JP2008064088A - Vertical shaft pump and pump plant - Google Patents

Vertical shaft pump and pump plant Download PDF

Info

Publication number
JP2008064088A
JP2008064088A JP2007208804A JP2007208804A JP2008064088A JP 2008064088 A JP2008064088 A JP 2008064088A JP 2007208804 A JP2007208804 A JP 2007208804A JP 2007208804 A JP2007208804 A JP 2007208804A JP 2008064088 A JP2008064088 A JP 2008064088A
Authority
JP
Japan
Prior art keywords
support member
water level
impeller
air
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007208804A
Other languages
Japanese (ja)
Inventor
Hideki Jinno
秀基 神野
Shuichiro Honda
修一郎 本田
Hirobumi Nakaniwa
博文 中庭
Takashi Yamanaka
隆司 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2007208804A priority Critical patent/JP2008064088A/en
Publication of JP2008064088A publication Critical patent/JP2008064088A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical shaft pump and a pump plant stably operating even if water level lowers by more surely sucking air when the water level lowers or suited for precursory standby operation. <P>SOLUTION: The vertical shaft pump comprises a rotary shaft 21 vertically arranged and axially rotating, an impeller 20 rotating with the rotation of the rotary shaft, sucking and sending water upward, the impeller being disposed downstream of a lower end 23 of the rotary shaft, a suction pipe 31 disposed upstream of the impeller and letting water flow toward the impeller, an air pipe 40 connected at one end to the suction pipe and sucking air from the other end, a bearing 50 disposed upstream of the impeller and rotatably supporting the rotary shaft and a support member 60 interconnecting the suction pipe and the bearing, formed with a hollow portion communicating with the air pipe and formed with a hole 62 extending from an outer surface to the hollow portion. The pump plant includes at least two vertical shaft pumps in which the impellers are disposed at different levels. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、立軸ポンプおよびポンプ機場に関し、特に、先行待機運転に適する立軸ポンプおよびポンプ機場に関する。   The present invention relates to a vertical pump and a pump station, and more particularly, to a vertical pump and a pump station suitable for a prior standby operation.

従来から図7に示すように、縦方向に配置された軸の先端に羽根車112を備え、羽根車112に水と共に空気を吸い込ませることにより、吸込水槽111の最低水位LWL以下でも運転を継続することを可能にした立軸ポンプ113があった。このポンプ113では、羽根車112より上流側の吸込管114に水位LWLからh≒v/2gだけ低い位置LLWLに貫通した吸気用の孔115を設け、該孔115に羽根車112の取り付け位置より上で開口する他端116aを有する空気管116を取り付けている。ここで、vはその部分の水の流速であり、gは重力加速度である。このことにより、最低水位LWL以下では、該孔115を経て流入する空気により徐々に排水量を低下させることによって、水位の低下による急激な揚水停止を回避し、また、羽根車112の取り付け位置より下の水位からの水位上昇においても、水位が前記最低水位LWLに至るまでは該孔115を経て流入する空気により排水量を低下させることによって、急激な揚水開始を回避している。このような立軸ポンプでは、水位が低下したときに吸込管114から吸込渦を巻き込むことによる振動を防止することができる。 Conventionally, as shown in FIG. 7, an impeller 112 is provided at the tip of a shaft arranged in the vertical direction, and the impeller 112 sucks air together with water, so that the operation is continued even below the minimum water level LWL of the suction water tank 111. There was a vertical pump 113 that made it possible. In the pump 113, the h ≒ v 2 / hole 115 of 2g intake passing through the position lower LLWL from the water level LWL to the upstream side of the suction pipe 114 from the impeller 112 provided, the mounting position of the impeller 112 in the bore 115 An air pipe 116 having the other end 116a that opens upward is attached. Here, v is the flow velocity of the water in that portion, and g is the acceleration of gravity. As a result, below the minimum water level LWL, the amount of drainage is gradually reduced by the air flowing in through the holes 115, thereby avoiding a sudden pumping stop due to a drop in the water level and lower than the installation position of the impeller 112. Even when the water level rises from the water level, the rapid start of pumping is avoided by reducing the amount of drainage with the air flowing in through the hole 115 until the water level reaches the lowest water level LWL. In such a vertical shaft pump, it is possible to prevent vibration due to the suction vortex being drawn from the suction pipe 114 when the water level is lowered.

このようにして、例えば大都市の雨水排水用として、吸込水位に関係なく降雨情報等により予めポンプを始動しておき、低水位から水位が上昇するときは空運転から水量を徐々に増やしながら全量運転へ、また高水位から水位が低下するときは全量運転から水量を徐々に減らしながら空運転へと、スムーズに運転を移行できるようにしていた。しかし、水位が最低水位LWL以下になって空気管116を通じて吸気しようとすると、羽根車の下方の旋回流れのために吸気用の孔115に正圧が生じてしまい、水位がLWL以下となっても充分な吸気が行われないことがあった。そこで、羽根車112の回転軸117を上流側に延長し、回転軸の下端を支持する軸受を設け、該軸受とポンプケーシングとを連結する支持板で旋回流れを防止する立軸ポンプが提案されている(特許文献1参照)。
特開2006−189016号公報(第1図)
In this way, for example, for rainwater drainage in large cities, the pump is started in advance according to rainfall information etc. regardless of the suction water level, and when the water level rises from the low water level, the total amount is increased while gradually increasing the water amount from the idle operation When the water level dropped from the high water level to the operation, it was possible to smoothly shift the operation from the full operation to the empty operation while gradually reducing the water amount. However, if the water level is lower than the minimum water level LWL and an attempt is made to intake air through the air pipe 116, a positive pressure is generated in the intake hole 115 due to the swirling flow below the impeller, and the water level becomes lower than LWL. In some cases, sufficient intake was not performed. In view of this, there has been proposed a vertical shaft pump in which the rotating shaft 117 of the impeller 112 is extended to the upstream side, a bearing that supports the lower end of the rotating shaft is provided, and a swirling flow is prevented by a support plate that connects the bearing and the pump casing. (See Patent Document 1).
Japanese Patent Laying-Open No. 2006-189016 (FIG. 1)

しかし、上記の立軸ポンプでは、旋回流れが完全に阻止されるとは限らず、旋回流れが残存した場合には吸気用の孔に正圧が生じて充分な吸気が行われないこともありうる。
そこで、本発明は、水位が低下したならばより確実に吸気を行い、水位が低下しても安定的な運転を行うことができ、すなわち先行待機運転に適する立軸ポンプおよびポンプ機場を提供することを目的とする。
However, in the above-described vertical shaft pump, the swirling flow is not always completely prevented, and if the swirling flow remains, a positive pressure may be generated in the intake hole and sufficient intake may not be performed. .
Accordingly, the present invention provides a vertical shaft pump and a pump station that can perform intake even more reliably if the water level drops and can perform stable operation even if the water level drops, that is, suitable for the preceding standby operation. With the goal.

上記目的を達成するため、請求項1に記載の発明に係る立軸ポンプは、例えば図1に示すように、鉛直方向に配置され、軸周りに回転する回転軸21と;回転軸21の回転により回転し、水を吸い込み上方に流す羽根車20であって、回転軸21の下端23より下流側に配置された羽根車20と;羽根車20の上流側に配置され、羽根車20に向けて水を流す流路を形成する吸込管31と;吸込管31に一端が接続され、他端から空気を吸い込む空気管40と;羽根車20より上流側に配置され、回転軸21を回転可能に支持する軸受50と;吸込管31と軸受50とを連結する支持部材であって、空気管40と連通する中空部が形成され、外面から該中空部に至る孔62が形成された支持部材60とを備える。   In order to achieve the above object, the vertical pump according to the first aspect of the present invention includes, for example, a rotating shaft 21 that is arranged in the vertical direction and rotates around the axis as shown in FIG. An impeller 20 that rotates and sucks water and flows upward, the impeller 20 being disposed on the downstream side of the lower end 23 of the rotation shaft 21; disposed on the upstream side of the impeller 20, toward the impeller 20. A suction pipe 31 forming a flow path for flowing water; an air pipe 40 having one end connected to the suction pipe 31 and sucking air from the other end; disposed upstream of the impeller 20 and capable of rotating the rotary shaft 21 A supporting member 60 that connects the suction pipe 31 and the bearing 50, and has a hollow portion that communicates with the air pipe 40 and a hole 62 that extends from the outer surface to the hollow portion. With.

このように構成すると、回転軸を羽根車の上流側と下流側の2箇所で支持でき、各軸受への負担を軽減すると共に、羽根車の回転による振動を抑えることができ、縦軸ポンプの運転が安定する。特に、無注水軸受に対しては、有効である。また、回転軸をその下端近傍で支持することができ、無給水運転においても回転軸が潤滑されて、先行待機運転が円滑に行われる。さらに、水位が低下し空気管から吸気する場合に、空気は支持部材に形成された孔から吸込管内に吸引されるので、羽根車による旋回流れの影響を受けにくくなり、吸気が安定的に行われる。   With this configuration, the rotating shaft can be supported at two locations on the upstream side and the downstream side of the impeller, reducing the burden on each bearing and suppressing vibration caused by the rotation of the impeller. Driving is stable. This is particularly effective for non-water-filled bearings. Further, the rotating shaft can be supported in the vicinity of the lower end thereof, and the rotating shaft is lubricated even in the non-water supply operation, and the preceding standby operation is smoothly performed. Furthermore, when the water level drops and the air is sucked from the air pipe, the air is sucked into the suction pipe through the hole formed in the support member. Is called.

