回転駆動機構3に連結されている。ケーシング3内には、主軸12を回転自在に支持する水中軸受14A,14B,14Cが配設されている。   1 to 4, the preceding standby type vertical shaft pump (hereinafter simply referred to as a vertical shaft pump) 1 receives rainwater or the like flowing into the suction water tank 2 of the drainage pump station from an inflow side pipe (not shown). The casing 3 is for draining downstream, and includes a casing 3 extending in the vertical direction. The casing 3 has a straight tubular pumping pipe 4, a pump casing 5 connected to the lower end of the pumping pipe 4, a suction casing 6 connected to the lower end of the pump casing 5, and an upper end of the pumping pipe 4 from the vertical direction. A discharge elbow 7 curved in the horizontal direction is provided. The suction casing 6 may have a suction port 8 at the lower end. On the other hand, a discharge pipe 9 is connected to the discharge elbow 7. An impeller 11 is disposed in the pump casing 5. The main shaft 12 on which the impeller 11 is fixed at the lower end extends in the vertical direction, and the upper end protrudes outside the casing 3. The upper end side of the main shaft 12 is connected to a rotational drive mechanism 3 including a motor, a speed reduction mechanism and the like which are schematically shown. In the casing 3, underwater bearings 14 </ b> A, 14 </ b> B, and 14 </ b> C that rotatably support the main shaft 12 are disposed.

立軸ポンプ1は、4本の主空気供給管(第1の空気流路)16と、1本の補助空気供給管(第2の空気流路)17を備える。   The vertical pump 1 includes four main air supply pipes (first air flow paths) 16 and one auxiliary air supply pipe (second air flow path) 17.

主空気供給管16を説明する。吸込ケーシング6には吸込口8の上方かつ羽根車11の下端よりも下方の位置に、図2に示すように4個の主空気孔6aが形成されている。これらの主空気孔6aは、主軸12が延びる方向から見て等角度間隔で配置されている。主空気供給管16は、その下端16aが主空気孔6aに接続されて連通し、上端16bが吸込水槽2内の想定される最高水位(想定最高水位)WL1よりも上方で大気に連通している。後に詳述するように、立軸ポンプ1の運転状態に応じて上端16bから主空気供給管16内へ空気が流入し、流入した空気は下端16a及び主空気孔6aを介して羽根車11よりも下方の吸込ケーシング6内に流入する。   The main air supply pipe 16 will be described. As shown in FIG. 2, four main air holes 6 a are formed in the suction casing 6 at a position above the suction port 8 and below the lower end of the impeller 11. These main air holes 6a are arranged at equiangular intervals when viewed from the direction in which the main shaft 12 extends. The main air supply pipe 16 has a lower end 16a connected to and communicated with the main air hole 6a, and an upper end 16b communicated with the atmosphere above the assumed maximum water level (assumed maximum water level) WL1 in the suction water tank 2. Yes. As will be described in detail later, air flows into the main air supply pipe 16 from the upper end 16b in accordance with the operating state of the vertical shaft pump 1, and the inflowed air is more than the impeller 11 through the lower end 16a and the main air hole 6a. It flows into the lower suction casing 6.

補助空気供給管17を説明する。吸込ケーシング6には距離Lだけ主空気孔6aよりも上方で、かつ羽根車11の下端より下方の位置に、図3に示すように1個の補助空気孔6bが形成されている。補助空気孔6bは可能な限り羽根車11の下端に近接して設けることが好ましい。補助空気供給管17は、その下端17aが補助空気孔6bに接続されて連通し、上端17bが想定最高水位WL1よりも上方で大気に連通している。後に詳述するように、立軸ポンプ1の運転状態に応じて上端17bから補助空気供給管17内へ空気が流入し、流入した空気は下端17a及び補助空気孔6bを介して羽根車11よりも下方の吸込ケーシング6内に流入する。   The auxiliary air supply pipe 17 will be described. As shown in FIG. 3, one auxiliary air hole 6 b is formed in the suction casing 6 at a position above the main air hole 6 a by a distance L and below the lower end of the impeller 11. The auxiliary air hole 6b is preferably provided as close to the lower end of the impeller 11 as possible. The auxiliary air supply pipe 17 communicates with the lower end 17a connected to the auxiliary air hole 6b and the upper end 17b communicating with the atmosphere above the assumed maximum water level WL1. As will be described in detail later, air flows from the upper end 17b into the auxiliary air supply pipe 17 in accordance with the operation state of the vertical shaft pump 1, and the inflowed air is more than the impeller 11 through the lower end 17a and the auxiliary air hole 6b. It flows into the lower suction casing 6.

