WO2006109571A1 - Hst traveling system of work machine - Google Patents

Hst traveling system of work machine Download PDF

Info

Publication number
WO2006109571A1
WO2006109571A1 PCT/JP2006/306468 JP2006306468W WO2006109571A1 WO 2006109571 A1 WO2006109571 A1 WO 2006109571A1 JP 2006306468 W JP2006306468 W JP 2006306468W WO 2006109571 A1 WO2006109571 A1 WO 2006109571A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
wheel
drive mode
wheel drive
hst
Prior art date
Application number
PCT/JP2006/306468
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Sugaya
Tsukasa Toyooka
Hidetoshi Satake
Kazuhiro Ichimura
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Publication of WO2006109571A1 publication Critical patent/WO2006109571A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/44Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation
    • F16H61/444Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation by changing the number of pump or motor units in operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4069Valves related to the control of neutral, e.g. shut off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/44Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/10Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of fluid gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels

Definitions

  • the present invention relates to an HST traveling system for work machines, and in particular, an HST (Hydro-Static Transmission) in which a hydraulic pump and a traveling motor are connected in a closed circuit, such as a rough terrain lift truck, a wheel loader, and a wheeled hydraulic excavator. It relates to an HST traveling system for work machines with a hydraulic traveling circuit.
  • HST Hydro-Static Transmission
  • a conventional HST traveling system has one hydraulic pump and one hydraulic motor connected in a closed circuit, and the traveling device is driven by the one hydraulic motor. It is common to do.
  • the hydraulic motor is connected to the front and rear wheels via a transmission and a propeller shaft, and simultaneously drives the front and rear wheels by rotating the propeller shaft.
  • one hydraulic pump is connected in parallel to two hydraulic motors in a closed circuit, and 2 Some drive the driving device with two hydraulic motors.
  • the two hydraulic motors are connected to the front and rear wheels via a speed reducer and a propeller shaft, and simultaneously drive the front and rear wheels by rotating the propeller shaft.
  • one hydraulic motor is connected to the speed reducer via a clutch, and can be switched between low speed (high torque) mode (clutch ON) and high speed mode (clutch OFF) by controlling the clutch ONZOFF. The machine is unnecessary.
  • one hydraulic pump is connected in parallel to two hydraulic motors in a closed circuit, two hydraulic motors are connected to the front wheels and the rear wheels, respectively, and the front wheels and the rear wheels are separated.
  • One driven by a hydraulic motor is known.
  • the front and rear wheels are set to high torque at low speeds at low speed, and the front wheels are set to low torque and the rear wheels are set to high torque at high speeds.
  • wheel drive the braking force is transmitted hydraulically to the front wheels when driving, and the rear wheels are driven when turning.
  • the two-wheel drive prevents the front wheels from dragging when turning.
  • a constant ratio diversion valve is provided at the oil supply / discharge oil port of the hydraulic pump, a shuttle valve is provided between the main lines on the front wheel side hydraulic motor side, and a high pressure relief valve is provided on the output side of the shuttle valve.
  • a proof valve and a low-pressure relief valve are connected in parallel.
  • GB2136371A in an agricultural machine HST traveling system, one of two hydraulic motors is configured as a small-capacity auxiliary motor, and this auxiliary motor is connected to the front or rear wheel via a clutch and a speed reducer.
  • An on-off valve is provided between the hydraulic pump and the auxiliary motor, and the connection between the auxiliary motor and the hydraulic pump or the auxiliary motor and the wheel is cut off by simultaneously switching the clutch and the on-off valve.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-306768
  • Patent Document 2 Japanese Patent Laid-Open No. 11-166623
  • Patent Document 3 Japanese Patent Laid-Open No. 11-230333
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-1127
  • Patent Document 5 GB2136371A
  • a hydraulic motor is connected to front and rear wheels via a transmission and a propeller shaft, and the front and rear wheels are simultaneously rotated by rotating the propeller shaft. Since this is a drive system, a transmission and a propeller shaft are essential as a traveling device.
  • the transmission and the propeller shaft are located on the lower side of the driving type, and the propeller shaft extends back and forth under the engine and the driver's seat and is connected to the front and rear wheels.
  • a force with packet work as a typical work performed by a rough terrain lift truck H
  • the torque distribution (traction distribution) of the front and rear wheels is usually set to 1: 1.
  • the vehicle weight during bucket work hardly applies any force to the front wheels, so the traction force during packet work is half the maximum traction force of the front and rear wheels combined. Therefore, the traction for packet work is too small.
  • the HST traveling system described in GB2136371A it is possible to switch to two-wheel drive that drives only the main hydraulic motor (hydraulic motor that is not an auxiliary motor) during high-speed traveling by switch operation.
  • the rotational speed (vehicle speed) is not twice that of the four-wheel drive state, which is insufficient as a vehicle speed for moving the vehicle at high speed.
  • An object of the present invention is to provide an HST traveling system for a work machine that does not require a transmission and a propeller shaft and that can obtain speed and traction force suitable for various operations without using a transmission. is there.
  • the present invention provides a hydraulic pump, a pressure connected to the hydraulic pump in a closed circuit and connected in parallel to each other, and the pressure discharged from the hydraulic pump.
  • First and second hydraulic motors driven by oil, and a first reduction gear connected to the first hydraulic motor.
  • a first control means for switching to a high-speed two-wheel drive mode for driving only the rear wheel travel device, wherein the drive torque of the front wheel travel device is set larger than the drive torque of the rear wheel travel device.
  • the front wheel traveling device and the rear wheel traveling device are driven by separate hydraulic motors, so that a propeller shaft is not required.
  • the HST traveling system of the present invention when the HST traveling system of the present invention is applied to a multi-purpose work machine such as a rough terrain lift truck and the towing work is performed in the low-speed four-wheel drive mode, the front-wheel and the rear-wheel four-wheel drive can be obtained.
  • the maximum traction force By setting the maximum traction force appropriately, the maximum traction force necessary for traction work can be obtained.
  • the driving torque of the front wheel traveling device is set to be larger than the driving torque of the rear wheel traveling device, so the vehicle weight is mostly applied to the front wheels. It is larger than half of the maximum traction force in the low-speed four-wheel drive mode (total traction force of the front and rear wheels), and it is possible to obtain traction force suitable for packet work.
  • the driving torque of the front wheel traveling device is set to be larger than the driving torque of the rear wheel traveling device.
  • the flow rate is more than double, and the rotational speed (vehicle speed) is larger than twice that in the low-speed four-wheel drive mode, and the vehicle can move at high speed.
  • the present invention provides a transmission (for example, a two-speed transmission) with the maximum traction force required for traction work, the traction force required for packet work (front and rear wheel traction force distribution), and the traction force required for high-speed travel. Can be achieved without using.
  • the ratio of the driving torque of the front wheel traveling device and the driving torque of the rear wheel traveling device is set in a range of 2 to 3: 1.
  • the traction force during packet work where most of the vehicle weight is applied to the front wheels, is 2Z3 to 3Z4 (67 to 75%) of the maximum traction force (total traction force of the front and rear wheels) in the low-speed four-wheel drive mode.
  • a suitable traction force can be obtained.
  • the degree (vehicle speed) is 3 to 4 times that of the low-speed four-wheel drive mode, and the vehicle can move at high speed.
  • the ratio of the driving torque of the front wheel traveling device to the driving torque of the rear wheel traveling device is set to 2: 1.
  • the traction force during packet work where most of the vehicle weight is applied to the front wheels is 2Z3 (about 65%) of the maximum traction force (total traction force of the front and rear wheels) in the low-speed four-wheel drive mode, which is suitable for packet work. Traction can be obtained.
  • the present invention provides a hydraulic pump and a hydraulic fluid connected to the hydraulic pump in a closed circuit and connected in parallel to each other and discharged from the hydraulic pump.
  • a first control means for switching between a rear wheel traveling device, a low speed four wheel drive mode for driving both the front wheel traveling device and the rear wheel traveling device, and a high speed two wheel drive mode for driving only the rear wheel traveling device. It is assumed that the capacities of the first and second hydraulic motors are equal, and the reduction ratio of the first reduction gear is larger than the reduction ratio of the second reduction gear.
  • first and second hydraulic motors have the same capacity, it is possible to share parts and reduce costs.
  • the ratio of the reduction ratio of the first reduction gear to the reduction ratio of the second reduction gear is set in a range of 2 to 3: 1.
  • the traction force during packet work where most of the vehicle weight is applied to the front wheels is 2Z3 to 3Z4 (67 to 75%) of the maximum traction force (total traction force of the front and rear wheels) in the low-speed four-wheel drive mode.
  • a suitable traction force can be obtained.
  • the second hydraulic motor has a flow rate 3 to 4 times that in the low-speed four-wheel drive mode, and the rotational speed (vehicle speed) is 3 to 4 times that in the low-speed four-wheel drive mode.
  • the ratio of the reduction ratio of the first reduction gear to the reduction ratio of the second reduction gear is set to 2: 1.
  • the traction force during packet work where most of the vehicle weight is applied to the front wheels is 2Z3 (about 65%) of the maximum traction force (total traction force of the front and rear wheels) in the low-speed four-wheel drive mode, which is suitable for packet work. Traction can be obtained.
  • the second hydraulic motor has a flow rate three times that in the low-speed four-wheel drive mode, and the rotational speed (vehicle speed) is three times that in the low-speed four-wheel drive mode, allowing the vehicle to move at high speed. .
  • a switching valve disposed in a closed circuit connecting the hydraulic pump and the first and second hydraulic motors, and the front wheel travel A speed difference between the device and the rear wheel traveling device is detected, and when the speed difference exceeds a predetermined value, the switching valve is switched to switch the speed of the first hydraulic motor and the second hydraulic motor on the side where the rotational speed increases.
  • second control means for shutting off the supply of pressure oil to the hydraulic motor.
  • the first control means further includes a medium-speed two-wheel drive mode for driving only the front wheel travel device, and the low-speed 4 Switching between wheel drive mode, high-speed two-wheel drive mode, and medium-speed two-wheel drive mode is possible.
  • the intermediate speed and traction force can be obtained between the low-speed four-wheel drive mode and the high-speed two-wheel drive mode.
  • Appropriate travel speed and traction force can be obtained, and not only the work efficiency is improved, but also the engine does not operate at high speed, so operator fatigue (noise, vibration) can be reduced.
  • work machines such as forks are located at the front of the vehicle body, the weight of the front wheels acts mainly during cargo handling work, and workability is not impaired.
  • the invention's effect [0038] According to the present invention, a transmission and a propeller shaft are unnecessary, and a speed and traction force suitable for various operations can be obtained without using a transmission.
  • the intermediate speed and traction force between the low-speed four-wheel drive mode and the high-speed two-wheel drive mode can be obtained in the medium-speed two-wheel drive mode.
  • the traction force is obtained and the work efficiency is improved.
  • FIG. 1 is a hydraulic configuration diagram of an HST traveling system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing the appearance of a rough terrain lift truck as an example of a work machine equipped with the HST traveling system of the present invention.
  • FIG. 3 is a hydraulic configuration diagram of the HST traveling system according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing processing contents of the controller.
  • FIG. 5 is a flowchart showing the processing contents of the controller (low speed control process) when the switch is in the low speed position. Explanation of symbols
  • FIG. 1 is a hydraulic configuration diagram showing an HST traveling system for a work machine according to a first embodiment of the present invention.
  • the HST travel system of the present embodiment includes HST transmission 30, front wheel travel device 12, and rear wheel travel device 22.
  • the HST transmission 30 includes a main hydraulic pump 1 driven by the engine 2 and two traveling hydraulic motors 10 and 20 driven by pressure oil discharged from the hydraulic pump 1.
  • Hydraulic pump 1 and hydraulic motor 10 are closed circuit connected via main lines 3, 4, 5, 6; hydraulic pump 1 and hydraulic motor 20 are closed circuit connected via main lines 3, 4, 7, 8
  • the two hydraulic motors 10 and 20 are connected in parallel to the hydraulic pump 1.
  • a charge pump 33 for replenishment is connected to the main pipelines 7 and 8 via check valves 34 and 35, and the pressure of the main pipeline 7 or 8 is set in the relief valve 37 provided in the discharge passage of the charge pump 33. If it becomes lower than that, the discharge oil from the charge pump 33 is supplied to the main pipeline 7 or 8.
  • the traveling hydraulic motors 10, 20 are connected to the traveling devices 12, 22, respectively.
  • the front wheel traveling device 12 is connected to a reduction gear 11 to which a traveling hydraulic motor 10 is connected, and to the reduction gear 11.
