JP2006290009A - Hst travel system of working machine - Google Patents

Hst travel system of working machine Download PDF

Info

Publication number
JP2006290009A
JP2006290009A JP2005109115A JP2005109115A JP2006290009A JP 2006290009 A JP2006290009 A JP 2006290009A JP 2005109115 A JP2005109115 A JP 2005109115A JP 2005109115 A JP2005109115 A JP 2005109115A JP 2006290009 A JP2006290009 A JP 2006290009A
Authority
JP
Japan
Prior art keywords
speed
drive mode
wheel
hst
wheel drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005109115A
Other languages
Japanese (ja)
Other versions
JP4606228B2 (en
Inventor
Makoto Sugaya
誠 菅谷
Tsukasa Toyooka
司 豊岡
Hidetoshi Satake
英敏 佐竹
Kazuhiro Ichimura
和弘 一村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2005109115A priority Critical patent/JP4606228B2/en
Priority to PCT/JP2006/306468 priority patent/WO2006109571A1/en
Publication of JP2006290009A publication Critical patent/JP2006290009A/en
Application granted granted Critical
Publication of JP4606228B2 publication Critical patent/JP4606228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/44Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation
    • F16H61/444Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation by changing the number of pump or motor units in operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4069Valves related to the control of neutral, e.g. shut off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/44Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/10Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of fluid gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels

Abstract

<P>PROBLEM TO BE SOLVED: To provide an HST travel system of a working machine capable of obtaining speed and traction force suitable for various works without requiring a transmission and a propeller shaft, and without using the transmission. <P>SOLUTION: The capacity of two hydraulic motors 10, 20 of an HST transmission device 30 is equalized each other, the reduction ratio of a reducer 11 of the front wheel side of the travel devices 12, 22 is made to be two times of reduction ratio of the reducer 21 of the rear wheel side, and the reduction ratio of the reducer 11 of the front wheel side and the reducer 21 of the rear wheel side is made to be 2:1. The HST transmission device 30 has a switching valve 41, a selector switch 42, and a controller 43, and can be switched between a low speed four-wheel drive mode driving both travel devices 12, 22 and a high speed two-wheel drive mode driving only the travel device 22 of the rear wheel side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は作業機械のHST走行システムに係わり、特に、ラフテレンリフトトラック、ホイールローダ、ホイール式の油圧ショベル等、油圧ポンプと走行モータを閉回路接続したHST(Hydro-Static Transmission)と呼ばれる油圧走行回路を備えた作業機械のHST走行システムに関する。   The present invention relates to an HST traveling system for work machines, and in particular, hydraulic traveling called HST (Hydro-Static Transmission) in which a hydraulic pump and a traveling motor are connected in a closed circuit, such as a rough terrain lift truck, a wheel loader, a wheeled hydraulic excavator, and the like. The present invention relates to an HST traveling system for a working machine having a circuit.

従来のHST走行システムは、例えば特開平5−306768号公報に記載のように、1つの油圧ポンプと1つの油圧モータを閉回路接続し、その1つの油圧モータにより走行装置を駆動するのが一般的である。この場合、油圧モータは変速機とプロペラシャフトを介して前後輪に接続され、プロペラシャフトを回転させることにより前後輪を同時に駆動する。   In a conventional HST traveling system, for example, as described in Japanese Patent Laid-Open No. 5-306768, one hydraulic pump and one hydraulic motor are connected in a closed circuit, and the traveling device is driven by the one hydraulic motor. Is. In this case, the hydraulic motor is connected to the front and rear wheels via a transmission and a propeller shaft, and simultaneously drives the front and rear wheels by rotating the propeller shaft.

他のHST走行システムとして、例えば特開平11−166623号公報や特開平11−230333号公報に記載のように、1つの油圧ポンプを2つの油圧モータに並列に閉回路接続し、2つの油圧モータで走行装置を駆動するものもある。この場合も、2つの油圧モータは減速機とプロペラシャフトを介して前後輪に接続され、プロペラシャフトを回転させることにより前後輪を同時に駆動する。また、一方の油圧モータはクラッチを介して減速機と接続され、クラッチをON/OFF制御することで低速(高トルク)モード(クラッチON)と高速モード(クラッチOFF)とに切り換え可能とし、変速機を不要としている。   As another HST traveling system, for example, as described in JP-A-11-166623 and JP-A-11-230333, one hydraulic pump is connected in parallel to two hydraulic motors in a closed circuit, and two hydraulic motors Some also drive the travel device. Also in this case, the two hydraulic motors are connected to the front and rear wheels via a reduction gear and a propeller shaft, and simultaneously drive the front and rear wheels by rotating the propeller shaft. One hydraulic motor is connected to a speed reducer via a clutch, and can be switched between a low speed (high torque) mode (clutch ON) and a high speed mode (clutch OFF) by ON / OFF control of the clutch. The machine is unnecessary.

一方、他のHST走行システムとして、1つの油圧ポンプを2つの油圧モータに並列に閉回路接続し、2つの油圧モータをそれぞれ前輪と後輪に接続し、前輪と後輪を別々の油圧モータで駆動するものが知られている。例えば特開2000−1127号公報では、芝刈り機のHST走行システムにおいて、低速時には前後輪とも高トルクとする4輪駆動とし、高速時には前輪を低トルク、後輪を高トルクとする4輪駆動とすることで、走行時は前輪にも油圧的に制動力が伝わるようにし、旋回時には後輪を駆動する2輪駆動とすることで、旋回時の前輪の引きずりを防止している。前輪油圧モータの駆動トルクを変えるため、油圧ポンプの給排油ポートに定比分流弁が設けられ、前輪側油圧モータ側の主管路間にシャトル弁が設けられ、シャトル弁の出力側に高圧リリーフ弁と低圧リリーフ弁が並列接続されている。   On the other hand, as another HST traveling system, one hydraulic pump is connected in parallel to two hydraulic motors in a closed circuit, the two hydraulic motors are connected to the front wheels and the rear wheels, respectively, and the front wheels and the rear wheels are connected by separate hydraulic motors. What drives is known. For example, in Japanese Patent Application Laid-Open No. 2000-1127, in an HST traveling system for a lawn mower, four-wheel drive is performed with high torque at both front and rear wheels at low speeds, low torque at the front wheels and high torque at the rear wheels at high speeds. Thus, the braking force is transmitted hydraulically to the front wheels during traveling, and the two-wheel drive that drives the rear wheels during turning makes it possible to prevent dragging of the front wheels during turning. In order to change the driving torque of the front wheel hydraulic motor, a constant ratio diversion valve is provided at the supply / discharge oil port of the hydraulic pump, a shuttle valve is provided between the main lines on the front wheel side hydraulic motor side, and a high pressure relief is provided on the output side of the shuttle valve. A valve and a low pressure relief valve are connected in parallel.

GB2136371Aでは、農業機械のHST走行システムにおいて、2つの油圧モータの一方が小容量の補助モータとして構成され、この補助モータを前輪又は後輪にクラッチと減速機を介して接続し、油圧ポンプと補助モータとの間に開閉弁を設け、クラッチと開閉弁を同時に切り換えることにより補助モータと油圧ポンプ或いは補助モータと車輪との接続・遮断を行っている。   In GB2136371A, in an agricultural machinery HST traveling system, one of two hydraulic motors is configured as a small-capacity auxiliary motor, and this auxiliary motor is connected to a front wheel or a rear wheel via a clutch and a speed reducer, and is connected to a hydraulic pump and an auxiliary motor. An on-off valve is provided between the motor and the clutch and the on-off valve are simultaneously switched to connect / disconnect the auxiliary motor and the hydraulic pump or the auxiliary motor and the wheel.

特開平5−306768号公報JP-A-5-306768 特開平11−166623号公報JP-A-11-166623 特開平11−230333号公報JP-A-11-230333 特開2000−1127号公報JP 2000-1127 A GB2136371AGB2136371A

しかしながら、上記従来技術には次のような問題がある。   However, the above prior art has the following problems.

特開平5−306768号公報に記載の一般的なHST走行システムでは、油圧モータを変速機とプロペラシャフトを介して前後輪に接続し、プロペラシャフトを回転させることで前後輪を同時に駆動する方式であるため、走行装置として変速機とプロペラシャフトが必須の構成となっている。変速機とプロペラシャフトは運転式の下側に位置し、プロペラシャフトはエンジンや運転席の下側を前後に伸び、前後輪に連結されている。このため運転席やエンジンを変速機やプロペラシャフトに干渉しない位置・高さに設置する必要があり、その分車高(運転席の高さ)が高くなって運転席から作業機部分が見にくくなり、作業性が低下するという問題がある。また、変速機とプロペラシャフトによりエンジン、運転席、その他の機器のレイアウトの自由度が制約されるという問題もある。   In a general HST traveling system described in JP-A-5-306768, a hydraulic motor is connected to front and rear wheels via a transmission and a propeller shaft, and the front and rear wheels are simultaneously driven by rotating the propeller shaft. For this reason, a transmission and a propeller shaft are indispensable as a traveling device. The transmission and the propeller shaft are located on the lower side of the driving type, and the propeller shaft extends forward and backward under the engine and the driver's seat and is connected to the front and rear wheels. For this reason, it is necessary to install the driver's seat and engine at a position and height that do not interfere with the transmission and the propeller shaft, and the vehicle height (driver's seat height) increases accordingly, making it difficult to see the work equipment part from the driver's seat. There is a problem that workability is lowered. Another problem is that the degree of freedom in the layout of the engine, driver's seat, and other devices is limited by the transmission and the propeller shaft.

特開平11−166623号公報や特開平11−230333号公報に記載の2つの油圧モータを用いるHST走行システムでは変速機は不要であるが、プロペラシャフトは必要であるため、プロペラシャフトによる車高やレイアウト制約の問題は解消していない。   In the HST traveling system using two hydraulic motors described in JP-A-11-166623 and JP-A-11-230333, a transmission is not necessary, but a propeller shaft is necessary. The problem of layout constraints has not been solved.

特開2000−1127号公報やGB2136371Aに記載のHST走行システムでは前輪と後輪を別々の油圧モータで駆動するため、プロペラシャフトが不要であり、プロペラシャフトによる車高やレイアウト制約の問題はない。また、GB2136371Aでは、スイッチ操作により2つの油圧モータを同時に駆動する4輪駆動と、一方の油圧モータのみを駆動する2輪駆動とに切り換え可能であり、変速機を用いずに低速モード高速モードに切り換え可能である。しかし、これら従来技術をラフテレンリフトトラック、ホイールローダ、ホイール式の油圧ショベル等の多目的作業機械に適用した場合は、各種作業形態に適した速度と牽引力を得ることができないという問題がある。   In the HST traveling system described in Japanese Patent Application Laid-Open No. 2000-1127 and GB2136371A, the front wheels and the rear wheels are driven by separate hydraulic motors, so a propeller shaft is unnecessary, and there is no problem of vehicle height or layout restrictions due to the propeller shaft. Also, in GB2136371A, it is possible to switch between a four-wheel drive that drives two hydraulic motors simultaneously by a switch operation and a two-wheel drive that drives only one hydraulic motor, and enters a low-speed mode and a high-speed mode without using a transmission. Switching is possible. However, when these conventional techniques are applied to multipurpose work machines such as rough terrain lift trucks, wheel loaders, and wheel-type hydraulic excavators, there is a problem that speeds and traction forces suitable for various work forms cannot be obtained.

