JP2006291338A - Aluminum alloy sheet having excellent formability - Google Patents
Aluminum alloy sheet having excellent formability Download PDFInfo
- Publication number
- JP2006291338A JP2006291338A JP2005117311A JP2005117311A JP2006291338A JP 2006291338 A JP2006291338 A JP 2006291338A JP 2005117311 A JP2005117311 A JP 2005117311A JP 2005117311 A JP2005117311 A JP 2005117311A JP 2006291338 A JP2006291338 A JP 2006291338A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- series
- alloy
- clearance
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
本発明は、成形性に優れた6000系アルミニウム合金板(以下、アルミニウムを単にAlとも言う)に関するものである。 The present invention relates to a 6000 series aluminum alloy plate excellent in formability (hereinafter, aluminum is also simply referred to as Al).
従来から、自動車、船舶、航空機あるいは車両などの輸送機、機械、電気製品、建築、構造物、光学機器、器物の部材や部品用として、成形性や焼付硬化性に優れたAl合金材が使用されている。 Conventionally, Al alloy materials with excellent formability and bake hardenability have been used for transportation equipment such as automobiles, ships, aircraft or vehicles, machinery, electrical products, architecture, structures, optical equipment, and components and parts of equipment. Has been.
特に、自動車などの輸送機の車体分野では、近年、排気ガス等による地球環境問題に対して、軽量化による燃費の向上が追求されている。このため、自動車の車体に対し、従来から使用されている鋼材に代わって、圧延板や押出形材など、より軽量なAl合金材適用が増加しつつある。 In particular, in the field of the body of a transport device such as an automobile, in recent years, improvement in fuel efficiency has been pursued by reducing the weight in response to global environmental problems caused by exhaust gas and the like. For this reason, the application of lighter Al alloy materials such as rolled plates and extruded shapes instead of steel materials conventionally used for automobile bodies is increasing.
この内、自動車のフード、フェンダー、ドア、ルーフ、トランクリッドなどのパネル構造体の、アウタパネル (外板) やインナパネル (内板) 等のパネルには、Al-Mg-Si系のAA乃至JIS 6000系 (以下、単に6000系と言う) のAl合金板の使用が検討されている。 Among these, panels such as outer panels (outer plates) and inner panels (inner plates) of panel structures such as automobile hoods, fenders, doors, roofs, and trunk lids are made of Al-Mg-Si AA to JIS. The use of 6000 series (hereinafter simply referred to as 6000 series) Al alloy sheets is being studied.
6000系Al合金板は、基本的には、Si、Mgを必須として含み、優れた時効硬化能を有しているため、プレス成形や曲げ加工時には低耐力化により成形性を確保するとともに、成形後のパネルの塗装焼付処理などの、比較的低温の人工時効 (硬化) 処理時の加熱により時効硬化して耐力が向上し、必要な強度を確保できるBH性 (ベークハード性、人工時効硬化能、塗装焼付硬化性) がある。 The 6000 series Al alloy sheet basically contains Si and Mg as essential and has excellent age-hardening ability. BH properties (bake-hardness, artificial age-hardening ability) that can secure the required strength by aging hardening by heating at the time of relatively low-temperature artificial aging (curing) treatment such as paint baking treatment of the subsequent panel Paint bake hardenability).
また、6000系Al合金板は、Mg量などの合金量が多い、他の5000系のAl合金などに比して、合金元素量が比較的少ない。このため、これら6000系Al合金板のスクラップを、Al合金溶解材 (溶解原料) として再利用する際に、元の6000系Al合金鋳塊が得やすく、リサイクル性にも優れている。 Further, the 6000 series Al alloy plate has a relatively small amount of alloy elements as compared with other 5000 series Al alloys having a large amount of alloy such as Mg. For this reason, when the scraps of these 6000 series Al alloy sheets are reused as an Al alloy melting material (melting raw material), the original 6000 series Al alloy ingot is easily obtained and the recyclability is also excellent.
一方、前記自動車パネル構造体の用途分野では、Al合金板を張出や絞りあるいはトリム等のプレス成形してパネル化する。近年、Al合金板の自動車パネルへの採用に伴い、形状がより複雑な、成形が難しいパネルへの適用も多くなってきている。例えば、プレス成形されるパネル形状は、張出高さや張出面積などが大型化し、しかも形状が伸びフランジ変形を伴うような湾曲部位を有するなど複雑化する傾向にある。このため、プレス成形時の割れ、肌荒れなどの成形不良がより生じ易い。 On the other hand, in the application field of the automotive panel structure, an Al alloy plate is formed into a panel by press forming such as overhanging, drawing or trimming. In recent years, with the adoption of Al alloy plates for automobile panels, the application to panels with more complex shapes and difficult to form has increased. For example, the press-molded panel shape tends to become complicated, such as the overhang height and the overhang area becoming large, and the shape has a curved portion that extends and undergoes flange deformation. For this reason, molding defects such as cracking during press molding and rough skin are more likely to occur.
これに対し、6000系Al合金板のこれら成形性などの諸要求特性の向上のために、従来より、成分や組織、あるいは製造方法を精緻にコントロールして、種々の方策が採られている。 On the other hand, in order to improve various required characteristics such as formability of the 6000 series Al alloy plate, various measures have been conventionally taken by precisely controlling the components, the structure, or the manufacturing method.
ここで、これらAl合金板の成形性の内、伸びフランジ性を評価する方法として、穴広げ試験 (伸びフランジ性試験、バーリング試験) が公知である。この方法は、試験片に穴を打ち抜いた後に、ポンチを用いて、バリをダイス面の上面側として、前記打抜き穴に対するバーリング(穴広げ)を行うものである。そして、穴広げ率λ(%)を求め、このλの値が高いものほど、伸びフランジ性が高いと評価する。 Here, a hole expansion test (stretch flangeability test, burring test) is known as a method for evaluating stretch flangeability among the formability of these Al alloy plates. In this method, after punching a hole in a test piece, burring (hole expansion) is performed on the punched hole by using a punch with the burr as the upper surface side of the die surface. Then, the hole expansion ratio λ (%) is obtained, and the higher the value of λ is, the higher the stretch flangeability is evaluated.