  • the rear wheel traveling device 22 includes a speed reducer 21 to which a traveling hydraulic motor 20 is connected, and an axle 23 and a rear wheel (wheel) connected to the speed reducer 21. ) 2 and 4 are configured to transmit the driving force to the road surface by wheels 14 and 24, respectively, and drive the vehicle with both driving forces!
  • the reduction ratio ratio of 2: 1 is an example (optimal example), and if the reduction ratio of the reduction gear 11 on the front wheel side is larger than the reduction ratio of the reduction gear 21 on the rear wheel side (preferably, the front wheel side If the ratio of the reduction ratio of the reduction gear 11 and the reduction gear 21 on the rear wheel side is in the range of 2 to 3, the ratio is other than that.
  • the switching switch 42 can be switched between two positions, low speed and high speed.
  • the controller 43 turns off the electrical signal, and the switching switch 42 switches to the high speed position.
  • the controller 43 turns on the electrical signal and outputs it to the switching valve 41.
  • the hydraulic pump 1 is provided with a known tilt amount control means (not shown), and the tilt amount (capacity) of the hydraulic pump 1 is increased in accordance with the increase in the rotational speed of the engine 2, thereby smoothly increasing the pump discharge flow rate.
  • the increase in the pump discharge flow rate increases the rotational speed of travel motors 10 and 20. And the vehicle speed increases.
  • the rotational speed of the engine 2 is adjusted by operating an accelerator pedal (not shown).
  • the imaginary line in FIG. 2 shows a state where the boom 43 is raised and a state where the boom 43 is raised and extended. In this case, even if the boom 43 is raised, the fork 45 does not change its position due to the linking action of the attachment mounting portion 44.
  • the switching switch 42 When the switching switch 42 is operated to the high speed position and the switching valve 41 is switched to the cutoff position, the high speed two-wheel drive mode is established, and only the hydraulic motor 20 on the rear wheel side is supplied with one hydraulic pump. The pressure oil is supplied. In this state, since all the pressure oil from the hydraulic pump 1 flows into the hydraulic motor 20 on the rear wheel side, a rotation speed (vehicle speed) that is three times that of the low-speed four-wheel drive mode can be obtained. In other words, the speed difference is three times that of the low-speed four-wheel drive mode without using a transmission.
  • the main pipelines 5 and 6 of the front wheel side hydraulic motor 10 communicate with each other, so that the front wheel side hydraulic motor 10 rotates as the front wheel 14 rotates. Further, since the traveling drive torque at this time is given only by the hydraulic motor 20 on the rear wheel side, it becomes 1Z3 of the drive torque in the low-speed four-wheel drive mode.
  • the traction force in the high-speed two-wheel drive mode is 1Z3, which is the traction force (maximum traction force) obtained in the low-speed four-wheel drive mode.
  • the rough terrain lift truck is a multi-purpose work machine and can perform various operations such as towing work, packet work, and cargo handling work.
  • Towing work is the work of towing and moving a towed object such as a trailer at the rear of the vehicle body.
  • Packet work is excavation work by exchanging attachments with packets and pressing the packets against the excavated object such as natural ground with running force (traction force). After excavation, raise the packet, move the car body, and release it to the truck.
  • the cargo handling operation is an operation in which a fork 45 shown in the figure is loaded and moved. It is also necessary to travel at high speed when the vehicle is moving.
  • the towing operation is performed in the low-speed four-wheel drive mode, and the vehicle movement at high speed is performed in the high-speed two-wheel drive mode.
  • Carrying work is carried out in either low-speed four-wheel drive mode or high-speed two-wheel drive mode depending on the situation at that time.
  • the maximum traction force during towing is set to 90 to LOO% of the vehicle body weight ratio, and the traction force at the maximum speed is the vehicle weight ratio. Is set to 20-30%.
  • the conventional HST traveling system uses a transmission (transmission) and a propeller shaft, and drives one or two hydraulic motors simultaneously with one or two hydraulic motors. .
  • a two-speed transmission with a speed ratio between 3 and 4 is used.
  • switch the transmission to the low-speed gear switch the transmission to the high-speed gear when moving (running) the vehicle.
  • the driving torque of the front wheel 14 by the hydraulic motor 10 is 2Z3 of the total driving torque of the front and rear wheels by the two hydraulic motors 10, 20, so at least due to the front wheel 14 during packet work where a considerable part of the vehicle weight is applied to the front wheel
  • the traction force is about 65% of the maximum traction force of 2Z3, and both traction work and packet work can be performed with appropriate traction force.
  • the front wheel traveling device 12 and the rear wheel traveling device 22 are driven by the separate hydraulic motors 10, 20, so that a propeller shaft is not required.
  • the maximum traction force required for traction work the traction force required for packet work (front and rear wheel traction force distribution), and the traction force required for high-speed driving without using a transmission (for example, 2-speed transmission) can be achieved.
  • the reduction ratio of the front wheel side reduction gear 11 and the rear wheel side reduction gear 21 is 2
  • the reduction ratio of the reduction gear 11 on the front wheel side only needs to be set larger than the reduction ratio of the reduction gear 21 on the rear wheel side, and preferably on the front wheel side.
  • the reduction gear 11 has a reduction ratio of 2 to 3 times that of the reduction gear 21 on the rear wheel side, and the ratio of the reduction ratio between the reduction gear 11 on the front wheel side and the reduction gear 21 on the rear wheel side is 2 to 3: 1. It ’s good.
  • the reduction ratio of the reducer 11 on the front wheel side is larger than the reduction ratio of the reducer 21 on the rear wheel side
  • the drive torque of the front wheel travel device is Because it is greater than the driving torque of the rear wheel drive device, most of the vehicle weight is applied to the front wheels.
  • the traction force during packet work is greater than half of the maximum traction force, and the front wheel side reducer 11 and the rear wheel side reducer 21 Compared with the 1: 1 reduction ratio ratio, the traction force in packet work is optimized.
  • the flow rate of the rear wheel side hydraulic motor 20 is larger than twice that in the low-speed four-wheel drive mode, and the rotational speed (vehicle speed) is low.
  • the reduction ratio of the front wheel reducer 11 and the rear wheel reducer 21 is 1: 1, the vehicle travels at a higher speed than in the four-wheel drive mode. It is out.
  • the ratio of the reduction ratio is such that the reduction ratio of the reduction gear 11 on the front wheel side is larger than the reduction ratio of the reduction gear 21 on the rear wheel side (preferably, the reduction gear 11 on the front wheel side and the reduction gear on the rear wheel side) (If the ratio of the reduction ratio of 21 is in the range of 2 to 3: 1), other ratios may be used.
  • the HST transmission 30A includes a main pipeline 3a on the hydraulic pump 1 side and separate main pipelines 3b and 3c on the main pipelines 5 and 7 side instead of the main pipeline 3 in FIG. 6 and 8 are provided with main pipelines 4a and 4b connected in parallel to the main pipeline 4, and instead of the switching valve 41 in FIG. 1, between the main pipelines 3a, 4a and 4b and the main pipelines 3b and 3c. Equipped with a 3-position switching valve (hereinafter simply referred to as switching valve) 41A.
  • switching valve 41A a 3-position switching valve
  • the switching valve 41A is an electromagnetic switching valve having solenoids 41Aa and 4 lAb at both ends. When both electrical signals applied to the solenoids 41Aa and 41Ab are OFF, the switching valve 41A is at the first position A shown in the figure. When the electrical signal applied to the solenoid 41Aa on the right side of the figure is turned ON, the position is switched from the position shown in the figure to the second position B on the right side of the figure, and when the electrical signal applied to the solenoid 41Ab on the left side of the figure is turned ON, the position shown in FIG. Switch to position 3 on the left side of the figure.
  • the controller 43A determines the position of the switching switch 42A based on the signal from the switching switch 42A (step S10).
  • the controller 43A performs low speed control processing ( (Step S20), when the switching switch 42A switches to the high speed position, the electrical signal applied to the solenoid 41 Aa of the switching valve 41 A is turned ON to switch the switching valve 41 A to the second position B (Step S30), and the switching switch 42A
  • the electric signal applied to the solenoid 41Ab of the switching valve 41A is turned ON and the switching valve 41A is switched to the third position C (step S40).
  • Step S130 it is further determined whether the speed difference ⁇ S is a negative force (that is, whether the rear wheel axle speed is larger than the front wheel axle speed) (Step S130), Yes (That is, if the rear wheel axle speed is greater than the front wheel axle speed), the electrical signal applied to the solenoid 41Ab of the switching valve 41A is turned ON to switch the switching valve 41A to the third position C (step S140). If there is (that is, if the front axle speed is greater than the rear axle speed), the electrical signal applied to the solenoid 41Aa of the switching valve 41A is turned ON to switch the switching valve 41A to the second position B (step S150). In step SI10, an appropriate value close to 0 is set as the predetermined value in consideration of the speed fluctuation of the front and rear wheels during normal driving.
  • the operator operates the switching switch 42A to the medium speed position, so that the medium speed two wheel drive is performed in addition to the low speed four wheel drive mode and the high speed two wheel drive mode.
  • the mode can be selected.
  • the switching switch 42A when the switching switch 42A is in the low speed position and the switching valve 41A is in the first position A shown in the figure, the low speed four-wheel drive mode is set, the switching switch 42A is operated to the high speed position, and the switching valve 4 1
  • A is switched to the indicated position force 2nd position B
  • the high-speed two-wheel drive mode is set, and the changeover switch 42A is operated to the medium speed position and the changeover valve 41A is also switched to the 3rd position C.
  • Medium speed two-wheel drive mode When the switching switch 42A is in the low speed position and the switching valve 41A is in the first position A shown in the figure, the low speed four-wheel drive mode is set, the switching switch 42A is operated to the high speed position, and the switching valve 4 1
  • A is switched to the indicated position force 2nd position B
  • the high-speed two-wheel drive mode is set, and the changeover switch 42A is operated to the medium speed position and the changeover valve 41A is also switched to the 3rd position C.
  • the ratio of the reduction ratio between the front wheel side reduction gear 11 and the rear wheel side reduction gear 21 is 2: 1.
  • the vehicle can run with a traction force distribution of 2: 1 front and back.
  • the rotational speed (vehicle speed) is three times that of the four-wheel drive state in the low-speed four-wheel drive mode. can get.
  • the speed and traction force between the low-speed four-wheel drive mode and the high-speed two-wheel drive mode (the low-speed four-wheel drive mode). 3Z2 times, 1Z2 rotation speed (vehicle speed) in the high-speed two-wheel drive mode and 2 Z3 in the low-speed four-wheel drive mode, and twice the traction force in the high-speed two-wheel drive mode).
  • the operator's fatigue (noise and vibration) can be reduced.
  • work machines such as forks are located in the front part of the vehicle body, the weight of the vehicle acts mainly on the front wheels during cargo handling work, which may impair workability. With it.
  • the controller 43 when traveling in the low-speed four-wheel drive mode, if any of the front and rear axles is idle due to a change in the road surface condition during work and the axle load distribution of the front and rear wheels, The controller 43 receives the information from the rotational speed sensors 51 and 52, judges the differential state, drives the switching valve 41A, and causes the idling to occur in the hydraulic motor on the front or rear wheel side. Only supply pressure oil. By such switching control of the switching valve 41A, it is possible to avoid an open differential state at the time of wheel idling in the low-speed four-wheel drive mode, and improve rough road running performance.
  • the capacities of the two hydraulic motors 10 and 20 are made equal, and the reduction ratio of the reduction gear 11 on the front wheel side is larger than the reduction ratio of the reduction gear 21 on the rear wheel side (preferably (2-3: 1, more preferably 2: 1), but the purpose is to obtain an appropriate traction distribution between the front and rear wheels by the hydraulic motor and speed reducer.
  • Other configurations may be adopted as long as they can be set larger than the driving torque of the wheel traveling device.
  • the reduction ratio of the reduction gear 11 on the front wheel side and the reduction ratio of the reduction gear 21 on the rear wheel side are the same (the reduction ratio ratio is 1: 1), and the capacity of the hydraulic motor 10 on the front wheel side is the hydraulic pressure on the rear wheel side.
  • the driving torque of the front wheel traveling device may be larger than the driving torque of the rear wheel traveling device.
  • the switching valve 41A is provided when the switching switch 42A has three positions of low speed, high speed, and medium speed, and an open differential at the time of wheel idling in the low speed four-wheel drive mode is provided.
  • control may be applied in the first embodiment.
  • the switching valve 41 and the controller 43 in FIG. 1 of the first embodiment are switched as shown in FIG.
  • the low speed control process shown in Fig. 5 should be performed when the changeover switch 42 is in the low speed position on the controller 43A!
  • the front wheel side hydraulic motor 10 and the speed reducer 11 are directly connected.
  • a clutch is provided between the front wheel side hydraulic motor 10 and the speed reducer 11 so that a switching valve is provided. 4 1, 41A can be switched to the position where the hydraulic pump 1 and hydraulic motor 10 are disconnected (disengaged position or second position B) and the clutch can be turned off at the same time. This allows the hydraulic motor 10 to run in high-speed two-wheel drive mode. Since there is no need to move around, the driving load is reduced and energy loss can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Motor Power Transmission Devices (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