また、請求項2に記載の立軸ポンプでは、例えば図3に示すように、請求項1に記載の立軸ポンプにおいて、支持部材60の断面形状が扁平である。   Moreover, in the vertical shaft pump according to claim 2, for example, as shown in FIG. 3, in the vertical shaft pump according to claim 1, the cross-sectional shape of the support member 60 is flat.

このように構成すると、支持部材の断面形状が扁平であるので、支持部材が旋回流れを防止する邪魔板としての作用を有し、旋回流れが防止される。   If comprised in this way, since the cross-sectional shape of a support member is flat, a support member has an effect | action as a baffle plate which prevents a turning flow, and a turning flow is prevented.

また、請求項3に記載の立軸ポンプでは、例えば図1および図4に示すように、請求項1または請求項2に記載の立軸ポンプ10において、支持部材60に形成された孔62は、吸込管31との接続部64から軸受50との接続部66に至る方向に複数配列されている。なおここで、軸受50との接続部66とは、軸受50と直接接続する場合の他、軸受50を収納する軸受箱52との接続部66を含むものとする。すなわち、支持部材60は、吸込管31と軸受50とを直接連結せず、軸受箱52を介して吸込管31と軸受50とを連結してもよい。   Further, in the vertical shaft pump according to claim 3, for example, as shown in FIG. 1 and FIG. 4, in the vertical shaft pump 10 according to claim 1 or 2, the hole 62 formed in the support member 60 has a suction A plurality of arrays are arranged in a direction from the connection portion 64 with the pipe 31 to the connection portion 66 with the bearing 50. Here, the connection portion 66 with the bearing 50 includes a connection portion 66 with the bearing box 52 that houses the bearing 50 in addition to the case of directly connecting with the bearing 50. That is, the support member 60 may connect the suction pipe 31 and the bearing 50 via the bearing box 52 without directly connecting the suction pipe 31 and the bearing 50.

このように構成すると、空気管から吸引された空気は、軸受から吸込管の内面に至る流路断面の全範囲にわたり分散して水と混合するので、均一に混合した気液混合流となり易い。   If comprised in this way, since the air attracted | sucked from the air pipe will be disperse | distributed and mixed with water over the whole range of the flow-path cross section from a bearing to the inner surface of a suction pipe, it will become easy to become the gas-liquid mixed flow mixed uniformly.

また、請求項4に記載の立軸ポンプでは、例えば図1に示すように、請求項1ないし請求項3のいずれか1項に記載の立軸ポンプ10において、支持部材60に形成された孔62は、羽根車20の回転方向側に形成されている。   Further, in the vertical shaft pump according to claim 4, for example, as shown in FIG. 1, in the vertical shaft pump according to any one of claims 1 to 3, the hole 62 formed in the support member 60 is It is formed on the rotational direction side of the impeller 20.

このように構成すると、水位が低下し支持部材に形成された孔から空気を吸引する際に、旋回流れが生じていても、孔は支持部材における旋回流れに対する背圧側に位置することになり、旋回流れによって吸気が損なわれることがなく、確実に吸気される。   When configured in this manner, when the air level is lowered and air is sucked from the hole formed in the support member, the hole is located on the back pressure side with respect to the swirl flow in the support member, The intake air is surely taken in without being damaged by the swirl flow.

また、請求項5に記載の立軸ポンプでは、例えば図1、図5に示すように、請求項1ないし請求項3のいずれか1項に記載の立軸ポンプ10において、支持部材60に形成された孔62は、開口が上向きに形成されている。   Further, in the vertical pump according to claim 5, for example, as shown in FIGS. 1 and 5, the vertical pump is formed on the support member 60 in the vertical pump 10 according to any one of claims 1 to 3. The opening of the hole 62 is formed upward.

このように構成すると、水位が低下し支持部材に形成された孔から空気を吸引する際に、旋回流れが生じていても、孔が旋回流による正圧の影響を受けず負圧となるため、旋回流れによって吸気が損なわれることがない。   With this configuration, when the air level is lowered and air is sucked from the hole formed in the support member, even if a swirling flow is generated, the hole is not affected by the positive pressure due to the swirling flow, and thus becomes a negative pressure. The intake air is not impaired by the swirl flow.

また、請求項6に記載の立軸ポンプでは、例えば図1に示すように、請求項1ないし請求項5のいずれか1項に記載の立軸ポンプ10において、支持部材60に形成された孔62は、最低運転水位LLWLに形成されている。   Moreover, in the vertical shaft pump according to claim 6, for example, as shown in FIG. 1, in the vertical shaft pump according to any one of claims 1 to 5, the hole 62 formed in the support member 60 is It is formed at the lowest operating water level LLWL.

このように構成すると、水位が低下して最低水位となったときに、空気管から支持部材の中空部を通じて孔から空気を吸引し、吸込管からの空気の吸込みが抑えられ、吸込管からの空気吸引に伴う振動や騒音の問題を回避することができる。なお、ここで「支持部材に形成された孔は、最低運転水位に形成されている」とは、実質的に最低運転水位に形成されていればよく、計算上の最低運転水位よりマージンをもって上方に形成される場合を含む。   With this configuration, when the water level drops and reaches the minimum water level, air is sucked from the hole through the hollow portion of the support member from the air pipe, and air suction from the suction pipe is suppressed. The problem of vibration and noise associated with air suction can be avoided. Here, “the hole formed in the support member is formed at the minimum operating water level” is only required to be substantially formed at the minimum operating water level, with a margin above the calculated minimum operating water level. It includes the case where it is formed.

前記目的を達成するため、請求項7に記載の発明に係るポンプ機場101は、例えば図6に示すように、複数台の請求項1ないし請求項6のいずれか1項に記載の立軸ポンプ10(10a、10b、10c)を備え;複数台の立軸ポンプ10は、羽根車20が異なる高さに配置される少なくとも2台の立軸ポンプ10を含む。   In order to achieve the above object, a pump station 101 according to the invention described in claim 7 includes a plurality of vertical shaft pumps 10 according to any one of claims 1 to 6 as shown in FIG. 6, for example. (10a, 10b, 10c); the plurality of vertical pumps 10 include at least two vertical pumps 10 in which the impellers 20 are arranged at different heights.

このように構成すると、水を吐出し始め、また、し終える水位が異なる立軸ポンプが備えられるので、過大な排水を行うことが防止でき、また、電源装置に対する負荷も軽減できる。   If comprised in this way, since the vertical shaft pump from which the water level which begins to discharge water and finishes is different is provided, it can prevent performing excessive drainage and can also reduce the load with respect to a power supply device.

本発明によれば、立軸ポンプが、鉛直方向に配置され軸周りに回転する回転軸と、回転軸の回転により回転し水を吸い込み上方に流す羽根車であって回転軸の下端より下流側に配置された羽根車と、羽根車の上流側に配置され羽根車に向けて水を流す流路を形成する吸込管と、吸込管に一端が接続され他端から空気を吸い込む空気管と、羽根車より上流側に配置され回転軸を回転可能に支持する軸受と、吸込管と軸受とを連結する支持部材であって空気管と連通する中空部が形成され外面から該中空部に至る孔が形成された支持部材とを備えるので、回転軸を羽根車の上流側と下流側の2箇所で支持でき、各軸受への負担を軽減すると共に、羽根車の回転による振動を抑えることができ、縦軸ポンプの運転が安定する。また、水位が低下し空気管から吸気する場合に、空気は支持部材に形成された孔から吸込管内に吸引されるので、羽根車による旋回流れの影響を受けにくくなり、吸気が安定的に行われる。したがって、水位が低下したならばより確実に吸気を行い、水位が低下しても安定的な運転を行うことができ、すなわち先行待機運転に適する立軸ポンプとなる。   According to the present invention, the vertical pump is a rotary shaft that is arranged in the vertical direction and rotates around the shaft, and an impeller that rotates by the rotation of the rotary shaft and sucks water to flow upward, downstream from the lower end of the rotary shaft. A disposed impeller, a suction pipe disposed upstream of the impeller to form a flow path for flowing water toward the impeller, an air pipe having one end connected to the suction pipe and sucking air from the other end, and the blade A bearing that is disposed upstream of the vehicle and rotatably supports the rotating shaft, and a support member that connects the suction pipe and the bearing, a hollow portion that communicates with the air pipe is formed, and a hole that extends from the outer surface to the hollow portion is formed Since it is provided with the formed support member, the rotation shaft can be supported at two locations on the upstream side and the downstream side of the impeller, reducing the burden on each bearing and suppressing vibration due to the rotation of the impeller, The operation of the vertical axis pump is stabilized. In addition, when the water level drops and the air is sucked from the air pipe, the air is sucked into the suction pipe through the hole formed in the support member. Is called. Therefore, if the water level is lowered, intake is performed more reliably, and stable operation can be performed even if the water level is lowered, that is, the vertical shaft pump is suitable for the preceding standby operation.