これを用いて、成形用の1070、1050、1100などの1000系、3003、3004などの3000系、5052、5182などの5000系のAl合金板の、限界絞り比 (純粋深絞り、球頭深絞り) やエルクセン値とともに、穴広げ率λを求めたものが知られている。これによれば、H 材の硬質材よりも、O 材の方が限界絞り比やエルクセン値とともに、穴広げ率λが高く、成形性に優れる (非特許文献1参照)。 Using this, the limit drawing ratio (pure deep drawing, ball head depth) of 1000 series Al alloy plates such as 1070, 1050 and 1100 for forming, 3000 series such as 3003 and 3004, and 5000 series such as 5052 and 5182 It is known that the hole expansion ratio λ is obtained together with the aperture and the Elksen value. According to this, the O material has a higher hole expansion ratio λ as well as the limit drawing ratio and the Elksen value than the H material hard material, and is excellent in formability (see Non-Patent Document 1).
また、Al合金板の穴広げ性自体を規定したものとして、Mgを2 〜8%を含む5000系Al合金板について、前記穴の打ち抜き断面における、せん断面の面積を規定した、高穴広げ性のAl合金板が提案されている (特許文献1参照)。
しかし、本発明で対象とする6000系Al合金板についての穴広げ性の評価は、これまであまり例がない。これは、前記した自動車パネル構造体の用途分野への6000系Al合金板の適用が最近であることもあって、実際の6000系Al合金板のプレス成形時における成形性と、6000系Al合金板の穴広げ性による成形性評価との関連が、未だ確定していないことにもよる。 However, there are few examples of evaluation of hole expansibility about the 6000 series Al alloy plate made into the object by this invention until now. This is because the application of 6000 series Al alloy sheets to the application field of the above-mentioned automobile panel structure is recent, the formability at the time of actual 6000 series Al alloy sheet press forming, and the 6000 series Al alloys This also depends on the fact that the relationship with the formability evaluation based on the hole expandability of the plate has not yet been established.
一方、6000系Al合金板には、その優れた時効硬化能ゆえに、Al合金板の製造後、前記各用途に成形されるまでの間に、室温( 常温) 時効硬化が生じやすく、常温安定性に欠けるという大きな問題がある。このような室温時効が生じた場合、製造直後には、6000系Al合金板が成形性を満足したとしても、一定時間の経過後に、実際の用途に成形される際に、成形性が低下して要求を満足しない、という自体も生じる。 On the other hand, due to its excellent age-hardening ability, the 6000 series Al alloy plate is prone to age-hardening at room temperature (room temperature) and is stable at room temperature after the production of the Al alloy plate until it is molded into the above-mentioned applications. There is a big problem of lacking. When such room temperature aging occurs, even after the manufacture, even if the 6000 series Al alloy sheet satisfies the formability, the formability decreases when it is formed for actual use after a certain period of time. In other words, it does not satisfy the demand.
したがって、実際の6000系Al合金板のプレス成形時における成形性と密接に相関するプレス成形性の評価が予めできれば、6000系Al合金板の成形性向上のための、前記した成分や組織あるいは製造方法のコントロールが、よりやりやすくなる。また、室温時効が生じた6000系Al合金板のプレス成形性を評価でき、成形が可能か否か、それとも回復処理などの素材成形性向上処理が必要か否か、などを見極めることができる。 Therefore, if evaluation of press formability closely correlating with formability at the time of actual 6000 series Al alloy plate press forming can be made in advance, the above-described components, structures or production for improving formability of 6000 series Al alloy plate Method control is easier to do. Further, the press formability of a 6000 series Al alloy plate that has undergone room temperature aging can be evaluated, and it can be determined whether or not forming is possible, or whether or not a material formability improving process such as a recovery process is necessary.
また、このプレス成形性の評価方法に沿った、プレス成形性に優れた6000系Al合金板ができれば、成形する側においても、成形形状などの設計変更や、工程や時間などの効率化を犠牲にして成形加工条件を緩和する、等の手段を採らずに、成形することができる。 In addition, if a 6000 series Al alloy plate with excellent press formability can be produced in accordance with this press formability evaluation method, on the forming side, design changes such as the shape of the shape and efficiency of processes and time will be sacrificed. Thus, molding can be performed without taking measures such as relaxing the molding process conditions.
本発明はこの様な事情に着目してなされたものであって、その目的は、実際のプレス成形時の成形性と密接に相関する穴広げ性の評価に基づく、成形性に優れたアルミニウム合金板を提供しようとするものである。 The present invention has been made paying attention to such a situation, and the object thereof is an aluminum alloy having excellent formability based on evaluation of hole expansion property closely correlated with formability at the time of actual press forming. It is intended to provide a board.
この目的を達成するために、本発明の成形性に優れたアルミニウム合金板の要旨は、0.2%耐力が120MPa以上の6000系アルミニウム合金板であって、このアルミニウム合金板を、板厚に対するダイスとポンチとのクリアランスの比率である、クリアランス/ 板厚、を変えて打ち抜き穴広げ加工した際の、アルミニウム合金板の穴広げ率が、前記クリアランス比率が10〜25% の範囲で、45% 以上の極大値を示すことである。 In order to achieve this object, the gist of the aluminum alloy plate excellent in formability of the present invention is a 6000 series aluminum alloy plate having a 0.2% proof stress of 120 MPa or more. The hole expansion rate of the aluminum alloy plate when the clearance / plate thickness, which is the clearance ratio with the punch, is changed, and the hole expansion rate of the aluminum alloy plate is 45% or more when the clearance ratio is in the range of 10-25%. It shows the maximum value.
本発明者らは、6000系Al合金板を、クリアランスを変えて打ち抜き穴広げ加工した際に、上記一定のクリアランス比率の範囲で、穴広げ率が45% 以上の極大値を示す6000系Al合金板が、優れたプレス成形性を示すことを知見した。 The inventors of the present invention have found that when a 6000 series Al alloy plate is punched and widened by changing the clearance, the 6000 series Al alloy exhibits a maximum value of a hole expansion ratio of 45% or more within the range of the above-mentioned constant clearance ratio. It was found that the plate exhibits excellent press formability.