主空気供給管16及び主空気孔6aの径D1よりも、補助空気供給管17及び補助空気孔6bの径D2が小さく、それによって4本の主空気供給管16から主空気孔6aを介して吸込ケーシング6内に流入可能な空気流量よりも、補助空気供給管17から補助空気孔6bを介して吸込ケーシング6内に流入可能な空気量を少なく設定している。例えば、前者の空気流量が8〜10m/分程度である場合、後者の空気流量0.8〜1.0m/分程度に設定される。 The diameter D2 of the auxiliary air supply pipe 17 and the auxiliary air hole 6b is smaller than the diameter D1 of the main air supply pipe 16 and the main air hole 6a, whereby the four main air supply pipes 16 pass through the main air hole 6a. The amount of air that can flow into the suction casing 6 from the auxiliary air supply pipe 17 via the auxiliary air hole 6b is set smaller than the air flow rate that can flow into the suction casing 6. For example, when the former air flow rate is about 8 to 10 m 3 / min, the latter air flow rate is set to about 0.8 to 1.0 m 3 / min.

補助空気供給管17の上端側の一部は、ポンプ床18から吸込水槽2の外部へ延びている。この補助空気供給管17の吸込水槽2から外部に延びる部分には、補助空気供給管17及び補助空気孔6bを介して吸込ケーシング6内に流入する空気の流量を調整するための流量調整弁19が設けられている。この流量調整弁19の操作により、補助空気供給管17から吸込ケーシング6内への空気流量を主空気供給管16から吸込ケーシング6内への空気流量よりも確実に少なく設定できる。   A part of the upper end side of the auxiliary air supply pipe 17 extends from the pump floor 18 to the outside of the suction water tank 2. A flow rate adjusting valve 19 for adjusting the flow rate of air flowing into the suction casing 6 through the auxiliary air supply pipe 17 and the auxiliary air hole 6b is provided at a portion of the auxiliary air supply pipe 17 extending from the suction water tank 2 to the outside. Is provided. By operating the flow rate adjusting valve 19, the air flow rate from the auxiliary air supply pipe 17 into the suction casing 6 can be reliably set smaller than the air flow rate from the main air supply pipe 16 into the suction casing 6.

図1及び図2を参照すると、吸込ケーシング6内には吸込口8から流入する水の旋回を防止するための4枚の整流板21が設けられている。整流板21の下端21bは吸込ケーシング6の下端、すなわち吸込口8付近まで延びている。一方、整流板21の上端21aは主空気孔6aよりも上方であるが補助空気孔6bよりも下方に位置している。整流板21の上端21aは可能な限り補助空気孔6bに近接して設けることが好ましい。   Referring to FIGS. 1 and 2, four rectifying plates 21 for preventing swirling of water flowing from the suction port 8 are provided in the suction casing 6. The lower end 21 b of the rectifying plate 21 extends to the lower end of the suction casing 6, that is, near the suction port 8. On the other hand, the upper end 21a of the rectifying plate 21 is located above the main air hole 6a but below the auxiliary air hole 6b. The upper end 21a of the rectifying plate 21 is preferably provided as close to the auxiliary air hole 6b as possible.