An HST traveling system of a work machine capable of eliminating the need of a transmission and a propeller shaft and providing speeds and tractive forces suitable for various types of works without using the transmission. The capacities of two hydraulic motors (10) and (20) of an HST transmission device (30) are made equal to each other, and a speed reduction ratio twice that of a rear wheel side speed reducer (21) of a traveling device (12) and (22) is provided to a front wheel side speed reducer (11) of a traveling device (12) to set the ratio of the speed reduction ratio of the front wheel side speed reducer (11) to the speed reduction ratio of the rear wheel side speed reducer (21) to 2:1. The HST transmission device (30) comprises a changeover valve (41), a selector switch (42), and a controller (43), and can be switched between a low-speed four-wheel drive mode for driving both the traveling devices (12) and (22) and a high-speed two-wheel drive mode for driving only the rear wheel side traveling device (22).

Description

作業機械の HST走行システム  HST traveling system for work machines
技術分野  Technical field
[0001] 本発明は作業機械の HST走行システムに係わり、特に、ラフテレンリフトトラック、ホ ィールローダ、ホイール式の油圧ショベル等、油圧ポンプと走行モータを閉回路接続 した HST (Hydro- Static Transmission)と呼ばれる油圧走行回路を備えた作業機械 の HST走行システムに関する。  [0001] The present invention relates to an HST traveling system for work machines, and in particular, an HST (Hydro-Static Transmission) in which a hydraulic pump and a traveling motor are connected in a closed circuit, such as a rough terrain lift truck, a wheel loader, and a wheeled hydraulic excavator. It relates to an HST traveling system for work machines with a hydraulic traveling circuit.
背景技術  Background art
[0002] 従来の HST走行システムは、例えば特開平 5— 306768号公報に記載のように、 1 つの油圧ポンプと 1つの油圧モータを閉回路接続し、その 1つの油圧モータにより走 行装置を駆動するのが一般的である。この場合、油圧モータは変速機とプロペラシャ フトを介して前後輪に接続され、プロペラシャフトを回転させることにより前後輪を同 時に駆動する。  [0002] As described in, for example, Japanese Patent Application Laid-Open No. 5-306768, a conventional HST traveling system has one hydraulic pump and one hydraulic motor connected in a closed circuit, and the traveling device is driven by the one hydraulic motor. It is common to do. In this case, the hydraulic motor is connected to the front and rear wheels via a transmission and a propeller shaft, and simultaneously drives the front and rear wheels by rotating the propeller shaft.
[0003] 他の HST走行システムとして、例えば特開平 11— 166623号公報ゃ特開平 11— 230333号公報に記載のように、 1つの油圧ポンプを 2つの油圧モータに並列に閉 回路接続し、 2つの油圧モータで走行装置を駆動するものもある。この場合も、 2つの 油圧モータは減速機とプロペラシャフトを介して前後輪に接続され、プロペラシャフト を回転させることにより前後輪を同時に駆動する。また、一方の油圧モータはクラッチ を介して減速機と接続され、クラッチを ONZOFF制御することで低速 (高トルク)モ ード (クラッチ ON)と高速モード (クラッチ OFF)とに切り換え可能とし、変速機を不要 としている。  [0003] As another HST traveling system, for example, as described in JP-A-11-166623 and JP-A-11-230333, one hydraulic pump is connected in parallel to two hydraulic motors in a closed circuit, and 2 Some drive the driving device with two hydraulic motors. In this case as well, the two hydraulic motors are connected to the front and rear wheels via a speed reducer and a propeller shaft, and simultaneously drive the front and rear wheels by rotating the propeller shaft. Also, one hydraulic motor is connected to the speed reducer via a clutch, and can be switched between low speed (high torque) mode (clutch ON) and high speed mode (clutch OFF) by controlling the clutch ONZOFF. The machine is unnecessary.
[0004] 一方、他の HST走行システムとして、 1つの油圧ポンプを 2つの油圧モータに並列 に閉回路接続し、 2つの油圧モータをそれぞれ前輪と後輪に接続し、前輪と後輪を 別々の油圧モータで駆動するものが知られている。例えば特開 2000— 1127号公 報では、芝刈り機の HST走行システムにおいて、低速時には前後輪とも高トルクとす る 4輪駆動とし、高速時には前輪を低トルク、後輪を高トルクとする 4輪駆動とすること で、走行時は前輪にも油圧的に制動力が伝わるようにし、旋回時には後輪を駆動す る 2輪駆動とすることで、旋回時の前輪の引きずりを防止している。前輪油圧モータの 駆動トルクを変えるため、油圧ポンプの給排油ポートに定比分流弁が設けられ、前輪 側油圧モータ側の主管路間にシャトル弁が設けられ、シャトル弁の出力側に高圧リリ ーフ弁と低圧リリーフ弁が並列接続されている。 [0004] On the other hand, as another HST traveling system, one hydraulic pump is connected in parallel to two hydraulic motors in a closed circuit, two hydraulic motors are connected to the front wheels and the rear wheels, respectively, and the front wheels and the rear wheels are separated. One driven by a hydraulic motor is known. For example, in the publication of Japanese Laid-Open Patent Publication No. 2000-1127, in a lawn mower HST traveling system, the front and rear wheels are set to high torque at low speeds at low speed, and the front wheels are set to low torque and the rear wheels are set to high torque at high speeds. By using wheel drive, the braking force is transmitted hydraulically to the front wheels when driving, and the rear wheels are driven when turning. The two-wheel drive prevents the front wheels from dragging when turning. In order to change the driving torque of the front wheel hydraulic motor, a constant ratio diversion valve is provided at the oil supply / discharge oil port of the hydraulic pump, a shuttle valve is provided between the main lines on the front wheel side hydraulic motor side, and a high pressure relief valve is provided on the output side of the shuttle valve. A proof valve and a low-pressure relief valve are connected in parallel.
[0005] GB2136371Aでは、農業機械の HST走行システムにおいて、 2つの油圧モータ の一方が小容量の補助モータとして構成され、この補助モータを前輪又は後輪にク ラッチと減速機を介して接続し、油圧ポンプと補助モータとの間に開閉弁を設け、クラ ツチと開閉弁を同時に切り換えることにより補助モータと油圧ポンプ或いは補助モー タと車輪との接続'遮断を行っている。  [0005] In GB2136371A, in an agricultural machine HST traveling system, one of two hydraulic motors is configured as a small-capacity auxiliary motor, and this auxiliary motor is connected to the front or rear wheel via a clutch and a speed reducer. An on-off valve is provided between the hydraulic pump and the auxiliary motor, and the connection between the auxiliary motor and the hydraulic pump or the auxiliary motor and the wheel is cut off by simultaneously switching the clutch and the on-off valve.
[0006] 特許文献 1 :特開平 5— 306768号公報  [0006] Patent Document 1: Japanese Patent Laid-Open No. 5-306768
特許文献 2:特開平 11― 166623号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-166623
特許文献 3:特開平 11― 230333号公報  Patent Document 3: Japanese Patent Laid-Open No. 11-230333
特許文献 4:特開 2000 - 1127号公報  Patent Document 4: Japanese Patent Laid-Open No. 2000-1127
特許文献 5 : GB2136371A  Patent Document 5: GB2136371A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、上記従来技術には次のような問題がある。 [0007] However, the above-described conventional technique has the following problems.
[0008] 特開平 5— 306768号公報に記載の一般的な HST走行システムでは、油圧モータ を変速機とプロペラシャフトを介して前後輪に接続し、プロペラシャフトを回転させるこ とで前後輪を同時に駆動する方式であるため、走行装置として変速機とプロペラシャ フトが必須の構成となっている。変速機とプロペラシャフトは運転式の下側に位置し、 プロペラシャフトはエンジンや運転席の下側を前後に伸び、前後輪に連結されている [0008] In a general HST traveling system described in JP-A-5-306768, a hydraulic motor is connected to front and rear wheels via a transmission and a propeller shaft, and the front and rear wheels are simultaneously rotated by rotating the propeller shaft. Since this is a drive system, a transmission and a propeller shaft are essential as a traveling device. The transmission and the propeller shaft are located on the lower side of the driving type, and the propeller shaft extends back and forth under the engine and the driver's seat and is connected to the front and rear wheels.
。このため運転席やエンジンを変速機やプロペラシャフトに干渉しな 、位置 ·高さに 設置する必要があり、その分車高 (運転席の高さ)が高くなつて運転席から作業機部 分が見に《なり、作業性が低下するという問題がある。また、変速機とプロペラシャフ トによりエンジン、運転席、その他の機器のレイアウトの自由度が制約されるという問 題もある。 . For this reason, it is necessary to install the driver's seat and engine at a position and height that do not interfere with the transmission and the propeller shaft, and the vehicle height (driver's seat height) increases accordingly. However, there is a problem that workability is lowered. Another problem is that the degree of freedom in the layout of the engine, driver's seat, and other equipment is limited by the transmission and propeller shaft.
[0009] 特開平 11 166623号公報ゃ特開平 11 230333号公報に記載の 2つの油圧 モータを用いる HST走行システムでは変速機は不要である力 プロペラシャフトは必 要であるため、プロペラシャフトによる車高やレイアウト制約の問題は解消していない [0009] Two hydraulic pressures described in JP-A-11 166623 and JP-A-11 230333 The HST traveling system that uses a motor does not require a transmission. A propeller shaft is required, so the problem of vehicle height and layout constraints due to the propeller shaft has not been solved.
[0010] 特開 2000— 1127号公報や GB2136371Aに記載の HST走行システムでは前輪 と後輪を別々の油圧モータで駆動するため、プロペラシャフトが不要であり、プロペラ シャフトによる車高やレイアウト制約の問題はない。また、 GB2136371Aでは、スイツ チ操作により 2つの油圧モータを同時に駆動する 4輪駆動と、一方の油圧モータのみ を駆動する 2輪駆動とに切り換え可能であり、変速機を用いずに低速モード高速モー ドに切り換え可能である。しかし、これら従来技術をラフテレンリフトトラック、ホイール ローダ、ホイール式の油圧ショベル等の多目的作業機械に適用した場合は、各種作 業形態に適した速度と牽引力を得ることができないという問題がある。 [0010] In the HST traveling system described in Japanese Patent Application Laid-Open No. 2000-1127 and GB2136371A, the front wheels and the rear wheels are driven by separate hydraulic motors, so a propeller shaft is unnecessary, and there is a problem of vehicle height and layout constraints due to the propeller shaft. There is no. The GB2136371A can be switched between a four-wheel drive that drives two hydraulic motors simultaneously by a switch operation and a two-wheel drive that drives only one of the hydraulic motors. Can be switched. However, when these conventional technologies are applied to multipurpose work machines such as rough terrain lift trucks, wheel loaders, and wheel-type hydraulic excavators, there is a problem that speeds and traction forces suitable for various working modes cannot be obtained.
[0011] 例えば、ラフテレンリフトトラックが行う典型的な作業としてパケット作業がある力 H [0011] For example, a force with packet work as a typical work performed by a rough terrain lift truck H
ST走行システムにおいては、前後輪のトルク配分 (牽引力配分)は 1: 1に設定する のが通常である。この場合、車体前部に作業機 (パケット等)を持つ作業機械ではバ ケット作業時の車重はほとんど前輪にし力かからないため、パケット作業時の牽引力 は前輪と後輪を合わせた最大牽引力の半分となり、パケット作業の牽引力としては過 小である。また、 GB2136371Aに記載の HST走行システムでは、スィッチ操作によ り高速走行時にメインの油圧モータ (補助モータでない油圧モータ)のみを駆動する 2輪駆動に切り換え可能である。しかし、メインの油圧モータの容量は補助モータの 容量より大きいため、回転速度 (車速)は 4輪駆動状態の 2倍にもならず、高速で車両 移動するための車速として不十分である。 In the ST traveling system, the torque distribution (traction distribution) of the front and rear wheels is usually set to 1: 1. In this case, with a work machine with a work implement (packet, etc.) in the front part of the vehicle body, the vehicle weight during bucket work hardly applies any force to the front wheels, so the traction force during packet work is half the maximum traction force of the front and rear wheels combined. Therefore, the traction for packet work is too small. In the HST traveling system described in GB2136371A, it is possible to switch to two-wheel drive that drives only the main hydraulic motor (hydraulic motor that is not an auxiliary motor) during high-speed traveling by switch operation. However, since the capacity of the main hydraulic motor is larger than that of the auxiliary motor, the rotational speed (vehicle speed) is not twice that of the four-wheel drive state, which is insufficient as a vehicle speed for moving the vehicle at high speed.
[0012] 本発明の目的は、変速機とプロペラシャフトが不要であり、かつ変速機を用いずに 各種作業に適した速度と牽引力を得ることができる作業機械の HST走行システムを 提供することである。 [0012] An object of the present invention is to provide an HST traveling system for a work machine that does not require a transmission and a propeller shaft and that can obtain speed and traction force suitable for various operations without using a transmission. is there.
課題を解決するための手段  Means for solving the problem
[0013] (1)上記第 1の目的を達成するために、本発明は、油圧ポンプと、この油圧ポンプ に閉回路接続されかつ互!ヽに並列接続され、前記油圧ポンプから吐出された圧油 により駆動される第 1及び第 2油圧モータと、前記第 1油圧モータに第 1減速機を介し て接続された前輪走行装置と、前記第 2油圧モータに第 2減速機を介して接続され た後輪走行装置と、前記前輪走行装置と後輪走行装置の両方を駆動する低速 4輪 駆動モードと、前記後輪走行装置のみを駆動する高速 2輪駆動モードとに切り換える 第 1制御手段とを備え、前記前輪走行装置の駆動トルクを前記後輪走行装置の駆動 トルクよりも大きく設定したものとする。 (1) In order to achieve the first object, the present invention provides a hydraulic pump, a pressure connected to the hydraulic pump in a closed circuit and connected in parallel to each other, and the pressure discharged from the hydraulic pump. First and second hydraulic motors driven by oil, and a first reduction gear connected to the first hydraulic motor. Connected to the front wheel traveling device, a rear wheel traveling device connected to the second hydraulic motor via a second speed reducer, and a low-speed four-wheel drive mode for driving both the front wheel traveling device and the rear wheel traveling device. And a first control means for switching to a high-speed two-wheel drive mode for driving only the rear wheel travel device, wherein the drive torque of the front wheel travel device is set larger than the drive torque of the rear wheel travel device. To do.
[0014] 以上のように構成した本発明にお ヽては、前輪走行装置と後輪走行装置を別々の 油圧モータで駆動するため、プロペラシャフトが不要となる。  In the present invention configured as described above, the front wheel traveling device and the rear wheel traveling device are driven by separate hydraulic motors, so that a propeller shaft is not required.
[0015] また、本発明の HST走行システムをラフテレンリフトトラック等の多目的作業機械に 適用し、牽引作業は低速 4輪駆動モードで行う場合は、前輪と後輪の 4輪駆動で得ら れる最大牽引力を適切に設定することにより牽引作業に必要な最大牽引力を得るこ とがでさる。  [0015] In addition, when the HST traveling system of the present invention is applied to a multi-purpose work machine such as a rough terrain lift truck and the towing work is performed in the low-speed four-wheel drive mode, the front-wheel and the rear-wheel four-wheel drive can be obtained. By setting the maximum traction force appropriately, the maximum traction force necessary for traction work can be obtained.
[0016] パケット作業を低速 4輪駆動で行う場合は、前輪走行装置の駆動トルクを後輪走行 装置の駆動トルクよりも大きく設定したため、車重はほとんどが前輪に力かるパケット 作業時の牽引力は低速 4輪駆動モードの最大牽引力 (前後輪の合計の牽引力)の 半分よりも大きくなり、パケット作業に適切な牽引力を得ることができる。  [0016] When performing packet work with low-speed four-wheel drive, the driving torque of the front wheel traveling device is set to be larger than the driving torque of the rear wheel traveling device, so the vehicle weight is mostly applied to the front wheels. It is larger than half of the maximum traction force in the low-speed four-wheel drive mode (total traction force of the front and rear wheels), and it is possible to obtain traction force suitable for packet work.
[0017] 高速走行を高速 2輪駆動モードで行う場合は、前輪走行装置の駆動トルクを後輪 走行装置の駆動トルクよりも大きく設定したため、第 2油圧モータに低速 4輪駆動モー ド時の 2倍よりもよりも多い流量が作用し、回転速度(車速)は低速 4輪駆動モード時 の 2倍よりもより大きくなり、高速で車両移動することができる。  [0017] When the high-speed traveling is performed in the high-speed two-wheel drive mode, the driving torque of the front wheel traveling device is set to be larger than the driving torque of the rear wheel traveling device. The flow rate is more than double, and the rotational speed (vehicle speed) is larger than twice that in the low-speed four-wheel drive mode, and the vehicle can move at high speed.