例えば、ラフテレンリフトトラックが行う典型的な作業としてバケット作業があるが、HST走行システムにおいては、前後輪のトルク配分(牽引力配分)は1:1に設定するのが通常である。この場合、車体前部に作業機(バケット等)を持つ作業機械ではバケット作業時の車重はほとんど前輪にしかかからないため、バケット作業時の牽引力は前輪と後輪を合わせた最大牽引力の半分となり、バケット作業の牽引力としては過小である。また、GB2136371Aに記載のHST走行システムでは、スイッチ操作により高速走行時にメインの油圧モータ(補助モータでない油圧モータ)のみを駆動する2輪駆動に切り換え可能である。しかし、メインの油圧モータの容量は補助モータの容量より大きいため、回転速度(車速)は4輪駆動状態の2倍にもならず、高速で車両移動するための車速として不十分である。   For example, a typical work performed by a rough terrain lift truck is a bucket work. In an HST traveling system, the torque distribution (traction force distribution) of the front and rear wheels is usually set to 1: 1. In this case, in a work machine having a work machine (bucket, etc.) in the front part of the vehicle body, the vehicle weight during bucket operation is only applied to the front wheels, so the tractive force during bucket operation is half of the maximum tractive force for the front and rear wheels combined. The traction force for bucket work is too small. In the HST traveling system described in GB2136371A, it is possible to switch to two-wheel drive that drives only the main hydraulic motor (hydraulic motor that is not an auxiliary motor) during high-speed traveling by a switch operation. However, since the capacity of the main hydraulic motor is larger than the capacity of the auxiliary motor, the rotational speed (vehicle speed) is not twice that of the four-wheel drive state and is insufficient as a vehicle speed for moving the vehicle at high speed.

本発明の目的は、変速機とプロペラシャフトが不要であり、かつ変速機を用いずに各種作業に適した速度と牽引力を得ることができる作業機械のHST走行システムを提供することである。   An object of the present invention is to provide an HST traveling system for a working machine that does not require a transmission and a propeller shaft and that can obtain speed and traction force suitable for various operations without using a transmission.

(1)上記第1の目的を達成するために、本発明は、油圧ポンプと、この油圧ポンプに閉回路接続されかつ互いに並列接続され、前記油圧ポンプから吐出された圧油により駆動される第1及び第2油圧モータと、前記第1油圧モータに第1減速機を介して接続された前輪走行装置と、前記第2油圧モータに第2減速機を介して接続された後輪走行装置と、前記前輪走行装置と後輪走行装置の両方を駆動する低速4輪駆動モードと、前記後輪走行装置のみを駆動する高速2輪駆動モードとに切り換える第1制御手段とを備え、前記前輪走行装置の駆動トルクを前記後輪走行装置の駆動トルクよりも大きく設定したものとする。   (1) In order to achieve the first object, the present invention provides a hydraulic pump, a first circuit connected to the hydraulic pump in a closed circuit and connected in parallel to each other, and driven by pressure oil discharged from the hydraulic pump. First and second hydraulic motors, a front wheel travel device connected to the first hydraulic motor via a first speed reducer, and a rear wheel travel device connected to the second hydraulic motor via a second speed reducer And a first control means for switching between a low-speed four-wheel drive mode for driving both the front wheel travel device and the rear wheel travel device and a high-speed two-wheel drive mode for driving only the rear wheel travel device. It is assumed that the drive torque of the device is set larger than the drive torque of the rear wheel travel device.

以上のように構成した本発明においては、前輪走行装置と後輪走行装置を別々の油圧モータで駆動するため、プロペラシャフトが不要となる。   In the present invention configured as described above, since the front wheel traveling device and the rear wheel traveling device are driven by separate hydraulic motors, a propeller shaft is not required.

また、本発明のHST走行システムをラフテレンリフトトラック等の多目的作業機械に適用し、牽引作業は低速4輪駆動モードで行う場合は、前輪と後輪の4輪駆動で得られる最大牽引力を適切に設定することにより牽引作業に必要な最大牽引力を得ることができる。   In addition, when the HST traveling system of the present invention is applied to a multi-purpose work machine such as a rough terrain lift truck and the traction work is performed in the low speed four-wheel drive mode, the maximum traction force obtained by the four-wheel drive of the front wheels and the rear wheels is appropriately set. By setting to, the maximum traction force required for traction work can be obtained.

バケット作業を低速4輪駆動で行う場合は、前輪走行装置の駆動トルクを後輪走行装置の駆動トルクよりも大きく設定したため、車重はほとんどが前輪にかかるバケット作業時の牽引力は低速4輪駆動モードの最大牽引力(前後輪の合計の牽引力)の半分よりも大きくなり、バケット作業に適切な牽引力を得ることができる。   When bucket work is performed with low-speed four-wheel drive, the driving torque of the front wheel travel device is set to be larger than the drive torque of the rear wheel travel device, so the traction force applied to the front wheel for the bucket work is mostly low-speed four-wheel drive. It becomes larger than half of the maximum traction force of the mode (total traction force of the front and rear wheels), and a traction force suitable for bucket work can be obtained.

高速走行を高速2輪駆動モードで行う場合は、前輪走行装置の駆動トルクを後輪走行装置の駆動トルクよりも大きく設定したため、第2油圧モータに低速4輪駆動モード時の2倍よりもよりも多い流量が作用し、回転速度(車速)は低速4輪駆動モード時の2倍よりもより大きくなり、高速で車両移動することができる。   When high-speed traveling is performed in the high-speed two-wheel drive mode, the driving torque of the front wheel traveling device is set to be larger than the driving torque of the rear-wheel traveling device, so that the second hydraulic motor is more than twice that in the low-speed four-wheel driving mode. A larger flow rate acts, and the rotational speed (vehicle speed) becomes larger than twice that in the low-speed four-wheel drive mode, and the vehicle can move at high speed.

このように本発明は、牽引作業時に必要な最大牽引力、バケット作業時に必要な牽引力(前後輪牽引力配分)、並びに高速走行時に必要な牽引力を、変速機(例えば2速トランスミッション)を使用せずに達成することができる。   As described above, the present invention provides the maximum traction force required during traction work, the traction force required during bucket operation (front and rear wheel traction force distribution), and the traction force required during high-speed traveling without using a transmission (for example, a two-speed transmission). Can be achieved.

(2)上記(1)において、好ましくは、前記前輪走行装置の駆動トルクと前記後輪走行装置の駆動トルクの比を2〜3:1の範囲に設定する。   (2) In the above (1), preferably, the ratio of the driving torque of the front wheel traveling device and the driving torque of the rear wheel traveling device is set in a range of 2 to 3: 1.

これにより車重はほとんどが前輪にかかるバケット作業時の牽引力は低速4輪駆動モードの最大牽引力(前後輪の合計の牽引力)の2/3〜3/4(67〜75%)となり、バケット作業に適切な牽引力を得ることができる。   As a result, most of the vehicle weight is 2/3 to 3/4 (67-75%) of the maximum traction force (total traction force of the front and rear wheels) in the low-speed four-wheel drive mode when bucket work is applied to the front wheels. A suitable traction force can be obtained.

また、第2油圧モータに低速4輪駆動モード時の3〜4倍の流量が作用し、回転速度(車速)は低速4輪駆動モード時の3〜4倍となり、高速で車両移動することができる。   Further, the second hydraulic motor has a flow rate 3 to 4 times that in the low-speed four-wheel drive mode, and the rotational speed (vehicle speed) is 3 to 4 times that in the low-speed four-wheel drive mode. it can.

(3)また、上記(1)において、より好ましくは、前記前輪走行装置の駆動トルクと前記後輪走行装置の駆動トルクの比を2:1に設定する。   (3) In the above (1), more preferably, the ratio of the driving torque of the front wheel traveling device and the driving torque of the rear wheel traveling device is set to 2: 1.

これにより車重はほとんどが前輪にかかるバケット作業時の牽引力は低速4輪駆動モードの最大牽引力(前後輪の合計の牽引力)の2/3(約65%)となり、バケット作業に適切な牽引力を得ることができる。   As a result, most of the vehicle weight is reduced to 2/3 (about 65%) of the maximum traction force (total traction force of the front and rear wheels) in the low-speed four-wheel drive mode. Obtainable.

また、第2油圧モータに低速4輪駆動モード時の3倍の流量が作用し、回転速度(車速)は低速4輪駆動モード時の3倍となり、高速で車両移動することができる。   Further, a flow rate three times that in the low-speed four-wheel drive mode acts on the second hydraulic motor, and the rotational speed (vehicle speed) becomes three times that in the low-speed four-wheel drive mode, so that the vehicle can move at high speed.

(4)また、上記目的を達成するために、本発明は、油圧ポンプと、この油圧ポンプに閉回路接続されかつ互いに並列接続され、前記油圧ポンプから吐出された圧油により駆動される第1及び第2油圧モータと、前記第1油圧モータに第1減速機を介して接続された前輪走行装置と、前記第2油圧モータに第2減速機を介して接続された後輪走行装置と、前記前輪走行装置と後輪走行装置の両方を駆動する低速4輪駆動モードと、前記後輪走行装置のみを駆動する高速2輪駆動モードとに切り換える第1制御手段とを備え、前記第1及び第2油圧モータの容量を等しくし、前記第1減速機の減速比を前記第2減速機の減速比よりも大きくしたものとする。   (4) In order to achieve the above object, the present invention provides a hydraulic pump, a first circuit connected to the hydraulic pump in a closed circuit and connected in parallel to each other, and driven by pressure oil discharged from the hydraulic pump. And a second hydraulic motor, a front wheel travel device connected to the first hydraulic motor via a first speed reducer, and a rear wheel travel device connected to the second hydraulic motor via a second speed reducer, First control means for switching between a low-speed four-wheel drive mode for driving both the front wheel travel device and the rear wheel travel device and a high-speed two-wheel drive mode for driving only the rear wheel travel device; It is assumed that the capacity of the second hydraulic motor is made equal and the reduction ratio of the first reduction gear is made larger than the reduction ratio of the second reduction gear.

これにより上記(1)で述べたように、変速機とプロペラシャフトが不要となり、かつ変速機を用いずに各種作業形態に適した速度と牽引力を達成することができる。   As a result, as described in (1) above, the transmission and the propeller shaft are not required, and the speed and tractive force suitable for various work modes can be achieved without using the transmission.

また、第1及び第2油圧モータを同じ容量とすることで、部品の共通化、原価低減が可能となる。   Further, by making the first and second hydraulic motors have the same capacity, it is possible to share parts and reduce costs.

(5)上記(4)において、好ましくは、前記第1減速機の減速比と前記第2減速機の減速比の比を2〜3:1の範囲に設定する。   (5) In the above (4), preferably, the ratio of the reduction ratio of the first reduction gear to the reduction ratio of the second reduction gear is set in a range of 2 to 3: 1.

これにより車重はほとんどが前輪にかかるバケット作業時の牽引力は低速4輪駆動モードの最大牽引力(前後輪の合計の牽引力)の2/3〜3/4(67〜75%)となり、バケット作業に適切な牽引力を得ることができる。   As a result, most of the vehicle weight is 2/3 to 3/4 (67-75%) of the maximum traction force (total traction force of the front and rear wheels) in the low-speed four-wheel drive mode when bucket work is applied to the front wheels. A suitable traction force can be obtained.

また、第2油圧モータに低速4輪駆動モード時の3〜4倍の流量が作用し、回転速度(車速)は低速4輪駆動モード時の3〜4倍となり、高速で車両移動することができる。   Further, the second hydraulic motor has a flow rate 3 to 4 times that in the low-speed four-wheel drive mode, and the rotational speed (vehicle speed) is 3 to 4 times that in the low-speed four-wheel drive mode. it can.

(6)また、上記(4)において、より好ましくは、前記第1減速機の減速比と前記第2減速機の減速比の比を2:1に設定する。   (6) In the above (4), more preferably, the ratio of the reduction ratio of the first reduction gear to the reduction ratio of the second reduction gear is set to 2: 1.

これにより車重はほとんどが前輪にかかるバケット作業時の牽引力は低速4輪駆動モードの最大牽引力(前後輪の合計の牽引力)の2/3(約65%)となり、バケット作業に適切な牽引力を得ることができる。   As a result, most of the vehicle weight is reduced to 2/3 (about 65%) of the maximum traction force (total traction force of the front and rear wheels) in the low-speed four-wheel drive mode. Obtainable.