次に、この立軸ポンプ1の運転状態の推移を説明する。まず、立軸ポンプ1による揚水が開始されるまでを説明する。降雨情報等に基づいて、吸込口8よりも低い待機水位(吸込水槽2内に水がない状態でもよい。)で立軸ポンプ1が始動される。ケーシング3内には水が存在しないので羽根車11は空気中で空転する。吸込水槽2内の水位が上昇して羽根車11の下端まで達すると吸込水槽2内の水は羽根車11の回転により吸込ケーシング6の吸込口8から吸い上げられ、吸込ケーシング6、ポンプケーシング5、揚水管4、及び吐出エルボ7を介して吐出管へ排水される。   Next, the transition of the operation state of the vertical shaft pump 1 will be described. First, the process until the pumping of the vertical shaft pump 1 is started will be described. On the basis of rainfall information and the like, the vertical shaft pump 1 is started at a standby water level lower than that of the suction port 8 (there may be no water in the suction water tank 2). Since there is no water in the casing 3, the impeller 11 rotates idly in the air. When the water level in the suction water tank 2 rises and reaches the lower end of the impeller 11, the water in the suction water tank 2 is sucked up from the suction port 8 of the suction casing 6 by the rotation of the impeller 11, and the suction casing 6, the pump casing 5, The water is discharged to the discharge pipe through the pumping pipe 4 and the discharge elbow 7.

図5に示すように吸込水槽2内の水位WLがケーシング3内の羽根車14より十分高ければ、前述のように羽根車11の回転によりケーシング3内に吸い上げられた水は吐出管9へ吐出される(通常揚水運転)。この通常揚水運転時には、主空気孔6a及び補助空気孔6bは吸込ケーシング6内を羽根車11に向かって流れる水で閉じられており、主空気供給管16及び補助空気供給管17から吸込ケーシング6への空気の混入はない。詳細には、主空気孔6a及び補助空気孔6bにおいて吸込ケーシング6内の水の静圧(吸込口8での損失水頭を差し引いた水頭圧)と動圧の和が大気圧を上回っているので、主空気供給管16及び補助空気供給管17から吸込ケーシング6内へ空気が流入しない。   If the water level WL in the suction water tank 2 is sufficiently higher than the impeller 14 in the casing 3 as shown in FIG. 5, the water sucked into the casing 3 by the rotation of the impeller 11 as described above is discharged to the discharge pipe 9. (Normal pumping operation) During this normal pumping operation, the main air hole 6 a and the auxiliary air hole 6 b are closed with water flowing toward the impeller 11 in the suction casing 6, and the suction casing 6 is connected to the main air supply pipe 16 and the auxiliary air supply pipe 17. There is no air mixing in. Specifically, the sum of the static pressure of water in the suction casing 6 (water head pressure minus the head of loss at the suction port 8) and the dynamic pressure in the main air hole 6a and the auxiliary air hole 6b exceeds the atmospheric pressure. The air does not flow into the suction casing 6 from the main air supply pipe 16 and the auxiliary air supply pipe 17.

図6に示すように、吸込水槽2の水位WLが主空気孔6aより所定量(例えば、V/2g:Vはケーシング中の水の速度、gは重力加速度)だけ上方の水位WL2まで低下すると、大気圧が吸込ケーシング6内の水の圧力を上回る。その結果、主空気供給管16から主空気孔6aを介した吸込ケーシング6内へ空気が流入し始める。羽根車11によって吸込口8から吐出管9へ揚水される水に空気の泡(気泡)25が混入する(気水混合運転)。図7に示すように、吸込水槽2の水位WLが水位WL2からさらに低下するのに伴い、主空気供給管16から主空気孔6aを介して吸込ケーシング6内へ流入する空気量が増加する。換言すれば、水位WLが低下する程、揚水される水に含まれる気泡25の割合が増加する。 As shown in FIG. 6, the water level WL of the suction tank 2 is lowered from the main air hole 6a to the upper water level WL2 by a predetermined amount (for example, V 2 / 2g: V is the speed of water in the casing and g is the acceleration of gravity). Then, the atmospheric pressure exceeds the pressure of water in the suction casing 6. As a result, air begins to flow from the main air supply pipe 16 into the suction casing 6 via the main air hole 6a. Air bubbles (bubbles) 25 are mixed into the water pumped from the suction port 8 to the discharge pipe 9 by the impeller 11 (air-water mixing operation). As shown in FIG. 7, as the water level WL of the suction water tank 2 further decreases from the water level WL2, the amount of air flowing into the suction casing 6 from the main air supply pipe 16 through the main air hole 6a increases. In other words, the proportion of the bubbles 25 contained in the pumped water increases as the water level WL decreases.