[0018] このように本発明は、牽引作業時に必要な最大牽引力、パケット作業時に必要な牽 引力 (前後輪牽引力配分)、並びに高速走行時に必要な牽引力を、変速機 (例えば 2速トランスミッション)を使用せずに達成することができる。  [0018] As described above, the present invention provides a transmission (for example, a two-speed transmission) with the maximum traction force required for traction work, the traction force required for packet work (front and rear wheel traction force distribution), and the traction force required for high-speed travel. Can be achieved without using.
[0019] (2)上記(1)において、好ましくは、前記前輪走行装置の駆動トルクと前記後輪走 行装置の駆動トルクの比を 2〜3: 1の範囲に設定する。  (2) In the above (1), preferably, the ratio of the driving torque of the front wheel traveling device and the driving torque of the rear wheel traveling device is set in a range of 2 to 3: 1.
[0020] これにより車重はほとんどが前輪に力かるパケット作業時の牽引力は低速 4輪駆動 モードの最大牽引力(前後輪の合計の牽引力)の 2Z3〜3Z4 (67〜75%)となり、 パケット作業に適切な牽引力を得ることができる。  [0020] As a result, the traction force during packet work, where most of the vehicle weight is applied to the front wheels, is 2Z3 to 3Z4 (67 to 75%) of the maximum traction force (total traction force of the front and rear wheels) in the low-speed four-wheel drive mode. A suitable traction force can be obtained.
[0021] また、第 2油圧モータに低速 4輪駆動モード時の 3〜4倍の流量が作用し、回転速 度(車速)は低速 4輪駆動モード時の 3〜4倍となり、高速で車両移動することができ る。 [0021] In addition, a flow rate 3 to 4 times that in the low-speed four-wheel drive mode acts on the second hydraulic motor, and the rotational speed The degree (vehicle speed) is 3 to 4 times that of the low-speed four-wheel drive mode, and the vehicle can move at high speed.
[0022] (3)また、上記(1)において、より好ましくは、前記前輪走行装置の駆動トルクと前 記後輪走行装置の駆動トルクの比を 2: 1に設定する。  [0022] (3) In the above (1), more preferably, the ratio of the driving torque of the front wheel traveling device to the driving torque of the rear wheel traveling device is set to 2: 1.
[0023] これにより車重はほとんどが前輪に力かるパケット作業時の牽引力は低速 4輪駆動 モードの最大牽引力(前後輪の合計の牽引力)の 2Z3 (約 65%)となり、パケット作 業に適切な牽引力を得ることができる。  [0023] As a result, the traction force during packet work where most of the vehicle weight is applied to the front wheels is 2Z3 (about 65%) of the maximum traction force (total traction force of the front and rear wheels) in the low-speed four-wheel drive mode, which is suitable for packet work. Traction can be obtained.
[0024] また、第 2油圧モータに低速 4輪駆動モード時の 3倍の流量が作用し、回転速度( 車速)は低速 4輪駆動モード時の 3倍となり、高速で車両移動することができる。  [0024] In addition, a flow rate three times that in the low speed four-wheel drive mode acts on the second hydraulic motor, and the rotational speed (vehicle speed) is three times that in the low speed four-wheel drive mode, allowing the vehicle to move at high speed. .
[0025] (4)また、上記目的を達成するために、本発明は、油圧ポンプと、この油圧ポンプに 閉回路接続されかつ互いに並列接続され、前記油圧ポンプから吐出された圧油によ り駆動される第 1及び第 2油圧モータと、前記第 1油圧モータに第 1減速機を介して接 続された前輪走行装置と、前記第 2油圧モータに第 2減速機を介して接続された後 輪走行装置と、前記前輪走行装置と後輪走行装置の両方を駆動する低速 4輪駆動 モードと、前記後輪走行装置のみを駆動する高速 2輪駆動モードとに切り換える第 1 制御手段とを備え、前記第 1及び第 2油圧モータの容量を等しくし、前記第 1減速機 の減速比を前記第 2減速機の減速比よりも大きくしたものとする。  [0025] (4) Further, in order to achieve the above object, the present invention provides a hydraulic pump and a hydraulic fluid connected to the hydraulic pump in a closed circuit and connected in parallel to each other and discharged from the hydraulic pump. The first and second hydraulic motors to be driven, the front wheel travel device connected to the first hydraulic motor via a first speed reducer, and the second hydraulic motor connected to the second hydraulic motor via a second speed reducer And a first control means for switching between a rear wheel traveling device, a low speed four wheel drive mode for driving both the front wheel traveling device and the rear wheel traveling device, and a high speed two wheel drive mode for driving only the rear wheel traveling device. It is assumed that the capacities of the first and second hydraulic motors are equal, and the reduction ratio of the first reduction gear is larger than the reduction ratio of the second reduction gear.
[0026] これにより上記(1)で述べたように、変速機とプロペラシャフトが不要となり、かつ変 速機を用いずに各種作業形態に適した速度と牽引力を達成することができる。  [0026] As a result, as described in (1) above, the transmission and the propeller shaft are not required, and the speed and traction force suitable for various work modes can be achieved without using a speed changer.
[0027] また、第 1及び第 2油圧モータを同じ容量とすることで、部品の共通化、原価低減が 可能となる。  [0027] Further, by making the first and second hydraulic motors have the same capacity, it is possible to share parts and reduce costs.
[0028] (5)上記 (4)において、好ましくは、前記第 1減速機の減速比と前記第 2減速機の 減速比の比を 2〜3: 1の範囲に設定する。  (5) In the above (4), preferably, the ratio of the reduction ratio of the first reduction gear to the reduction ratio of the second reduction gear is set in a range of 2 to 3: 1.
[0029] これにより車重はほとんどが前輪に力かるパケット作業時の牽引力は低速 4輪駆動 モードの最大牽引力(前後輪の合計の牽引力)の 2Z3〜3Z4 (67〜75%)となり、 パケット作業に適切な牽引力を得ることができる。 [0029] As a result, the traction force during packet work where most of the vehicle weight is applied to the front wheels is 2Z3 to 3Z4 (67 to 75%) of the maximum traction force (total traction force of the front and rear wheels) in the low-speed four-wheel drive mode. A suitable traction force can be obtained.
[0030] また、第 2油圧モータに低速 4輪駆動モード時の 3〜4倍の流量が作用し、回転速 度(車速)は低速 4輪駆動モード時の 3〜4倍となり、高速で車両移動することができ る。 [0030] In addition, the second hydraulic motor has a flow rate 3 to 4 times that in the low-speed four-wheel drive mode, and the rotational speed (vehicle speed) is 3 to 4 times that in the low-speed four-wheel drive mode. Can move The
[0031] (6)また、上記 (4)において、より好ましくは、前記第 1減速機の減速比と前記第 2 減速機の減速比の比を 2: 1に設定する。  [0031] (6) In the above (4), more preferably, the ratio of the reduction ratio of the first reduction gear to the reduction ratio of the second reduction gear is set to 2: 1.
[0032] これにより車重はほとんどが前輪に力かるパケット作業時の牽引力は低速 4輪駆動 モードの最大牽引力(前後輪の合計の牽引力)の 2Z3 (約 65%)となり、パケット作 業に適切な牽引力を得ることができる。  [0032] As a result, the traction force during packet work where most of the vehicle weight is applied to the front wheels is 2Z3 (about 65%) of the maximum traction force (total traction force of the front and rear wheels) in the low-speed four-wheel drive mode, which is suitable for packet work. Traction can be obtained.
[0033] また、第 2油圧モータに低速 4輪駆動モード時の 3倍の流量が作用し、回転速度( 車速)は低速 4輪駆動モード時の 3倍となり、高速で車両移動することができる。  [0033] In addition, the second hydraulic motor has a flow rate three times that in the low-speed four-wheel drive mode, and the rotational speed (vehicle speed) is three times that in the low-speed four-wheel drive mode, allowing the vehicle to move at high speed. .
[0034] (7)更に、上記(1)又は (4)において、好ましくは、前記油圧ポンプと前記第 1及び 第 2油圧モータを接続する閉回路中に配置された切換弁と、前記前輪走行装置と前 記後輪走行装置との速度差を検知し、この速度差が所定値を超えると前記切換弁を 切り換えて前記第 1油圧モータと第 2油圧モータのうち回転速度が大なる側の油圧モ ータへの圧油の供給を遮断する第 2制御手段とを更に備える。  (7) Further, in the above (1) or (4), preferably, a switching valve disposed in a closed circuit connecting the hydraulic pump and the first and second hydraulic motors, and the front wheel travel A speed difference between the device and the rear wheel traveling device is detected, and when the speed difference exceeds a predetermined value, the switching valve is switched to switch the speed of the first hydraulic motor and the second hydraulic motor on the side where the rotational speed increases. And second control means for shutting off the supply of pressure oil to the hydraulic motor.
[0035] これにより低速 4輪駆動モードで走行時、作業中の路面状況や前後輪の軸重配分 の変化によって、前後いずれかの車軸が空転状態になった場合、空転の発生してい ない前輪又は後輪側の油圧モータにのみ圧油を供給することが可能となり、低速 4 輪駆動モードでの車輪空転時のオープンデフの状態を回避し、悪路走破性を向上 することができる。  [0035] Thus, when traveling in the low-speed four-wheel drive mode, if any of the front and rear axles is idle due to changes in the road surface condition during work or the change in the axle load distribution of the front and rear wheels, the front wheels that are not idle Alternatively, it is possible to supply pressure oil only to the rear wheel side hydraulic motor, avoiding an open differential state when the wheels are idle in the low-speed four-wheel drive mode, and improving rough road running performance.
[0036] (8)また、上記(1)又は (4)において、好ましくは、前記第 1制御手段は、前記前輪 走行装置のみを駆動する中速 2輪駆動モードを更に有し、前記低速 4輪駆動モード と高速 2輪駆動モードと中速 2輪駆動モードのいずれかに切り換え可能である。  [0036] (8) In the above (1) or (4), preferably, the first control means further includes a medium-speed two-wheel drive mode for driving only the front wheel travel device, and the low-speed 4 Switching between wheel drive mode, high-speed two-wheel drive mode, and medium-speed two-wheel drive mode is possible.
[0037] これにより中速 2輪駆動モードでは低速 4輪駆動モードと高速 2輪駆動モードのほ ぼ中間の速度と牽引力が得られるため、フォーク等の作業機を用いて行う荷役作業 等では、適切な走行速度と牽引力が得られ、作業効率が向上するだけでなぐェン ジンが高回転で稼動することもないのでオペレータの疲労 (騒音、振動)も軽減できる 。また、フォーク等の作業機は車体前部にあるため、荷役作業時には主に前輪に車 重が作用し、作業性を損なうこともない。  [0037] As a result, in the medium-speed two-wheel drive mode, the intermediate speed and traction force can be obtained between the low-speed four-wheel drive mode and the high-speed two-wheel drive mode. Appropriate travel speed and traction force can be obtained, and not only the work efficiency is improved, but also the engine does not operate at high speed, so operator fatigue (noise, vibration) can be reduced. In addition, since work machines such as forks are located at the front of the vehicle body, the weight of the front wheels acts mainly during cargo handling work, and workability is not impaired.
発明の効果 [0038] 本発明によれば、変速機とプロペラシャフトが不要であり、かつ変速機を用いずに 各種作業に適した速度と牽引力を得ることができる。 The invention's effect [0038] According to the present invention, a transmission and a propeller shaft are unnecessary, and a speed and traction force suitable for various operations can be obtained without using a transmission.
[0039] また、本発明によれば、第 1及び第 2油圧モータを同じ容量とすることで、部品の共 通化、原価低減が可能となる。 [0039] Further, according to the present invention, by using the same capacity for the first and second hydraulic motors, it is possible to share parts and reduce costs.
[0040] また、本発明によれば、低速 4輪駆動モードでの車輪空転時のオープンデフの状 態を回避し、悪路走破性を向上することができる。 [0040] Further, according to the present invention, it is possible to avoid the state of open def during wheel idling in the low-speed four-wheel drive mode, and to improve rough road running performance.
[0041] 更に、本発明によれば、中速 2輪駆動モードで低速 4輪駆動モードと高速 2輪駆動 モードのほぼ中間の速度と牽引力が得られるため、荷役作業等では適切な走行速 度と牽引力が得られ、作業効率が向上する。 [0041] Further, according to the present invention, the intermediate speed and traction force between the low-speed four-wheel drive mode and the high-speed two-wheel drive mode can be obtained in the medium-speed two-wheel drive mode. The traction force is obtained and the work efficiency is improved.
図面の簡単な説明  Brief Description of Drawings
[0042] [図 1]本発明の第 1の実施の形態による HST走行システムの油圧構成図である。  FIG. 1 is a hydraulic configuration diagram of an HST traveling system according to a first embodiment of the present invention.
[図 2]本発明の HST走行システムが搭載される作業機械の一例として、ラフテレンリ フトトラックの外観を示す図である。  FIG. 2 is a diagram showing the appearance of a rough terrain lift truck as an example of a work machine equipped with the HST traveling system of the present invention.
[図 3]本発明の第 1の実施の形態による HST走行システムの油圧構成図である。  FIG. 3 is a hydraulic configuration diagram of the HST traveling system according to the first embodiment of the present invention.
[図 4]コントローラの処理内容を示すフローチャートである。  FIG. 4 is a flowchart showing processing contents of the controller.
[図 5]切換スィッチが低速位置にあるときのコントローラの処理内容 (低速制御処理) を示すフローチャートである。 符号の説明  FIG. 5 is a flowchart showing the processing contents of the controller (low speed control process) when the switch is in the low speed position. Explanation of symbols
[0043] 1 油圧ポンプ [0043] 1 Hydraulic pump
2 エンジン  2 Engine
3, 4, 5, 6, 7, 8 主管路  3, 4, 5, 6, 7, 8 Main pipeline
3a, 3b, 3c, 4a, 4b 主管路  3a, 3b, 3c, 4a, 4b Main pipeline
10 (前輪側)油圧モータ  10 (front wheel side) hydraulic motor
11 減速機  11 Reducer
12 走行装置  12 Traveling equipment
13 車軸  13 axles
14 前輪  14 Front wheels
20 (後輪側)油圧モータ 21 減速機 20 (Rear wheel side) Hydraulic motor 21 Reducer
22 走行装置  22 Traveling equipment
23 車軸  23 axles
24 後輪  24 Rear wheel
30 HST変速装置  30 HST transmission
41 切換弁  41 Switching valve
41 A 切換弁  41 A selector valve
42 切換スィッチ  42 selector switch
42A 切換スィッチ  42A selector switch
43 コントローラ  43 Controller
43A コントローラ  43A controller
51, 52 回転速度センサー  51, 52 Rotational speed sensor
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0044] 本発明の実施の形態を図面を用いて説明する。 [0044] Embodiments of the present invention will be described with reference to the drawings.
[0045] 図 1は本発明の第 1の実施の形態に係わる作業機械の HST走行システムを示す 油圧構成図である。  FIG. 1 is a hydraulic configuration diagram showing an HST traveling system for a work machine according to a first embodiment of the present invention.
[0046] 図 1にお 、て、本実施の形態の HST走行システムは HST変速装置 30と前輪走行 装置 12と後輪走行装置 22とを備えている。  In FIG. 1, the HST travel system of the present embodiment includes HST transmission 30, front wheel travel device 12, and rear wheel travel device 22.
[0047] HST変速装置 30は、エンジン 2により駆動されるメインの油圧ポンプ 1と、油圧ポン プ 1から吐出された圧油により駆動される 2個の走行用油圧モータ 10, 20とを有し、 油圧ポンプ 1と油圧モータ 10は主管路 3, 4, 5, 6を介して閉回路接続され、油圧ポ ンプ 1と油圧モータ 20は主管路 3, 4, 7, 8を介して閉回路接続され、 2個の油圧モ ータ 10, 20は油圧ポンプ 1に対して互いに並列接続されている。主管路 7, 8にはチ エック弁 34, 35を介して補給用のチャージポンプ 33が接続され、主管路 7又は 8の 圧力がチャージポンプ 33の吐出路に設けられたリリーフ弁 37の設定圧力よりも低く なるとチャージポンプ 33の吐出油が主管路 7又は 8に補給される。  [0047] The HST transmission 30 includes a main hydraulic pump 1 driven by the engine 2 and two traveling hydraulic motors 10 and 20 driven by pressure oil discharged from the hydraulic pump 1. Hydraulic pump 1 and hydraulic motor 10 are closed circuit connected via main lines 3, 4, 5, 6; hydraulic pump 1 and hydraulic motor 20 are closed circuit connected via main lines 3, 4, 7, 8 The two hydraulic motors 10 and 20 are connected in parallel to the hydraulic pump 1. A charge pump 33 for replenishment is connected to the main pipelines 7 and 8 via check valves 34 and 35, and the pressure of the main pipeline 7 or 8 is set in the relief valve 37 provided in the discharge passage of the charge pump 33. If it becomes lower than that, the discharge oil from the charge pump 33 is supplied to the main pipeline 7 or 8.
[0048] 走行用油圧モータ 10, 20はそれぞれ走行装置 12, 22に連結されている。前輪走 行装置 12は、走行用油圧モータ 10が連結される減速機 11と、この減速機 11に連結 された車軸 13及び前輪 (車輪) 14とを備え、後輪走行装置 22は、走行用油圧モータ 20が連結される減速機 21と、この減速機 21に連結された車軸 23及び後輪 (車輪) 2 4とを備え、それぞれ車輪 14, 24により駆動力を路面に伝え、双方の駆動力にて車 体を駆動する構成となって!/ヽる。 [0048] The traveling hydraulic motors 10, 20 are connected to the traveling devices 12, 22, respectively. The front wheel traveling device 12 is connected to a reduction gear 11 to which a traveling hydraulic motor 10 is connected, and to the reduction gear 11. The rear wheel traveling device 22 includes a speed reducer 21 to which a traveling hydraulic motor 20 is connected, and an axle 23 and a rear wheel (wheel) connected to the speed reducer 21. ) 2 and 4 are configured to transmit the driving force to the road surface by wheels 14 and 24, respectively, and drive the vehicle with both driving forces!