また、ポンプ機場が、複数台の上記の立軸ポンプを備え、複数台の立軸ポンプは羽根車が異なる高さに配置される少なくとも2台の立軸ポンプを含むので、水を吐出し始め、また、し終える水位が異なる立軸ポンプが備えられることになり、過大な排水を行うことが防止でき、また、電源装置に対する負荷も軽減できる。すなわち先行待機運転に適するポンプ機場となる。   The pump station includes a plurality of the above-described vertical shaft pumps, and the plurality of vertical shaft pumps include at least two vertical shaft pumps in which the impellers are arranged at different heights. A vertical shaft pump having a different water level is provided, so that excessive drainage can be prevented and the load on the power supply device can be reduced. That is, it becomes a pump station suitable for the advance standby operation.

以下、図面を参照して、本発明の実施の形態について説明する。なお、各図において、互いに同一または相当する装置等には同一符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding devices are denoted by the same reference numerals, and redundant description is omitted.

先ず、図1を参照して、本発明の第1の実施の形態である立軸ポンプを説明する。図1(a)は、立軸ポンプ10の主要部の断面と、立軸ポンプ10の一部である空気管40および関連する装置の構成を示す断面構成図であり、(b)は下面図である。本立軸ポンプ10は、先行待機運転用のポンプである。先行待機運転、特に全速先行待機運転とは雨水が吸込水槽に流入する前にあらかじめポンプを始動し、水位の上昇にしたがって排水を始め、水位が低下してもポンプを停止させずに全速で運転することである。立軸ポンプ10は、雨水などを一次貯留する吸込水槽である水槽1に配設され、水槽1内に貯留された水を排出する。   First, with reference to FIG. 1, the vertical shaft pump which is the 1st Embodiment of this invention is demonstrated. FIG. 1A is a cross-sectional configuration diagram showing a cross section of a main part of the vertical shaft pump 10 and a configuration of an air pipe 40 that is a part of the vertical shaft pump 10 and related devices, and FIG. 1B is a bottom view. . The vertical shaft pump 10 is a pump for preceding standby operation. Advance standby operation, especially full-speed advance standby operation, starts the pump in advance before rainwater flows into the suction tank, starts draining as the water level rises, and operates at full speed without stopping the pump even if the water level falls It is to be. The vertical shaft pump 10 is disposed in a water tank 1 that is a suction water tank that primarily stores rainwater and the like, and discharges water stored in the water tank 1.

図1を参照して立軸ポンプ10の構造を説明する。立軸ポンプ10は、鉛直方向に上から配列された揚水管ケーシング(ケーシング本体)33、ライナケーシング32、吸込管(吸込ベル)31を備える。それぞれは水平方向のフランジ37、36で締結されている。これらが広い意味のケーシングを構成している。   The structure of the vertical shaft pump 10 will be described with reference to FIG. The vertical shaft pump 10 includes a pumping pipe casing (casing body) 33, a liner casing 32, and a suction pipe (suction bell) 31 arranged in the vertical direction from above. Each is fastened by horizontal flanges 37 and 36. These constitute a casing in a broad sense.

該ケーシングの中心に縦方向(鉛直方向)に回転軸21が配設されている。回転軸21の下方先端23近傍は、軸受50で回転可能に支持されている。回転軸21の下方であって軸受50より上方側に、オープン型の羽根車20が取りつけられている。羽根車はクローズ型であってもよい。羽根車20の外周(オープン羽根の先端)と僅かな隙間をもってライナケーシング32が羽根車20を収納している。立軸ポンプ10は斜流ポンプである。斜流ポンプは吐出ヘッドが比較的大きい場合に用いられる。また羽根車20の吐出側、ケーシング本体33の内側にはガイドベーン35が配設されている。
先行待機運転用のポンプとしては、不図示の軸流ポンプが用いられることもある。軸流ポンプは、吐出ヘッドに対して流量が比較的大きい場合に適する。
A rotating shaft 21 is arranged in the longitudinal direction (vertical direction) at the center of the casing. The vicinity of the lower end 23 of the rotating shaft 21 is rotatably supported by a bearing 50. An open impeller 20 is attached below the rotary shaft 21 and above the bearing 50. The impeller may be a closed type. The liner casing 32 accommodates the impeller 20 with a slight gap from the outer periphery of the impeller 20 (the tip of the open blade). The vertical shaft pump 10 is a mixed flow pump. A mixed flow pump is used when the discharge head is relatively large. A guide vane 35 is disposed on the discharge side of the impeller 20 and on the inner side of the casing body 33.
An axial flow pump (not shown) may be used as the pump for the preceding standby operation. The axial flow pump is suitable when the flow rate is relatively large with respect to the discharge head.

ケーシング本体33は、回転軸21と平行に垂直方向の管胴部分と、上方で水平方向に曲がった曲管部とそれに連なる水平管部分とを含んで構成され、曲管部分を、回転軸21が貫通している。貫通した先は、回転軸21を回転駆動する駆動装置としての電動モータ(不図示)に接続する。なお、電動モータは、回転軸21に直結されず、例えば歯車列を介して接続され、回転速度を調節できるようにしてもよい。該貫通部にはシール22cが配設され、貫通部を通しての水の漏洩を防止している。なお、シール22cと駆動装置との間に不図示の軸受を配すると、駆動装置による振動が防止されるので、好ましい。回転軸21は、羽根車20近傍に配設された軸受22a、軸受22aとシール22cとの中間に配設された軸受22bおよび前述の軸受50により3点支持されている。なお、上記のようにシール22cと駆動装置との間に不図示の軸受を配すると、4点支持となる。このように回転軸21を支持することにより、特に羽根車20を挟んだ両側で支持することにより、各軸受への負担を軽減することができるので、軸受の寿命が延び、メンテナンス期間を長くすることができる。さらに、回転軸21の回転に伴う振動を抑えることができる。なお、不図示のスラスト軸受が回転軸21にかかる鉛直方向の荷重(即ち羽根車20、回転軸21を含む回転体の重量と羽根車20にかかる流体力)を支持している。   The casing body 33 is configured to include a vertical tube body portion parallel to the rotation shaft 21, a bent tube portion bent in the horizontal direction above, and a horizontal tube portion connected to the bent tube portion. Has penetrated. The penetrating tip is connected to an electric motor (not shown) as a drive device that rotationally drives the rotary shaft 21. The electric motor may not be directly connected to the rotating shaft 21 but may be connected through a gear train, for example, so that the rotation speed can be adjusted. A seal 22c is disposed in the penetrating portion to prevent water leakage through the penetrating portion. In addition, it is preferable to dispose a bearing (not shown) between the seal 22c and the driving device because vibration due to the driving device is prevented. The rotary shaft 21 is supported at three points by a bearing 22a disposed in the vicinity of the impeller 20, a bearing 22b disposed between the bearing 22a and the seal 22c, and the bearing 50 described above. If a bearing (not shown) is disposed between the seal 22c and the drive device as described above, four-point support is provided. By supporting the rotating shaft 21 in this way, particularly by supporting the rotating shaft 21 on both sides of the impeller 20, the burden on each bearing can be reduced, so that the life of the bearing is extended and the maintenance period is extended. be able to. Furthermore, the vibration accompanying rotation of the rotating shaft 21 can be suppressed. A thrust bearing (not shown) supports a load in the vertical direction applied to the rotating shaft 21 (that is, the weight of the rotating body including the impeller 20 and the rotating shaft 21 and the fluid force applied to the impeller 20).

ケーシング本体33には、据え付け用のフランジ39が取り付けられており、フランジ39で据え付け台であるコンクリート製の床2に据え付けられている。ケーシング本体33の前記水平管部分にはフランジ38が取りつけられており、フランジ38により、吐出配管34と接続されている。吐出配管34は雨水を河川や海等に導いて排出するための配管である。   A flange 39 for installation is attached to the casing main body 33, and the flange 39 is installed on the concrete floor 2 as an installation table. A flange 38 is attached to the horizontal pipe portion of the casing body 33, and is connected to the discharge pipe 34 by the flange 38. The discharge pipe 34 is a pipe for guiding rainwater to a river or the sea and discharging it.

吸込管31は、羽根車20の先端よりも下方に位置し、羽根車20に水を流す流路90を形成する。吸込管31は、下端、すなわち水の流れの上流で、ベル形に拡径した開口端を有し、開口端から水槽1内の水を吸い込み、羽根車20に向けて送り込む。その形状から、吸込ベルと呼ばれることもある。開口端が拡径することにより、水槽1内の水を吸い込むときの吸込管31の開口端での流速が下がり、振動が起こりにくくなるが、必ずしも拡径せず、例えば径が均一な円筒形であってもよい。   The suction pipe 31 is positioned below the tip of the impeller 20 and forms a flow path 90 through which water flows through the impeller 20. The suction pipe 31 has an opening end that is expanded in a bell shape at the lower end, that is, upstream of the flow of water, sucks water in the water tank 1 from the opening end, and feeds it toward the impeller 20. Because of its shape, it is sometimes called a suction bell. By expanding the opening end, the flow velocity at the opening end of the suction pipe 31 when sucking in the water in the water tank 1 is lowered and vibrations are less likely to occur. However, the diameter is not necessarily expanded, for example, a cylindrical shape with a uniform diameter It may be.