気水混合運転中の吸込ケーシング6内では、整流板21の上端21aから羽根車11の下端までの領域、すなわち整理板21が存在しない領域に旋回流Rが生じておりこの領域の水は高い動圧を有する。補助空気孔6bは整流板21より上方の旋回流Rが生じている位置にあるので、閉鎖状態で維持される。従って、気水混合運転中は補助空気供給管17から補助空気孔6bを介して吸込ケーシング6内へ空気が流入しない。また、補助空気供給管17の空気流量は主供給空気供給管16の空気流量と比較して十分少なく設定しているので、仮に補助空気供給管17から吸込ケーシング6内へ空気が流入しても、その量は主空気供給管16から吸込ケーシング6内への空気流入量と比べて無視できる程度である。なお、前述の通常揚水運転中も旋回流Rが存在し、その動圧は補助空気孔6bを閉鎖状態で維持することに寄与する。   In the suction casing 6 during the air-water mixing operation, the swirl flow R is generated in the region from the upper end 21a of the rectifying plate 21 to the lower end of the impeller 11, that is, the region where the arrangement plate 21 does not exist, and the water in this region is high. Has dynamic pressure. Since the auxiliary air hole 6b is in a position where the swirling flow R is generated above the rectifying plate 21, it is maintained in a closed state. Therefore, air does not flow from the auxiliary air supply pipe 17 into the suction casing 6 through the auxiliary air hole 6b during the air-water mixing operation. Further, since the air flow rate of the auxiliary air supply pipe 17 is set to be sufficiently smaller than the air flow rate of the main supply air supply pipe 16, even if air flows into the suction casing 6 from the auxiliary air supply pipe 17. The amount is negligible compared to the amount of air flowing from the main air supply pipe 16 into the suction casing 6. In addition, the swirl | vortex flow R exists also during the above-mentioned normal pumping operation, The dynamic pressure contributes to maintaining the auxiliary air hole 6b in a closed state.

図8に示すように、吸込水槽2の水位WLが主空気孔6aに対応する水位WL3まで低下すると、主空気孔6aが開放されて主空気供給管16から主空気孔6bを介して吸込ケーシング6内に流入する空気量が急激に増加する。その結果、吸込ケーシング6内の羽根車11の下端と主空気孔6aの間の領域に空気溜まり26が形成される一方、ケーシング3の羽根車11よりも上方の領域には水柱27が形成されるので揚水が停止する(エアロック運転)。補助空気孔6bは空気溜まり26が形成される羽根車11の下端と主空気孔6aの間の領域に位置しているので、エアロック運転の開始と共に補助空気供給管16から補助空気孔6bを介して吸込ケーシング6内に空気が流入し始める。空気溜まり26を形成する空気は羽根車11により徐々に水柱26側へ排気されて気泡25となるが、主空気供給管16から主空気孔6aを介して吸込ケーシング6内に流入する空気、及び補助空気供給管17から補助空気孔6bを介して吸込ケーシング6内に流入する空気により空気溜まり26が維持される。   As shown in FIG. 8, when the water level WL of the suction water tank 2 is lowered to the water level WL3 corresponding to the main air hole 6a, the main air hole 6a is opened and the suction casing is passed from the main air supply pipe 16 through the main air hole 6b. The amount of air flowing into 6 increases rapidly. As a result, an air reservoir 26 is formed in a region between the lower end of the impeller 11 in the suction casing 6 and the main air hole 6a, while a water column 27 is formed in a region above the impeller 11 of the casing 3. Therefore, pumping stops (air lock operation). Since the auxiliary air hole 6b is located in a region between the lower end of the impeller 11 where the air reservoir 26 is formed and the main air hole 6a, the auxiliary air hole 6b is opened from the auxiliary air supply pipe 16 together with the start of the air lock operation. Air begins to flow into the suction casing 6. The air forming the air reservoir 26 is gradually exhausted to the water column 26 side by the impeller 11 to become bubbles 25, and the air flowing into the suction casing 6 from the main air supply pipe 16 through the main air hole 6a, and The air reservoir 26 is maintained by the air flowing into the suction casing 6 from the auxiliary air supply pipe 17 through the auxiliary air hole 6b.