この理由は定かではないが、上記一定のクリアランス比率の範囲で、穴広げ率が45% 以上の極大値を示す6000系Al合金板は、伸びフランジ性に優れるために、実際のプレス成形性が優れるものと推考される。 The reason for this is not clear, but the 6000 series Al alloy sheet showing a maximum value of 45% or more of the hole expansion rate within the above-mentioned range of the clearance ratio is excellent in stretch flangeability, and therefore has an actual press formability. It is considered excellent.
前記した通り、穴広げ率λ自体は、従来からも伸びフランジ性の評価となって、限界絞り比やエルクセン値とともに、プレス成形性の指針となる。また、限界絞り比やエルクセン値などと相関する穴広げ率λが高い方がプレス成形性に優れる傾向があることも公知である。 As described above, the hole expansion ratio λ itself has been conventionally evaluated for stretch flangeability, and serves as a guideline for press formability together with the limit drawing ratio and the Elksen value. It is also known that a higher hole expansion ratio λ that correlates with a limit drawing ratio or an Elksen value tends to be excellent in press formability.
しかし、6000系Al合金板について、単に、穴広げ率λの値の大小だけでは、実際のプレス成形性と必ずしも良く対応しないこと、穴広げ加工におけるダイスとポンチとのクリアランスとの関係で穴広げ率λの値を見た場合に、始めて、実際のプレス成形性と良く対応することも事実である。 However, for the 6000 series Al alloy plate, the size of the hole expansion ratio λ is not necessarily good enough to correspond to the actual press formability, and the hole expansion is related to the clearance between the die and punch in the hole expansion process. When looking at the value of the rate λ, it is also true that it corresponds to the actual press formability only for the first time.
この理由も定かではないが、打ち抜き穴広げ加工した際には、クリアランスによって、6000系Al合金板の伸びフランジ性が大きく影響される。そして、室温時効などによって伸びフランジ性が低下し、実際のプレス成形性が低下した6000系Al合金板ほど、このクリアランスによる影響をより大きく受ける。このため、穴広げ率λの値が全体的に低下して、穴広げ率が45% 以上の極大値を示すピーク値が出にくくなるものと推考される。 The reason for this is not clear, but when punching holes are expanded, the stretch flangeability of the 6000 series Al alloy plate is greatly affected by the clearance. Further, the 6000 series Al alloy plate whose stretch flangeability is lowered due to aging at room temperature or the like and the actual press formability is lowered is more affected by this clearance. For this reason, it is presumed that the value of the hole expansion rate λ decreases as a whole, and it becomes difficult to produce a peak value showing a maximum value of 45% or more.
本発明によれば、実際の6000系Al合金板のプレス成形時における成形性と密接に相関するプレス成形性の評価が予めでき、6000系Al合金板の成形性向上のための、前記した成分や組織あるいは製造方法のコントロールが、よりやりやすくなる。 According to the present invention, evaluation of press formability closely correlated with formability at the time of actual 6000 series Al alloy sheet press molding can be performed in advance, and the above-described components for improving formability of 6000 series Al alloy sheet And the control of the organization or manufacturing method becomes easier.
また、室温時効が生じた6000系Al合金板のプレス成形性を評価でき、成形が可能か否か、それとも回復処理などの素材成形性向上処理が必要か否か、などを見極めることができる。 Further, the press formability of a 6000 series Al alloy plate that has undergone room temperature aging can be evaluated, and it can be determined whether or not forming is possible, or whether or not a material formability improving process such as a recovery process is necessary.
更に、本発明によれば、プレス成形性に優れた6000系Al合金板ができるため、成形する側においても、成形形状などの設計変更や、工程や時間などの効率化を犠牲にして成形加工条件を緩和する等の手段を採らずに、成形することができる。 Furthermore, according to the present invention, since a 6000 series Al alloy plate excellent in press formability can be formed, on the side to be molded, molding processing is sacrificed at the expense of design changes such as molding shape and efficiency of process and time. Molding can be performed without taking measures such as relaxing the conditions.
以下に、本発明6000系Al合金板の実施態様につき具体的に説明する。 Hereinafter, embodiments of the 6000 series Al alloy plate of the present invention will be described in detail.
(穴広げ率)
本発明で言う穴広げ率λ(%)自体は、前記した従来からの穴広げ試験と同じ方法により求める。即ち、6000系Al合金板の試験片に、所定径の穴を打ち抜いた後に、ポンチを用いて、バリをダイス面の上面側として、前記打抜き穴に対するバーリング(穴広げ)を行う。そして、前記打抜き穴の縁に破断 (割れ) が発生した段階でポンチを止め、破断時の穴内径(ds )と、バーリング前の初期穴径(d0 )から、下記式によって穴広げ率λ(%)を求める。
λ=〔(ds −d0 )/d0 〕×100(%)
(Hole expansion ratio)
The hole expansion ratio λ (%) itself referred to in the present invention is obtained by the same method as the conventional hole expansion test. That is, after punching a hole of a predetermined diameter in a test piece of a 6000 series Al alloy plate, burring (hole expansion) is performed on the punched hole using a punch with the burr as the upper surface side of the die surface. Then, the punch is stopped when the edge of the punched hole is broken (cracked), and the hole expansion ratio λ () is calculated from the hole inner diameter (ds) at the time of breaking and the initial hole diameter (d0) before burring by the following formula. %).
λ = [(ds−d0) / d0] × 100 (%)
但し、本発明は、この穴広げ率λ(%)を、従来のように、一定の(1条件の) クリアランス条件で求めるのではない。本発明では、6000系Al合金板の板厚に対するダイスとポンチとのクリアランスの比率= クリアランス/ 板厚を、種々変えて打ち抜き穴広げ加工した際の、アルミニウム合金板の穴広げ率λ(%)を順次求める。 However, according to the present invention, the hole expansion ratio λ (%) is not obtained under a constant (one condition) clearance condition as in the prior art. In the present invention, the ratio of the clearance between the die and the punch with respect to the thickness of the 6000 series Al alloy plate = clearance / thickness of the aluminum alloy plate when the punched hole is expanded by varying the plate thickness λ (%) Are obtained sequentially.