吸込管31の外側に空気管40が接続する。空気管40は、吸込管31の内側に形成された空気流路44と連通する。空気管40は、他端である端部41が大気開放され、大気から空気を空気流路44に導く。空気管40の大気開放された端部41は、図1に示すようにU字管により下向きとされると、ゴミが入り込まなくなるので好ましい。図1では、端部41は、床2の上方に位置しているが、床2の下方の水槽1内に位置してもよい。後述するように水位が最低水位LWLとなり、空気管40を通じて吸込管31内に空気を吸引するときに、端部41が大気中に露出していればよい。空気管は40は1本でもよいが、複数本、例えば4本である方が、空気管40から吸入される空気が空気流路44に均等に流れ易いので、好ましい。   An air pipe 40 is connected to the outside of the suction pipe 31. The air pipe 40 communicates with an air flow path 44 formed inside the suction pipe 31. The air pipe 40 has an end 41 that is the other end opened to the atmosphere, and guides air from the atmosphere to the air flow path 44. The end 41 of the air tube 40 that is open to the atmosphere is preferably turned downward by a U-shaped tube as shown in FIG. In FIG. 1, the end 41 is located above the floor 2, but may be located in the water tank 1 below the floor 2. As will be described later, when the water level becomes the lowest water level LWL and air is sucked into the suction pipe 31 through the air pipe 40, the end portion 41 only needs to be exposed to the atmosphere. The number of air pipes 40 may be one, but a plurality of air pipes, for example, four, is preferable because air sucked from the air pipe 40 can easily flow into the air flow path 44.

空気流路44は、吸込管31の内側に形成された環状の空間であり、空気管40から吸引した空気を、吸込管31の内側の円周方向に分散するための流路である。図1(a)の断面図では空気流路44が内側向きに開放されているように示されているが、後述の支持部材60と連通する箇所以外では、内側も封止されている。なお、空気流路44はなくてもよく、複数の支持部材60それぞれに空気管40が接続すればよい。   The air flow path 44 is an annular space formed inside the suction pipe 31 and is a flow path for dispersing the air sucked from the air pipe 40 in the circumferential direction inside the suction pipe 31. In the cross-sectional view of FIG. 1A, the air flow path 44 is shown as being open inward, but the inner side is also sealed except for a portion communicating with a support member 60 described later. The air flow path 44 may not be provided, and the air pipe 40 may be connected to each of the plurality of support members 60.

吸込管31の内側に軸受50が配置される。軸受50は、軸受箱52に収納され、軸受箱52により固定支持される。軸受50の配置される高さは、最低運転水位LLWLの近傍とする。なお、最低運転水位LLWLについては、後で詳細に説明する。   A bearing 50 is disposed inside the suction pipe 31. The bearing 50 is housed in a bearing box 52 and fixedly supported by the bearing box 52. The height at which the bearing 50 is disposed is in the vicinity of the minimum operating water level LLWL. The minimum operating water level LLWL will be described later in detail.

軸受箱52は、支持部材60により支持される。支持部材60は、吸込管31の内面と軸受箱52とを連結することにより軸受箱52を所定の位置に固定する。なお、軸受50は、必ずしも軸受箱52に収納されなくてもよく、軸受50と支持部材60とが直接連結されてもよい。いずれの場合も、支持部材60は軸受50と吸込管31とを連結する、という概念に含まれるものとする。図1(b)では、4本の支持部材60で軸受箱52を固定支持しているが、支持部材60の本数は4本に限られず、1本でも、2本でも、3本でも、あるいは、5本以上であってもよい。1本だと片持ち梁となるため変形し易いので固定しにくいが、構造は簡単になる。本数を増やすと、より堅固に固定することができ、また、後述するように支持部材60の孔62から空気を吸引するときに、気液混合がより均一に行われる。しかし、本数が多すぎると、構造が複雑になることに加え、断面の流路面積が狭くなり、水が流れにくくなる。そこで、一般的には、強度および構造の単純化の観点から、3本または4本とするのが適当である。   The bearing box 52 is supported by the support member 60. The support member 60 fixes the bearing box 52 at a predetermined position by connecting the inner surface of the suction pipe 31 and the bearing box 52. The bearing 50 is not necessarily housed in the bearing housing 52, and the bearing 50 and the support member 60 may be directly connected. In any case, the support member 60 is included in the concept of connecting the bearing 50 and the suction pipe 31. In FIG. 1B, the bearing housing 52 is fixedly supported by four support members 60. However, the number of the support members 60 is not limited to four, and may be one, two, three, or Five or more may be sufficient. A single cantilever beam is easy to deform and difficult to fix, but the structure is simple. Increasing the number can fix more firmly, and gas-liquid mixing is performed more uniformly when air is sucked from the holes 62 of the support member 60 as will be described later. However, if the number is too large, the structure becomes complicated, the flow area of the cross section becomes narrow, and water hardly flows. In general, therefore, three or four are appropriate from the viewpoint of strength and structure simplification.

支持部材60は、中空に形成され、中空部は空気流路44と連通する。すなわち、空気管40を通じて空気流路44に導かれた空気は、支持部材60の中空部に至る。支持部材60には、外面から中空部に至る孔62が形成される。したがって、空気管40から吸引された空気は、孔62を通って吸込管31内の水の流路90に導かれる。   The support member 60 is formed in a hollow shape, and the hollow portion communicates with the air flow path 44. That is, the air guided to the air flow path 44 through the air pipe 40 reaches the hollow portion of the support member 60. A hole 62 is formed in the support member 60 from the outer surface to the hollow portion. Therefore, the air sucked from the air pipe 40 is guided to the water flow path 90 in the suction pipe 31 through the hole 62.

ここで、立軸ポンプ10の高さ方向の構造と水位の関係を説明する。水位HWLは、水槽1の最高水位である。水位がこれ以上に上昇することはない。その下方に最低水位LWLがある。これは、ポンプ固有の値であり、水位がこれ以下になると何らかの問題が起こりポンプの運転が継続できなくなる水位である。典型的には、それ以下では吸込管31の下端から渦状に空気を吸い込み始め、振動や騒音が発生し運転が継続できなくなる水位である。しかし最低水位LWLは渦状の空気吸込以外の条件で定まる場合もある。   Here, the relationship between the structure of the vertical pump 10 in the height direction and the water level will be described. The water level HWL is the highest water level of the water tank 1. The water level will not rise any further. Below that is the lowest water level LWL. This is a value peculiar to the pump. If the water level falls below this level, some problem occurs and the pump cannot continue to operate. Typically, below this level, the water starts to be sucked from the lower end of the suction pipe 31 in a vortex shape, causing vibrations and noises, so that the operation cannot be continued. However, the minimum water level LWL may be determined under conditions other than the spiral air suction.

最低水位LWLの下方には、羽根車20の吸込開始水位SLWLがある。この水位は、羽根車20の先端部分の水位に相当する。低い水位から水位が上昇して、羽根車20が水に接すると、気水攪拌が開始され間もなく水が吐出されるからである。すなわち、羽根車20は、最低水位LWLよりも下方に設置されている。通常、吸込開始水位SLWLより低い位置に、立軸ポンプ10の最低運転水位LLWLがある。最低運転水位LLWLより下方に、吸込管31の下端(開口部)の水位A1がある。   Below the lowest water level LWL is the suction start water level SLWL of the impeller 20. This water level corresponds to the water level at the tip of the impeller 20. This is because when the water level rises from a low water level and the impeller 20 comes into contact with water, the air-water stirring is started and water is discharged soon. That is, the impeller 20 is installed below the lowest water level LWL. Usually, the lowest operating water level LLWL of the vertical pump 10 is at a position lower than the suction start water level SLWL. Below the minimum operating water level LLWL, there is a water level A1 at the lower end (opening) of the suction pipe 31.