[0049] HST変速装置 30において、 2個の油圧モータ 10, 20の容量は等しく設定されて いる。また、走行装置 12, 22において、前輪側の減速機 11は後輪側の減速機 21よ り大きく設定されており、具体的には、前輪側の減速機 11は後輪側の減速機 21の 2 倍の減速比を持ち、前輪側の減速機 11と後輪側の減速機 21の減速比の割合は 2 : 1となっている。 [0049] In the HST transmission 30, the capacities of the two hydraulic motors 10, 20 are set equal. Further, in the traveling devices 12 and 22, the front wheel side reducer 11 is set larger than the rear wheel side reducer 21. Specifically, the front wheel side reducer 11 is the rear wheel side reducer 21. The ratio of the reduction ratio of the reduction gear 11 on the front wheel side and the reduction gear 21 on the rear wheel side is 2: 1.
[0050] なお、減速比割合の 2: 1は一例(最適例)であり、前輪側の減速機 11の減速比が 後輪側の減速機 21の減速比より大きければ (好ましくは、前輪側の減速機 11と後輪 側の減速機 21の減速比の割合が 2〜3の範囲であれば)、それ以外の割合であって ちょい。  [0050] Note that the reduction ratio ratio of 2: 1 is an example (optimal example), and if the reduction ratio of the reduction gear 11 on the front wheel side is larger than the reduction ratio of the reduction gear 21 on the rear wheel side (preferably, the front wheel side If the ratio of the reduction ratio of the reduction gear 11 and the reduction gear 21 on the rear wheel side is in the range of 2 to 3, the ratio is other than that.
[0051] HST変速装置 30は、また、走行装置 12, 22の両方を駆動する低速 4輪駆動モー ドと、後輪走行装置 22のみを駆動する高速 2輪駆動モードとに切り換える制御手段と して、主管路 5, 6に設置された 2位置切換弁(以下単に切換弁という) 41と、ォペレ ータにより操作される切換スィッチ 42と、コントローラ 43とを有している。  [0051] The HST transmission 30 is also a control means for switching between a low-speed four-wheel drive mode that drives both the traveling devices 12 and 22, and a high-speed two-wheel drive mode that drives only the rear wheel travel device 22. Thus, a two-position switching valve (hereinafter simply referred to as a switching valve) 41 installed in the main pipelines 5 and 6, a switching switch 42 operated by an operator, and a controller 43 are provided.
[0052] 切換弁 41は一端にソレノイド 41aを有する電磁切換弁であり、ソレノイド 41aに与え られる電気信号が OFFのときは図示の連通位置にあり、電気信号が ONになると図 示の位置力 遮断位置に切り換わる。切換弁 41が図示の連通位置にあるときの回路 状態を低速 4輪駆動モードといい、切換弁 41が遮断位置に切り換わったときの回路 状態を高速 2輪駆動モードと 、う。  [0052] The switching valve 41 is an electromagnetic switching valve having a solenoid 41a at one end. When the electrical signal applied to the solenoid 41a is OFF, the switching valve 41 is in the illustrated communication position. When the electrical signal is ON, the position force is blocked. Switch to position. The circuit state when the switching valve 41 is in the illustrated communication position is called the low-speed four-wheel drive mode, and the circuit state when the switching valve 41 is switched to the shut-off position is the high-speed two-wheel drive mode.
[0053] 切換スィッチ 42は低速、高速の 2位置に切り換え可能であり、切換スィッチ 42が低 速位置にあるとき、コントローラ 43は電気信号を OFFとし、切換スィッチ 42が高速位 置に切り換わると、コントローラ 43は電気信号を ONとし、切換弁 41に出力する。  [0053] The switching switch 42 can be switched between two positions, low speed and high speed. When the switching switch 42 is in the low speed position, the controller 43 turns off the electrical signal, and the switching switch 42 switches to the high speed position. The controller 43 turns on the electrical signal and outputs it to the switching valve 41.
[0054] 油圧ポンプ 1は図示しない公知の傾転量制御手段を備え、エンジン 2の回転数の 上昇に応じて油圧ポンプ 1の傾転量 (容量)を増大させ、ポンプ吐出流量を滑らかに 増大させる。このポンプ吐出流量の増大により走行モータ 10, 20の回転速度が上昇 し、車速が増加する。エンジン 2の回転数は図示しないアクセルペダルを操作するこ とにより調整される。 [0054] The hydraulic pump 1 is provided with a known tilt amount control means (not shown), and the tilt amount (capacity) of the hydraulic pump 1 is increased in accordance with the increase in the rotational speed of the engine 2, thereby smoothly increasing the pump discharge flow rate. Let The increase in the pump discharge flow rate increases the rotational speed of travel motors 10 and 20. And the vehicle speed increases. The rotational speed of the engine 2 is adjusted by operating an accelerator pedal (not shown).
[0055] 走行モータ 10, 20は図示しない公知の傾転量制御手段を備え、負荷圧力が設定 圧力よりも低いときは小傾転 (小容量)にあり、設定圧力よりも高くなると大傾転 (大容 量)に自動で切り換わる。設定圧力は 2つの走行モータ 10, 20で同じ値である。  [0055] The traveling motors 10, 20 are provided with a known tilt amount control means (not shown). When the load pressure is lower than the set pressure, the travel motors 10 and 20 are in a small tilt (small capacity), and when the load pressure is higher than the set pressure, the tilt is large. Automatically switches to (large capacity). The set pressure is the same value for the two travel motors 10, 20.
[0056] 図 2は本実施の形態の HST走行システムが搭載される作業機械の一例として、多 目的作業機械の代表例であるラフテレンリフトトラック (テレスコピックハンドラーとも ヽ う)の外観を示す図である。  [0056] FIG. 2 is a diagram showing an appearance of a rough terrain lift truck (also called a telescopic handler), which is a typical example of a multi-purpose work machine, as an example of a work machine on which the HST traveling system of the present embodiment is mounted. is there.
[0057] 図 2において、ラフテレンリフトトラックは、車体 41と、車体 41上に位置する運転室 4 2と、車体 41に運転室 42の側部を起伏可能に取り付けられた伸縮可能なブーム 43 と、ブーム 43の先端に回動可能に取り付けられたアタッチメント取付部 44と、そのァ タツチメント取付部 44に取り付けられたアタッチメントの 1種である、荷役作業に用い るフォーク 45とを備えており、ブーム 43とアタッチメント取付部 44とフォーク 45は作業 装置を構成している。また、本図では図示を省略しているが、ブーム 43、アタッチメン ト取付部 44及びフォーク 45にはそれぞれ油圧ァクチユエータが取り付けられ、各作 業部材はそれぞれの油圧ァクチユエータにより駆動される。車体 41には前輪 14及び 後輪 24が取り付けられて 、る。  In FIG. 2, the rough terrain lift truck includes a vehicle body 41, a cab 42 located on the vehicle body 41, and an extendable boom 43 attached to the vehicle body 41 so that the side portion of the cab 42 can be raised and lowered. And an attachment mounting portion 44 rotatably attached to the tip of the boom 43, and a fork 45 used for cargo handling work, which is one of the attachments attached to the attachment mounting portion 44, The boom 43, the attachment mounting portion 44, and the fork 45 constitute a working device. Although not shown in the drawing, hydraulic actuators are attached to the boom 43, the attachment mounting portion 44, and the fork 45, and each working member is driven by the hydraulic actuator. The vehicle body 41 has a front wheel 14 and a rear wheel 24 attached thereto.
[0058] 図 2の想像線はブーム 43を上げた状態と、ブーム 43を上げかつ伸長した状態を示 している。この場合、ブーム 43を上げた状態にしても、アタッチメント取付部 44のリン ク作用によりフォーク 45の姿勢は変わらな 、。  The imaginary line in FIG. 2 shows a state where the boom 43 is raised and a state where the boom 43 is raised and extended. In this case, even if the boom 43 is raised, the fork 45 does not change its position due to the linking action of the attachment mounting portion 44.
[0059] 次に、以上のように構成した本実施の形態の作用効果について説明する。  Next, the function and effect of the present embodiment configured as described above will be described.
[0060] 切換スィッチ 42が低速位置にあり、切換弁 41は図示の連通位置にあるときは低速 4輪駆動モードであり、油圧ポンプ 1から 2つの油圧モータ 10, 20に圧油が供給され る状態となる。この状態では、 2つの油圧モータ 10, 20には等しい駆動圧力が発生し ており、 2つの油圧モータ 10, 20の容量は等しぐ油圧モータ 10, 20の駆動トルクは 容量と駆動圧力との積で表されるため、油圧モータ 10, 20が発生する駆動トルクは 同じである。しかし、前輪側の減速機 11と後輪側の減速機 21の減速比の割合は 2 : 1 であるため、車両を駆動するトルクは前輪 14 (前輪走行装置 12)が後輪 24 (後輪走 行装置 22)の 2倍となる。このとき、前後輪 14, 24の回転速度は同じであるから、前 輪側の油圧モータ 10には後輪側の油圧モータ 20の 2倍の流量が作用し、結果とし て前後 2 : 1の牽引力分配状態で走行が可能となる。 [0060] When the switching switch 42 is in the low speed position and the switching valve 41 is in the illustrated communication position, it is in the low speed four-wheel drive mode, and pressure oil is supplied from the hydraulic pump 1 to the two hydraulic motors 10 and 20. It becomes a state. In this state, equal driving pressure is generated in the two hydraulic motors 10 and 20, and the driving torque of the hydraulic motors 10 and 20 is equal to the capacity and driving pressure. The drive torque generated by the hydraulic motors 10 and 20 is the same because it is expressed as a product. However, since the ratio of the reduction ratio between the front wheel side reducer 11 and the rear wheel side reducer 21 is 2: 1, the torque for driving the vehicle is the front wheel 14 (front wheel drive device 12) for the rear wheel 24 (rear wheel). Run 2 times that of the line device 22). At this time, since the rotational speeds of the front and rear wheels 14 and 24 are the same, a flow rate twice that of the rear wheel side hydraulic motor 20 acts on the front wheel side hydraulic motor 10, resulting in a front and rear 2: 1 ratio. It is possible to run with the traction force distributed.
[0061] 切換スィッチ 42を高速位置に操作し、切換弁 41を図示の位置力も遮断位置に切り 換えると、高速 2輪駆動モードとなって、後輪側の油圧モータ 20のみに油圧ポンプ 1 力もの圧油が供給される。この状態では、油圧ポンプ 1の全ての圧油が後輪側の油 圧モータ 20に流入するため、低速 4輪駆動モードの 3倍の回転速度(車速)が得られ る。つまり、トランスミッションを用いることなぐ低速 4輪駆動モードの 3倍の速度差を 実現している。 [0061] When the switching switch 42 is operated to the high speed position and the switching valve 41 is switched to the cutoff position, the high speed two-wheel drive mode is established, and only the hydraulic motor 20 on the rear wheel side is supplied with one hydraulic pump. The pressure oil is supplied. In this state, since all the pressure oil from the hydraulic pump 1 flows into the hydraulic motor 20 on the rear wheel side, a rotation speed (vehicle speed) that is three times that of the low-speed four-wheel drive mode can be obtained. In other words, the speed difference is three times that of the low-speed four-wheel drive mode without using a transmission.
[0062] なお、このとき、前輪側の油圧モータ 10の主管路 5, 6は連通するため、前輪側の 油圧モータ 10は前輪 14の回転とともに回転する。また、このときの走行駆動トルクは 後輪側の油圧モータ 20のみで与えられるため、低速 4輪駆動モードにおける駆動ト ルクの 1Z3となる。つまり、高速 2輪駆動モードにおける牽引力は低速 4輪駆動モー ドで得られる牽引力(最大牽引力)の 1Z3となる。  At this time, the main pipelines 5 and 6 of the front wheel side hydraulic motor 10 communicate with each other, so that the front wheel side hydraulic motor 10 rotates as the front wheel 14 rotates. Further, since the traveling drive torque at this time is given only by the hydraulic motor 20 on the rear wheel side, it becomes 1Z3 of the drive torque in the low-speed four-wheel drive mode. In other words, the traction force in the high-speed two-wheel drive mode is 1Z3, which is the traction force (maximum traction force) obtained in the low-speed four-wheel drive mode.
[0063] ラフテレンリフトトラックは多目的作業機械であり、牽引作業、パケット作業、荷役作 業等、種々の作業を行うことができる。牽引作業とは車体後部にトレーラ等の被牽引 物を連結し、牽引移動させる作業である。パケット作業とは、アタッチメントをパケット に交換し、走行力(牽引力)でパケットを地山等の被掘削物に押し付けて掘削する作 業である。掘削後はパケットを上げて車体を移動し、トラック等に放土する。荷役作業 とは図示のフォーク 45に荷を載せて移動する作業である。また、車両移動時は高速 で走行する必要がある。  [0063] The rough terrain lift truck is a multi-purpose work machine and can perform various operations such as towing work, packet work, and cargo handling work. Towing work is the work of towing and moving a towed object such as a trailer at the rear of the vehicle body. Packet work is excavation work by exchanging attachments with packets and pressing the packets against the excavated object such as natural ground with running force (traction force). After excavation, raise the packet, move the car body, and release it to the truck. The cargo handling operation is an operation in which a fork 45 shown in the figure is loaded and moved. It is also necessary to travel at high speed when the vehicle is moving.
[0064] 本実施の形態にぉ 、て、牽引作業は低速 4輪駆動モードで行 、、高速での車両移 動は高速 2輪駆動モードで行う。荷役作業は、そのときの状況に応じて、低速 4輪駆 動モードか高速 2輪駆動モードのいずれかで行う。  [0064] According to the present embodiment, the towing operation is performed in the low-speed four-wheel drive mode, and the vehicle movement at high speed is performed in the high-speed two-wheel drive mode. Carrying work is carried out in either low-speed four-wheel drive mode or high-speed two-wheel drive mode depending on the situation at that time.
[0065] ここで、ラフテレンリフトトラック等の作業機械では、一般的に、牽引時の最大牽引力 は車体車重比で 90〜: LOO%に設定され、最高速度時の牽引力は車体車重比で 20 〜30%に設定されている。従来の HST走行システムは、トランスミッション (変速機) とプロペラシャフトを用い、 1つ又は 2つの油圧モータで前後輪を同時に駆動している 。このような HST走行システムでは、牽引時の最大牽引力と最高速度時の牽引力を 両立させるため、段間比(高速と低速の減速比の比率)で 3〜4となる 2速のトランスミ ッシヨンを使用していた。牽引作業やパケット作業を行う場合は、トランスミッションを 低速ギアに切り換え、車両移動(走行)ではトランスミッションを高速ギアに切り換える [0065] Here, in a working machine such as a rough terrain lift truck, generally, the maximum traction force during towing is set to 90 to LOO% of the vehicle body weight ratio, and the traction force at the maximum speed is the vehicle weight ratio. Is set to 20-30%. The conventional HST traveling system uses a transmission (transmission) and a propeller shaft, and drives one or two hydraulic motors simultaneously with one or two hydraulic motors. . In such an HST traveling system, in order to achieve both the maximum traction force at towing and the traction force at the maximum speed, a two-speed transmission with a speed ratio between 3 and 4 is used. Was. When performing towing work or packet work, switch the transmission to the low-speed gear, and switch the transmission to the high-speed gear when moving (running) the vehicle.
[0066] しかし、ラフテレンリフトトラック等の作業機械においては、牽引作業では低速ギアで 得られる最大牽引力は必須であるが、パケット作業ではその最大牽引力は過剰であ る。また、高速走行は作業現場間の移動時に使用するため、悪路走破性向上を目的 としたセンターデフなしの 4輪駆動方式は効率が悪力つた。 [0066] However, in a working machine such as a rough terrain lift truck, the maximum traction force that can be obtained with a low-speed gear is essential for traction work, but the maximum traction force is excessive for packet work. In addition, because high-speed driving is used when moving between work sites, the four-wheel drive system without a center differential for the purpose of improving rough road running performance was inefficient.
[0067] また、特開 2000— 1127号公報や GB2136371Aに記載の HST走行システムをラ フテレンリフトトラック等の作業機械に適用した場合は、前後輪のトルク配分 (牽引力 配分)についての考慮がなされていないため、パケット作業時に十分な牽引力を得る ことができない。つまり、前後輪のトルク配分 (牽引力配分)を考慮しない場合、前後 輪のトルク配分は 1 : 1に設定するのが通常である。この場合、車体前部に作業機 (バ ケット等)を持つ作業機械ではパケット作業時の車重はほとんど前輪にし力かからな いため、パケット作業時の牽引力は最大牽引力の半分となり、パケット作業の牽引力 としては過小である。  [0067] In addition, when the HST traveling system described in Japanese Patent Application Laid-Open No. 2000-1127 and GB2136371A is applied to a work machine such as a rough terrain lift truck, consideration is given to torque distribution (traction force distribution) of the front and rear wheels. Therefore, sufficient traction force cannot be obtained during packet work. In other words, when the torque distribution of the front and rear wheels (traction force distribution) is not considered, the torque distribution of the front and rear wheels is usually set to 1: 1. In this case, with a work machine with a work implement (bucket, etc.) in the front of the vehicle body, the vehicle weight during packet work hardly applies any force to the front wheels, so the tractive force during packet work is half of the maximum tractive force, and packet work The traction force is too small.