そして、これら穴広げ率λ(%)と上記クリアランス比率との関係から、上記クリアランス比率が10〜25% の範囲で、穴広げ率λが45% 以上の極大値を示す6000系Al合金板を、プレス成形性が良い本発明範囲内の6000系Al合金板であると評価する。 Based on the relationship between the hole expansion ratio λ (%) and the clearance ratio, a 6000 series Al alloy plate showing a maximum value with the clearance ratio in the range of 10 to 25% and a hole expansion ratio λ of 45% or more is obtained. The 6000 series Al alloy plate within the scope of the present invention with good press formability is evaluated.
また、穴広げ率λが、上記クリアランス比率が10〜25% の範囲で極大値を示しても、45% 未満であれば、プレス成形性が低くなる。また、穴広げ率λの極大値が45% 以上であっても、極大値を示す、上記クリアランス比率が、10〜25% の範囲から外れた場合、やはりプレス成形性が低くなる。 Moreover, even if the hole expansion ratio λ shows a maximum value when the clearance ratio is in the range of 10 to 25%, if it is less than 45%, the press formability is lowered. Further, even if the maximum value of the hole expansion ratio λ is 45% or more, if the clearance ratio showing the maximum value is out of the range of 10 to 25%, the press formability is also lowered.
図1 に、前記クリアランス比率 (横軸) とAl合金板の穴広げ率 (縦軸) との関係を示す。図1 において、黒い菱形のプロットで示す発明例3 と黒い四角のプロットで示す発明例4 とは、各々後述する実施例表2 における、0.2%耐力が120MPa以上の6000系Al合金板の発明例である。この図1 から分かる通り、発明例3 は本発明の上記10〜25% の範囲内である約19% のクリアランス比率で、穴広げ率λが約50% の極大値を示している。これに対して、発明例4 は下限近くである約12.5% のクリアランス比率で、穴広げ率λが下限近くの約46% の極大値を示している。このため、後述する実施例の通り、発明例3 の方が発明例4 よりもプレス成形性に優れている。 FIG. 1 shows the relationship between the clearance ratio (horizontal axis) and the hole expansion rate (vertical axis) of the Al alloy sheet. In FIG. 1, Invention Example 3 indicated by black rhombus plots and Invention Example 4 indicated by black square plots are examples of inventions of 6000 series Al alloy sheets having a 0.2% proof stress of 120 MPa or more in Example Table 2 described later, respectively. It is. As can be seen from FIG. 1, Invention Example 3 shows a maximum value with a hole expansion ratio λ of about 50% at a clearance ratio of about 19%, which is within the range of 10 to 25% of the present invention. On the other hand, Invention Example 4 shows a maximum value of about 46% near the lower limit with a clearance ratio of about 12.5% near the lower limit and a hole expansion ratio λ of about 46%. Therefore, as in the examples described later, Invention Example 3 is superior to Invention Example 4 in press formability.
(Al 合金板の耐力)
本発明6000系Al合金板の0.2%耐力は少なくとも120MPa以上とする。0.2%耐力が120MPa未満であれば、前記した自動車パネル用途などに対して、後で人工時効硬化させて0.2%耐力を向上させるにしても、自動車パネルとしての必要な強度が不足してしまう。また、却って、プレス成形性も低下する。
(Alloy plate proof stress)
The 0.2% proof stress of the 6000 series Al alloy sheet of the present invention is at least 120 MPa. If the 0.2% yield strength is less than 120 MPa, the necessary strength as an automobile panel will be insufficient even if the 0.2% yield strength is improved by artificially age-hardening later for the aforementioned automotive panel applications and the like. On the other hand, press formability also decreases.
(化学成分組成)
次に、本発明が対象とする6000系Al合金板の好ましい化学成分組成について説明する。前記した自動車パネル材などとしては、優れた成形性以外に、BH性、強度、溶接性、耐食性などの諸特性が要求される。このような要求を満足するために、Al合金板の組成は、質量% で、Mg:0.2〜2.0%、Si:0.3〜2.0%、Mn:0.01 〜0.65% 、Cu:0.001〜1.0%を含有し、かつSi/Mg が質量比で1 以上であり、残部Alおよび不可避的不純物からなる6000系Al合金板が好ましい。
(Chemical composition)
Next, a preferable chemical component composition of the 6000 series Al alloy plate targeted by the present invention will be described. As the above-mentioned automobile panel material, in addition to excellent formability, various properties such as BH property, strength, weldability, and corrosion resistance are required. In order to satisfy such a requirement, the composition of the Al alloy plate includes, by mass%, Mg: 0.2 to 2.0%, Si: 0.3 to 2.0%, Mn: 0.01 to 0.65%, Cu: 0.001 to 1.0%. In addition, a 6000 series Al alloy sheet having a Si / Mg ratio of 1 or more in terms of mass ratio and the balance Al and inevitable impurities is preferable.
なお、その他の元素は、AA乃至JIS 規格などに沿った各不純物レベル程度の含有量 (許容量) とする。その他の合金元素とは、具体的には、Fe:1.0% 以下、Mn:1.0% 以下、Cr:0.3% 以下、Zr:0.3% 以下、V:0.3%以下、Ti:%以下、Ag:0.2% 以下、Zn:1.0% 以下、である。 For other elements, the content (allowable amount) of each impurity level is in line with AA or JIS standards. Specifically, other alloy elements are Fe: 1.0% or less, Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, V: 0.3% or less, Ti:% or less, Ag: 0.2 % Or less, Zn: 1.0% or less.
上記合金元素以外のその他の合金元素やガス成分は不純物である。しかし、リサイクルの観点から、溶解材として、高純度Al地金だけではなく、6000系合金やその他のAl合金スクラップ材、低純度Al地金などを溶解原料として使用して、本発明Al合金組成を溶製する場合には、これら他の合金元素は必然的に含まれることとなる。したがって、本発明では、目的とする本発明効果を阻害しない範囲で、これら不純物元素が含有されることを許容する。 Other alloy elements and gas components other than the above alloy elements are impurities. However, from the viewpoint of recycling, not only high-purity Al ingots but also 6000 series alloys and other Al alloy scrap materials, low-purity Al ingots, etc. are used as melting raw materials as melting materials. In the case of melting, these other alloy elements are necessarily included. Therefore, in the present invention, these impurity elements are allowed to be contained within a range that does not hinder the intended effect of the present invention.