ここで、支持部材60の孔62を最低運転水位LLWLの高さに配置する。最低運転水位LLWLは、最低水位LWLよりh≒v/2gだけ低い位置である。ここで、vはその位置での水の流速、gは重量加速度である。すなわち、水の流れによりベルヌーイの定理による速度水頭の分だけ圧力が低くなるので、最低水位LWLのときに水頭が上記の速度水頭と等しくなる位置は、圧力がゼロ(大気圧)となる。この位置を、最低運転水位LLWLとする。このようにすると、水位が最低水位LWL以下になると最低運転水位LLWLの位置では負圧となる。よって、最低運転水位LLWLに配置された孔62は負圧となり、支持部材60の中空部、空気流路44および空気管40を通じて大気と連通しているために、空気管40の端部41から吸込管31の内部に空気を吸引する。孔62から吸気することにより、吸込管31下端から渦状に空気を吸い込まなくなり、振動や騒音などの問題が発生せず、そのまま運転を継続することが可能となる。厳密には、孔62の上端を最低運転水位LLWLとするが、実際には流速も一定しないので、計算上の最低運転水位LLWLより僅かに上方に孔62を配置するのが一般的である。この場合にも、孔62は実質的に最低運転水位LLWLに配置されている。なお、孔62は、最低運転水位LLWLより上方に配置されればよい。その分、水位が最低水位LWLに低下する前に空気の吸引が始まるが、吸込管31の先端から渦状に空気を吸い込み振動等を生ずる問題をより確実に防止できる。ただし、上方に配置しすぎると、低い水位での水の吸込みができなくなるので、好ましくない。なお以下では、孔62は最低運転水位LLWLに配置されるものとして、説明する。 Here, the hole 62 of the support member 60 is disposed at the height of the minimum operating water level LLWL. The lowest operating water level LLWL is a position lower than the lowest water level LWL by h≈v 2 / 2g. Here, v is the flow velocity of water at that position, and g is the weight acceleration. That is, since the pressure is lowered by the amount of velocity head according to Bernoulli's theorem due to the flow of water, the pressure is zero (atmospheric pressure) at the position where the head becomes equal to the velocity head at the lowest water level LWL. This position is defined as the minimum operating water level LLWL. If it does in this way, when a water level will become below the lowest water level LWL, it will become a negative pressure in the position of the lowest operating water level LLWL. Therefore, since the hole 62 arranged at the lowest operating water level LLWL has a negative pressure and communicates with the atmosphere through the hollow portion of the support member 60, the air flow path 44, and the air pipe 40, the hole 62 starts from the end 41 of the air pipe 40. Air is sucked into the suction pipe 31. By sucking air from the hole 62, air is not sucked in from the lower end of the suction pipe 31, and problems such as vibration and noise do not occur, and the operation can be continued as it is. Strictly speaking, the upper end of the hole 62 is set to the minimum operating water level LLWL. However, since the flow velocity is actually not constant, the hole 62 is generally disposed slightly above the calculated minimum operating water level LLWL. Also in this case, the hole 62 is disposed substantially at the lowest operating water level LLWL. In addition, the hole 62 should just be arrange | positioned above the minimum operating water level LLWL. As a result, air suction starts before the water level drops to the lowest water level LWL, but the problem of sucking air in a spiral shape from the tip of the suction pipe 31 and causing vibration or the like can be prevented more reliably. However, it is not preferable to dispose too much above because water cannot be sucked at a low water level. In the following description, it is assumed that the hole 62 is disposed at the lowest operating water level LLWL.

そして、水位が最低運転水位LLWLまで下がると、空気管の先端41から、空気管40、空気流路44および支持部材60の中空部を通じて孔62までが大気開放され、吸込管31内の空間が真空破壊し、吸込管31内の水は落下する。すなわち、孔62の形成された高さまで水位が低下すると、立軸ポンプ10は揚水しなくなる。   When the water level drops to the minimum operating water level LLWL, the air pipe 41, the air passage 44, and the hole 62 through the hollow part of the support member 60 are opened to the atmosphere through the air pipe tip 41, and the space in the suction pipe 31 is opened. The vacuum breaks and the water in the suction pipe 31 falls. That is, when the water level is lowered to the height at which the hole 62 is formed, the vertical shaft pump 10 stops pumping.

続いて、図1を参照して、立軸ポンプ10の作用について説明する。先ず水位が吸込管31の下端(開口部)の水位A1よりも低い状態で立軸ポンプ10を始動する。例えば川の上流で大雨が降ったとの降雨情報が入った場合等、ある時間の後に水位が急に上昇することが予測される。そのような場合に、水位がA1よりも下の状態で、先行待機運転用の立軸ポンプ10が始動される。先行待機運転の開始である。   Next, the operation of the vertical shaft pump 10 will be described with reference to FIG. First, the vertical pump 10 is started in a state where the water level is lower than the water level A1 at the lower end (opening) of the suction pipe 31. For example, when there is rainfall information indicating that heavy rain has fallen upstream of the river, it is predicted that the water level will suddenly rise after a certain time. In such a case, the vertical pump 10 for the preliminary standby operation is started in a state where the water level is lower than A1. This is the start of the preceding standby operation.

雨水の流入により水槽1内の水位が上昇し、吸込ベルの下端水位A1を越える。水位が水位A1を越えても、最低運転水位LLWLを越えても、まだ水は吸い上げられない。羽根車20は空転している。水位がさらに上昇して、吸込開始水位SLWLまで到達したところで、羽根車20は水を吸い込み始める。このときは、空気管40、空気流路44、支持部材60の中空部を通して孔62から吸込管31内に空気も吸い込むので、立軸ポンプ10の全水量吐出の運転ではない。すなわち、立軸ポンプ10は気水混合運転をしている。さらに水位が上昇すると徐々に吸込空気量は減少し、代わりに水量が増加する。やがて水位が最低水位LWLまで上昇すると吸込空気量がゼロになり、立軸ポンプ10の全水量を吐出するに至る。すなわち、定常運転に入る。   The water level in the water tank 1 rises due to the inflow of rainwater, and exceeds the lower end water level A1 of the suction bell. Even if the water level exceeds the water level A1 or exceeds the minimum operating water level LLWL, water is not yet sucked up. The impeller 20 is idling. When the water level further rises and reaches the suction start water level SLWL, the impeller 20 starts to suck water. At this time, since the air is also sucked into the suction pipe 31 from the hole 62 through the air pipe 40, the air flow path 44, and the hollow portion of the support member 60, it is not the operation of discharging the total water amount of the vertical pump 10. That is, the vertical shaft pump 10 is in the air / water mixing operation. When the water level further rises, the amount of intake air gradually decreases and the amount of water increases instead. Eventually, when the water level rises to the lowest water level LWL, the intake air amount becomes zero, and the total water amount of the vertical shaft pump 10 is discharged. That is, the steady operation is started.

さらに水位が、最低水位LWLと最高水位HWLの間の水位まで上昇して、ポンプ10は定常運転を継続する。その後、ポンプ10の排水により今度は水位が低下し、最低水位LWLを下回ると、空気管40、空気流路44、支持部材60の中空部を通して孔62から吸込管31内に空気を吸い込み始める。すなわち、再び気水混合運転が開始される。水位が低下するにつれて吸込空気量が増えて、代わりに水量が減っていく。さらに水位が下がり、最低運転水位LLWLになると、水の吸込みが終わり、羽根車20は空気中で運転される空運転状態になる。すなわち、立軸ポンプ10は全く水を吸い込まないエアロック状態となる。   Furthermore, the water level rises to a water level between the lowest water level LWL and the highest water level HWL, and the pump 10 continues the steady operation. Thereafter, when the water level is lowered due to the drainage of the pump 10 and falls below the minimum water level LWL, air starts to be sucked into the suction pipe 31 from the hole 62 through the hollow portions of the air pipe 40, the air flow path 44 and the support member 60. That is, the air / water mixing operation is started again. As the water level falls, the amount of intake air increases and the amount of water decreases instead. When the water level further decreases and reaches the minimum operating water level LLWL, the suction of water is finished, and the impeller 20 enters an idling state in which it is operated in the air. That is, the vertical shaft pump 10 is in an air lock state in which no water is sucked.

このようにして、羽根車20は空気中での空運転状態を続けることになる。降雨が続くときは、そのまま運転を続け、再び水位が上昇してきて、前記のように吸込開始水位SLWLに到達したところで立軸ポンプ10は水を吸い込み始める。このようにして、先行待機運転用の立軸ポンプ10は、水槽1の水位にかかわらず、空運転と全水量の運転との間で運転を継続することができる。空運転と全水量運転との間の移り変わりは、立軸ポンプ10が支持部材60の孔62から空気を一緒に吸い込むので滑らかに行われる。   In this way, the impeller 20 continues the idling state in the air. When the rain continues, the operation is continued as it is, the water level rises again, and the vertical pump 10 starts to suck in water when it reaches the suction start water level SLWL as described above. In this way, the vertical shaft pump 10 for the preliminary standby operation can continue operation between the idle operation and the operation of the total water amount regardless of the water level of the water tank 1. The transition between the idle operation and the total water amount operation is smoothly performed because the vertical shaft pump 10 sucks air together from the hole 62 of the support member 60.

次に、図2〜図4をも参照して、支持部材60について詳細に説明する。図2は、支持部材60の断面形状の典型例を説明する図で、(a)は円形断面形状、(b)は楕円断面形状、(c)は矩形(長方形)断面形状、(d)は丸み付き長方形断面形状を示す。支持部材60の断面形状は任意であるが、(a)に示すように円形とすると、製造し易く、また吸込管31を鋼板溶接構造とする場合は市販のパイプを用いることができる。(b)ないし(d)のように扁平な形状とすると、羽根車20の回転により生ずる旋回流れを防止する邪魔板としての作用が得られる。また、(b)に示すように支持部材60を楕円断面形状とすると、角がないので支持部材60周囲の水の流れが滑らかとなる。(c)に示すように支持部材60を矩形断面形状とすると、製作が容易となる。(d)に示すように支持部材60を丸み付き長方形断面形状とすると、特に吸込管31と一緒に鋳造されるときに製造が容易であり、角がないので支持部材60周囲の水の流れが滑らかとなる。典型的には(d)に示す丸み付き長方形断面形状が用いられる。   Next, the support member 60 will be described in detail with reference to FIGS. 2A and 2B are diagrams for explaining typical examples of the cross-sectional shape of the support member 60, where FIG. 2A is a circular cross-sectional shape, FIG. 2B is an elliptical cross-sectional shape, FIG. 2C is a rectangular (rectangular) cross-sectional shape, and FIG. Shows a rounded rectangular cross-sectional shape. The cross-sectional shape of the support member 60 is arbitrary, but if it is circular as shown in (a), it is easy to manufacture, and a commercially available pipe can be used when the suction pipe 31 has a steel plate welded structure. When the flat shape is used as in (b) to (d), an action as a baffle plate for preventing the swirling flow caused by the rotation of the impeller 20 is obtained. Further, when the support member 60 has an elliptical cross-sectional shape as shown in (b), since there are no corners, the flow of water around the support member 60 becomes smooth. When the support member 60 has a rectangular cross-sectional shape as shown in FIG. When the support member 60 has a rounded rectangular cross-sectional shape as shown in (d), it is easy to manufacture, especially when cast together with the suction pipe 31, and there is no corner, so that the water flow around the support member 60 flows. Smooth. Typically, a rounded rectangular cross-sectional shape shown in (d) is used.