また、第2油圧モータに低速4輪駆動モード時の3倍の流量が作用し、回転速度(車速)は低速4輪駆動モード時の3倍となり、高速で車両移動することができる。   Further, a flow rate three times that in the low-speed four-wheel drive mode acts on the second hydraulic motor, and the rotational speed (vehicle speed) becomes three times that in the low-speed four-wheel drive mode, so that the vehicle can move at high speed.

(7)更に、上記(1)又は(4)において、好ましくは、前記油圧ポンプと前記第1及び第2油圧モータを接続する閉回路中に配置された切換弁と、前記前輪走行装置と前記後輪走行装置との速度差を検知し、この速度差が所定値を超えると前記切換弁を切り換えて前記第1油圧モータと第2油圧モータのうち回転速度が大なる側の油圧モータへの圧油の供給を遮断する第2制御手段とを更に備える。   (7) Further, in the above (1) or (4), preferably, a switching valve disposed in a closed circuit connecting the hydraulic pump and the first and second hydraulic motors, the front wheel travel device, and the A speed difference with the rear wheel traveling device is detected, and when the speed difference exceeds a predetermined value, the switching valve is switched to switch to the hydraulic motor having the higher rotational speed of the first hydraulic motor and the second hydraulic motor. And a second control means for shutting off the supply of pressure oil.

これにより低速4輪駆動モードで走行時、作業中の路面状況や前後輪の軸重配分の変化によって、前後いずれかの車軸が空転状態になった場合、空転の発生していない前輪又は後輪側の油圧モータにのみ圧油を供給することが可能となり、低速4輪駆動モードでの車輪空転時のオープンデフの状態を回避し、悪路走破性を向上することができる。   As a result, when driving in the low-speed four-wheel drive mode, if any of the front and rear axles is idle due to changes in the road surface conditions during work or the distribution of the axle load of the front and rear wheels, the front or rear wheels that do not run idle It becomes possible to supply pressure oil only to the hydraulic motor on the side, avoiding an open differential state at the time of wheel idling in the low-speed four-wheel drive mode, and improving rough road running performance.

(8)また、上記(1)又は(4)において、好ましくは、前記第1制御手段は、前記前輪走行装置のみを駆動する中速2輪駆動モードを更に有し、前記低速4輪駆動モードと高速2輪駆動モードと中速2輪駆動モードのいずれかに切り換え可能である。   (8) In the above (1) or (4), preferably, the first control means further includes a medium-speed two-wheel drive mode for driving only the front wheel travel device, and the low-speed four-wheel drive mode. The high-speed two-wheel drive mode and the medium-speed two-wheel drive mode can be switched.

これにより中速2輪駆動モードでは低速4輪駆動モードと高速2輪駆動モードのほぼ中間の速度と牽引力が得られるため、フォーク等の作業機を用いて行う荷役作業等では、適切な走行速度と牽引力が得られ、作業効率が向上するだけでなく、エンジンが高回転で稼動することもないのでオペレータの疲労(騒音、振動)も軽減できる。また、フォーク等の作業機は車体前部にあるため、荷役作業時には主に前輪に車重が作用し、作業性を損なうこともない。   As a result, in the medium-speed two-wheel drive mode, an approximately intermediate speed and traction force can be obtained between the low-speed four-wheel drive mode and the high-speed two-wheel drive mode, so that an appropriate traveling speed is suitable for a cargo handling operation using a work machine such as a fork. In addition to improving traction, the working efficiency is improved and the engine does not run at high speed, reducing operator fatigue (noise and vibration). In addition, since the working machine such as a fork is located at the front part of the vehicle body, the vehicle weight mainly acts on the front wheels during cargo handling work, and the workability is not impaired.

本発明によれば、変速機とプロペラシャフトが不要であり、かつ変速機を用いずに各種作業に適した速度と牽引力を得ることができる。   According to the present invention, a transmission and a propeller shaft are unnecessary, and a speed and traction force suitable for various operations can be obtained without using a transmission.

また、本発明によれば、第1及び第2油圧モータを同じ容量とすることで、部品の共通化、原価低減が可能となる。   Further, according to the present invention, it is possible to share parts and reduce costs by setting the first and second hydraulic motors to the same capacity.

また、本発明によれば、低速4輪駆動モードでの車輪空転時のオープンデフの状態を回避し、悪路走破性を向上することができる。   In addition, according to the present invention, it is possible to avoid an open differential state at the time of wheel idling in the low-speed four-wheel drive mode, and to improve rough road running performance.

更に、本発明によれば、中速2輪駆動モードで低速4輪駆動モードと高速2輪駆動モードのほぼ中間の速度と牽引力が得られるため、荷役作業等では適切な走行速度と牽引力が得られ、作業効率が向上する。   In addition, according to the present invention, an intermediate speed and traction force between the low-speed four-wheel drive mode and the high-speed two-wheel drive mode can be obtained in the medium-speed two-wheel drive mode. Work efficiency is improved.

本発明の実施の形態を図面を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1の実施の形態に係わる作業機械のHST走行システムを示す油圧構成図である。   FIG. 1 is a hydraulic configuration diagram showing an HST traveling system for a work machine according to a first embodiment of the present invention.

図1において、本実施の形態のHST走行システはHST変速装置30と前輪走行装置12と後輪走行装置22とを備えている。   In FIG. 1, the HST travel system of the present embodiment includes an HST transmission 30, a front wheel travel device 12, and a rear wheel travel device 22.

HST変速装置30は、エンジン2により駆動されるメインの油圧ポンプ1と、油圧ポンプ1から吐出された圧油により駆動される2個の走行用油圧モータ10,20とを有し、油圧ポンプ2と油圧モータ10は主管路3,4,5,6を介して閉回路接続され、油圧ポンプ2と油圧モータ20は主管路3,4,7,8を介して閉回路接続され、2個の油圧モータ10,20は油圧ポンプ1に対して互いに並列接続されている。主管路7,8にはチェック弁34,35を介して補給用のチャージポンプ33が接続され、主管路7又は8の圧力がチャージポンプ33の吐出路に設けられたリリーフ弁37の設定圧力よりも低くなるとチャージポンプ33の吐出油が主管路7又は8に補給される。   The HST transmission 30 includes a main hydraulic pump 1 driven by the engine 2 and two traveling hydraulic motors 10 and 20 driven by pressure oil discharged from the hydraulic pump 1. And the hydraulic motor 10 are connected in a closed circuit via the main pipelines 3, 4, 5, 6 and the hydraulic pump 2 and the hydraulic motor 20 are connected in a closed circuit via the main pipelines 3, 4, 7, 8 The hydraulic motors 10 and 20 are connected to the hydraulic pump 1 in parallel. A charge pump 33 for replenishment is connected to the main pipelines 7 and 8 via check valves 34 and 35, and the pressure of the main pipeline 7 or 8 is based on the set pressure of the relief valve 37 provided in the discharge passage of the charge pump 33. When the pressure becomes lower, the oil discharged from the charge pump 33 is supplied to the main pipeline 7 or 8.

走行用油圧モータ10,20はそれぞれ走行装置12,22に連結されている。前輪走行装置12は、走行用油圧モータ10が連結される減速機11と、この減速機11に連結された車軸13及び前輪(車輪)14とを備え、後輪走行装置22は、走行用油圧モータ20が連結される減速機21と、この減速機21に連結された車軸23及び後輪(車輪)24とを備え、それぞれ車輪14,24により駆動力を路面に伝え、双方の駆動力にて車体を駆動する構成となっている。   The traveling hydraulic motors 10 and 20 are connected to the traveling devices 12 and 22, respectively. The front wheel travel device 12 includes a speed reducer 11 to which a travel hydraulic motor 10 is connected, an axle 13 and a front wheel (wheel) 14 connected to the speed reducer 11, and a rear wheel travel device 22 is a travel hydraulic pressure. A reduction gear 21 to which the motor 20 is connected, an axle 23 and a rear wheel (wheel) 24 connected to the reduction gear 21 are provided, and the driving force is transmitted to the road surface by the wheels 14 and 24, respectively. It is configured to drive the car body.

HST変速装置30において、2個の油圧モータ10,20の容量は等しく設定されている。また、走行装置12,22において、前輪側の減速機11は後輪側の減速機21より大きく設定されており、具体的には、前輪側の減速機11は後輪側の減速機21の2倍の減速比を持ち、前輪側の減速機11と後輪側の減速機21の減速比の割合は2:1となっている。   In the HST transmission 30, the capacities of the two hydraulic motors 10 and 20 are set equal. Further, in the traveling devices 12 and 22, the front wheel side reduction gear 11 is set to be larger than the rear wheel side reduction gear 21, and specifically, the front wheel side reduction gear 11 is the rear wheel side reduction gear 21. The reduction ratio of the front wheel side reduction gear 11 and the rear wheel side reduction gear 21 is 2: 1.

なお、減速比割合の2:1は一例(最適例)であり、前輪側の減速機11の減速比が後輪側の減速機21の減速比より大きければ(好ましくは、前輪側の減速機11と後輪側の減速機21の減速比の割合が2〜3の範囲であれば)、それ以外の割合であってもよい。   The ratio of the reduction ratio of 2: 1 is an example (optimal example), and if the reduction ratio of the reduction gear 11 on the front wheel side is larger than the reduction ratio of the reduction gear 21 on the rear wheel side (preferably, the reduction gear on the front wheel side) 11 and the ratio of the reduction ratio of the reduction gear 21 on the rear wheel side is in the range of 2 to 3, and other ratios may be used.

HST変速装置30は、また、走行装置12,22の両方を駆動する低速4輪駆動モードと、後輪走行装置22のみを駆動する高速2輪駆動モードとに切り換える制御手段として、主管路5,6に設置された2位置切換弁(以下単に切換弁という)41と、オペレータにより操作される切換スイッチ42と、コントローラ43とを有している。   The HST transmission 30 is also used as a control means for switching between a low-speed four-wheel drive mode for driving both the travel devices 12 and 22 and a high-speed two-wheel drive mode for driving only the rear wheel travel device 22. 6, a two-position switching valve (hereinafter simply referred to as a switching valve) 41, a changeover switch 42 operated by an operator, and a controller 43.

切換弁41は一端にソレノイド41aを有する電磁切換弁であり、ソレノイド41aに与えられる電気信号がOFFのときは図示の連通位置にあり、電気信号がONになると図示の位置から遮断位置に切り換わる。切換弁41が図示の連通位置にあるときの回路状態を低速4輪駆動モードといい、切換弁41が遮断位置に切り換わったときの回路状態を高速2輪駆動モードという。   The switching valve 41 is an electromagnetic switching valve having a solenoid 41a at one end, and is in the illustrated communication position when the electrical signal applied to the solenoid 41a is OFF, and switches from the illustrated position to the shut-off position when the electrical signal is ON. . The circuit state when the switching valve 41 is in the illustrated communication position is referred to as a low-speed four-wheel drive mode, and the circuit state when the switching valve 41 is switched to the shut-off position is referred to as a high-speed two-wheel drive mode.

切換スイッチ42は低速、高速の2位置に切り換え可能であり、切換スイッチ42が低速位置にあるとき、コントローラ43は電気信号をOFFとし、切換スイッチ42が高速位置に切り換わると、コントローラ43は電気信号をONとし、切換弁41に出力する。   The changeover switch 42 can be switched between two positions, low speed and high speed. When the changeover switch 42 is in the low speed position, the controller 43 turns off the electrical signal, and when the changeover switch 42 switches to the high speed position, the controller 43 The signal is turned ON and output to the switching valve 41.