上記6000系Al合金組成における、各元素の好ましい含有範囲と意義について以下に説明する。 The preferable content range and significance of each element in the 6000 series Al alloy composition will be described below.
Si:0.3〜2.0%
Siは、固溶強化と、成形後の塗装焼き付け処理などの、比較的低温短時間での人工時効処理時に、Mgとともに化合物相 (β")を形成して、時効硬化能を発揮し、板としての必要強度を得るための必須の元素である。したがって、プレス成形性など、パネルとしての必要諸特性を兼備させるための最重要元素である。Si量が0.3%未満では、前記時効硬化能、更には、各用途に要求される、プレス成形性などの諸特性を兼備することができない。一方、Siが2.0%を越えて含有されると、プレス成形性や曲げ加工性が著しく阻害される。更に、溶接性を著しく阻害する。したがって、Siは0.3 〜2.0%の範囲とする。
Si: 0.3-2.0%
Si forms a compound phase (β ") together with Mg during solid-solution strengthening and artificial aging treatment at relatively low temperatures, such as paint baking after molding, and exhibits age-hardening ability. Therefore, it is an indispensable element for obtaining the necessary strength as an element, and is therefore the most important element for combining the necessary properties as a panel, such as press formability. Furthermore, it cannot combine various properties required for each application, such as press formability, etc. On the other hand, if Si exceeds 2.0%, press formability and bending workability are significantly hindered. In addition, it significantly impairs weldability, so Si should be in the range of 0.3-2.0%.
Mg:0.2〜2.0%
Mgは、固溶強化と、塗装焼き付け処理などの前記人工時効処理時に、Siとともに化合物相を形成して、時効硬化能を発揮し、前記パネルとしての必要強度を得るための必須の元素である。Mgの0.2%未満の含有では、絶対量が不足するため、人工時効処理時に前記化合物相を形成できず、時効硬化能を発揮できない。このため、板として必要な前記必要強度が得られない。一方、Mgが2.0%を越えて含有されると、プレス成形性や曲げ加工性等の成形性が著しく阻害される。したがって、Mgの含有量は、0.2 〜2.0%の範囲とする。
Mg: 0.2-2.0%
Mg is an indispensable element for forming the compound phase together with Si during the artificial aging treatment such as solid solution strengthening and paint baking treatment, to exhibit age hardening ability and to obtain the required strength as the panel . If the Mg content is less than 0.2%, the absolute amount is insufficient, so that the compound phase cannot be formed during the artificial aging treatment, and the age hardening ability cannot be exhibited. For this reason, the said required intensity | strength required as a board cannot be obtained. On the other hand, if the Mg content exceeds 2.0%, the formability such as press formability and bending workability is significantly inhibited. Therefore, the Mg content is in the range of 0.2 to 2.0%.
Cu:0.001〜1.0%
Cu は、6000系Al合金において、時効硬化速度を向上させるのに有用である。即ち、塗装焼き付け工程などの人工時効 (硬化) 処理の条件で、Al合金材組織の結晶粒内へのGPゾーンなどの化合物相の析出を促進させる効果がある。また、人工時効処理状態で固溶したCuなどは成形性を向上させる効果もある。Cuの含有量が0.001%未満では、これらの効果が不足する。但し、Cu含有量が1.0%を超えて大きすぎると、粗大な化合物を形成して成形性が劣化する可能性が高い。また、自動車アウタパネルとして必要な、耐糸錆性などの耐食性も劣化する可能性が高い。したがって、Cu含有量の上限は1.0%以下とすることが好ましい。
Cu: 0.001 to 1.0%
Cu is useful for improving the age hardening rate in 6000 series Al alloys. That is, it has the effect of promoting the precipitation of a compound phase such as a GP zone into the crystal grains of the Al alloy material structure under the conditions of artificial aging (hardening) treatment such as a paint baking process. Moreover, Cu dissolved in the artificial aging treatment state also has an effect of improving formability. If the Cu content is less than 0.001%, these effects are insufficient. However, if the Cu content exceeds 1.0% and is too large, there is a high possibility that a coarse compound is formed and the moldability is deteriorated. In addition, there is a high possibility that the corrosion resistance such as yarn rust resistance required for an automobile outer panel will deteriorate. Therefore, the upper limit of the Cu content is preferably 1.0% or less.
Mn:0.01 〜0.65%
Mnは、結晶粒の微細化に有用であり、成形性を向上できる。Mnは均質化熱処理時に分散粒子 (分散相) を生成し、これらの分散粒子には再結晶後の粒界移動を妨げる効果がある。但し、各々含有量が大きすぎると、粗大な化合物を形成し、破壊の起点となり、成形性が却って劣化する。したがって、Mnは0.01〜0.65% の範囲で含有させることが好ましい。
Mn: 0.01 to 0.65%
Mn is useful for refining crystal grains and can improve moldability. Mn generates dispersed particles (dispersed phase) during the homogenization heat treatment, and these dispersed particles have an effect of hindering grain boundary movement after recrystallization. However, if each content is too large, a coarse compound is formed, which becomes a starting point of destruction, and the moldability deteriorates instead. Therefore, it is preferable to contain Mn in the range of 0.01 to 0.65%.
(平均結晶粒径)
なお、これらの規定に加えて、更に、Al合金板の平均結晶粒径を50μm 以下の微細化させることが好ましい。結晶粒径をこの範囲に細かく乃至小さくすることによって、曲げ加工性やプレス成形性が確保乃至向上される。結晶粒径が50μm を越えて粗大化した場合、曲げ加工性やプレス成形性が著しく低下し、成形時の割れや肌荒れなどの不良が生じ易い。
(Average crystal grain size)
In addition to these regulations, it is preferable to further refine the average crystal grain size of the Al alloy plate to 50 μm or less. By making the crystal grain size fine or small within this range, bending workability and press formability can be ensured or improved. When the crystal grain size exceeds 50 μm and becomes coarse, bending workability and press formability are remarkably deteriorated, and defects such as cracks and rough skin during forming tend to occur.