図9に示すように、エアロック運転中に吸込水槽2及び吸込ケーシング6内の水位WLが主空気孔6aよりも上方であるが、補助空気孔6bよりも下方の水位となっても、エアロック状態を維持される。この水位では主空気孔6aは吸込ケーシング3内の水で塞がれるので、主空気供給管16から主空気孔6aを介した吸込ケーシング3内への空気の流入は停止する。しかし、補助空気孔6bは依然として水面より上方に位置しているので、補助空気供給管17から補助空気孔6bを介して空気溜まり26に空気が流入し、それによって空気溜まり26が維持される。   As shown in FIG. 9, during the air lock operation, the water level WL in the suction water tank 2 and the suction casing 6 is above the main air hole 6a, but the air level is lower than the auxiliary air hole 6b. The locked state is maintained. At this water level, the main air hole 6a is blocked with water in the suction casing 3, so that the inflow of air from the main air supply pipe 16 into the suction casing 3 through the main air hole 6a is stopped. However, since the auxiliary air hole 6b is still located above the water surface, air flows into the air reservoir 26 from the auxiliary air supply pipe 17 via the auxiliary air hole 6b, whereby the air reservoir 26 is maintained.

一方、図10に示すように、エアロック運転中に吸込水槽2及び吸込ケーシング6内の水位WLが補助空気孔6bと対応する水位WL4まで達すると、主空気孔6aを介した主空気供給管16から空気溜まり26への空気の流入及び補助空気孔6bを介した補助空気供給管17から空気溜まり26への空気の流入の両方が停止する。その結果、空気溜まり26を構成する空気が徐々に減少し、それに伴って吸込ケーシング6内の水位WLが上昇して図11に示すように羽根車11の下端に達すると、気水混合運転を経て再び通常揚水運転に復帰する。   On the other hand, as shown in FIG. 10, when the water level WL in the suction water tank 2 and the suction casing 6 reaches the water level WL4 corresponding to the auxiliary air hole 6b during the airlock operation, the main air supply pipe through the main air hole 6a. Both the inflow of air from 16 to the air reservoir 26 and the inflow of air from the auxiliary air supply pipe 17 to the air reservoir 26 via the auxiliary air hole 6b are stopped. As a result, the air constituting the air reservoir 26 gradually decreases, and when the water level WL in the suction casing 6 rises and reaches the lower end of the impeller 11 as shown in FIG. After that, it returns to normal pumping operation again.

エアロック運転中に流入側管路から吸込水槽2内に雨水等がある程度継続的に流入すると、吸込水槽2及び吸込ケーシング6内の水位WLは、前述の補助空気孔6bと対応する水位WL4まで上昇し、その後も上昇を継続するので、気水混合運転を経て通常揚水運転に復帰する。   When rainwater or the like continuously flows into the suction water tank 2 from the inflow side conduit during the airlock operation, the water level WL in the suction water tank 2 and the suction casing 6 reaches the water level WL4 corresponding to the auxiliary air hole 6b described above. Since it rises and continues to rise after that, it returns to normal pumping operation through air-water mixing operation.