油圧ポンプ1は図示しない公知の傾転量制御手段を備え、エンジン2の回転数の上昇に応じて油圧ポンプ1の傾転量(容量)を増大させ、ポンプ吐出流量を滑らかに増大させる。このポンプ吐出流量の増大により走行モータ10,20の回転速度が上昇し、車速が増加する。エンジン2の回転数は図示しないアクセルペダルを操作することにより調整される。   The hydraulic pump 1 includes a known tilt amount control means (not shown), and increases the tilt amount (capacity) of the hydraulic pump 1 in accordance with an increase in the rotational speed of the engine 2 to smoothly increase the pump discharge flow rate. As the pump discharge flow rate increases, the rotational speeds of the traveling motors 10 and 20 increase, and the vehicle speed increases. The rotational speed of the engine 2 is adjusted by operating an accelerator pedal (not shown).

走行モータ10,20は図示しない公知の傾転量制御手段を備え、負荷圧力が設定圧力よりも低いときは小傾転(小容量)にあり、設定圧力よりも高くなると大傾転(大容量)に自動で切り換わる。設定圧力は2つの走行モータ10,20で同じ値である。   The travel motors 10 and 20 are provided with a known tilt amount control means (not shown), which is in a small tilt (small capacity) when the load pressure is lower than the set pressure, and a large tilt (large capacity) when the load pressure is higher than the set pressure. ) Automatically. The set pressure is the same value for the two travel motors 10 and 20.

図2は本実施の形態のHST走行システムが搭載される作業機械の一例として、多目的作業機械の代表例であるラフテレンリフトトラック(テレスコピックハンドラーともいう)の外観を示す図である。   FIG. 2 is an external view of a rough terrain lift truck (also referred to as a telescopic handler), which is a typical example of a multipurpose work machine, as an example of a work machine on which the HST traveling system of the present embodiment is mounted.

図2において、ラフテレンリフトトラックは、車体41と、車体41上に位置する運転室42と、車体41に運転室42の側部を起伏可能に取り付けられた伸縮可能なブーム43と、ブーム43の先端に回動可能に取り付けられたアタッチメント取付部44と、そのアタッチメント取付部44に取り付けられたアタッチメントの1種である、荷役作業に用いるフォーク45とを備えており、ブーム43とアタッチメント取付部44とフォーク45は作業装置を構成している。また、本図では図示を省略しているが、ブーム43、アタッチメント取付部44及びフォーク45にはそれぞれ油圧アクチュエータが取り付けられ、各作業部材はそれぞれの油圧アクチュエータにより駆動される。車体41には前輪14及び後輪24が取り付けられている。   In FIG. 2, the rough terrain lift truck includes a vehicle body 41, a cab 42 positioned on the vehicle body 41, an extendable boom 43 attached to the vehicle body 41 so that a side portion of the cab 42 can be raised and lowered, and a boom 43. An attachment mounting portion 44 that is pivotally attached to the tip of the head, and a fork 45 that is a kind of attachment attached to the attachment mounting portion 44 and that is used for a cargo handling operation, and includes a boom 43 and an attachment mounting portion. 44 and fork 45 constitute a working device. Although not shown in the drawing, hydraulic actuators are respectively attached to the boom 43, the attachment attachment portion 44, and the fork 45, and each working member is driven by the respective hydraulic actuator. A front wheel 14 and a rear wheel 24 are attached to the vehicle body 41.

図2の想像線はブーム43を上げた状態と、ブーム43を上げかつ伸長した状態を示している。この場合、ブーム43を上げた状態にしても、アタッチメント取付部44のリンク作用によりフォーク45の姿勢は変わらない。   The imaginary line in FIG. 2 shows a state where the boom 43 is raised and a state where the boom 43 is raised and extended. In this case, even if the boom 43 is raised, the attitude of the fork 45 does not change due to the link action of the attachment mounting portion 44.

次に、以上のように構成した本実施の形態の作用効果について説明する。   Next, the effect of this Embodiment comprised as mentioned above is demonstrated.

切換スイッチ42が低速位置にあり、切換弁41は図示の連通位置にあるときは低速4輪駆動モードであり、油圧ポンプ1から2つの油圧モータ10,20に圧油が供給される状態となる。この状態では、2つの油圧モータ10,20には等しい駆動圧力が発生しており、2つの油圧モータ10,20の容量は等しく、油圧モータ10,20の駆動トルクは容量と駆動圧力との積で表されるため、油圧モータ10,20が発生する駆動トルクは同じである。しかし、輪側の減速機11と後輪側の減速機21の減速比の割合は2:1であるため、車両を駆動するトルクは前輪14(前輪走行装置12)が後輪24(後輪走行装置22)の2倍となる。このとき、前後輪14,24の回転速度は同じであるから、前輪側の油圧モータ10には後輪側の油圧モータ20の2倍の流量が作用し、結果として前後2:1の牽引力分配状態で走行が可能となる。   When the changeover switch 42 is in the low speed position and the changeover valve 41 is in the illustrated communication position, it is in the low speed four-wheel drive mode and pressure oil is supplied from the hydraulic pump 1 to the two hydraulic motors 10 and 20. . In this state, equal driving pressure is generated in the two hydraulic motors 10 and 20, the capacities of the two hydraulic motors 10 and 20 are equal, and the driving torque of the hydraulic motors 10 and 20 is the product of the capacity and the driving pressure. Therefore, the drive torque generated by the hydraulic motors 10 and 20 is the same. However, since the ratio of the reduction ratio of the reduction gear 11 on the wheel side and the reduction gear 21 on the rear wheel side is 2: 1, the torque for driving the vehicle is the front wheel 14 (front wheel travel device 12) on the rear wheel 24 (rear wheel). This is twice that of the traveling device 22). At this time, since the rotational speeds of the front and rear wheels 14 and 24 are the same, a flow rate twice that of the hydraulic motor 20 on the front wheel side acts on the hydraulic motor 10 on the front wheel side. It is possible to run in the state.

切換スイッチ42を高速位置に操作し、切換弁41を図示の位置から遮断位置に切り換えると、高速2輪駆動モードとなって、後輪側の油圧モータ20のみに油圧ポンプ1からの圧油が供給される。この状態では、油圧ポンプ1の全ての圧油が後輪側の油圧モータ20に流入するため、低速4輪駆動モードの3倍の回転速度(車速)が得られる。つまり、トランスミッションを用いることなく、低速4輪駆動モードの3倍の速度差を実現している。   When the changeover switch 42 is operated to the high speed position and the changeover valve 41 is switched from the illustrated position to the shut-off position, the high speed two-wheel drive mode is established, and only the hydraulic motor 20 on the rear wheel side receives pressure oil from the hydraulic pump 1. Supplied. In this state, since all the pressure oil of the hydraulic pump 1 flows into the hydraulic motor 20 on the rear wheel side, a rotation speed (vehicle speed) that is three times that of the low-speed four-wheel drive mode can be obtained. That is, a speed difference three times that of the low-speed four-wheel drive mode is realized without using a transmission.

なお、このとき、前輪側の油圧モータ10の主管路5,6は連通するため、前輪側の油圧モータ10は前輪14の回転とともに回転する。また、このときの走行駆動トルクは後輪側の油圧モータ20のみで与えられるため、低速4輪駆動モードにおける駆動トルクの1/3となる。つまり、高速2輪駆動モードにおける牽引力は低速4輪駆動モードで得られる牽引力(最大牽引力)の1/3となる。   At this time, since the main pipelines 5 and 6 of the hydraulic motor 10 on the front wheel side communicate with each other, the hydraulic motor 10 on the front wheel side rotates with the rotation of the front wheel 14. Further, since the traveling drive torque at this time is given only by the rear wheel side hydraulic motor 20, it becomes 1/3 of the drive torque in the low-speed four-wheel drive mode. That is, the traction force in the high-speed two-wheel drive mode is 1/3 of the traction force (maximum traction force) obtained in the low-speed four-wheel drive mode.

ラフテレンリフトトラックは多目的作業機械であり、牽引作業、バケット作業、荷役作業等、種々の作業を行うことができる。牽引作業とは車体後部にトレーラ等の被牽引物を連結し、牽引移動させる作業である。バケット作業とは、アタッチメントをバケットに交換し、走行力(牽引力)でバケットを地山等の被掘削物に押し付けて掘削する作業である。掘削後はバケットを上げて車体を移動し、トラック等に放土する。荷役作業とは図示のフォーク45に荷を載せて移動する作業である。また、車両移動時は高速で走行する必要がある。   The rough terrain lift truck is a multipurpose work machine, and can perform various operations such as a towing operation, a bucket operation, and a cargo handling operation. The towing operation is an operation in which a towed object such as a trailer is connected to the rear part of the vehicle body and is towed. Bucket work is work that excavates by exchanging the attachment with a bucket and pressing the bucket against an object to be excavated, such as a natural ground, with running force (traction force). After excavation, lift the bucket, move the car body, and dump it on a truck. The cargo handling operation is an operation of placing a load on the fork 45 shown in the drawing and moving it. Moreover, it is necessary to travel at high speed when the vehicle moves.

本実施の形態において、牽引作業は低速4輪駆動モードで行い、高速での車両移動は高速2輪駆動モードで行う。荷役作業は、そのときの状況に応じて、低速4輪駆動モードか高速2輪駆動モードのいずれかで行う。   In the present embodiment, the towing work is performed in the low-speed four-wheel drive mode, and the vehicle movement at high speed is performed in the high-speed two-wheel drive mode. The cargo handling work is performed in either the low-speed four-wheel drive mode or the high-speed two-wheel drive mode depending on the situation at that time.

ここで、ラフテレンリフトトラック等の作業機械では、一般的に、牽引時の最大牽引力は車体車重比で90〜100%に設定され、最高速度時の牽引力は車体車重比で20〜30%に設定されている。従来のHST走行システムは、トランスミッション(変速機)とプロペラシャフトを用い、1つ又は2つの油圧モータで前後輪を同時に駆動している。このようなHST走行システムでは、牽引時の最大牽引力と最高速度時の牽引力を両立させるため、段間比(高速と低速の減速比の比率)で3〜4となる2速のトランスミッションを使用していた。牽引作業やバケット作業を行う場合は、トランスミッションを低速ギアに切り換え、車両移動(走行)ではトランスミッションを高速ギアに切り換える。   Here, in a working machine such as a rough terrain lift truck, generally, the maximum traction force at the time of towing is set to 90 to 100% in terms of the vehicle body weight ratio, and the traction force at the maximum speed is 20 to 30 by vehicle body weight ratio. % Is set. The conventional HST traveling system uses a transmission (transmission) and a propeller shaft, and simultaneously drives the front and rear wheels by one or two hydraulic motors. In such an HST traveling system, in order to achieve both the maximum traction force at the time of towing and the traction force at the maximum speed, a two-speed transmission with a step ratio (ratio of reduction ratio between high speed and low speed) of 3 to 4 is used. It was. When performing towing work or bucket work, the transmission is switched to a low-speed gear, and the vehicle is moved (running) to switch the transmission to a high-speed gear.

しかし、ラフテレンリフトトラック等の作業機械においては、牽引作業では低速ギアで得られる最大牽引力は必須であるが、バケット作業ではその最大牽引力は過剰である。また、高速走行は作業現場間の移動時に使用するため、悪路走破性向上を目的としたセンターデフなしの4輪駆動方式は効率が悪かった。   However, in a working machine such as a rough terrain lift truck, the maximum traction force that can be obtained with a low-speed gear is essential for traction work, but the maximum traction force is excessive for bucket work. In addition, since high-speed traveling is used when moving between work sites, the four-wheel drive system without a center differential for the purpose of improving rough road running performance is inefficient.