なお、ここで言う結晶粒径とは板の長手(L) 方向の結晶粒の最大径である。この結晶粒径は、Al合金板を0.05〜0.1mm 機械研磨した後電解エッチングした表面を、光学顕微鏡を用いて観察し、前記L 方向に、ラインインターセプト法で測定する。1 測定ライン長さは0.95mmとし、1 視野当たり各3 本で合計5 視野を観察することにより、全測定ライン長さを0.95×15mmとする。 The crystal grain size referred to here is the maximum diameter of crystal grains in the longitudinal (L) direction of the plate. The crystal grain size is measured by a line intercept method in the L direction by observing the surface of the Al alloy plate that has been mechanically polished by 0.05 to 0.1 mm and then electrolytically etched using an optical microscope. 1 The measurement line length is 0.95mm, and the total measurement line length is 0.95 x 15mm by observing a total of 5 fields with 3 lines per field.
(製造方法)
6000系Al合金板の製造は常法で可能である。Al合金の溶解、鋳造工程では、本発明成分規格範囲内に溶解調整されたAl合金溶湯を、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。次いで、常法により、このAl合金鋳塊に均質化熱処理を施した後、熱間圧延して、コイル状、板状などの熱延板とするか、更に、必要に応じて中間焼鈍を行なって冷間圧延を行い、コイル状、板状などの冷延板に加工する。
(Production method)
The 6000 series Al alloy plate can be manufactured by a conventional method. In the melting and casting process of Al alloy, select a normal melting and casting method such as continuous casting and rolling, semi-continuous casting (DC casting), etc. And cast. Next, the Al alloy ingot is subjected to homogenization heat treatment by a conventional method, and then hot rolled to form a hot rolled sheet such as a coil or plate, or further subjected to intermediate annealing as necessary. Cold-rolled and processed into a cold rolled sheet such as a coil or plate.
これら熱延板や冷延板など、加工後のAl合金板は、調質処理として、必須に溶体化および焼入れ処理で調質されて製品板とされる。なお、用途や必要特性に応じて、更に人工時効硬化処理や安定化処理などの調質処理を付加して行い、製品板とすることも勿論可能である。 The processed Al alloy sheets such as hot rolled sheets and cold rolled sheets are tempered by solution treatment and quenching as tempering treatments to obtain product plates. Of course, it is possible to add a tempering treatment such as an artificial age hardening treatment or a stabilization treatment according to the use and required characteristics to obtain a product plate.
次に、本発明の実施例を説明する。表1 のA 、B 各組成の6000系Al合金板であって、製造後2 日〜4 カ月間室温時効させた、種々の強度とした6000系Al合金板を、板厚に対するダイスとポンチとのクリアランスの比率= クリアランス/ 板厚を種々変えて穴広げ加工 (試験) した。そして、穴広げ率λ(%)の極大値と、穴広げ率λ(%)が極大値となる際の板厚に対するダイスとポンチとのクリアランスの比率= クリアランス/ 板厚を求めた。穴広げ率λ(%)の算出は、前記した条件により求めた。なお、穴広げ加工条件は、ポンチ: Φ50、肩R4.5、ダイス: Φ60、肩R12.5 、シワ押さえ力:10tonf 、潤滑油:R303P (ポンチ側塗油) 、加工速度:10 〜15mm/minとした。 Next, examples of the present invention will be described. 6000 series Al alloy sheets of A and B compositions in Table 1, each of which was aged at room temperature for 2 days to 4 months after production, and were made into dies and punches with respect to the plate thickness. Clearance ratio = Clearance / Board widening (testing) with various changes in plate thickness. Then, the maximum value of the hole expansion rate λ (%) and the ratio of the clearance between the die and the punch with respect to the plate thickness when the hole expansion rate λ (%) reaches the maximum value were obtained. The hole expansion ratio λ (%) was calculated according to the above-described conditions. The hole expansion processing conditions are: punch: Φ50, shoulder R4.5, die: Φ60, shoulder R12.5, wrinkle holding force: 10tonf, lubricant: R303P (punch side oil), processing speed: 10-15mm / Min.
これらのAl合金板の引張試験特性も調査した。この引張試験特性は、Al合金板の圧延方向に平行な(L方向の) 耐力を、0.2%耐力(MPa) として測定した。なお、引張試験はJIS Z 2201にしたがって行うとともに、試験片形状はJIS 5 号試験片で行った。また、クロスヘッド速度は5mm/分で、試験片が破断するまで一定の速度で行った。これらの結果を表2 に示す。なお、Al合金板の平均結晶粒径は、発明例、比較例とも50μm 以下であった。 The tensile test characteristics of these Al alloy sheets were also investigated. The tensile test characteristics were measured by setting the proof stress parallel to the rolling direction of the Al alloy sheet (in the L direction) as 0.2% proof stress (MPa). The tensile test was performed according to JIS Z 2201 and the shape of the test piece was a JIS No. 5 test piece. The crosshead speed was 5 mm / min, and the test piece was run at a constant speed until the test piece broke. These results are shown in Table 2. The average crystal grain size of the Al alloy plate was 50 μm or less in both the inventive example and the comparative example.
これら試験材のAl合金板の製造条件は以下の通りである。表1 に示すA 、B 各組成の400mm 厚の鋳塊を、DC鋳造法により溶製後、550 ℃で均質化熱処理を施し、終了温度300 ℃で厚さ5mmtまで熱間圧延した。この熱間圧延板を、バッチ式の熱処理設備で400 ℃×4hr の中間焼鈍を施した後に、80% の冷延率で冷間圧延し、厚さ1.0mm の冷延板を得た。そして、この冷延板を、連続式の熱処理設備で、450 〜550 ℃で溶体化処理を行った後に室温まで焼入れ、この焼入れ後30分以内に、70℃×1 時間の予備時効処理を行った。 The manufacturing conditions for the Al alloy sheets of these test materials are as follows. A 400 mm thick ingot of each composition A and B shown in Table 1 was melted by a DC casting method, subjected to homogenization heat treatment at 550 ° C., and hot-rolled to a thickness of 5 mm at an end temperature of 300 ° C. This hot-rolled sheet was subjected to intermediate annealing at 400 ° C. for 4 hours in a batch-type heat treatment facility, and then cold-rolled at a cold rolling rate of 80% to obtain a cold-rolled sheet having a thickness of 1.0 mm. The cold-rolled sheet is then subjected to solution treatment at 450 to 550 ° C. in a continuous heat treatment facility and then quenched to room temperature, and within 30 minutes after this quenching, a pre-aging treatment of 70 ° C. × 1 hour is performed. It was.