ここで、図3を参照して、支持部材60の邪魔板としての作用を説明する。図3は、矩形断面形状を有する支持部材60を用いた場合の、水の流れとの位置関係を説明する図である。図3(a)は支持部材60の扁平方向を垂直にした場合、(b)は水平面からの角度αに傾斜した場合を表す。また図中、太い矢印は流量が多いときの水の流れ方向を、細い矢印は流量が少ないときの水の流れ方向を示す。すなわち、流量が少ないときには旋回流れの影響が強く現れ、水の流れ方向には水平成分が顕著となる。   Here, with reference to FIG. 3, the effect | action as a baffle plate of the supporting member 60 is demonstrated. FIG. 3 is a diagram for explaining the positional relationship with the flow of water when the support member 60 having a rectangular cross-sectional shape is used. 3A shows a case where the flat direction of the support member 60 is vertical, and FIG. 3B shows a case where the support member 60 is inclined at an angle α from the horizontal plane. In the figure, thick arrows indicate the direction of water flow when the flow rate is high, and thin arrows indicate the direction of water flow when the flow rate is low. That is, when the flow rate is small, the influence of the swirl flow appears strongly, and the horizontal component becomes significant in the water flow direction.

なお、支持部材60の扁平方向とは、例えば図2(b)に示す楕円断面形状、(c)あるいは(d)に示す長方形断面形状のように扁平な断面形状を有する支持部材において、断面における最長の径の方向を指す。支持部材が捩れた断面形状を有する場合には、断面における最長の径を平均した方向とする。   In addition, the flat direction of the support member 60 is, for example, a cross-section of a support member having a flat cross-sectional shape such as an elliptical cross-sectional shape shown in FIG. 2B or a rectangular cross-sectional shape shown in FIG. The direction of the longest diameter. When the support member has a twisted cross-sectional shape, the longest diameter in the cross section is taken as an average direction.

図3(a)に示すように扁平方向を垂直にして支持部材60を設置した場合には、流量が多い時には水の流れに対する抵抗が少ないが、流量が少ないときには旋回流れ(水平方向の流れ)に対しては抵抗が大きく、旋回流れを防止する邪魔板として作用する。図3(b)に示すように、扁平方向は傾斜させてもよい。図3(b)は、流量が少ないときの水の流れ方向と扁平方向(図中、一点鎖線で示す。)とのなす角度が大きくなるように傾斜させている。このように扁平方向を傾斜させると、旋回流れに対する抵抗がより大きくなる。ただし、図3(b)とは逆向きに傾斜させてもよい。すなわち、流量が少ないときの水の流れ方向と扁平方向との角度が小さくなるように傾斜させてもよい。この場合には、旋回流れを緩やかに低減することになる。なお、典型的には、角度αを90度(垂直)とする。   When the support member 60 is installed with the flat direction vertical as shown in FIG. 3A, the resistance to water flow is small when the flow rate is large, but the swirl flow (horizontal flow) when the flow rate is small. It acts as a baffle plate that prevents swirling flow. As shown in FIG. 3B, the flat direction may be inclined. FIG. 3B is inclined so that the angle formed by the flow direction of water when the flow rate is small and the flat direction (indicated by the alternate long and short dash line in the figure) is large. When the flat direction is inclined in this way, the resistance to the swirl flow is further increased. However, you may incline in the reverse direction to FIG.3 (b). That is, you may make it incline so that the angle of the flow direction of water when there is little flow volume and the flat direction may become small. In this case, the swirl flow is gently reduced. Typically, the angle α is 90 degrees (vertical).

上記のように、支持部材60を邪魔板として作用させ、旋回流れを防止することにより、旋回流れによる流速の増加、すなわち正圧の発生を防止することができる。よって、空気管40、空気流路44、支持部材60の中空部を通して孔62から吸込管31内に確実に空気を吸い込むことができる。   As described above, by causing the support member 60 to act as a baffle plate and preventing the swirling flow, an increase in the flow velocity due to the swirling flow, that is, generation of positive pressure can be prevented. Therefore, air can be reliably sucked into the suction pipe 31 from the hole 62 through the hollow portions of the air pipe 40, the air flow path 44, and the support member 60.

図4は、支持部材60に形成される孔62の例を説明する図である。図4(a)は一つの支持部材60に円形の孔62が一つ形成される例、(b)は一つの支持部材60に円形の孔62が四つ並べて形成される例、(c)はスリット状の孔62が形成される例を表す。孔62は一つでもよいが、支持部材60の吸込管31との接続部64から軸受箱52との接続部66に至る方向に複数の小さな孔62を配列して形成すると、空気が吸込管31内に分散して吸引されるので、気液混合が均一となり好適である。なお、孔62の形状は任意であるが、典型的には形成しやすいことから円形とする。また、孔62の大きさは吸引する空気の量や孔62の数に応じて決められるが、極めて小さくすると、空気を水中に吸引する際の表面張力が大きくなり好ましくない。   FIG. 4 is a diagram illustrating an example of the hole 62 formed in the support member 60. 4A shows an example in which one circular hole 62 is formed in one support member 60, FIG. 4B shows an example in which four circular holes 62 are formed side by side in one support member 60, and FIG. Represents an example in which a slit-like hole 62 is formed. The number of the holes 62 may be one, but if a plurality of small holes 62 are arranged in the direction from the connection part 64 of the support member 60 to the suction pipe 31 to the connection part 66 to the bearing housing 52, air is sucked in. Since the liquid 31 is dispersed and sucked, the gas-liquid mixing is uniform, which is preferable. The shape of the hole 62 is arbitrary, but is typically circular because it is easy to form. The size of the hole 62 is determined according to the amount of air to be sucked and the number of holes 62. However, if the hole 62 is made extremely small, the surface tension when sucking air into water is increased, which is not preferable.

孔62は、支持部材60の吸込管31との接続部64から軸受箱52との接続部66に至る方向にスリット状としてもよく、この場合にも空気が吸込管31内に分散して吸引されるので、気液混合が均一となり好適である。なお、孔62は、例えば図4に示すように、支持部材60の上方に形成することが好ましい。上方に形成することにより、吸気するときに支持部材60の中空部の上方を流れる空気が孔62から吸引され、吸気しやすくなる。   The hole 62 may be formed in a slit shape in a direction from the connection portion 64 of the support member 60 to the suction pipe 31 to the connection portion 66 to the bearing housing 52. In this case, air is dispersed and sucked into the suction pipe 31. Therefore, the gas-liquid mixing is uniform and preferable. The hole 62 is preferably formed above the support member 60 as shown in FIG. By forming upward, the air flowing above the hollow portion of the support member 60 is sucked from the hole 62 when sucking air, and it becomes easy to suck air.

さらに、図3に示すように、孔62は、支持部材60の旋回流れの下流向きに形成するのが好ましい。すなわち、図1(b)に示すように、羽根車20の回転方向(図中の矢印方向)側に形成される。このように形成することにより、流量の少ないときに旋回流れの影響が現れても、支持部材60の背圧側に孔62が位置することとなり、旋回流れによる正圧の影響を受けず、確実に吸気することが可能となる。なお、流量が大きい間は、旋回流れの影響がほとんどないので、孔62は背圧側に位置することにもならず、必要以上に吸気することもない。   Further, as shown in FIG. 3, the hole 62 is preferably formed in the downstream direction of the swirling flow of the support member 60. That is, as shown in FIG. 1B, it is formed on the side of the impeller 20 in the rotational direction (arrow direction in the figure). By forming in this way, even if the influence of the swirling flow appears when the flow rate is small, the hole 62 is positioned on the back pressure side of the support member 60, and it is reliably not affected by the positive pressure due to the swirling flow. It becomes possible to inhale. It should be noted that while the flow rate is large, there is almost no influence of the swirling flow, so the hole 62 is not positioned on the back pressure side and does not inhale more than necessary.