一方、エアロック運転中に、少量の水が一時的に吸込水槽2に流入する場合や、水柱27を構成する水が羽根車11とポンプケーシング5の隙間から漏れ落ちる場合がある。これらの場合、吸込ケーシング6内の水位が僅かに上昇して、それによって主空気孔6aは吸込ケーシング6内の水で塞がれる。しかし、これらの一時的ないしは非継続的な水位の上昇があっても、前述のように吸込ケーシング6内の水位が補助空気孔6bに対応する水位WL4まで上昇しない限り、補助空気供給管17から補助空気孔6bを介して空気溜まり26に供給される空気によりエアロック運転の状態が維持される。換言すれば、いったんエアロック運転の状態となった後は、一時的に主空気孔6aに対応する水位WL3から補助空気孔6bに対応する水位WL4までの水位変動ΔWL(主空気孔6aと補助空気孔6bの高さ方向の距離Lと等しい)があっても、エアロック運転が維持される。従って、従って、エアロック運転中に吸込水槽2への少量の水の流入や水柱26からの水の漏れにより吸込水槽2内の水位が僅かに上昇しても、エアロック運転の状態が維持され、ハンチング現象の発生を防止できる。一方、仮にこの立軸ポンプ1が補助空気孔6bと補助空気供給管17を備えていないとすると、エアロック運転中に図4に示すに主空気孔6a及び主空気供給管16の直径D1の半分(D1/2)の水位上昇でエアロック状態が終了して通常揚水運転へ移行するので、一時的な僅かな水位変動によってハンチング減少が発生する。   On the other hand, during the airlock operation, a small amount of water may temporarily flow into the suction water tank 2, or the water constituting the water column 27 may leak from the gap between the impeller 11 and the pump casing 5. In these cases, the water level in the suction casing 6 slightly rises, whereby the main air hole 6a is blocked by the water in the suction casing 6. However, even if there is a temporary or non-continuous rise in the water level, as long as the water level in the suction casing 6 does not rise to the water level WL4 corresponding to the auxiliary air hole 6b as described above, the auxiliary air supply pipe 17 The air lock operation state is maintained by the air supplied to the air reservoir 26 through the auxiliary air hole 6b. In other words, once the air-lock operation state is established, the water level fluctuation ΔWL (the main air hole 6a and the auxiliary air pressure from the water level WL3 corresponding to the main air hole 6a to the water level WL4 corresponding to the auxiliary air hole 6b temporarily. Even if there is a distance L in the height direction of the air hole 6b), the air lock operation is maintained. Therefore, even if the water level in the suction water tank 2 slightly rises due to the inflow of a small amount of water into the suction water tank 2 or the leakage of water from the water column 26 during the air lock operation, the air lock operation state is maintained. The occurrence of hunting phenomenon can be prevented. On the other hand, if the vertical shaft pump 1 does not include the auxiliary air hole 6b and the auxiliary air supply pipe 17, half of the diameter D1 of the main air hole 6a and the main air supply pipe 16 is shown in FIG. Since the air-lock state is terminated and the normal pumping operation is started when the water level rises (D1 / 2), hunting is reduced due to a slight slight fluctuation in the water level.

本発明は前記実施形態に限定されず、種々の変形が可能である。例えば、前記実施形態では、主空気供給管16及び補助空気供給管17は端部を除いてケーシング3とは別体である。しかし、主空気供給管16及び補助空気供給管17のいずれか一方又は両方の一部又は全部がケーシング3の外周部に密着して配置され、又は一体に形成されていてもよい。また、主空気供給管16及び補助空気供給管17は、その一部又は全部がケーシング3に穿設した流路によって構成されていてもよい。また、少なくとも主空気供給管16からケーシング3内に流入する空気流量よりも、補助空気供給管17から流入する空気流量が少ないという条件を満たす限り、主空気供給管16及び補助空気供給管17の本数及び径、並びに主空気孔6a及び補助空気孔6bの径は任意に設定できる。   The present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above embodiment, the main air supply pipe 16 and the auxiliary air supply pipe 17 are separate from the casing 3 except for the ends. However, one or both of the main air supply pipe 16 and the auxiliary air supply pipe 17 may be disposed in close contact with the outer peripheral portion of the casing 3 or may be integrally formed. Further, the main air supply pipe 16 and the auxiliary air supply pipe 17 may be configured by a flow path that is partially or entirely perforated in the casing 3. Further, as long as the condition that at least the air flow rate flowing from the auxiliary air supply pipe 17 is smaller than the air flow rate flowing from the main air supply pipe 16 into the casing 3 is satisfied, the main air supply pipe 16 and the auxiliary air supply pipe 17 The number and diameter of the main air holes 6a and auxiliary air holes 6b can be arbitrarily set.