また、特開2000−1127号公報やGB2136371Aに記載のHST走行システムをラフテレンリフトトラック等の作業機械に適用した場合は、前後輪のトルク配分(牽引力配分)についての考慮がなされていないため、バケット作業時に十分な牽引力を得ることができない。つまり、前後輪のトルク配分(牽引力配分)を考慮しない場合、前後輪のトルク配分は1:1に設定するのが通常である。この場合、車体前部に作業機(バケット等)を持つ作業機械ではバケット作業時の車重はほとんど前輪にしかかからないため、バケット作業時の牽引力は最大牽引力の半分となり、バケット作業の牽引力としては過小である。   In addition, when the HST traveling system described in Japanese Patent Application Laid-Open No. 2000-1127 and GB2136371A is applied to a work machine such as a rough terrain lift truck, consideration is not given to torque distribution (traction force distribution) of the front and rear wheels. Sufficient traction force cannot be obtained during bucket operation. That is, when the torque distribution of the front and rear wheels (traction force distribution) is not considered, the torque distribution of the front and rear wheels is usually set to 1: 1. In this case, in a working machine having a work machine (bucket etc.) in the front part of the vehicle body, the vehicle weight during bucket operation is only applied to the front wheels, so the traction force during bucket operation is half of the maximum traction force. It is too small.

本実施の形態では、上記のように低速4輪駆動モードでは前後2:1の牽引力分配状態で走行が可能であるため、牽引作業では前後の車輪14,24により必要な最大牽引力が得られる。また、車体前部に作業機(バケット等)を持つ作業機械ではバケット作業時の車重はほとんど前輪にしかかからないため、前輪のみに60%程度の駆動力が発生すれば十分である(後輪に駆動力を発生しても無駄である)。油圧モータ10による前輪14の駆動トルクは2つの油圧モータ10,20による前後輪の全体駆動トルクの2/3のであるため、車重の相当部分が前輪にかかるバケット作業時には少なくとも前輪14により最大牽引力の2/3の65%程度の牽引力が得られ、牽引作業、バケット作業とも適切な牽引力で作業を行うことができる。   In the present embodiment, as described above, in the low-speed four-wheel drive mode, traveling can be performed in a traction force distribution state of 2: 1 in the front-rear direction, so that the necessary maximum traction force can be obtained by the front and rear wheels 14, 24 in the traction operation. Further, in a working machine having a work machine (bucket or the like) in the front part of the vehicle body, the vehicle weight at the time of bucket work is only applied to the front wheels, so it is sufficient that a driving force of about 60% is generated only on the front wheels (rear wheels). It is useless to generate driving force. Since the driving torque of the front wheel 14 by the hydraulic motor 10 is 2/3 of the total driving torque of the front and rear wheels by the two hydraulic motors 10 and 20, the maximum traction force is at least exerted by the front wheel 14 during bucket operation when a considerable portion of the vehicle weight is applied to the front wheel. Thus, a traction force of about 65% of 2/3 of the above can be obtained, and the traction work and the bucket work can be performed with an appropriate traction force.

また、高速2輪駆動モードでは、後輪24のみで低速4輪駆動モードの3倍の速度で走行することができ、良好な走行性能が得られる。   Further, in the high-speed two-wheel drive mode, the vehicle can travel at a speed three times that of the low-speed four-wheel drive mode with only the rear wheels 24, and good traveling performance is obtained.

以上のように本実施の形態によれば、前輪走行装置12と後輪走行装置22を別々の油圧モータ10,20で駆動するため、プロペラシャフトが不要となる。   As described above, according to the present embodiment, the front wheel traveling device 12 and the rear wheel traveling device 22 are driven by the separate hydraulic motors 10 and 20, so that a propeller shaft is not necessary.

また、牽引作業時に必要な最大牽引力、バケット作業時に必要な牽引力(前後輪牽引力配分)、並びに高速走行時に必要な牽引力を、変速機(例えば2速トランスミッション)を使用せずに達成することができる。   Further, the maximum traction force required for traction work, traction force required for bucket work (front and rear wheel traction force distribution), and traction force required for high-speed traveling can be achieved without using a transmission (for example, a two-speed transmission). .

更に、前後輪の油圧モータ10,20を同じ容量とすることで、部品の共通化、原価低減が可能となる。   Further, by setting the front and rear wheel hydraulic motors 10 and 20 to the same capacity, it is possible to share parts and reduce costs.

なお、前述したように、前輪側の減速機11と後輪側の減速機21の減速比割合は2:1に限らず、基本的には、前輪側の減速機11の減速比が後輪側の減速機21の減速比より大きく設定されていればよいものであり、好ましくは、前輪側の減速機11は後輪側の減速機21の2〜3倍の減速比を持ち、前輪側の減速機11と後輪側の減速機21の減速比の割合が2〜3:1であればよいものである。   As described above, the ratio of the reduction ratio between the front wheel side reduction gear 11 and the rear wheel side reduction gear 21 is not limited to 2: 1. Basically, the reduction ratio of the front wheel reduction gear 11 is the rear wheel. It is sufficient that the reduction ratio of the reduction gear 21 on the side is set larger than that of the reduction gear 21 on the front wheel side. Preferably, the reduction gear 11 on the front wheel side has a reduction ratio two to three times that of the reduction gear 21 on the rear wheel side. The ratio of the reduction ratio of the reduction gear 11 of the rear wheel and the reduction gear 21 on the rear wheel side may be 2 to 3: 1.

前輪側の減速機11の減速比を後輪側の減速機21の減速比より大きく設定することにより、低速4輪駆動モードでバケット作業を行う場合は、前輪走行装置の駆動トルクが後輪走行装置の駆動トルクよりも大きくなるため、車重のほとんどが前輪にかかるバケット作業時の牽引力は最大牽引力の半分よりも大きくなり、前輪側の減速機11と後輪側の減速機21の減速比割合が1:1である場合に比べて、バケット作業での牽引力が適切化される。また、高速走行を高速2輪駆動モードで行う場合は、後輪側の油圧モータ20に低速4輪駆動モード時の2倍よりもよりも多い流量が作用し、回転速度(車速)は低速4輪駆動モード時の2倍よりもより大きくなり、前輪側の減速機11と後輪側の減速機21の減速比割合が1:1である場合に比べて、高速で車両移動することができる。   When bucket work is performed in the low-speed four-wheel drive mode by setting the reduction ratio of the front wheel side reduction gear 11 to be larger than the reduction ratio of the reduction gear 21 on the rear wheel side, the driving torque of the front wheel traveling device is the rear wheel traveling. Since it becomes larger than the driving torque of the device, the traction force during the bucket operation where most of the vehicle weight is applied to the front wheels is larger than half of the maximum traction force, and the reduction ratio between the reduction device 11 on the front wheel side and the reduction device 21 on the rear wheel side. Compared with the case where the ratio is 1: 1, the traction force in the bucket operation is optimized. Further, when high-speed traveling is performed in the high-speed two-wheel drive mode, a flow rate larger than twice that in the low-speed four-wheel drive mode acts on the rear wheel side hydraulic motor 20 and the rotational speed (vehicle speed) is low. Compared to the case where the reduction ratio ratio of the front wheel side reduction gear 11 and the rear wheel side reduction gear 21 is 1: 1, the vehicle can move at a higher speed than in the wheel drive mode. .

また、前輪側の減速機11と後輪側の減速機21の減速比の割合を2〜3:1に設定することにより、車重はほとんどが前輪にかかるバケット作業時の牽引力は低速4輪駆動モードの最大牽引力の2/3〜3/4(67〜75%)となり、前輪側の減速機11と後輪側の減速機21の減速比割合が1:1である場合に比べて、バケット作業の牽引力が適切化される。また、後輪側の油圧モータ20に低速4輪駆動モード時の3〜4倍の流量が作用し、回転速度(車速)は低速4輪駆動モード時の3〜4倍となり、前輪側の減速機11と後輪側の減速機21の減速比割合が1:1である場合に比べて、高速で車両移動することができる。   Further, by setting the ratio of the reduction ratio of the front wheel side reduction gear 11 to the rear wheel side reduction gear 21 to 2 to 3: 1, the traction force during the bucket work on the front wheels is almost low. 2/3 to 3/4 (67 to 75%) of the maximum traction force in the drive mode, compared to the case where the reduction ratio ratio of the front wheel side reduction gear 11 and the rear wheel side reduction gear 21 is 1: 1, The traction force for bucket work is optimized. In addition, a flow rate 3 to 4 times that in the low-speed four-wheel drive mode acts on the hydraulic motor 20 on the rear wheel side, and the rotational speed (vehicle speed) is 3 to 4 times that in the low-speed four-wheel drive mode. The vehicle can move at a higher speed than when the ratio of the reduction ratio between the machine 11 and the reduction gear 21 on the rear wheel side is 1: 1.

以上のように牽引作業時に必要な最大牽引力、バケット作業時に必要な牽引力(前後輪牽引力配分)、並びに高速走行時に必要な牽引力を、変速機(例えば2速トランスミッション)を使用せずに達成することができる。   As described above, the maximum traction force required for traction work, the traction force required for bucket work (front and rear wheel traction force distribution), and the traction force required for high-speed travel can be achieved without using a transmission (for example, a 2-speed transmission). Can do.

本発明の第2の実施の形態を図3及び図4を用いて説明する。図3中、図1と同等の部材には同じ符号を付している。   A second embodiment of the present invention will be described with reference to FIGS. In FIG. 3, the same members as those in FIG.

図3において、本実施の形態のHST走行システはHST変速装置30Aと前輪走行装置12と後輪走行装置22とを備えている。   In FIG. 3, the HST travel system of the present embodiment includes an HST transmission 30 </ b> A, a front wheel travel device 12, and a rear wheel travel device 22.

HST変速装置30Aにおいて、2個の油圧モータ10,20の容量は等しく設定されている。また、走行装置12,22において、前輪側の減速機11は後輪側の減速機21より大きく設定されており、具体的には、前輪側の減速機11は後輪側の減速機21の2倍の減速比を持ち、前輪側の減速機11と後輪側の減速機21の減速比の割合は2:1となっている。この場合も、減速比割合は、前輪側の減速機11の減速比が後輪側の減速機21の減速比より大きければ(好ましくは、前輪側の減速機11と後輪側の減速機21の減速比の割合が2〜3:1の範囲であれば)、それ以外の割合であってもよい。   In the HST transmission 30A, the capacities of the two hydraulic motors 10 and 20 are set equal. Further, in the traveling devices 12 and 22, the front wheel side reduction gear 11 is set to be larger than the rear wheel side reduction gear 21, and specifically, the front wheel side reduction gear 11 is the rear wheel side reduction gear 21. The reduction ratio of the front wheel side reduction gear 11 and the rear wheel side reduction gear 21 is 2: 1. Also in this case, the reduction ratio ratio is such that the reduction ratio of the reduction gear 11 on the front wheel side is larger than the reduction ratio of the reduction gear 21 on the rear wheel side (preferably, the reduction gear 11 on the front wheel side and the reduction gear 21 on the rear wheel side. If the ratio of the reduction ratio is in the range of 2 to 3: 1), other ratios may be used.

HST変速装置30Aは、図1の主管路3に代え、油圧ポンプ1側の主管路3aと、主管路5,7側の別々の主管路3b,3cとを備えるとともに、主管路6,8側に主管路4に対して並列に接続された主管路4a,4bを備え、かつ図1の切換弁41に代え、主管路3a,4a,4bと主管路3b,3cとの間に設置された3位置切換弁(以下単に切換弁という)41Aを備えている。   The HST transmission 30A includes a main pipeline 3a on the hydraulic pump 1 side and separate main pipelines 3b and 3c on the main pipelines 5 and 7 side instead of the main pipeline 3 in FIG. 1 are provided between the main pipelines 3a, 4a, 4b and the main pipelines 3b, 3c, instead of the switching valve 41 of FIG. A three-position switching valve (hereinafter simply referred to as a switching valve) 41A is provided.

また、HST変速装置30Aは、図1の切換スイッチ42及びコントローラ43に代えて切換スイッチ42A及びコントローラ43Aを備え、かつ走行装置12,22の車軸13,23の回転速度(車軸速度)を検出する回転速度センサー51,52を有し、回転速度センサー51,52の検出信号はコントローラ43Aに入力される。   The HST transmission 30A includes a changeover switch 42A and a controller 43A in place of the changeover switch 42 and the controller 43 of FIG. 1, and detects the rotational speeds (axle speeds) of the axles 13 and 23 of the traveling devices 12 and 22. The rotation speed sensors 51 and 52 are provided, and the detection signals of the rotation speed sensors 51 and 52 are input to the controller 43A.