[0068] 本実施の形態では、上記のように低速 4輪駆動モードでは前後 2 : 1の牽引力分配 状態で走行が可能であるため、牽引作業では前後の車輪 14, 24により必要な最大 牽引力が得られる。また、車体前部に作業機 (パケット等)を持つ作業機械ではバケ ット作業時の車重はほとんど前輪にし力かからないため、前輪のみに 60%程度の駆 動力が発生すれば十分である(後輪に駆動力を発生しても無駄である)。油圧モータ 10による前輪 14の駆動トルクは 2つの油圧モータ 10, 20による前後輪の全体駆動ト ルクの 2Z3のであるため、車重の相当部分が前輪に力かるパケット作業時には少な くとも前輪 14により最大牽引力の 2Z3の 65%程度の牽引力が得られ、牽引作業、 パケット作業とも適切な牽引力で作業を行うことができる。  [0068] In the present embodiment, as described above, in the low-speed four-wheel drive mode, it is possible to travel in the traction force distribution state of front and rear 2: 1, so that the maximum traction force required by the front and rear wheels 14 and 24 is large in traction work. can get. In addition, in a work machine with a work machine (packet, etc.) in the front part of the vehicle body, the vehicle weight during bucket work hardly applies any force to the front wheels, so it is sufficient that only about 60% of the driving force is generated only on the front wheels ( It is useless to generate driving force on the rear wheels). The driving torque of the front wheel 14 by the hydraulic motor 10 is 2Z3 of the total driving torque of the front and rear wheels by the two hydraulic motors 10, 20, so at least due to the front wheel 14 during packet work where a considerable part of the vehicle weight is applied to the front wheel The traction force is about 65% of the maximum traction force of 2Z3, and both traction work and packet work can be performed with appropriate traction force.
[0069] また、高速 2輪駆動モードでは、後輪 24のみで低速 4輪駆動モードの 3倍の速度で 走行することができ、良好な走行性能が得られる。 [0070] 以上のように本実施の形態によれば、前輪走行装置 12と後輪走行装置 22を別々 の油圧モータ 10, 20で駆動するため、プロペラシャフトが不要となる。 [0069] Further, in the high-speed two-wheel drive mode, it is possible to travel at a speed three times that of the low-speed four-wheel drive mode with only the rear wheels 24, and good traveling performance is obtained. [0070] As described above, according to the present embodiment, the front wheel traveling device 12 and the rear wheel traveling device 22 are driven by the separate hydraulic motors 10, 20, so that a propeller shaft is not required.
[0071] また、牽引作業時に必要な最大牽引力、パケット作業時に必要な牽引力 (前後輪 牽引力配分)、並びに高速走行時に必要な牽引力を、変速機 (例えば 2速トランスミツ シヨン)を使用せずに達成することができる。 [0071] Also, the maximum traction force required for traction work, the traction force required for packet work (front and rear wheel traction force distribution), and the traction force required for high-speed driving without using a transmission (for example, 2-speed transmission) Can be achieved.
[0072] 更に、前後輪の油圧モータ 10, 20を同じ容量とすることで、部品の共通化、原価低 減が可能となる。 [0072] Furthermore, by making the front and rear wheel hydraulic motors 10, 20 have the same capacity, it is possible to share parts and reduce costs.
[0073] なお、前述したように、前輪側の減速機 11と後輪側の減速機 21の減速比割合は 2  [0073] As described above, the reduction ratio of the front wheel side reduction gear 11 and the rear wheel side reduction gear 21 is 2
: 1に限らず、基本的には、前輪側の減速機 11の減速比が後輪側の減速機 21の減 速比より大きく設定されていればよいものであり、好ましくは、前輪側の減速機 11は 後輪側の減速機 21の 2〜3倍の減速比を持ち、前輪側の減速機 11と後輪側の減速 機 21の減速比の割合が 2〜3: 1であればよいものである。  : Not limited to 1, basically, the reduction ratio of the reduction gear 11 on the front wheel side only needs to be set larger than the reduction ratio of the reduction gear 21 on the rear wheel side, and preferably on the front wheel side. The reduction gear 11 has a reduction ratio of 2 to 3 times that of the reduction gear 21 on the rear wheel side, and the ratio of the reduction ratio between the reduction gear 11 on the front wheel side and the reduction gear 21 on the rear wheel side is 2 to 3: 1. It ’s good.
[0074] 前輪側の減速機 11の減速比を後輪側の減速機 21の減速比より大きく設定すること により、低速 4輪駆動モードでパケット作業を行う場合は、前輪走行装置の駆動トルク が後輪走行装置の駆動トルクよりも大きくなるため、車重のほとんどが前輪にかかる パケット作業時の牽引力は最大牽引力の半分よりも大きくなり、前輪側の減速機 11と 後輪側の減速機 21の減速比割合が 1: 1である場合に比べて、パケット作業での牽 引力が適切化される。また、高速走行を高速 2輪駆動モードで行う場合は、後輪側の 油圧モータ 20に低速 4輪駆動モード時の 2倍よりもよりも多い流量が作用し、回転速 度 (車速)は低速 4輪駆動モード時の 2倍よりもより大きくなり、前輪側の減速機 11と後 輪側の減速機 21の減速比割合が 1: 1である場合に比べて、高速で車両移動するこ とがでさる。  [0074] By setting the reduction ratio of the reducer 11 on the front wheel side to be larger than the reduction ratio of the reducer 21 on the rear wheel side, when performing packet work in the low-speed four-wheel drive mode, the drive torque of the front wheel travel device is Because it is greater than the driving torque of the rear wheel drive device, most of the vehicle weight is applied to the front wheels.The traction force during packet work is greater than half of the maximum traction force, and the front wheel side reducer 11 and the rear wheel side reducer 21 Compared with the 1: 1 reduction ratio ratio, the traction force in packet work is optimized. In addition, when high-speed driving is performed in the high-speed two-wheel drive mode, the flow rate of the rear wheel side hydraulic motor 20 is larger than twice that in the low-speed four-wheel drive mode, and the rotational speed (vehicle speed) is low. Compared to the case where the reduction ratio of the front wheel reducer 11 and the rear wheel reducer 21 is 1: 1, the vehicle travels at a higher speed than in the four-wheel drive mode. It is out.
[0075] また、前輪側の減速機 11と後輪側の減速機 21の減速比の割合を 2〜3: 1に設定 することにより、車重はほとんどが前輪に力かるパケット作業時の牽引力は低速 4輪 駆動モードの最大牽引力の 2Z3〜3Z4 (67〜75%)となり、前輪側の減速機 11と 後輪側の減速機 21の減速比割合が 1: 1である場合に比べて、パケット作業の牽引 力が適切化される。また、後輪側の油圧モータ 20に低速 4輪駆動モード時の 3〜4倍 の流量が作用し、回転速度 (車速)は低速 4輪駆動モード時の 3〜4倍となり、前輪側 の減速機 11と後輪側の減速機 21の減速比割合が 1: 1である場合に比べて、高速で 車両移動することができる。 [0075] Also, by setting the ratio of the reduction ratio of the front wheel side reducer 11 and the rear wheel side reducer 21 to 2 to 3: 1, the traction force during packet work where most of the vehicle weight is applied to the front wheels Is 2Z3 ~ 3Z4 (67 ~ 75%) of maximum traction force in low speed 4 wheel drive mode, compared to the case where the reduction ratio ratio of the reducer 11 on the front wheel side and the reducer 21 on the rear wheel side is 1: 1, The traction of packet work is optimized. In addition, the hydraulic motor 20 on the rear wheel side has a flow rate 3 to 4 times that in the low-speed four-wheel drive mode, and the rotational speed (vehicle speed) is 3 to 4 times that in the low-speed four-wheel drive mode. The vehicle can move at a higher speed than when the reduction gear ratio of the reduction gear 11 and the reduction gear 21 on the rear wheel side is 1: 1.
[0076] 以上のように牽引作業時に必要な最大牽引力、パケット作業時に必要な牽引力( 前後輪牽引力配分)、並びに高速走行時に必要な牽引力を、変速機 (例えば 2速トラ ンスミッション)を使用せずに達成することができる。  [0076] As described above, use a transmission (for example, 2-speed transmission) to obtain the maximum traction force required for traction work, the traction force required for packet work (front and rear wheel traction force distribution), and the traction force required for high-speed travel. Can be achieved without.
[0077] 本発明の第 2の実施の形態を図 3及び図 4を用いて説明する。図 3中、図 1と同等の 部材には同じ符号を付している。  [0077] A second embodiment of the present invention will be described with reference to Figs. In FIG. 3, members equivalent to those in FIG. 1 are given the same reference numerals.
[0078] 図 3において、本実施の形態の HST走行システは HST変速装置 30Aと前輪走行 装置 12と後輪走行装置 22とを備えている。  In FIG. 3, the HST travel system of the present embodiment includes an HST transmission 30A, a front wheel travel device 12, and a rear wheel travel device 22.
[0079] HST変速装置 30Aにおいて、 2個の油圧モータ 10, 20の容量は等しく設定されて いる。また、走行装置 12, 22において、前輪側の減速機 11は後輪側の減速機 21よ り大きく設定されており、具体的には、前輪側の減速機 11は後輪側の減速機 21の 2 倍の減速比を持ち、前輪側の減速機 11と後輪側の減速機 21の減速比の割合は 2 : 1となっている。この場合も、減速比割合は、前輪側の減速機 11の減速比が後輪側 の減速機 21の減速比より大きければ (好ましくは、前輪側の減速機 11と後輪側の減 速機 21の減速比の割合が 2〜3: 1の範囲であれば)、それ以外の割合であってもよ い。  [0079] In the HST transmission 30A, the capacities of the two hydraulic motors 10, 20 are set equal. Further, in the traveling devices 12 and 22, the front wheel side reducer 11 is set larger than the rear wheel side reducer 21. Specifically, the front wheel side reducer 11 is the rear wheel side reducer 21. The ratio of the reduction ratio of the reduction gear 11 on the front wheel side and the reduction gear 21 on the rear wheel side is 2: 1. In this case as well, the ratio of the reduction ratio is such that the reduction ratio of the reduction gear 11 on the front wheel side is larger than the reduction ratio of the reduction gear 21 on the rear wheel side (preferably, the reduction gear 11 on the front wheel side and the reduction gear on the rear wheel side) (If the ratio of the reduction ratio of 21 is in the range of 2 to 3: 1), other ratios may be used.
[0080] HST変速装置 30Aは、図 1の主管路 3に代え、油圧ポンプ 1側の主管路 3aと、主 管路 5, 7側の別々の主管路 3b, 3cとを備えるとともに、主管路 6, 8側に主管路 4に 対して並列に接続された主管路 4a, 4bを備え、かつ図 1の切換弁 41に代え、主管 路 3a, 4a, 4bと主管路 3b, 3cとの間に設置された 3位置切換弁(以下単に切換弁と いう) 41Aを備えている。  [0080] The HST transmission 30A includes a main pipeline 3a on the hydraulic pump 1 side and separate main pipelines 3b and 3c on the main pipelines 5 and 7 side instead of the main pipeline 3 in FIG. 6 and 8 are provided with main pipelines 4a and 4b connected in parallel to the main pipeline 4, and instead of the switching valve 41 in FIG. 1, between the main pipelines 3a, 4a and 4b and the main pipelines 3b and 3c. Equipped with a 3-position switching valve (hereinafter simply referred to as switching valve) 41A.
[0081] また、 HST変速装置 30Aは、図 1の切換スィッチ 42及びコントローラ 43に代えて切 換スィッチ 42A及びコントローラ 43Aを備え、かつ走行装置 12, 22の車軸 13, 23の 回転速度(車軸速度)を検出する回転速度センサー 51, 52を有し、回転速度センサ 一 51, 52の検出信号はコントローラ 43Aに入力される。  [0081] Further, the HST transmission 30A includes a switching switch 42A and a controller 43A in place of the switching switch 42 and the controller 43 in FIG. 1, and the rotational speeds (axle speeds) of the axles 13 and 23 of the traveling devices 12 and 22. ), And the detection signals of the rotation speed sensors 51 and 52 are input to the controller 43A.
[0082] 切換弁 41Aは両端にソレノイド 41Aa, 4 lAbを有する電磁切換弁であり、ソレノイド 41Aa, 41Abに与えられる電気信号がいずれも OFFのときは図示の第 1位置 Aにあ り、図示右側のソレノイド 41Aaに与えられる電気信号が ONになると図示の位置から 図示右側の第 2位置 Bに切り換わり、図示左側のソレノイド 41Abに与えられる電気信 号が ONになると図示の位置から図示左側の第 3位置 Cに切り換わる。切換弁 41Aが 第 1位置 Aにあるときは、主管路 3aと主管路 3b, 3cが連通し、油圧ポンプ 1からの吐 出油は 2つの油圧モータ 10, 20に供給され、 2つの油圧モータ 10, 20が回転して前 輪 14と後輪 24の両方が駆動される。つまり、低速 4輪駆動モードとなる。切換弁 41A が第 2位置 Bに切り換わると、主管路 3aと主管路 3cとが連通しかつ主管路 4aと主管 路 3bとが連通し、後輪側の油圧モータ 20のみに油圧ポンプ 1からの圧油が供給され 、後輪 24のみが駆動されるとともに、前輪側の油圧モータ 10は、主管路 5, 6が連通 するため、前輪 14の回転とともに回転する。つまり、高速 2輪駆動モードとなる。切換 弁 41Aが第 3位置 Cに切り換わると、主管路 3aと主管路 3bとが連通しかつ主管路 4b と主管路 3cとが連通し、前輪側の油圧モータ 10のみに油圧ポンプ 1からの圧油が供 給され、前輪 14のみが駆動されるとともに、後輪側の油圧モータ 20は、主管路 7, 8 が連通するため、後輪 24の回転とともに回転する。この状態を中速 2輪駆動モードと いう。 [0082] The switching valve 41A is an electromagnetic switching valve having solenoids 41Aa and 4 lAb at both ends. When both electrical signals applied to the solenoids 41Aa and 41Ab are OFF, the switching valve 41A is at the first position A shown in the figure. When the electrical signal applied to the solenoid 41Aa on the right side of the figure is turned ON, the position is switched from the position shown in the figure to the second position B on the right side of the figure, and when the electrical signal applied to the solenoid 41Ab on the left side of the figure is turned ON, the position shown in FIG. Switch to position 3 on the left side of the figure. When the switching valve 41A is in the first position A, the main pipeline 3a communicates with the main pipelines 3b, 3c, and the oil discharged from the hydraulic pump 1 is supplied to the two hydraulic motors 10, 20, and the two hydraulic motors 10 and 20 rotate to drive both front wheel 14 and rear wheel 24. That is, the low-speed four-wheel drive mode is set. When the switching valve 41A switches to the second position B, the main pipe line 3a and the main pipe line 3c communicate with each other, the main pipe line 4a and the main pipe line 3b communicate with each other, and only the hydraulic motor 20 on the rear wheel side is connected to the hydraulic pump 1 When the pressure oil is supplied, only the rear wheel 24 is driven, and the hydraulic motor 10 on the front wheel side rotates with the rotation of the front wheel 14 because the main pipelines 5 and 6 communicate with each other. That is, it becomes a high-speed two-wheel drive mode. When the switching valve 41A switches to the third position C, the main pipe line 3a and the main pipe line 3b communicate with each other, the main pipe line 4b and the main pipe line 3c communicate with each other, and only the hydraulic motor 10 on the front wheel side is connected to the hydraulic pump 1 Pressure oil is supplied, and only the front wheel 14 is driven, and the hydraulic motor 20 on the rear wheel side rotates with the rotation of the rear wheel 24 because the main pipelines 7 and 8 communicate with each other. This state is called the medium-speed two-wheel drive mode.
[0083] 切換スィッチ 42Aは低速、高速、中速の 3位置に切り換え可能であり、コントローラ 4 3Aは、切換スィッチ 42Aの信号と回転速度センサー 51, 52の検出信号に基づいて 切換弁 41Aの切り換えを制御する。  [0083] Switching switch 42A can be switched to three positions, low speed, high speed, and medium speed, and controller 43A switches switching valve 41A based on the signal from switching switch 42A and the detection signals from rotational speed sensors 51 and 52. To control.
[0084] 図 4は、コントローラ 43Aの処理内容を示すフローチャートである。 FIG. 4 is a flowchart showing the processing contents of the controller 43A.