また、図5に示すように、孔62は、支持部材60の上面に(上向きに)形成することとしてもよい。図5は、支持部材60に形成される孔62の向きの変形例を説明する図で、(a)は円形断面形状の支持部材60に、(b)は楕円断面形状の支持部材60に、(c)は矩形(長方形)断面形状の支持部材60に、(d)は丸み付き長方形断面形状の支持部材60に対してそれぞれ上向きに孔62が形成された例を示す。図5においても太い矢印は流量が多いときの水の流れ方向を、細い矢印は流量が少ないときの水の流れ方向を示す。また、図5中、紙面の上方が実際の鉛直上方に相当する。図5に示すように、孔62が支持部材60に対して上向きに(流量が多いときの水の流れの下流向きに)形成されていても、流量が少ないとき(水槽1内の水位が最低水位LWL以下のとき)に孔62は負圧となり、空気管40の端部41から吸込管31の内部に空気を吸引することができる。また、孔62が支持部材60に対して上向きに形成されていると、特に吸込管31と支持部材60とが一体に形成されるとき(例えば吸込管31と支持部材60とが一緒に鋳造されるとき)に、孔62を支持部材60に形成するための加工がしやすくなる。なお、「孔62が支持部材60に対して上向きに形成されている」とは、典型的には、平面図における孔62の図心を通る法線が鉛直方向となる状態であるが、水槽1内の水位が最低水位LWL以下のときに孔62の負圧を維持できる程度(吸込管31の内部に空気を吸引することができる程度)に該法線が鉛直方向に対して角度を持つ状態であってもよい。   Further, as shown in FIG. 5, the hole 62 may be formed (upward) on the upper surface of the support member 60. FIGS. 5A and 5B are diagrams for explaining a modification of the orientation of the hole 62 formed in the support member 60. FIG. 5A shows the support member 60 having a circular cross section, FIG. 5B shows the support member 60 having an elliptic cross section, (C) shows an example in which a hole (62) is formed upward with respect to the support member 60 having a rectangular (rectangular) cross-sectional shape, and (d) shows a support member 60 with a rounded rectangular cross-sectional shape. Also in FIG. 5, a thick arrow indicates the direction of water flow when the flow rate is high, and a thin arrow indicates the direction of water flow when the flow rate is low. In FIG. 5, the upper part of the drawing corresponds to the actual vertical upper part. As shown in FIG. 5, even if the hole 62 is formed upward with respect to the support member 60 (downstream of the water flow when the flow rate is high), the flow level is low (the water level in the water tank 1 is the lowest). When the water level LWL or lower), the hole 62 becomes negative pressure, and air can be sucked into the suction pipe 31 from the end 41 of the air pipe 40. Further, when the hole 62 is formed upward with respect to the support member 60, particularly when the suction pipe 31 and the support member 60 are integrally formed (for example, the suction pipe 31 and the support member 60 are cast together. When the hole 62 is formed in the support member 60. Note that “the hole 62 is formed upward with respect to the support member 60” is typically a state in which a normal passing through the centroid of the hole 62 in the plan view is a vertical direction. The normal line has an angle with respect to the vertical direction to such an extent that the negative pressure of the hole 62 can be maintained when the water level in 1 is below the minimum water level LWL (to the extent that air can be sucked into the suction pipe 31). It may be in a state.

これまで説明したように、回転軸21を羽根車20の下部(上流側)にまで延伸してその端部23を軸受50で支持し、軸受50を支持部材60で固定し(軸受箱52を介して固定する場合を含む。)、支持部材60の中空部は空気管40と連通し吸込管31内に空気を供給する孔62が形成されている立軸ポンプ10では、回転軸21あるいは羽根車20が安定的に回転すると共に、最低水位LWL以下の低水位での運転において確実に孔62から空気を吸引して、騒音や振動の問題を回避することができる。また、支持部材60が空気を供給する部材を兼ねることにより、部材数を低減でき、製造の煩雑さや製作費を抑えることができると共に、立軸ポンプ10による揚水の流路に配置され水の流れの障害となる部材を低減することができる。   As described so far, the rotating shaft 21 is extended to the lower part (upstream side) of the impeller 20, the end 23 thereof is supported by the bearing 50, and the bearing 50 is fixed by the support member 60 (the bearing box 52 is fixed). In the vertical shaft pump 10 in which the hollow portion of the support member 60 communicates with the air pipe 40 and the hole 62 for supplying air into the suction pipe 31 is formed, the rotary shaft 21 or the impeller 20 can rotate stably, and air can be reliably sucked from the hole 62 during operation at a low water level below the minimum water level LWL, thereby avoiding noise and vibration problems. In addition, since the support member 60 also serves as a member for supplying air, the number of members can be reduced, manufacturing complexity and production costs can be reduced, and the flow of water is disposed in the pumping water flow path by the vertical shaft pump 10. The obstructing member can be reduced.

図6に示すように、以上のような先行待機運転ポンプは、機場には通常複数台設置される。図6は、これまでに説明した立軸ポンプ10を3台備えるポンプ機場101を説明する部分断面図である。ポンプ機場101では、3台の立軸ポンプ10a、10b、10cが共通の床2に設置されている。このようなポンプ機場101においては、複数配置された立軸ポンプ10は、入水量に合わせて必要な台数を稼働させるように、あるいは、予備として用いるようにしている。   As shown in FIG. 6, a plurality of the preceding standby operation pumps as described above are usually installed in the machine. FIG. 6 is a partial cross-sectional view illustrating a pump station 101 including three vertical shaft pumps 10 described so far. In the pump station 101, three vertical shaft pumps 10a, 10b, and 10c are installed on the common floor 2. In such a pump station 101, a plurality of vertical shaft pumps 10 are used so as to operate a necessary number according to the amount of incoming water or as a spare.

複数の立軸ポンプ10の揚水管ケーシング33および回転軸21の長さはそれぞれ異なり、羽根車20および吸込管31の高さは異なっている。すなわち、各立軸ポンプ10a、10b、10cの最低水位LWL、吸込開始水位SLWL、最低運転水位LLWLは異なっている。すなわち、各立軸ポンプ10による揚水の発停が時間差を付けて行われる。例えば、増水時には、最初に一番低い位置の立軸ポンプ10aが揚水を開始し、順次他の立軸ポンプ10b、10cが揚水を行う。したがって、入水量よりも多い過大な揚水を行って水槽1内の水位を変動させることが防止され、また、電源設備に対する負荷も軽減される。   The lengths of the water pump casing 33 and the rotary shaft 21 of the plurality of vertical shaft pumps 10 are different, and the heights of the impeller 20 and the suction pipe 31 are different. That is, the lowest water level LWL, the suction start water level SLWL, and the lowest operating water level LLWL of each of the vertical pumps 10a, 10b, and 10c are different. That is, the pumping of each vertical shaft pump 10 is performed with a time difference. For example, at the time of water increase, the vertical pump 10a at the lowest position first starts pumping, and the other vertical pumps 10b and 10c sequentially pump the water. Therefore, it is possible to prevent the water level in the water tank 1 from fluctuating excessively more than the amount of incoming water, and to reduce the load on the power supply equipment.

なお、ポンプ機場に備えられる立軸ポンプ10の数は、3台に限られず、揚水量等に応じて、適当な台数の立軸ポンプ10が備えられる。また、揚水管ケーシング33および回転軸21の長さも同じ同一構造の複数台の立軸ポンプ10を用い、設置する高さを変えることにより最低水位LWL、吸込開始水位SLWL、最低運転水位LLWLを異なるようにしてもよい。   Note that the number of vertical pumps 10 provided in the pump station is not limited to three, and an appropriate number of vertical pumps 10 are provided according to the amount of pumped water or the like. In addition, by using a plurality of vertical pumps 10 having the same structure in the lengths of the water pump casing 33 and the rotary shaft 21, the minimum water level LWL, the suction start water level SLWL, and the minimum operating water level LLWL are made different by changing the installation height. It may be.

本発明の第1の実施の形態としての立軸ポンプを説明する図であり、(a)は断面構成図、(b)は下面図である。It is a figure explaining the vertical shaft pump as a 1st embodiment of the present invention, (a) is a section lineblock diagram, and (b) is a bottom view. 支持部材の断面形状の典型例を説明する断面図であり、(a)は円形断面形状、(b)は楕円断面形状、(c)は矩形(長方形)断面形状、(d)は丸み付き長方形断面形状を示す。It is sectional drawing explaining the typical example of the cross-sectional shape of a supporting member, (a) is circular cross-sectional shape, (b) is elliptical cross-sectional shape, (c) is a rectangular (rectangular) cross-sectional shape, (d) is a rounded rectangle A cross-sectional shape is shown. 水の流れと支持部材の位置関係を説明する図であり、(a)は支持部材の扁平方向を垂直にした場合、(b)は傾斜した場合を表す。It is a figure explaining the positional relationship of the flow of water and a supporting member, (a) represents the case where the flat direction of the supporting member is made perpendicular, and (b) represents the case where it inclines. 支持部材に形成される孔の例を説明する図であり、(a)は一つの支持部材に円形の孔が一つ形成される例、(b)は一つの支持部材に円形の孔が四つ並べて形成される例、(c)はスリット状の孔が形成される例を表す。It is a figure explaining the example of the hole formed in a supporting member, (a) is an example in which one circular hole is formed in one supporting member, (b) is four circular holes in one supporting member. (C) represents an example in which slit-shaped holes are formed. 支持部材に形成される孔の向きの変形例を説明する断面図であり、(a)は円形断面形状の支持部材に、(b)は楕円断面形状の支持部材に、(c)は矩形(長方形)断面形状の支持部材に、(d)は丸み付き長方形断面形状の支持部材に対してそれぞれ上向きに孔が形成された例を示す。It is sectional drawing explaining the modification of direction of the hole formed in a supporting member, (a) is a supporting member of circular cross-sectional shape, (b) is a supporting member of elliptical cross-sectional shape, (c) is a rectangle ( (Drawing) shows the example by which the hole was formed in the upper part with respect to the support member of a rectangle section shape with a round (rectangular) section shape. 立軸ポンプを3台備えるポンプ機場を説明する部分断面図である。It is a fragmentary sectional view explaining a pump station provided with three vertical shaft pumps. 従来の立軸ポンプの構成を説明する断面図である。It is sectional drawing explaining the structure of the conventional vertical shaft pump.