切換弁41Aは両端にソレノイド41Aa,41Abを有する電磁切換弁であり、ソレノイド41Aa,41Abに与えられる電気信号がいずれもOFFのときは図示の第1位置Aにあり、図示右側のソレノイド41Aaに与えられる電気信号がONになると図示の位置から図示右側の第2位置Bに切り換わり、図示左側のソレノイド41Abに与えられる電気信号がONになると図示の位置から図示左側の第3位置Cに切り換わる。切換弁41Aが第1位置Aにあるときは、主管路3aと主管路3b,3cが連通し、油圧ポンプ1からの吐出油は2つの油圧モータ10,20に供給され、2つの油圧モータ10,10が回転して前輪14と後輪24の両方が駆動される。つまり、低速4輪駆動モードとなる。切換弁41Aが第2位置Bに切り換わると、主管路3aと主管路3cとが連通しかつ主管路4aと主管路3bとが連通し、後輪側の油圧モータ20のみに油圧ポンプ1からの圧油が供給され、後輪24のみが駆動されるとともに、前輪側の油圧モータ10は、主管路5,6が連通するため、前輪14の回転とともに回転する。つまり、高速2輪駆動モードとなる。切換弁41Aが第3位置Cに切り換わると、主管路3aと主管路3bとが連通しかつ主管路4bと主管路3cとが連通し、前輪側の油圧モータ10のみに油圧ポンプ1からの圧油が供給され、前輪14のみが駆動されるとともに、後輪側の油圧モータ20は、主管路7,8が連通するため、後輪24の回転とともに回転する。この状態を中速2輪駆動モードという。   The switching valve 41A is an electromagnetic switching valve having solenoids 41Aa and 41Ab at both ends. When both electrical signals applied to the solenoids 41Aa and 41Ab are OFF, the switching valve 41A is at the first position A and is applied to the right solenoid 41Aa. When the electrical signal to be turned on is switched to the second position B on the right side of the figure from the position shown in the figure, and when the electrical signal applied to the solenoid 41Ab on the left side of the figure is turned on, the position is switched from the position to the third position C on the left side of the figure. . When the switching valve 41A is in the first position A, the main pipeline 3a communicates with the main pipelines 3b and 3c, and the oil discharged from the hydraulic pump 1 is supplied to the two hydraulic motors 10 and 20, and the two hydraulic motors 10 are supplied. , 10 rotate, and both the front wheel 14 and the rear wheel 24 are driven. That is, the low-speed four-wheel drive mode is set. When the switching valve 41A is switched to the second position B, the main pipeline 3a and the main pipeline 3c communicate with each other, the main pipeline 4a and the main pipeline 3b communicate with each other, and only the hydraulic motor 20 on the rear wheel side is connected to the hydraulic pump 1 The hydraulic oil 10 on the front wheel side rotates with the rotation of the front wheel 14 because the main pipelines 5 and 6 communicate with each other. That is, the high-speed two-wheel drive mode is set. When the switching valve 41A is switched to the third position C, the main pipeline 3a and the main pipeline 3b communicate with each other, the main pipeline 4b and the main pipeline 3c communicate with each other, and only the hydraulic motor 10 on the front wheel side is connected to the hydraulic pump 1 Pressure oil is supplied, only the front wheel 14 is driven, and the hydraulic motor 20 on the rear wheel side rotates with the rotation of the rear wheel 24 because the main pipelines 7 and 8 are in communication. This state is called a medium speed two-wheel drive mode.

切換スイッチ42Aは低速、高速、中速の3位置に切り換え可能であり、コントローラ43Aは、切換スイッチ42Aの信号と回転速度センサー51,52の検出信号に基づいて切換弁41Aの切り換えを制御する。   The changeover switch 42A can be changed over to three positions of low speed, high speed, and medium speed, and the controller 43A controls the changeover of the changeover valve 41A based on the signal of the changeover switch 42A and the detection signals of the rotational speed sensors 51 and 52.

図4は、コントローラ43Aの処理内容を示すフローチャートである。   FIG. 4 is a flowchart showing the processing contents of the controller 43A.

コントローラ43Aは、切換スイッチ42Aからの信号に基づいて切換スイッチ42Aがどの位置にあるかを判断し(ステップS10)、切換スイッチ42Aが低速位置にあるときは低速制御処理をし(ステップS20)、切換スイッチ42Aが高速位置に切り換わると、切換弁41Aのソレノイド41Aaに与える電気信号をONとして切換弁41Aを第2位置Bに切り換え(ステップS30)、切換スイッチ42Aが中速位置に切り換わると、切換弁41Aのソレノイド41Abに与える電気信号をONとして切換弁41Aを第3位置Cに切り換える(ステップS40)。切換スイッチ42Aが低速位置にあるときの低速制御処理では、回転速度センサー51,52からの信号に基づき前輪走行装置12の車軸13と後輪走行装置22の車軸23との速度差を検知し、この速度差が所定値以下であるときは、切換弁41Aのソレノイド41Aa,41bに与える電気信号をいずれもOFFとし、速度差が所定値を超えるとソレノイド41Aa,41bのいずれかに与える電気信号をONとし、油圧モータ10,20のうち回転速度が大なる側の油圧モータへの圧油の供給を遮断するよう切換弁41Aを第2位置B、第3位置Cのいずれかに切り換える。   The controller 43A determines the position of the changeover switch 42A based on the signal from the changeover switch 42A (step S10). When the changeover switch 42A is in the low speed position, the controller 43A performs a low speed control process (step S20). When the changeover switch 42A is switched to the high speed position, the electrical signal applied to the solenoid 41Aa of the changeover valve 41A is turned ON to switch the changeover valve 41A to the second position B (step S30), and the changeover switch 42A is switched to the medium speed position. Then, the electric signal applied to the solenoid 41Ab of the switching valve 41A is turned ON to switch the switching valve 41A to the third position C (step S40). In the low speed control process when the changeover switch 42A is in the low speed position, a speed difference between the axle 13 of the front wheel travel device 12 and the axle 23 of the rear wheel travel device 22 is detected based on signals from the rotational speed sensors 51 and 52. When this speed difference is less than or equal to a predetermined value, both electrical signals applied to the solenoids 41Aa and 41b of the switching valve 41A are turned OFF, and when the speed difference exceeds a predetermined value, an electrical signal applied to either the solenoids 41Aa and 41b. The switching valve 41A is switched to either the second position B or the third position C so as to cut off the supply of pressure oil to the hydraulic motor having the higher rotational speed among the hydraulic motors 10 and 20.

図5は低速制御処理の詳細を示すフローチャートである。   FIG. 5 is a flowchart showing details of the low speed control process.

コントローラ43Aは、回転速度センサー51,52からの信号に基づいて前輪走行装置12の車軸13の回転速度と後輪走行装置22の車軸23の回転速度との速度差ΔS(ΔS=前輪車軸速度−後輪車軸速度)を計算し(ステップS100)、この速度差ΔSが所定値以下であれば処理を終了し(ステップS120)、切換弁41Aのソレノイド41Aa,41bに与える電気信号をいずれもOFFとする。速度差ΔSが所定値を超えると、更に、その速度差ΔSが負の値かどうか(つまり前輪車軸速度より後輪車軸速度の方が大きいかどうか)を判定し(ステップS130)、Yesであれば(つまり前輪車軸速度より後輪車軸速度の方が大きければ)切換弁41Aのソレノイド41Abに与える電気信号をONとして切換弁41Aを第3位置Cに切り換(ステップS140)、Noであれば(つまり後輪車軸速度より前輪車軸速度の方が大きければ)切換弁41Aのソレノイド41Aaに与える電気信号をONとして切換弁41Aを第2位置Bに切り換える(ステップS150)。ステップS110において、所定値としては、通常走行時の前後輪の速度変動を考慮し、0に近い適当な値を設定する。   Based on the signals from the rotational speed sensors 51 and 52, the controller 43A determines a speed difference ΔS between the rotational speed of the axle 13 of the front wheel travel device 12 and the rotational speed of the axle 23 of the rear wheel travel device 22 (ΔS = front wheel axle speed− (Rear wheel axle speed) is calculated (step S100), and if the speed difference ΔS is equal to or smaller than a predetermined value, the process is terminated (step S120), and the electrical signals applied to the solenoids 41Aa and 41b of the switching valve 41A are both OFF. To do. If the speed difference ΔS exceeds a predetermined value, it is further determined whether the speed difference ΔS is a negative value (that is, whether the rear wheel axle speed is larger than the front wheel axle speed) (step S130). If the rear wheel axle speed is greater than the front wheel axle speed (ie, the electrical signal applied to the solenoid 41Ab of the switching valve 41A is turned ON to switch the switching valve 41A to the third position C (step S140), In other words, if the front wheel axle speed is greater than the rear wheel axle speed, the electrical signal applied to the solenoid 41Aa of the switching valve 41A is turned on to switch the switching valve 41A to the second position B (step S150). In step S110, an appropriate value close to 0 is set as the predetermined value in consideration of the speed fluctuation of the front and rear wheels during normal driving.

以上のように構成した本実施の形態では、オペレータが切換スイッチ42Aを中速位置に操作することにより、低速4輪駆動モードと高速2輪駆動モードに加えて中速2輪駆動モードを選択可能である。   In the present embodiment configured as described above, the operator can select the medium-speed two-wheel drive mode in addition to the low-speed four-wheel drive mode and the high-speed two-wheel drive mode by operating the changeover switch 42A to the medium-speed position. It is.

つまり、切換スイッチ42Aが低速位置にあり、切換弁41Aは図示の第1位置Aにあるときは低速4輪駆動モードとなり、切換スイッチ42Aを高速位置に操作し、切換弁41Aを図示の位置から第2位置Bに切り換えると、高速2輪駆動モードとなり、切換スイッチ42Aを中速位置に操作し、切換弁41Aを図示の位置から第3位置Cに切り換えると、中速2輪駆動モードとなる。   That is, when the changeover switch 42A is in the low speed position and the changeover valve 41A is in the first position A shown in the figure, the low speed four-wheel drive mode is set, the changeover switch 42A is operated to the high speed position, and the changeover valve 41A is moved from the position shown in the figure. When switched to the second position B, the high-speed two-wheel drive mode is set. When the changeover switch 42A is operated to the medium-speed position and the switching valve 41A is switched from the illustrated position to the third position C, the medium-speed two-wheel drive mode is set. .

低速4輪駆動モードでは、前述したように、前輪側の減速機11と後輪側の減速機21の減速比の割合は2:1であるため、前輪側の油圧モータ10には後輪側の油圧モータ20の2倍の流量が作用し、結果として前後2:1の牽引力分配状態で走行が可能となる。高速2輪駆動モードでは、油圧ポンプ1の全ての圧油が後輪側の油圧モータ20に流入するため、低速4輪駆動モードの4輪駆動状態に対して3倍の回転速度(車速)が得られる。   In the low-speed four-wheel drive mode, as described above, the ratio of the reduction ratio between the front wheel side reduction gear 11 and the rear wheel side reduction gear 21 is 2: 1. As a result, the vehicle can travel in a traction force distribution state of 2: 1 in the front-rear direction. In the high-speed two-wheel drive mode, all the pressure oil from the hydraulic pump 1 flows into the hydraulic motor 20 on the rear wheel side, so that the rotation speed (vehicle speed) is three times that of the four-wheel drive state in the low-speed four-wheel drive mode. can get.