[0085] コントローラ 43Aは、切換スィッチ 42Aからの信号に基づいて切換スィッチ 42Aが どの位置にあるかを判断し (ステップ S 10)、切換スィッチ 42Aが低速位置にあるとき は低速制御処理をし (ステップ S20)、切換スィッチ 42Aが高速位置に切り換わると、 切換弁 41 Aのソレノイド 41 Aaに与える電気信号を ONとして切換弁 41 Aを第 2位置 Bに切り換え (ステップ S30)、切換スィッチ 42Aが中速位置に切り換わると、切換弁 4 1Aのソレノイド 41Abに与える電気信号を ONとして切換弁 41Aを第 3位置 Cに切り 換える (ステップ S40)。切換スィッチ 42Aが低速位置にあるときの低速制御処理では 、回転速度センサー 51, 52からの信号に基づき前輪走行装置 12の車軸 13と後輪 走行装置 22の車軸 23との速度差を検知し、この速度差が所定値以下であるときは、 切換弁 41 Aのソレノイド 41 Aa, 4 lAbに与える電気信号をいずれも OFFとし、速度 差が所定値を超えるとソレノイド 41Aa, 41Abのいずれか〖こ与える電気信号を ONと し、油圧モータ 10, 20のうち回転速度が大なる側の油圧モータへの圧油の供給を遮 断するよう切換弁 41 Aを第 2位置 B、第 3位置 Cの 、ずれか〖こ切り換える。 [0085] The controller 43A determines the position of the switching switch 42A based on the signal from the switching switch 42A (step S10). When the switching switch 42A is in the low speed position, the controller 43A performs low speed control processing ( (Step S20), when the switching switch 42A switches to the high speed position, the electrical signal applied to the solenoid 41 Aa of the switching valve 41 A is turned ON to switch the switching valve 41 A to the second position B (Step S30), and the switching switch 42A When switching to the medium speed position, the electric signal applied to the solenoid 41Ab of the switching valve 41A is turned ON and the switching valve 41A is switched to the third position C (step S40). In the low speed control process when the switching switch 42A is in the low speed position, the speed difference between the axle 13 of the front wheel traveling device 12 and the axle 23 of the rear wheel traveling device 22 is detected based on the signals from the rotational speed sensors 51 and 52. When this speed difference is below a predetermined value, The electrical signal given to solenoid 41 Aa, 4 lAb of switching valve 41 A is turned OFF, and if the speed difference exceeds a predetermined value, the electrical signal given to either solenoid 41Aa, 41Ab is turned ON, and hydraulic motor 10, Switch the switching valve 41 A between the second position B and the third position C so as to cut off the supply of pressure oil to the hydraulic motor with the higher rotational speed out of 20.
[0086] 図 5は低速制御処理の詳細を示すフローチャートである。 FIG. 5 is a flowchart showing details of the low speed control process.
[0087] コントローラ 43Aは、回転速度センサー 51, 52からの信号に基づいて前輪走行装 置 12の車軸 13の回転速度と後輪走行装置 22の車軸 23の回転速度との速度差 A S ( Δ S =前輪車軸速度-後輪車軸速度)を計算し (ステップ S 100)、この速度差 Δ S が所定値以下であれば処理を終了し (ステップ S120)、切換弁 41 Aのソレノイド 41 A a, 4 lAbに与える電気信号をいずれも OFFとする。速度差 Δ Sが所定値を超えると、 更に、その速度差 Δ Sが負の値力どうか (つまり前輪車軸速度より後輪車軸速度の方 が大きいかどうか)を判定し (ステップ S130)、 Yesであれば (つまり前輪車軸速度より 後輪車軸速度の方が大きければ)切換弁 41Aのソレノイド 41Abに与える電気信号 を ONとして切換弁 41Aを第 3位置 Cに切り換 (ステップ S140)、 Noであれば(つまり 後輪車軸速度より前輪車軸速度の方が大きければ)切換弁 41Aのソレノイド 41Aaに 与える電気信号を ONとして切換弁 41Aを第 2位置 Bに切り換える (ステップ S150)。 ステップ SI 10において、所定値としては、通常走行時の前後輪の速度変動を考慮 し、 0に近い適当な値を設定する。  The controller 43A determines the speed difference AS (ΔS between the rotational speed of the axle 13 of the front wheel travel device 12 and the rotational speed of the axle 23 of the rear wheel travel device 22 based on the signals from the rotational speed sensors 51 and 52. = Front wheel axle speed-rear wheel axle speed) (step S 100), and if this speed difference Δ S is less than or equal to the predetermined value, the process ends (step S120), and the solenoid 41 A a, 4 Turn off all electrical signals applied to the lAb. When the speed difference ΔS exceeds the predetermined value, it is further determined whether the speed difference ΔS is a negative force (that is, whether the rear wheel axle speed is larger than the front wheel axle speed) (Step S130), Yes (That is, if the rear wheel axle speed is greater than the front wheel axle speed), the electrical signal applied to the solenoid 41Ab of the switching valve 41A is turned ON to switch the switching valve 41A to the third position C (step S140). If there is (that is, if the front axle speed is greater than the rear axle speed), the electrical signal applied to the solenoid 41Aa of the switching valve 41A is turned ON to switch the switching valve 41A to the second position B (step S150). In step SI10, an appropriate value close to 0 is set as the predetermined value in consideration of the speed fluctuation of the front and rear wheels during normal driving.
[0088] 以上のように構成した本実施の形態では、オペレータが切換スィッチ 42Aを中速位 置に操作することにより、低速 4輪駆動モードと高速 2輪駆動モードに加えて中速 2輪 駆動モードを選択可能である。  [0088] In the present embodiment configured as described above, the operator operates the switching switch 42A to the medium speed position, so that the medium speed two wheel drive is performed in addition to the low speed four wheel drive mode and the high speed two wheel drive mode. The mode can be selected.
[0089] つまり、切換スィッチ 42Aが低速位置にあり、切換弁 41Aは図示の第 1位置 Aにあ るときは低速 4輪駆動モードとなり、切換スィッチ 42Aを高速位置に操作し、切換弁 4 1 Aを図示の位置力 第 2位置 Bに切り換えると、高速 2輪駆動モードとなり、切換スィ ツチ 42Aを中速位置に操作し、切換弁 41Aを図示の位置力も第 3位置 Cに切り換え ると、中速 2輪駆動モードとなる。  That is, when the switching switch 42A is in the low speed position and the switching valve 41A is in the first position A shown in the figure, the low speed four-wheel drive mode is set, the switching switch 42A is operated to the high speed position, and the switching valve 4 1 When A is switched to the indicated position force 2nd position B, the high-speed two-wheel drive mode is set, and the changeover switch 42A is operated to the medium speed position and the changeover valve 41A is also switched to the 3rd position C. Medium speed two-wheel drive mode.
[0090] 低速 4輪駆動モードでは、前述したように、前輪側の減速機 11と後輪側の減速機 2 1の減速比の割合は 2 : 1であるため、前輪側の油圧モータ 10には後輪側の油圧モ ータ 20の 2倍の流量が作用し、結果として前後 2 : 1の牽引力分配状態で走行が可能 となる。高速 2輪駆動モードでは、油圧ポンプ 1の全ての圧油が後輪側の油圧モータ 20に流入するため、低速 4輪駆動モードの 4輪駆動状態に対して 3倍の回転速度( 車速)が得られる。 [0090] In the low-speed four-wheel drive mode, as described above, the ratio of the reduction ratio between the front wheel side reduction gear 11 and the rear wheel side reduction gear 21 is 2: 1. Is the rear wheel hydraulic mode As a result, the vehicle can run with a traction force distribution of 2: 1 front and back. In the high-speed two-wheel drive mode, all the hydraulic fluid from the hydraulic pump 1 flows into the hydraulic motor 20 on the rear wheel side, so the rotational speed (vehicle speed) is three times that of the four-wheel drive state in the low-speed four-wheel drive mode. can get.
[0091] 中速 2輪駆動モードでは、油圧ポンプ 1の全ての圧油が前輪側の油圧モータ 10に 流入するため、低速 4輪駆動モードの 1. 5 (3Z2)倍、高速 2輪駆動モードの 1Z2の 回転速度(車速)を得ることができる。また、このときの走行駆動トルクは前輪側の油 圧モータ 10のみで与えられるため、低速 4輪駆動モードにおける駆動トルクの 2Z3と なる。つまり、中速 2輪駆動モードにおける牽引力は低速 4輪駆動モードで得られる 牽引力 (最大牽引力)の 2Z3となる。  [0091] In the medium-speed two-wheel drive mode, all the hydraulic fluid from the hydraulic pump 1 flows into the front-wheel hydraulic motor 10, so it is 1.5 (3Z2) times faster than the low-speed four-wheel drive mode, and the high-speed two-wheel drive mode. The rotation speed (vehicle speed) of 1Z2 can be obtained. Further, since the traveling drive torque at this time is given only by the hydraulic motor 10 on the front wheel side, it becomes 2Z3 of the drive torque in the low-speed four-wheel drive mode. In other words, the traction force in the medium-speed two-wheel drive mode is 2Z3, which is the traction force (maximum traction force) obtained in the low-speed four-wheel drive mode.
[0092] ラフテレンリフトトラックには前述したように牽引作業、パケット作業、荷役作業などの 各種作業がある。本実施の形態の HST走行システムをラフテレンリフトトラックに適用 するとき、牽引作業は低速 4輪駆動モードで行い、高速での車両移動は高速 2輪駆 動モードで行い、荷役作業は中速 2輪駆動モードで行う。この場合、牽引作業、バケ ット作業、高速での車両移動では、第 1の実施の形態で説明したのと同様に適切な 牽引力と車速が得られる。  As described above, the rough terrain lift truck has various operations such as a towing operation, a packet operation, and a cargo handling operation. When the HST traveling system of this embodiment is applied to a rough terrain lift truck, the towing operation is performed in the low-speed four-wheel drive mode, the vehicle movement at high speed is performed in the high-speed two-wheel drive mode, and the cargo handling operation is performed at the medium speed 2 Perform in wheel drive mode. In this case, in the towing operation, the bucket operation, and the vehicle movement at a high speed, an appropriate traction force and vehicle speed can be obtained in the same manner as described in the first embodiment.
[0093] また、 2速のトランスミッション (変速機)を使用する従来の HST走行システムでは、 荷役作業を行う場合は、トランスミッションを低速ギアから高速ギアの ヽずれかを選択 して行わざるを得な力 た。しかし、低速ギアを選択した場合は、重牽引作業向けに 牽引力重視のギア比であったため速度が足りず、エンジンが高回転で稼動するため 効率が悪力つた。また、高速ギアを選択した場合は、最高速度重視で逆に牽引力が 足りないため、効率良く機械を駆動する速度と牽引力を得ることができな力つた。  [0093] Also, in the conventional HST traveling system using a two-speed transmission (transmission), when carrying out cargo handling work, it is necessary to select whether the transmission shifts from the low speed gear to the high speed gear. I was strong. However, when low-speed gears were selected, the gear ratio focused on traction force for heavy traction work, so the speed was insufficient, and the engine operated at high speed, resulting in poor efficiency. In addition, when high-speed gears were selected, the maximum speed was emphasized, and conversely, the traction force was insufficient. Therefore, the speed and traction force to drive the machine efficiently could not be obtained.
[0094] 本実施の形態にぉ 、ては、前輪 14のみを駆動する中速 2輪駆動モードでは低速 4 輪駆動モードと高速 2輪駆動モードのほぼ中間の速度と牽引力 (低速 4輪駆動モード の 3Z2倍、高速 2輪駆動モードの 1Z2の回転速度 (車速)と低速 4輪駆動モードの 2 Z3、高速 2輪駆動モードの 2倍の牽引力)が得られるため、作業効率が向上するだ けでなぐオペレータの疲労 (騒音、振動)も軽減できる。また、フォーク等の作業機は 車体前部にあるため、荷役作業時には主に前輪に車重が作用し、作業性を損なうこ ともない。 [0094] In the present embodiment, in the medium-speed two-wheel drive mode in which only the front wheels 14 are driven, the speed and traction force between the low-speed four-wheel drive mode and the high-speed two-wheel drive mode (the low-speed four-wheel drive mode). 3Z2 times, 1Z2 rotation speed (vehicle speed) in the high-speed two-wheel drive mode and 2 Z3 in the low-speed four-wheel drive mode, and twice the traction force in the high-speed two-wheel drive mode). The operator's fatigue (noise and vibration) can be reduced. In addition, because work machines such as forks are located in the front part of the vehicle body, the weight of the vehicle acts mainly on the front wheels during cargo handling work, which may impair workability. With it.
[0095] また、本実施の形態では、低速 4輪駆動モードで走行時、作業中の路面状況や前 後輪の軸重配分の変化によって、前後いずれかの車軸が空転状態になった場合、 回転速度センサー 51, 52からの情報をコントローラ 43が受信し、その差動状態を判 断して切換弁 41 Aを駆動し、空転の発生して 、な 、前輪又は後輪側の油圧モータ にのみ圧油を供給する。このような切換弁 41Aの切り換え制御により、低速 4輪駆動 モードでの車輪空転時のオープンデフの状態を回避し、悪路走破性を向上すること ができる。  [0095] Also, in this embodiment, when traveling in the low-speed four-wheel drive mode, if any of the front and rear axles is idle due to a change in the road surface condition during work and the axle load distribution of the front and rear wheels, The controller 43 receives the information from the rotational speed sensors 51 and 52, judges the differential state, drives the switching valve 41A, and causes the idling to occur in the hydraulic motor on the front or rear wheel side. Only supply pressure oil. By such switching control of the switching valve 41A, it is possible to avoid an open differential state at the time of wheel idling in the low-speed four-wheel drive mode, and improve rough road running performance.
[0096] 以上のように本実施の形態によれば、第 1の実施の形態と同じ効果が得られるととも に、中速 2輪駆動モードで低速 4輪駆動モードと高速 2輪駆動モードのほぼ中間の速 度と牽引力が得られるため、荷役作業等では適切な走行速度と牽引力が得られ、作 業効率が向上する等の効果が得られる。  [0096] As described above, according to the present embodiment, the same effects as those of the first embodiment can be obtained, and the medium-speed two-wheel drive mode can be used in the low-speed four-wheel drive mode and the high-speed two-wheel drive mode. Since almost the intermediate speed and traction force can be obtained, it is possible to obtain an appropriate traveling speed and traction force for cargo handling work, etc., and to improve work efficiency.
[0097] また、低速 4輪駆動モードでの車輪空転時のオープンデフの状態を回避し、悪路 走破性を向上することができる。  [0097] Further, it is possible to avoid the open differential state at the time of wheel idling in the low-speed four-wheel drive mode, and to improve rough road running performance.
[0098] なお、以上の実施の形態では、 2つの油圧モータ 10, 20の容量を等しくし、前輪側 の減速機 11の減速比を後輪側の減速機 21の減速比より大きく(好ましくは 2〜3: 1、 より好ましくは 2 : 1に)設定したが、その目的は、油圧モータと減速機により前後輪の 適切な牽引力配分を得るためであるので、前輪走行装置の駆動トルクを後輪走行装 置の駆動トルクよりも大きく設定できれば、他の構成を採用してもよい。例えば、前輪 側の減速機 11の減速比と後輪側の減速機 21の減速比を同じ (減速比割合を 1: 1)と し、前輪側の油圧モータ 10の容量を後輪側の油圧モータ 20の容量より大きく(或い は減速比割合を好ましくは 2〜3: 1、より好ましくは 2 : 1に設定)してもよいし、減速比 の選択と容量の選択を組み合わせて、結果的に、前輪走行装置の駆動トルクが後輪 走行装置の駆動トルクよりも大きくなるようにしてもょ 、。  In the above embodiment, the capacities of the two hydraulic motors 10 and 20 are made equal, and the reduction ratio of the reduction gear 11 on the front wheel side is larger than the reduction ratio of the reduction gear 21 on the rear wheel side (preferably (2-3: 1, more preferably 2: 1), but the purpose is to obtain an appropriate traction distribution between the front and rear wheels by the hydraulic motor and speed reducer. Other configurations may be adopted as long as they can be set larger than the driving torque of the wheel traveling device. For example, the reduction ratio of the reduction gear 11 on the front wheel side and the reduction ratio of the reduction gear 21 on the rear wheel side are the same (the reduction ratio ratio is 1: 1), and the capacity of the hydraulic motor 10 on the front wheel side is the hydraulic pressure on the rear wheel side. It may be larger than the capacity of the motor 20 (or the reduction ratio ratio is preferably set to 2-3: 1, more preferably 2: 1), and the combination of the selection of the reduction ratio and the selection of the capacity results. Specifically, the driving torque of the front wheel traveling device may be larger than the driving torque of the rear wheel traveling device.
[0099] また、第 2の実施の形態では、切換スィッチ 42Aが低速、高速、中速の 3位置を有 する場合に切換弁 41Aを設け、低速 4輪駆動モードでの車輪空転時のオープンデフ の状態を回避したが、第 1の実施の形態においてそのような制御を適用しても良い。 この場合、第 1の実施の形態の図 1における切換弁 41とコントローラ 43を図 3の切換 弁 41Aとコントローラ 43Aに変え、コントローラ 43Aで切換スィッチ 42が低速位置に あるとき図 5に示し低速制御処理を行えばよ!/、。 [0099] In the second embodiment, the switching valve 41A is provided when the switching switch 42A has three positions of low speed, high speed, and medium speed, and an open differential at the time of wheel idling in the low speed four-wheel drive mode is provided. However, such control may be applied in the first embodiment. In this case, the switching valve 41 and the controller 43 in FIG. 1 of the first embodiment are switched as shown in FIG. Instead of the valve 41A and the controller 43A, the low speed control process shown in Fig. 5 should be performed when the changeover switch 42 is in the low speed position on the controller 43A!
また、上記第 1及び第 2の実施の形態では、前輪側の油圧モータ 10と減速機 11は 直結としたが、前輪側の油圧モータ 10と減速機 11との間にクラッチを設け、切換弁 4 1, 41Aを油圧ポンプ 1と油圧モータ 10を切り離す位置 (遮断位置或いは第 2位置 B) に切り換えると同時にクラッチを OFFにしてもよぐこれにより高速 2輪駆動モードで 走行時の油圧モータ 10の連れ周りが無くなるため、走行負荷が減少し、エネルギ損 失を低減できる。  In the first and second embodiments, the front wheel side hydraulic motor 10 and the speed reducer 11 are directly connected. However, a clutch is provided between the front wheel side hydraulic motor 10 and the speed reducer 11 so that a switching valve is provided. 4 1, 41A can be switched to the position where the hydraulic pump 1 and hydraulic motor 10 are disconnected (disengaged position or second position B) and the clutch can be turned off at the same time. This allows the hydraulic motor 10 to run in high-speed two-wheel drive mode. Since there is no need to move around, the driving load is reduced and energy loss can be reduced.