本発明の実施形態に係る先行待機型立軸ポンプの断面図。1 is a cross-sectional view of a preceding standby vertical shaft pump according to an embodiment of the present invention. 図1のII−II線での模式的な断面図。FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. 1. 図1のIII−III線での模式的な断面図。Typical sectional drawing in the III-III line of FIG. 吸込ケーシングの内側から見た主空気孔及び補助空気孔の模式図。The schematic diagram of the main air hole and auxiliary air hole which were seen from the inner side of the suction casing. 通常揚水運転中の先行待機型立軸ポンプの断面図。Sectional drawing of the advance stand-by type vertical shaft pump during normal pumping operation. 気水混合運転開始時の先行待機型立軸ポンプの断面図。Sectional drawing of a prior | preceding standby type | mold vertical shaft pump at the time of a gas-water mixing operation start. 気水混合運転中の先行待機型立軸ポンプの断面図。Sectional drawing of a prior | preceding standby type | formula vertical shaft pump during air-water mixing operation. エアロック運転開始時の先行待機型立軸ポンプの断面図。Sectional drawing of a prior | preceding standby type | formula vertical pump at the time of an airlock driving | operation start. エアロック運転中の先行待機型立軸ポンプの断面図。Sectional drawing of a prior | preceding standby type | mold vertical shaft pump during an airlock driving | operation. エアロック運転終了時の先行待機型立軸ポンプの断面図。Sectional drawing of a prior | preceding standby type | formula vertical pump at the time of an air lock driving | operation completion | finish. 揚水再開時の先行待機型立軸ポンプの断面図。Sectional drawing of a prior | preceding standby type vertical shaft pump at the time of resuming pumping.

符号の説明Explanation of symbols

1 先行待機型立軸ポンプ
2 吸込水槽
3 ケーシング
4 揚水管
5 ポンプケーシング
6 吸込ケーシング
6a 主空気孔
6b 補助空気孔
7 吐出エルボ
8 吸込口
9 吐出管
11 羽根車
12 主軸
13 回転駆動機構
14A,14B,14C 水中軸受
16 主空気供給管
16a 下端
16b 上端
17 補助空気供給管
17a 下端
17b 上端
18 ポンプ床
19 流量調整弁
21 整流板
21a 上端
21b 下端
25 気泡
DESCRIPTION OF SYMBOLS 1 Advance stand-type vertical shaft pump 2 Suction water tank 3 Casing 4 Pumping pipe 5 Pump casing 6 Suction casing 6a Main air hole 6b Auxiliary air hole 7 Discharge elbow 8 Suction port 9 Discharge pipe 11 Impeller 12 Main shaft 13 Rotation drive mechanisms 14A, 14B, 14C Underwater bearing 16 Main air supply pipe 16a Lower end 16b Upper end 17 Auxiliary air supply pipe 17a Lower end 17b Upper end 18 Pump floor 19 Flow control valve 21 Rectification plate 21a Upper end 21b Lower end 25 Bubble

Claims (4)

吸込水槽内で開口する吸込口を下端に有すると共に、吐出口を上端に有するケーシングと、このケーシング内に配置された羽根車とを備える先行待機型立軸ポンプにおいて
前記羽根車の下端よりも下方の前記ケーシングに形成された第1の空気孔に一端が連通し、他端が前記吸込水槽の想定最高水位よりも上方で大気に開放している第1の空気流路と、
前記第1の空気孔より上方、かつ前記羽根車の下端よりも下方の前記ケーシングに形成された第2の空気孔に一端が連通し、他端が前記想定最高水位よりも上方で大気に開放している第2の空気流路と
を備えることを特徴とする先行待機型立軸ポンプ。
In the preceding stand-by type vertical shaft pump that has a suction port that opens in the suction water tank at the lower end, a casing that has a discharge port at the upper end, and an impeller that is arranged in the casing, a lower part than the lower end of the impeller A first air flow path having one end communicating with the first air hole formed in the casing and the other end being open to the atmosphere above the assumed maximum water level of the suction water tank;
One end communicates with the second air hole formed in the casing above the first air hole and below the lower end of the impeller, and the other end is open to the atmosphere above the assumed maximum water level. A second stand-by type vertical shaft pump comprising: a second air flow path.
前記第1の空気流路から前記第1の空気孔を介して前記ケーシング内に流入可能な空気の流量である第1の空気流量よりも、前記第2の空気流路から前記第2の空気孔を介して前記ケーシング内に流入可能な空気で第2の空気流量が少ないことを特徴とする請求項1に記載の先行待機型立軸ポンプ。   The second air from the second air flow path is higher than the first air flow rate that is the flow rate of air that can flow into the casing from the first air flow path through the first air hole. 2. The stand-by type vertical shaft pump according to claim 1, wherein the second air flow rate is small in the air that can flow into the casing through the hole. 前記第2の空気流路に流量調整弁を設けたことを特徴とする請求項1又は請求項2に記載の先行待機型立軸ポンプ。   The preceding standby type vertical shaft pump according to claim 1 or 2, wherein a flow rate adjusting valve is provided in the second air flow path. 前記吸込口から流入する水の旋回を防止するための複数の整流板を前記吸込口側の前記ケーシングの内部に備え、かつ
前記整流板の上端は前記第2の空気孔よりも下方に位置することを特徴とする、請求項1から請求項3のいずれか1項に記載の先行待機型立軸ポンプ。
A plurality of rectifying plates for preventing swirling of water flowing in from the suction port are provided in the casing on the suction port side, and an upper end of the rectification plate is positioned below the second air hole. The preceding stand-by type vertical shaft pump according to any one of claims 1 to 3, wherein
JP2005115838A 2005-04-13 2005-04-13 Advance standby type vertical shaft pump Active JP4824335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115838A JP4824335B2 (en) 2005-04-13 2005-04-13 Advance standby type vertical shaft pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115838A JP4824335B2 (en) 2005-04-13 2005-04-13 Advance standby type vertical shaft pump