中速2輪駆動モードでは、油圧ポンプ1の全ての圧油が前輪側の油圧モータ10に流入するため、低速4輪駆動モードの1.5(3/2)倍、高速2輪駆動モードの1/2の回転速度(車速)を得ることができる。また、このときの走行駆動トルクは前輪側の油圧モータ10のみで与えられるため、低速4輪駆動モードにおける駆動トルクの2/3となる。つまり、中速2輪駆動モードにおける牽引力は低速4輪駆動モードで得られる牽引力(最大牽引力)の2/3となる。   In the medium-speed two-wheel drive mode, all the hydraulic oil from the hydraulic pump 1 flows into the front-wheel hydraulic motor 10, and therefore 1.5 (3/2) times that of the low-speed four-wheel drive mode. A half rotation speed (vehicle speed) can be obtained. Further, since the traveling drive torque at this time is given only by the hydraulic motor 10 on the front wheel side, it becomes 2/3 of the drive torque in the low-speed four-wheel drive mode. That is, the tractive force in the medium speed two-wheel drive mode is 2/3 of the tractive force (maximum tractive force) obtained in the low speed four-wheel drive mode.

ラフテレンリフトトラックには前述したように牽引作業、バケット作業、荷役作業などの各種作業がある。本実施の形態のHST走行システムをラフテレンリフトトラックに適用するとき、牽引作業は低速4輪駆動モードで行い、高速での車両移動は高速2輪駆動モードで行い、荷役作業は中速2輪駆動モードで行う。この場合、牽引作業、バケット作業、高速での車両移動では、第1の実施の形態で説明したのと同様に適切な牽引力と車速が得られる。   As described above, the rough terrain lift truck has various operations such as a towing operation, a bucket operation, and a cargo handling operation. When the HST traveling system of this embodiment is applied to a rough terrain lift truck, the towing operation is performed in the low-speed four-wheel drive mode, the vehicle movement at high speed is performed in the high-speed two-wheel drive mode, and the cargo handling operation is performed in the medium-speed two-wheel drive mode. Perform in drive mode. In this case, in traction work, bucket work, and vehicle movement at a high speed, an appropriate traction force and vehicle speed can be obtained as described in the first embodiment.

また、2速のトランスミッション(変速機)を使用する従来のHST走行システムでは、荷役作業を行う場合は、トランスミッションを低速ギアから高速ギアのいずれかを選択して行わざるを得なかった。しかし、低速ギアを選択した場合は、重牽引作業向けに牽引力重視のギア比であったため速度が足りず、エンジンが高回転で稼動するため効率が悪かった。また、高速ギアを選択した場合は、最高速度重視で逆に牽引力が足りないため、効率良く機械を駆動する速度と牽引力を得ることができなかった。   Further, in a conventional HST traveling system using a two-speed transmission (transmission), when carrying out cargo handling work, the transmission must be selected from either a low speed gear or a high speed gear. However, when the low-speed gear was selected, the gear ratio focused on the traction force for heavy traction work, the speed was insufficient, and the efficiency was poor because the engine operated at high speed. In addition, when the high-speed gear was selected, the maximum speed was emphasized and the traction force was insufficient. Therefore, the speed and traction force for driving the machine efficiently could not be obtained.

本実施の形態においては、前輪14のみを駆動する中速2輪駆動モードでは低速4輪駆動モードと高速2輪駆動モードのほぼ中間の速度と牽引力(低速4輪駆動モードの3/2倍、高速2輪駆動モードの1/2の回転速度(車速)と低速4輪駆動モードの2/3、高速2輪駆動モードの2倍の牽引力)が得られるため、作業効率が向上するだけでなく、オペレータの疲労(騒音、振動)も軽減できる。また、フォーク等の作業機は車体前部にあるため、荷役作業時には主に前輪に車重が作用し、作業性を損なうこともない。   In the present embodiment, in the medium-speed two-wheel drive mode in which only the front wheels 14 are driven, the speed and tractive force approximately halfway between the low-speed four-wheel drive mode and the high-speed two-wheel drive mode (3/2 times the low-speed four-wheel drive mode, Rotational speed (vehicle speed) that is 1/2 that of the high-speed two-wheel drive mode, 2/3 that of the low-speed four-wheel drive mode, and double traction force that is twice that of the high-speed two-wheel drive mode. Operator fatigue (noise, vibration) can also be reduced. In addition, since the working machine such as a fork is located at the front part of the vehicle body, the vehicle weight mainly acts on the front wheels during cargo handling work, and the workability is not impaired.

また、本実施の形態では、低速4輪駆動モードで走行時、作業中の路面状況や前後輪の軸重配分の変化によって、前後いずれかの車軸が空転状態になった場合、回転速度センサー51,52からの情報をコントローラ43が受信し、その差動状態を判断して切換弁41Aを駆動し、空転の発生していない前輪又は後輪側の油圧モータにのみ圧油を供給する。このような切換弁41Aの切り換え制御により、低速4輪駆動モードでの車輪空転時のオープンデフの状態を回避し、悪路走破性を向上することができる。   Further, in the present embodiment, when traveling in the low-speed four-wheel drive mode, when either the front or rear axle is in an idle state due to a change in road surface conditions during work or a change in the axle load distribution of the front and rear wheels, the rotational speed sensor 51 , 52 receives the information from the controller 52, judges the differential state, drives the switching valve 41A, and supplies the pressure oil only to the front-wheel or rear-wheel hydraulic motor where no idling occurs. By such switching control of the switching valve 41A, it is possible to avoid an open differential state at the time of wheel idling in the low-speed four-wheel drive mode, and to improve rough road running performance.

以上のように本実施の形態によれば、第1の実施の形態と同じ効果が得られるとともに、中速2輪駆動モードで低速4輪駆動モードと高速2輪駆動モードのほぼ中間の速度と牽引力が得られるため、荷役作業等では適切な走行速度と牽引力が得られ、作業効率が向上する等の効果が得られる。   As described above, according to the present embodiment, the same effects as those of the first embodiment can be obtained, and the intermediate speed between the low-speed four-wheel drive mode and the high-speed two-wheel drive mode in the medium-speed two-wheel drive mode can be obtained. Since traction force can be obtained, an appropriate traveling speed and traction force can be obtained in cargo handling work and the like, and effects such as improvement in work efficiency can be obtained.

また、低速4輪駆動モードでの車輪空転時のオープンデフの状態を回避し、悪路走破性を向上することができる。   Further, it is possible to avoid an open differential state when the wheels are idling in the low-speed four-wheel drive mode, and to improve rough road running performance.

なお、以上の実施の形態では、2つの油圧モータ10,20の容量を等しくし、前輪側の減速機11の減速比を後輪側の減速機21の減速比より大きく(好ましくは2〜3:1、より好ましくは2:1に)設定したが、その目的は、油圧モータと減速機により前後輪の適切な牽引力配分を得るためであるので、前輪走行装置の駆動トルクを後輪走行装置の駆動トルクよりも大きく設定できれば、他の構成を採用してもよい。例えば、前輪側の減速機11の減速比と後輪側の減速機21の減速比を同じ(減速比割合を1:1)とし、前輪側の油圧モータ10の容量を後輪側の油圧モータ20の容量より大きく(或いは減速比割合を好ましくは2〜3:1、より好ましくは2:1に設定)してもよいし、減速比の選択と容量の選択を組み合わせて、結果的に、前輪走行装置の駆動トルクが後輪走行装置の駆動トルクよりも大きくなるようにしていもよい。   In the embodiment described above, the capacities of the two hydraulic motors 10 and 20 are made equal, and the reduction ratio of the reduction gear 11 on the front wheel side is larger than the reduction ratio of the reduction gear 21 on the rear wheel side (preferably 2 to 3). : 1, more preferably 2: 1), because the purpose is to obtain an appropriate traction distribution of the front and rear wheels by the hydraulic motor and the speed reducer, the driving torque of the front wheel traveling device is set to the rear wheel traveling device. Other configurations may be adopted as long as the driving torque can be set to be larger than the above. For example, the reduction ratio of the reduction gear 11 on the front wheel side and the reduction ratio of the reduction gear 21 on the rear wheel side are the same (reduction ratio ratio is 1: 1), and the capacity of the hydraulic motor 10 on the front wheel side is the hydraulic motor on the rear wheel side. It may be larger than 20 capacity (or the reduction ratio ratio is preferably set to 2-3: 1, more preferably 2: 1), or the combination of the selection of the reduction ratio and the selection of the capacity, The driving torque of the front wheel traveling device may be larger than the driving torque of the rear wheel traveling device.

また、第2の実施の形態では、切換スイッチ42Aが低速、高速、中速の3位置を有する場合に切換弁41Aを設け、低速4輪駆動モードでの車輪空転時のオープンデフの状態を回避したが、第1の実施の形態においてそのような制御を適用しても良い。この場合、第1の実施の形態の図1における切換弁41とコントローラ43を図3の切換弁41Aとコントローラ43Aに変え、コントローラ43Aで切換スイッチ42が低速位置にあるとき図5に示し低速制御処理を行えばよい。   Further, in the second embodiment, when the changeover switch 42A has three positions of low speed, high speed, and medium speed, a switching valve 41A is provided to avoid an open differential state at the time of wheel idling in the low speed four-wheel drive mode. However, such control may be applied in the first embodiment. In this case, the switching valve 41 and the controller 43 in FIG. 1 of the first embodiment are replaced with the switching valve 41A and the controller 43A in FIG. 3, and when the selector switch 42 is in the low speed position by the controller 43A, the low speed control shown in FIG. What is necessary is just to process.

また、上記第1及び第2の実施の形態では、前輪側の油圧モータ10と減速機11は直結としたが、前輪側の油圧モータ10と減速機11との間にクラッチを設け、切換弁41,41Aを油圧ポンプ1と油圧モータ10を切り離す位置(遮断位置或いは第2位置B)に切り換えると同時にクラッチをOFFにしてもよく、これにより高速2輪駆動モードで走行時の油圧モータ10の連れ周りが無くなるため、走行負荷が減少し、エネルギ損失を低減できる。   In the first and second embodiments, the front wheel side hydraulic motor 10 and the speed reducer 11 are directly connected. However, a clutch is provided between the front wheel side hydraulic motor 10 and the speed reducer 11 to provide a switching valve. 41, 41A may be switched to a position (disengagement position or second position B) where the hydraulic pump 1 and the hydraulic motor 10 are disconnected, and the clutch may be turned off at the same time, so that the hydraulic motor 10 during traveling in the high-speed two-wheel drive mode Since there is no accompaniment, traveling load is reduced and energy loss can be reduced.

本発明の第1の実施の形態によるHST走行システムの油圧構成図である。1 is a hydraulic configuration diagram of an HST traveling system according to a first embodiment of the present invention. FIG. 本発明のHST走行システムが搭載される作業機械の一例として、ラフテレンリフトトラックの外観を示す図である。It is a figure which shows the external appearance of a rough terrain lift truck as an example of the working machine with which the HST traveling system of this invention is mounted. 本発明の第1の実施の形態によるHST走行システムの油圧構成図である。1 is a hydraulic configuration diagram of an HST traveling system according to a first embodiment of the present invention. FIG. コントローラの処理内容を示すフローチャートである。It is a flowchart which shows the processing content of a controller. 切換スイッチが低速位置にあるときのコントローラの処理内容(低速制御処理)を示すフローチャートである。It is a flowchart which shows the processing content (low speed control process) of a controller when a changeover switch exists in a low speed position.