Claims

請求の範囲 The scope of the claims
[1] 油圧ポンプ (1)と、  [1] Hydraulic pump (1),
この油圧ポンプに閉回路接続されかつ互!ヽに並列接続され、前記油圧ポンプから 吐出された圧油により駆動される第 1及び第 2油圧モータ (10,20)と、  First and second hydraulic motors (10, 20) connected to the hydraulic pump in a closed circuit and connected in parallel to each other and driven by pressure oil discharged from the hydraulic pump;
前記第 1油圧モータに第 1減速機 (11)を介して接続された前輪走行装置 (12)と、 前記第 2油圧モータに第 2減速機 (21)を介して接続された後輪走行装置 (22)と、 前記前輪走行装置と後輪走行装置の両方を駆動する低速 4輪駆動モードと、前記 後輪走行装置のみを駆動する高速 2輪駆動モードとに切り換える第 1制御手段 (41,4 A front wheel travel device (12) connected to the first hydraulic motor via a first speed reducer (11), and a rear wheel travel device connected to the second hydraulic motor via a second speed reducer (21) (22), and a first control means for switching between a low-speed four-wheel drive mode for driving both the front-wheel travel device and the rear-wheel travel device and a high-speed two-wheel drive mode for driving only the rear-wheel travel device (41, Four
2,43)とを備え、 2,43)
前記前輪走行装置の駆動トルクを前記後輪走行装置の駆動トルクよりも大きく設定 したことを特徴とする作業機械の HST走行システム。  An HST traveling system for a work machine, wherein a driving torque of the front wheel traveling device is set larger than a driving torque of the rear wheel traveling device.
[2] 請求項 1記載の作業機械の HST走行システムにお 、て、 [2] In the HST traveling system for a work machine according to claim 1,
前記前輪走行装置 (12)の駆動トルクと前記後輪走行装置 (22)の駆動トルクの比を 2 〜3: 1の範囲に設定したことを特徴とする作業機械の HST走行システム。  An HST traveling system for a working machine, wherein a ratio between a driving torque of the front wheel traveling device (12) and a driving torque of the rear wheel traveling device (22) is set in a range of 2 to 3: 1.
[3] 請求項 1記載の作業機械の HST走行システムにお 、て、 [3] In the working machine HST traveling system according to claim 1,
前記前輪走行装置 (12)の駆動トルクと前記後輪走行装置 (22)の駆動トルクの比を 2 : 1に設定したことを特徴とする作業機械の HST走行システム。  A working machine HST traveling system, wherein a ratio of a driving torque of the front wheel traveling device (12) and a driving torque of the rear wheel traveling device (22) is set to 2: 1.
[4] 油圧ポンプ (1)と、 [4] Hydraulic pump (1),
この油圧ポンプに閉回路接続されかつ互!ヽに並列接続され、前記油圧ポンプから 吐出された圧油により駆動される第 1及び第 2油圧モータ (10,20)と、  First and second hydraulic motors (10, 20) connected to the hydraulic pump in a closed circuit and connected in parallel to each other and driven by pressure oil discharged from the hydraulic pump;
前記第 1油圧モータに第 1減速機 (11)を介して接続された前輪走行装置 (12)と、 前記第 2油圧モータに第 2減速機 (21)を介して接続された後輪走行装置 (22)と、 前記前輪走行装置と後輪走行装置の両方を駆動する低速 4輪駆動モードと、前記 後輪走行装置のみを駆動する高速 2輪駆動モードとに切り換える第 1制御手段 (41,4 2,43)とを備え、  A front wheel travel device (12) connected to the first hydraulic motor via a first speed reducer (11), and a rear wheel travel device connected to the second hydraulic motor via a second speed reducer (21) (22), and a first control means for switching between a low-speed four-wheel drive mode for driving both the front-wheel travel device and the rear-wheel travel device and a high-speed two-wheel drive mode for driving only the rear-wheel travel device (41, 4 2,43)
前記第 1及び第 2油圧モータの容量を等しくし、前記第 1減速機の減速比を前記第 2減速機の減速比よりも大きくしたことを特徴とする作業機械の HST走行システム。  An HST traveling system for a working machine, wherein the capacities of the first and second hydraulic motors are made equal, and a reduction ratio of the first reduction gear is made larger than a reduction ratio of the second reduction gear.
[5] 請求項 4記載の作業機械の HST走行システムにお 、て、 前記第 1減速機 (11)の減速比と前記第 2減速機 (21)の減速比の比を 2〜3 : 1の範囲 に設定したことを特徴とする作業機械の HST走行システム。 [5] In the working machine HST traveling system according to claim 4, A working machine HST traveling system, wherein a ratio of a reduction ratio of the first reduction gear (11) and a reduction ratio of the second reduction gear (21) is set in a range of 2 to 3: 1.
[6] 請求項 4記載の作業機械の HST走行システムにお 、て、 [6] In the HST traveling system for the work machine according to claim 4,
前記第 1減速機 (11)の減速比と前記第 2減速機 (21)の減速比の比を 2 : 1に設定した ことを特徴とする作業機械の HST走行システム。  A working machine HST traveling system, wherein a ratio of a reduction ratio of the first reduction gear (11) and a reduction ratio of the second reduction gear (21) is set to 2: 1.
[7] 請求項 1又は 4記載の作業機械の HST走行システムにお 、て、 [7] In the HST traveling system for a work machine according to claim 1 or 4,
前記油圧ポンプ (1)と前記第 1及び第 2油圧モータ (10,20)を接続する閉回路中に配 置された切換弁 (41A)と、  A switching valve (41A) disposed in a closed circuit connecting the hydraulic pump (1) and the first and second hydraulic motors (10, 20);
前記前輪走行装置 (12)と前記後輪走行装置 (22)との速度差 ( Δ S)を検知し、この速 度差が所定値を超えると前記切換弁を切り換えて前記第 1油圧モータと第 2油圧モ ータのうち回転速度が大なる側の油圧モータへの圧油の供給を遮断する第 2制御手 段 (41A,43A,51,52)とを更に備えることを特徴とする作業機械の HST走行システム。  A speed difference (ΔS) between the front wheel travel device (12) and the rear wheel travel device (22) is detected, and when the speed difference exceeds a predetermined value, the switching valve is switched to switch the first hydraulic motor and A work further comprising a second control means (41A, 43A, 51, 52) for shutting off the supply of pressure oil to the hydraulic motor on the side of the higher rotational speed of the second hydraulic motor. Mechanical HST traveling system.
[8] 請求項 1又は 4記載の作業機械の HST走行システムにお 、て、 [8] In the HST traveling system for a work machine according to claim 1 or 4,
前記第 1制御手段 (41,42,43)は、前記前輪走行装置 (12)のみを駆動する中速 2輪駆 動モードを更に有し、前記低速 4輪駆動モードと高速 2輪駆動モードと中速 2輪駆動 モードのいずれかに切り換え可能であることを特徴とする作業機械の HST走行シス テム。  The first control means (41, 42, 43) further has a medium-speed two-wheel drive mode for driving only the front wheel travel device (12), and includes the low-speed four-wheel drive mode and the high-speed two-wheel drive mode. An HST traveling system for work machines, which can be switched to either medium speed or two-wheel drive mode.
PCT/JP2006/306468 2005-04-05 2006-03-29 Hst traveling system of work machine WO2006109571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005109115A JP4606228B2 (en) 2005-04-05 2005-04-05 HST traveling system for work machines
JP2005-109115 2005-04-05

Publications (1)

Publication Number Publication Date
WO2006109571A1 true WO2006109571A1 (en) 2006-10-19

Family

ID=37086853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306468 WO2006109571A1 (en) 2005-04-05 2006-03-29 Hst traveling system of work machine

Country Status (2)

Country Link
JP (1) JP4606228B2 (en)
WO (1) WO2006109571A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013053297A1 (en) * 2011-10-11 2013-04-18 中联重科股份有限公司 Vehicle
CN103171428A (en) * 2012-12-24 2013-06-26 三一重工股份有限公司 Shifting and impacting method and device of buffering switching valve and walking machine on pavement
GB2531767A (en) * 2014-10-29 2016-05-04 Bamford Excavators Ltd Working Machine
CN105691601A (en) * 2016-01-28 2016-06-22 北京航空航天大学 Aircraft propelling device based on hydraulic motor and propelling control system
CN107605829A (en) * 2017-10-31 2018-01-19 江苏谷登工程机械装备有限公司 A kind of hydraulic closed multi-motor speed control system
US10119247B2 (en) 2014-10-29 2018-11-06 J. C. Bamford Excavators Limited Working machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373854B2 (en) * 2011-04-15 2013-12-18 尚也 冨樫 Four-wheel drive vehicle using a rotary pump
JP2019049298A (en) * 2017-09-08 2019-03-28 いすゞ自動車株式会社 Hydraulic mechanical continuously variable transmission

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082270A (en) * 1994-06-21 1996-01-09 Kanzaki Kokyukoki Mfg Co Ltd Four-wheel drive unit for work vehicle
JPH09309352A (en) * 1996-05-24 1997-12-02 Nissan Motor Co Ltd Four-wheel drive vehicle
JP2002345105A (en) * 2001-05-14 2002-11-29 Toyota Motor Corp Electric vehicle
JP2003025862A (en) * 2001-07-13 2003-01-29 Tochigi Fuji Ind Co Ltd 4-wheel-drive system
JP2004210215A (en) * 2003-01-08 2004-07-29 Kanzaki Kokyukoki Mfg Co Ltd Travel drive device, and vehicle equipped therewith
JP2004210051A (en) * 2002-12-27 2004-07-29 Kanzaki Kokyukoki Mfg Co Ltd Driving apparatus of traveling vehicle
JP2004237776A (en) * 2003-02-03 2004-08-26 Honda Motor Co Ltd Power transmission device of four-wheel drive car

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082270A (en) * 1994-06-21 1996-01-09 Kanzaki Kokyukoki Mfg Co Ltd Four-wheel drive unit for work vehicle
JPH09309352A (en) * 1996-05-24 1997-12-02 Nissan Motor Co Ltd Four-wheel drive vehicle
JP2002345105A (en) * 2001-05-14 2002-11-29 Toyota Motor Corp Electric vehicle
JP2003025862A (en) * 2001-07-13 2003-01-29 Tochigi Fuji Ind Co Ltd 4-wheel-drive system
JP2004210051A (en) * 2002-12-27 2004-07-29 Kanzaki Kokyukoki Mfg Co Ltd Driving apparatus of traveling vehicle
JP2004210215A (en) * 2003-01-08 2004-07-29 Kanzaki Kokyukoki Mfg Co Ltd Travel drive device, and vehicle equipped therewith
JP2004237776A (en) * 2003-02-03 2004-08-26 Honda Motor Co Ltd Power transmission device of four-wheel drive car

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013053297A1 (en) * 2011-10-11 2013-04-18 中联重科股份有限公司 Vehicle
CN103171428A (en) * 2012-12-24 2013-06-26 三一重工股份有限公司 Shifting and impacting method and device of buffering switching valve and walking machine on pavement
GB2531767A (en) * 2014-10-29 2016-05-04 Bamford Excavators Ltd Working Machine
US9592733B2 (en) 2014-10-29 2017-03-14 J. C. Bamford Excavators Limited Working machine
US10119247B2 (en) 2014-10-29 2018-11-06 J. C. Bamford Excavators Limited Working machine
US11111649B2 (en) 2014-10-29 2021-09-07 J. C. Bamford Excavators Limited Working machine
CN105691601A (en) * 2016-01-28 2016-06-22 北京航空航天大学 Aircraft propelling device based on hydraulic motor and propelling control system
CN107605829A (en) * 2017-10-31 2018-01-19 江苏谷登工程机械装备有限公司 A kind of hydraulic closed multi-motor speed control system

Also Published As

Publication number Publication date
JP2006290009A (en) 2006-10-26
JP4606228B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
US9592733B2 (en) Working machine
JP4606228B2 (en) HST traveling system for work machines
US6189641B1 (en) Four-wheel hydraulic drive system for working vehicle
JP4859379B2 (en) HST traveling system for work machines
US7971675B2 (en) Hydraulic transaxle and vehicle comprising it
US9994105B2 (en) Working machine
JP5800846B2 (en) Driving control device for wheeled work vehicle
JP2005155686A5 (en)
WO1998005521A1 (en) Suspension device for excavating work vehicles and method of controlling same
JP4084482B2 (en) Tractor transmission
JP7283237B2 (en) work vehicle
WO2023175914A1 (en) Power transmitting device for vehicle
JPH065934Y2 (en) Parking brake operation part of work vehicle
JPH1134676A (en) Apparatus for driving working vehicle
JP3773830B2 (en) Emergency traveling mechanism for work vehicles
JP4996358B2 (en) Transmission device for passenger vehicle
JP4098903B2 (en) Tractor forward / reverse switching device
JP2021146757A (en) Work vehicle
WO2023159054A1 (en) Control systems for drive systems and work elements of power machines
CN115087821A (en) Power transmission device for vehicle
JPH0646744Y2 (en) Work vehicle travel control device
JP2006281869A (en) Differential lock control device of working vehicle
JPH07158727A (en) Running speed change structure of working vehicle
JPH06298117A (en) Steering device of combine-harvester and the like
JP2007064385A (en) Working vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730416

Country of ref document: EP

Kind code of ref document: A1