Publications (2)

Publication Number Publication Date
JP2006291900A true JP2006291900A (en) 2006-10-26
JP4824335B2 JP4824335B2 (en) 2011-11-30

Family

ID=37412707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115838A Active JP4824335B2 (en) 2005-04-13 2005-04-13 Advance standby type vertical shaft pump

Country Status (1)

Country Link
JP (1) JP4824335B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121480A (en) * 2008-11-18 2010-06-03 Kubota Corp Preceding standby operation pump
KR101048533B1 (en) * 2009-05-11 2011-07-11 현대중공업 주식회사 Cargo Transfer Pump Columns for Liquefied Gas Carriers
JP2019044730A (en) * 2017-09-05 2019-03-22 株式会社酉島製作所 Vertical shaft pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172084A (en) * 1991-12-20 1993-07-09 Hitachi Ltd Vertical shaft pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172084A (en) * 1991-12-20 1993-07-09 Hitachi Ltd Vertical shaft pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121480A (en) * 2008-11-18 2010-06-03 Kubota Corp Preceding standby operation pump
KR101048533B1 (en) * 2009-05-11 2011-07-11 현대중공업 주식회사 Cargo Transfer Pump Columns for Liquefied Gas Carriers
JP2019044730A (en) * 2017-09-05 2019-03-22 株式会社酉島製作所 Vertical shaft pump

Also Published As

Publication number Publication date
JP4824335B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP6504247B2 (en) Suction cover used for horizontal axis submersible pump and horizontal axis submersible pump
JP4824335B2 (en) Advance standby type vertical shaft pump
JP5274524B2 (en) Pump station
JP4775786B2 (en) Pump
JP4463484B2 (en) Vertical shaft pump
JP2007040155A (en) Self priming pump
JP6420594B2 (en) pump
JP5188366B2 (en) Advance standby operation pump
JP5322459B2 (en) Advance standby operation pump and operation method thereof
JP3191102B2 (en) Vertical pump
JP4422438B2 (en) Vertical shaft pump
JP2006250004A (en) Collective pump device
JP2003521612A (en) Equipment building and equipment operation method
JP3191104B2 (en) Vertical pump
JP4468009B2 (en) Vertical shaft pump system and pump station
JP5478430B2 (en) Advance standby pump
JP2008064088A (en) Vertical shaft pump and pump plant
JPH0278791A (en) Vertical shaft pump
JP2019044730A (en) Vertical shaft pump
JP4562088B2 (en) Self-priming pump
JP2512778Y2 (en) Full-speed standby operation pump
JP6688123B2 (en) Drainage pump equipment and drainage method
JP3091998B2 (en) Vertical pump
JP6082977B2 (en) Self-priming pump
JP2006250071A (en) Storage pump and method of operating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4824335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250