符号の説明Explanation of symbols

1 水槽
2 床
10、10a、10b、10c 立軸ポンプ
20 羽根車
21 回転軸
22a、22b 軸受
22c シール
23 回転軸の下端
31 吸込管
32 ライナケーシング
33 揚水管ケーシング(ケーシング本体)
34 吐出配管
35 ガイドベーン
36〜39 フランジ
40 空気管
41 端部(他端)
44 空気流路
50 軸受
52 軸受箱
60 支持部材
62 孔
64 吸込管との接続部
66 軸受(箱)との接続部
90 流路
101 ポンプ機場
A1 吸込管の下端(開口部)の水位
HWL 最高水位
LLWL 最低運転水位
LWL 最低水位
SLWL 吸込開始水位
DESCRIPTION OF SYMBOLS 1 Water tank 2 Floor 10, 10a, 10b, 10c Vertical shaft pump 20 Impeller 21 Rotating shaft 22a, 22b Bearing 22c Seal 23 Lower end 31 of rotating shaft Suction pipe 32 Liner casing 33 Lifting pipe casing (casing main body)
34 Discharge piping 35 Guide vanes 36 to 39 Flange 40 Air pipe 41 End (other end)
44 Air flow path 50 Bearing 52 Bearing box 60 Support member 62 Hole 64 Connection part with suction pipe 66 Connection part with bearing (box) 90 Flow path 101 Pumping station A1 Water level HWL at the lower end (opening part) of the suction pipe Highest water level LLWL Minimum operating water level LWL Minimum water level SLWL Suction start water level

Claims (7)

鉛直方向に配置され、軸周りに回転する回転軸と;
前記回転軸の回転により回転し、水を吸い込み上方に流す羽根車であって、前記回転軸の下端より下流側に配置された羽根車と;
前記羽根車の上流側に配置され、前記羽根車に向けて前記水を流す流路を形成する吸込管と;
前記吸込管に一端が接続され、他端から空気を吸い込む空気管と;
前記羽根車より上流側に配置され、前記回転軸を回転可能に支持する軸受と;
前記吸込管と前記軸受とを連結する支持部材であって、前記空気管と連通する中空部が形成され、外面から該中空部に至る孔が形成された支持部材とを備える;
立軸ポンプ。
A rotation axis arranged vertically and rotating around an axis;
An impeller that is rotated by rotation of the rotating shaft, sucks water and flows upward, and is disposed downstream of the lower end of the rotating shaft;
A suction pipe disposed on the upstream side of the impeller and forming a flow path for flowing the water toward the impeller;
An air pipe having one end connected to the suction pipe and sucking air from the other end;
A bearing disposed upstream of the impeller and rotatably supporting the rotating shaft;
A support member for connecting the suction pipe and the bearing, the support member having a hollow portion communicating with the air pipe and having a hole extending from the outer surface to the hollow portion;
Vertical shaft pump.
前記支持部材の断面形状が扁平である;
請求項1に記載の立軸ポンプ。
A cross-sectional shape of the support member is flat;
The vertical shaft pump according to claim 1.
前記支持部材に形成された孔は、前記吸込管との接続部から前記軸受との接続部に至る方向に複数配列された;
請求項1または請求項2に記載の立軸ポンプ。
A plurality of holes formed in the support member are arranged in a direction from a connection portion with the suction pipe to a connection portion with the bearing;
The vertical shaft pump according to claim 1 or 2.
前記支持部材に形成された孔は、前記羽根車の回転方向側に形成された;
請求項1ないし請求項3のいずれか1項に記載の立軸ポンプ。
The hole formed in the support member is formed on the rotational direction side of the impeller;
The vertical shaft pump according to any one of claims 1 to 3.
前記支持部材に形成された孔は、開口が上向きに形成された;
請求項1ないし請求項3のいずれか1項に記載の立軸ポンプ。
The hole formed in the support member has an opening formed upward;
The vertical shaft pump according to any one of claims 1 to 3.
前記支持部材に形成された孔は、最低運転水位に形成された;
請求項1ないし請求項5のいずれか1項に記載の立軸ポンプ。
The holes formed in the support member were formed at the lowest operating water level;
The vertical shaft pump according to any one of claims 1 to 5.
複数台の請求項1ないし請求項6のいずれか1項に記載の立軸ポンプを備え;
前記複数台の立軸ポンプは、羽根車が異なる高さに配置される少なくとも2台の立軸ポンプを含む;
ポンプ機場。
A plurality of vertical shaft pumps according to any one of claims 1 to 6;
The plurality of vertical pumps includes at least two vertical pumps in which the impellers are arranged at different heights;
Pump station.
JP2007208804A 2006-08-11 2007-08-10 Vertical shaft pump and pump plant Pending JP2008064088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007208804A JP2008064088A (en) 2006-08-11 2007-08-10 Vertical shaft pump and pump plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006219536 2006-08-11
JP2007208804A JP2008064088A (en) 2006-08-11 2007-08-10 Vertical shaft pump and pump plant

Publications (1)

Publication Number Publication Date
JP2008064088A true JP2008064088A (en) 2008-03-21

Family

ID=39286995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007208804A Pending JP2008064088A (en) 2006-08-11 2007-08-10 Vertical shaft pump and pump plant

Country Status (1)

Country Link
JP (1) JP2008064088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015194A (en) * 2017-07-04 2019-01-31 株式会社荏原製作所 Vertical shaft pump
JP2019015193A (en) * 2017-07-04 2019-01-31 株式会社荏原製作所 Vertical shaft pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272495A (en) * 1991-02-27 1992-09-29 Hitachi Ltd Vertical shaft pump
JP2001153082A (en) * 1999-12-01 2001-06-05 Mitsui Miike Mach Co Ltd Air suction device of vertical-shaft pump
JP2002005094A (en) * 2000-06-23 2002-01-09 Ebara Corp Unit-type suction bell-mouth
JP2002155882A (en) * 2000-11-22 2002-05-31 Kubota Corp Advanced standby operation pump
JP2002206495A (en) * 2001-01-10 2002-07-26 Mitsui Miike Mach Co Ltd Air intake device for vertical shaft pump
JP2006189016A (en) * 2005-01-07 2006-07-20 Ebara Corp Storage pump
JP2006200683A (en) * 2005-01-24 2006-08-03 Kubota Corp Slide bearing device and pump device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272495A (en) * 1991-02-27 1992-09-29 Hitachi Ltd Vertical shaft pump
JP2001153082A (en) * 1999-12-01 2001-06-05 Mitsui Miike Mach Co Ltd Air suction device of vertical-shaft pump
JP2002005094A (en) * 2000-06-23 2002-01-09 Ebara Corp Unit-type suction bell-mouth
JP2002155882A (en) * 2000-11-22 2002-05-31 Kubota Corp Advanced standby operation pump
JP2002206495A (en) * 2001-01-10 2002-07-26 Mitsui Miike Mach Co Ltd Air intake device for vertical shaft pump
JP2006189016A (en) * 2005-01-07 2006-07-20 Ebara Corp Storage pump
JP2006200683A (en) * 2005-01-24 2006-08-03 Kubota Corp Slide bearing device and pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015194A (en) * 2017-07-04 2019-01-31 株式会社荏原製作所 Vertical shaft pump
JP2019015193A (en) * 2017-07-04 2019-01-31 株式会社荏原製作所 Vertical shaft pump

Similar Documents

Publication Publication Date Title
JP4690134B2 (en) Vertical shaft pump and pump station
WO2016178387A1 (en) Horizontal shaft submersible pump and suction cover used for horizontal shaft submersible pump
JP4200183B1 (en) Stirrer
JP2006194100A (en) Swirl prevention device
JP5220434B2 (en) Liquid pump and liquid pump system
JP2004308508A (en) Submergible motor pump and method for operating submergible motor pump
JP2008064088A (en) Vertical shaft pump and pump plant
JP2005069048A (en) Vertical shaft pump and method for operating the same
US11286949B2 (en) Waterproof blower fan
JP4775786B2 (en) Pump
JP2015078679A (en) Pump
KR100724234B1 (en) Drain pump and air conditioner with the same
JP4463484B2 (en) Vertical shaft pump
JP2004353492A (en) Vertical-shaft centrifugal pump and impeller for pump
JP6420594B2 (en) pump
JP4824335B2 (en) Advance standby type vertical shaft pump
JP4422438B2 (en) Vertical shaft pump
JP5188366B2 (en) Advance standby operation pump
JP2009074416A (en) Vertical shaft pump
JP4468009B2 (en) Vertical shaft pump system and pump station
JP5227370B2 (en) Drain pump
JP5322459B2 (en) Advance standby operation pump and operation method thereof
JP2002005094A (en) Unit-type suction bell-mouth
JP2005240622A (en) Vertical shaft pump system and pumping plant
JP5478430B2 (en) Advance standby pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Effective date: 20120117

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605