この際、表2 に示す通り、上記予備時効処理を行わないもの、あるいは、上記予備時効処理を行っても、板製造後の室温時効期間が異なるものを試験材として準備した。そして、これらのAl合金板が、自動車パネルとしてプレス成形加工されることを模擬して、比較的大きなブランクにより成形試験した。 At this time, as shown in Table 2, samples that were not subjected to the preliminary aging treatment, or those that were subjected to the preliminary aging treatment but had different room temperature aging periods after the plate production were prepared as test materials. Then, a molding test was performed with a relatively large blank by simulating that these Al alloy plates were press-molded as an automobile panel.
より具体的には、張出成形試験を行い、成形性を評価した。これらの結果も表2 に示す。張出成形試験の条件は、前記室温時効後の供試板から一辺が1000mmの正方形の供試板 (ブランク) を複数枚切り出して、メカプレスにより、ビード付き金型を用いて張出成形した。成形品の形状は、中央部に一辺が500mm で、高さが50mmと高い角筒状の張出部と、この張出部の四周囲に平坦なフランジ部を有したハット型のものとした。 More specifically, an overhang forming test was performed to evaluate moldability. These results are also shown in Table 2. The conditions of the stretch forming test were that a plurality of 1000 mm square test plates (blanks) were cut out from the test plate after aging at room temperature and stretched using a die with a bead by a mechanical press. The shape of the molded product was a hat type with a square tube-like overhang part with a side of 500 mm at the center and a height of 50 mm, and flat flanges around the four sides of the overhang part. .
また、成形試験の、しわ押さえ力は490kN 、潤滑油は一般防錆油、成形速度は20mm/ 分の同じ条件で3 回行った。評価は、前記角部割れと、前記フランジ (端部) 割れについて別々に行い、3 回ともハット型成形品の角部割れが発生していない例を〇、1 回でも角部割れが生じたものを×として評価した。 In the molding test, the wrinkle holding force was 490 kN, the lubricating oil was general rust preventive oil, and the molding speed was 20 mm / min. The evaluation was performed separately for the corner crack and the flange (end) crack, and the corner crack of the hat-shaped molded product did not occur three times. Things were evaluated as x.
更に、この張出成形の際に、割れにかかわり無く、発生した「しわ」の最大高さ(mm)を測定し、3 回の成形の際の前記しわ高さの平均が1.0mm 以下のものを○、1.0mm を越え2.0mm 以下のものを△、2.0mm を越えるものを×と評価した。 In addition, the maximum height (mm) of the generated `` wrinkle '' was measured regardless of cracking during this overhang forming, and the average of the wrinkle height during the three moldings was 1.0 mm or less. Was evaluated as ◯, when exceeding 1.0 mm and not more than 2.0 mm, Δ and when exceeding 2.0 mm as ×.
表2 に示す通り、0.2%耐力が120MPa以上であって、Al合金板の穴広げ率が、前記クリアランス比率が10〜25% の範囲で45% 以上の極大値を示す発明例2 〜4 、発明例7 〜8 は、実際のプレス成形を模擬したプレス成形性に優れている。 As shown in Table 2, Invention Examples 2 to 4, in which 0.2% proof stress is 120 MPa or more, and the hole expansion rate of the Al alloy plate exhibits a maximum value of 45% or more in the range of the clearance ratio of 10 to 25%, Invention Examples 7 to 8 are excellent in press formability simulating actual press forming.
これに対して、Al合金板の穴広げ率が、前記クリアランス比率が10〜25% の範囲で45% 以上の極大値を示しても、0.2%耐力が120MPa未満である比較例1 、6 は、プレス成形性が劣っている。 In contrast, Comparative Examples 1 and 6 in which the 0.2% proof stress is less than 120 MPa even though the hole expansion rate of the Al alloy plate shows a maximum value of 45% or more in the clearance ratio range of 10 to 25%, The press formability is inferior.
また、0.2%耐力が120MPa以上であっても、室温時効硬化などによって、Al合金板の穴広げ率が、前記クリアランス比率が10〜25% の範囲で45% 以上の極大値を示さない比較例5 、10は、実際のプレス成形を模擬したプレス成形性が劣っている。 Further, even when the 0.2% proof stress is 120 MPa or more, a comparative example in which the hole expansion rate of the Al alloy sheet does not show a maximum value of 45% or more within the range of the clearance ratio of 10 to 25% due to room temperature age hardening or the like. 5 and 10 are inferior in press formability simulating actual press forming.
更に、前記図1 でも示した通り、下限近くのクリアランス比率で、穴広げ率λが下限近くの極大値を示している発明例4 は、他の発明例2 、3 、7 、8 、9 に比して、プレス成形性が劣る。 Further, as shown in FIG. 1, the invention example 4 in which the hole expansion ratio λ shows a local maximum value near the lower limit with the clearance ratio near the lower limit is changed to other invention examples 2, 3, 7, 8, 9 In comparison, press formability is inferior.
したがって、これらの結果から、本発明規定の耐力や穴広げ率の臨界的な意義も分かる。 Therefore, from these results, the critical significance of the proof stress and the hole expansion rate defined in the present invention can be understood.
本発明によれば、実際のプレス成形時の成形性と密接に相関する穴広げ性の評価に基づく、成形性に優れたアルミニウム合金板を提供できる。この結果、プレス成形される部材用途に、Al合金材の適用を拡大できる。 ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy plate excellent in the moldability based on evaluation of the hole expansibility closely correlated with the moldability at the time of actual press molding can be provided. As a result, the application of the Al alloy material can be expanded to use for press-molded members.