符号の説明Explanation of symbols

1 油圧ポンプ
2 エンジン
3,4,5,6,7,8 主管路
3a,3b,3c,4a,4b 主管路
10 (前輪側)油圧モータ
11 減速機
12 走行装置
13 車軸
14 前輪
20 (後輪側)油圧モータ
21 減速機
22 走行装置
23 車軸
24 後輪
30 HST変速装置
41 切換弁
41A 切換弁
42 切換スイッチ
42A 切換スイッチ
43 コントローラ
43A コントローラ
51,52 回転速度センサー
DESCRIPTION OF SYMBOLS 1 Hydraulic pump 2 Engine 3, 4, 5, 6, 7, 8 Main pipe line 3a, 3b, 3c, 4a, 4b Main pipe line 10 (front wheel side) Hydraulic motor 11 Reduction gear 12 Traveling device 13 Axle 14 Front wheel 20 (Rear wheel) Side) Hydraulic motor 21 Reducer 22 Traveling device 23 Axle 24 Rear wheel 30 HST transmission 41 Switching valve 41A Switching valve 42 Switching switch 42A Switching switch 43 Controller 43A Controller 51, 52 Rotational speed sensor

Claims (8)

油圧ポンプと、
この油圧ポンプに閉回路接続されかつ互いに並列接続され、前記油圧ポンプから吐出された圧油により駆動される第1及び第2油圧モータと、
前記第1油圧モータに第1減速機を介して接続された前輪走行装置と、
前記第2油圧モータに第2減速機を介して接続された後輪走行装置と、
前記前輪走行装置と後輪走行装置の両方を駆動する低速4輪駆動モードと、前記後輪走行装置のみを駆動する高速2輪駆動モードとに切り換える第1制御手段とを備え、
前記前輪走行装置の駆動トルクを前記後輪走行装置の駆動トルクよりも大きく設定したことを特徴とする作業機械のHST走行システム。
A hydraulic pump;
First and second hydraulic motors connected to the hydraulic pump in a closed circuit and connected in parallel to each other and driven by pressure oil discharged from the hydraulic pump;
A front wheel travel device connected to the first hydraulic motor via a first speed reducer;
A rear wheel travel device connected to the second hydraulic motor via a second speed reducer;
First control means for switching between a low-speed four-wheel drive mode for driving both the front wheel travel device and the rear wheel travel device and a high-speed two-wheel drive mode for driving only the rear wheel travel device;
An HST traveling system for a work machine, wherein a driving torque of the front wheel traveling device is set larger than a driving torque of the rear wheel traveling device.
請求項1記載の作業機械のHST走行システムにおいて、
前記前輪走行装置の駆動トルクと前記後輪走行装置の駆動トルクの比を2〜3:1の範囲に設定したことを特徴とする作業機械のHST走行システム。
In the HST traveling system of the working machine according to claim 1,
A working machine HST traveling system, wherein a ratio of a driving torque of the front wheel traveling device and a driving torque of the rear wheel traveling device is set in a range of 2 to 3: 1.
請求項1記載の作業機械のHST走行システムにおいて、
前記前輪走行装置の駆動トルクと前記後輪走行装置の駆動トルクの比を2:1に設定したことを特徴とする作業機械のHST走行システム。
In the HST traveling system of the working machine according to claim 1,
An HST traveling system for a working machine, wherein a ratio of a driving torque of the front wheel traveling device and a driving torque of the rear wheel traveling device is set to 2: 1.
油圧ポンプと、
この油圧ポンプに閉回路接続されかつ互いに並列接続され、前記油圧ポンプから吐出された圧油により駆動される第1及び第2油圧モータと、
前記第1油圧モータに第1減速機を介して接続された前輪走行装置と、
前記第2油圧モータに第2減速機を介して接続された後輪走行装置と、
前記前輪走行装置と後輪走行装置の両方を駆動する低速4輪駆動モードと、前記後輪走行装置のみを駆動する高速2輪駆動モードとに切り換える第1制御手段とを備え、
前記第1及び第2油圧モータの容量を等しくし、前記第1減速機の減速比を前記第2減速機の減速比よりも大きくしたことを特徴とする作業機械のHST走行システム。
A hydraulic pump;
First and second hydraulic motors connected to the hydraulic pump in a closed circuit and connected in parallel to each other and driven by pressure oil discharged from the hydraulic pump;
A front wheel travel device connected to the first hydraulic motor via a first speed reducer;
A rear wheel travel device connected to the second hydraulic motor via a second speed reducer;
First control means for switching between a low-speed four-wheel drive mode for driving both the front wheel travel device and the rear wheel travel device and a high-speed two-wheel drive mode for driving only the rear wheel travel device;
An HST traveling system for a working machine, wherein the capacities of the first and second hydraulic motors are made equal, and a reduction ratio of the first reduction gear is made larger than a reduction ratio of the second reduction gear.
請求項4記載の作業機械のHST走行システムにおいて、
前記第1減速機の減速比と前記第2減速機の減速比の比を2〜3:1の範囲に設定したことを特徴とする作業機械のHST走行システム。
In the HST traveling system of the working machine according to claim 4,
A working machine HST travel system, wherein a ratio of a reduction ratio of the first reduction gear to a reduction ratio of the second reduction gear is set in a range of 2 to 3: 1.
請求項4記載の作業機械のHST走行システムにおいて、
前記第1減速機の減速比と前記第2減速機の減速比の比を2:1に設定したことを特徴とする作業機械のHST走行システム。
In the HST traveling system of the working machine according to claim 4,
A working machine HST travel system, wherein a ratio of a reduction ratio of the first reduction gear to a reduction ratio of the second reduction gear is set to 2: 1.
請求項1又は4記載の作業機械のHST走行システムにおいて、
前記油圧ポンプと前記第1及び第2油圧モータを接続する閉回路中に配置された切換弁と、
前記前輪走行装置と前記後輪走行装置との速度差を検知し、この速度差が所定値を超えると前記切換弁を切り換えて前記第1油圧モータと第2油圧モータのうち回転速度が大なる側の油圧モータへの圧油の供給を遮断する第2制御手段とを更に備えることを特徴とする作業機械のHST走行システム。
In the HST traveling system of the working machine according to claim 1 or 4,
A switching valve disposed in a closed circuit connecting the hydraulic pump and the first and second hydraulic motors;
A speed difference between the front wheel traveling device and the rear wheel traveling device is detected, and when the speed difference exceeds a predetermined value, the switching valve is switched to increase the rotational speed of the first hydraulic motor and the second hydraulic motor. And a second control means for shutting off the supply of the pressure oil to the side hydraulic motor.
請求項1又は4記載の作業機械のHST走行システムにおいて、
前記第1制御手段は、前記前輪走行装置のみを駆動する中速2輪駆動モードを更に有し、前記低速4輪駆動モードと高速2輪駆動モードと中速2輪駆動モードのいずれかに切り換え可能であることを特徴とする作業機械のHST走行システム。
In the HST traveling system of the working machine according to claim 1 or 4,
The first control means further has a medium-speed two-wheel drive mode for driving only the front wheel travel device, and switches to any one of the low-speed four-wheel drive mode, the high-speed two-wheel drive mode, and the medium-speed two-wheel drive mode. An HST traveling system for a work machine, which is possible.
JP2005109115A 2005-04-05 2005-04-05 HST traveling system for work machines Expired - Fee Related JP4606228B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005109115A JP4606228B2 (en) 2005-04-05 2005-04-05 HST traveling system for work machines
PCT/JP2006/306468 WO2006109571A1 (en) 2005-04-05 2006-03-29 Hst traveling system of work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005109115A JP4606228B2 (en) 2005-04-05 2005-04-05 HST traveling system for work machines

Publications (2)

Publication Number Publication Date
JP2006290009A true JP2006290009A (en) 2006-10-26
JP4606228B2 JP4606228B2 (en) 2011-01-05

Family

ID=37086853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109115A Expired - Fee Related JP4606228B2 (en) 2005-04-05 2005-04-05 HST traveling system for work machines

Country Status (2)

Country Link
JP (1) JP4606228B2 (en)
WO (1) WO2006109571A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225504A (en) * 2011-04-15 2012-11-15 Naoya Togashi Four-wheel drive vehicle using rotary pump
JP2019049298A (en) * 2017-09-08 2019-03-28 いすゞ自動車株式会社 Hydraulic mechanical continuously variable transmission

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416864A (en) * 2011-10-11 2012-04-18 中联重科股份有限公司 Vehicle
CN103171428B (en) * 2012-12-24 2016-08-03 三一重工股份有限公司 The method and apparatus of a kind of buffer switch valve shift shock and road surface walking machine
GB2531767A (en) * 2014-10-29 2016-05-04 Bamford Excavators Ltd Working Machine
GB2531762A (en) 2014-10-29 2016-05-04 Bamford Excavators Ltd Working machine
CN105691601A (en) * 2016-01-28 2016-06-22 北京航空航天大学 Aircraft propelling device based on hydraulic motor and propelling control system
CN107605829A (en) * 2017-10-31 2018-01-19 江苏谷登工程机械装备有限公司 A kind of hydraulic closed multi-motor speed control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345105A (en) * 2001-05-14 2002-11-29 Toyota Motor Corp Electric vehicle
JP2003025862A (en) * 2001-07-13 2003-01-29 Tochigi Fuji Ind Co Ltd 4-wheel-drive system
JP2004210051A (en) * 2002-12-27 2004-07-29 Kanzaki Kokyukoki Mfg Co Ltd Driving apparatus of traveling vehicle
JP2004210215A (en) * 2003-01-08 2004-07-29 Kanzaki Kokyukoki Mfg Co Ltd Travel drive device, and vehicle equipped therewith

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082270A (en) * 1994-06-21 1996-01-09 Kanzaki Kokyukoki Mfg Co Ltd Four-wheel drive unit for work vehicle
JP3588664B2 (en) * 1996-05-24 2004-11-17 日産自動車株式会社 Four-wheel drive vehicles
JP2004237776A (en) * 2003-02-03 2004-08-26 Honda Motor Co Ltd Power transmission device of four-wheel drive car

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345105A (en) * 2001-05-14 2002-11-29 Toyota Motor Corp Electric vehicle
JP2003025862A (en) * 2001-07-13 2003-01-29 Tochigi Fuji Ind Co Ltd 4-wheel-drive system
JP2004210051A (en) * 2002-12-27 2004-07-29 Kanzaki Kokyukoki Mfg Co Ltd Driving apparatus of traveling vehicle
JP2004210215A (en) * 2003-01-08 2004-07-29 Kanzaki Kokyukoki Mfg Co Ltd Travel drive device, and vehicle equipped therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225504A (en) * 2011-04-15 2012-11-15 Naoya Togashi Four-wheel drive vehicle using rotary pump
JP2019049298A (en) * 2017-09-08 2019-03-28 いすゞ自動車株式会社 Hydraulic mechanical continuously variable transmission

Also Published As

Publication number Publication date
JP4606228B2 (en) 2011-01-05
WO2006109571A1 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4606228B2 (en) HST traveling system for work machines
JP4859379B2 (en) HST traveling system for work machines
US6189641B1 (en) Four-wheel hydraulic drive system for working vehicle
US9592733B2 (en) Working machine
US10119247B2 (en) Working machine
US9994105B2 (en) Working machine
US20200208376A1 (en) Working machine
JP5800846B2 (en) Driving control device for wheeled work vehicle
JPH1044735A (en) Suspension device and its controlling method in excavation working vehicle
JP2009293631A (en) Hydraulic system for working machine
US8504249B2 (en) Automatic control of mechanical front wheel drive using speed ratio
JP4570285B2 (en) Tractor
US8504250B2 (en) Momentary activation of mechanical front wheel drive
JP4730551B2 (en) Work vehicle
JP4084482B2 (en) Tractor transmission
JP2020165501A (en) Wheel type work vehicle
JP7283237B2 (en) work vehicle
JPH065934Y2 (en) Parking brake operation part of work vehicle
US20220235535A1 (en) Working Machine
EP4286708A1 (en) Power transmitting device for vehicle
JP2609001B2 (en) Vehicle travel control device
JP2021146757A (en) Work vehicle
JP2006281869A (en) Differential lock control device of working vehicle
JP2000170211A (en) Industrial vehicle
JPH06298117A (en) Steering device of combine-harvester and the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070524

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20100713

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20101005

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20131015

LAPS Cancellation because of no payment of annual fees