Claims (2)
The 6000 series aluminum alloy plate contains, by mass, Mg: 0.2-2.0%, Si: 0.3-2.0%, Mn: 0.01-0.65%, Cu: 0.001-1.0%, and Si / Mg is a mass ratio. The aluminum alloy plate having excellent formability according to claim 1, wherein the aluminum alloy plate is composed of the balance Al and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005117311A JP2006291338A (en) | 2005-04-14 | 2005-04-14 | Aluminum alloy sheet having excellent formability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005117311A JP2006291338A (en) | 2005-04-14 | 2005-04-14 | Aluminum alloy sheet having excellent formability |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006291338A true JP2006291338A (en) | 2006-10-26 |
Family
ID=37412211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005117311A Pending JP2006291338A (en) | 2005-04-14 | 2005-04-14 | Aluminum alloy sheet having excellent formability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006291338A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110724862A (en) * | 2019-10-24 | 2020-01-24 | 广西南南铝加工有限公司 | Preparation process of aluminum alloy section for ship |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000160310A (en) * | 1998-11-25 | 2000-06-13 | Shinko Arukoa Yuso Kizai Kk | Production of aluminum alloy sheet suppressed in cold aging property |
JP2003129156A (en) * | 2001-10-22 | 2003-05-08 | Kobe Steel Ltd | Al ALLOY SHEET SUPERIOR IN FORMABILITY FOR STRETCH FLANGE AND MANUFACTURING METHOD THEREFOR |
JP2003171726A (en) * | 2001-09-27 | 2003-06-20 | Sumitomo Light Metal Ind Ltd | Aluminum alloy sheet having excellent bending workability and corrosion resistance, and production method therefor |
JP2004010982A (en) * | 2002-06-07 | 2004-01-15 | Kobe Steel Ltd | Aluminum alloy sheet having excellent bending workability and press formability |
JP2004211177A (en) * | 2003-01-07 | 2004-07-29 | Nippon Steel Corp | Aluminum alloy sheet superior in formability, paint baking hardenability and shape, and manufacturing method therefor |
JP2004211176A (en) * | 2003-01-07 | 2004-07-29 | Nippon Steel Corp | Aluminum alloy sheet superior in formability, paint baking hardenability and corrosion resistance, and manufacturing method therefor |
JP2006275506A (en) * | 2006-06-14 | 2006-10-12 | Denso Corp | Glow plug manufacturing method |
-
2005
- 2005-04-14 JP JP2005117311A patent/JP2006291338A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000160310A (en) * | 1998-11-25 | 2000-06-13 | Shinko Arukoa Yuso Kizai Kk | Production of aluminum alloy sheet suppressed in cold aging property |
JP2003171726A (en) * | 2001-09-27 | 2003-06-20 | Sumitomo Light Metal Ind Ltd | Aluminum alloy sheet having excellent bending workability and corrosion resistance, and production method therefor |
JP2003129156A (en) * | 2001-10-22 | 2003-05-08 | Kobe Steel Ltd | Al ALLOY SHEET SUPERIOR IN FORMABILITY FOR STRETCH FLANGE AND MANUFACTURING METHOD THEREFOR |
JP2004010982A (en) * | 2002-06-07 | 2004-01-15 | Kobe Steel Ltd | Aluminum alloy sheet having excellent bending workability and press formability |
JP2004211177A (en) * | 2003-01-07 | 2004-07-29 | Nippon Steel Corp | Aluminum alloy sheet superior in formability, paint baking hardenability and shape, and manufacturing method therefor |
JP2004211176A (en) * | 2003-01-07 | 2004-07-29 | Nippon Steel Corp | Aluminum alloy sheet superior in formability, paint baking hardenability and corrosion resistance, and manufacturing method therefor |
JP2006275506A (en) * | 2006-06-14 | 2006-10-12 | Denso Corp | Glow plug manufacturing method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110724862A (en) * | 2019-10-24 | 2020-01-24 | 广西南南铝加工有限公司 | Preparation process of aluminum alloy section for ship |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4495623B2 (en) | Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same | |
JP4939093B2 (en) | Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness | |
JP3819263B2 (en) | Aluminum alloy material with excellent room temperature aging control and low temperature age hardening | |
JP5918158B2 (en) | Aluminum alloy sheet with excellent properties after aging at room temperature | |
JP2007169740A (en) | Aluminum alloy sheet having excellent formability and its production method | |
JP4939091B2 (en) | Manufacturing method of aluminum alloy plate with excellent bending workability | |
JP5329746B2 (en) | Aluminum alloy sheet for warm forming | |
JP2019026897A (en) | Aluminum alloy sheet for structural member, and manufacturing method of aluminum alloy structural member | |
JP4944474B2 (en) | Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof | |
JP2006257505A (en) | Aluminum alloy sheet having excellent extension flange formability | |
JP4515363B2 (en) | Aluminum alloy plate excellent in formability and method for producing the same | |
JP5054364B2 (en) | Method for producing aluminum alloy plate | |
JP3833574B2 (en) | Aluminum alloy sheet with excellent bending workability and press formability | |
JP4164453B2 (en) | Forming method of aluminum alloy material | |
JP4117243B2 (en) | Aluminum alloy sheet with excellent bake hardenability | |
JP3740086B2 (en) | A method for producing an aluminum alloy plate that is excellent in hemmability after aging at room temperature and is hemmed after stretch forming | |
CN108884524B (en) | Aluminum alloy sheet and method for producing aluminum alloy sheet | |
WO2017170835A1 (en) | Aluminum alloy sheet and aluminum alloy sheet manufacturing method | |
JP2004238657A (en) | Method of manufacturing aluminum alloy plate for outer panel | |
JP3766334B2 (en) | Aluminum alloy plate with excellent bending workability | |
JP2008101239A (en) | Method for manufacturing aluminum alloy sheet superior in bendability, and aluminum alloy sheet | |
KR100722060B1 (en) | Method for molding aluminum alloy material | |
JP2006291338A (en) | Aluminum alloy sheet having excellent formability | |
JP5839588B2 (en) | Press forming method for automotive panel material | |
JP4694770B2 (en) | Aluminum alloy plate with excellent bending workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070724 |
|
A621 | Written request for application examination |
Effective date: 20070928 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20100223 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100302 |
|
A02 | Decision of refusal |
Effective date: 20100629 Free format text: JAPANESE INTERMEDIATE CODE: A02 |