JP2006289474A - Brazing filler metal sheet, its manufacturing method, and electronic component - Google Patents

Brazing filler metal sheet, its manufacturing method, and electronic component Download PDF

Info

Publication number
JP2006289474A
JP2006289474A JP2005117010A JP2005117010A JP2006289474A JP 2006289474 A JP2006289474 A JP 2006289474A JP 2005117010 A JP2005117010 A JP 2005117010A JP 2005117010 A JP2005117010 A JP 2005117010A JP 2006289474 A JP2006289474 A JP 2006289474A
Authority
JP
Japan
Prior art keywords
particles
less
brazing
brazing material
material sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005117010A
Other languages
Japanese (ja)
Inventor
Masayoshi Date
正芳 伊達
Nobuhiko Chiwata
伸彦 千綿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005117010A priority Critical patent/JP2006289474A/en
Publication of JP2006289474A publication Critical patent/JP2006289474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Pb-free brazing filler metal sheet which solves the problem of degradation in bonding reliability caused by voids in a brazing filler metal and a compound phase formed between particles. <P>SOLUTION: The brazing filler metal sheet is composed of 70-90 mass% of Ag and the balance Sn, and has such a structure that a particle size of Ag is &le;300 &mu;m and a particle size of Sn is &le;100 &mu;m. A void ratio is &le;30%. Preferably, an aspect ratio of Ag particles is &ge;1.2 on average. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、電子部品の接合に用いられるロウ材シートおよびその製造方法ならびに電子部品に関するものである。   The present invention relates to a brazing material sheet used for joining electronic components, a manufacturing method thereof, and an electronic component.

近年の電子機器産業において、Siなどからなる半導体素子を配線基板に電気的に接続する方法として、Au線を用いたワイヤボンディングが広く用いられている。ワイヤボンディングを行うためには半導体素子を配線基板に接合し固定する必要があるが、その固定のための接合部材として様々な素材が提案されている。中でもPbを重量%で90%以上含有するPb−Sn合金は融点が300℃程度であり、樹脂系接合材と比較して耐熱性の面で優れることから、発熱量の大きなパワーデバイス系の半導体素子を配線基板に接合する際に多く用いられている。またPb−Sn合金は電子部品の構造材料として、半導体素子の固定以外の用途でも使用されている。これは電子部品を配線基板に実装する際、一般に融点が200℃付近のはんだ合金が使用されるが、Pb−Sn合金はそれよりも融点が高いためはんだ付け時に再溶融しないといった特徴を有するためである。   In recent electronic equipment industries, wire bonding using Au wire is widely used as a method for electrically connecting a semiconductor element made of Si or the like to a wiring board. In order to perform wire bonding, it is necessary to bond and fix a semiconductor element to a wiring board. Various materials have been proposed as bonding members for fixing the semiconductor element. Among them, a Pb—Sn alloy containing 90% or more by weight of Pb has a melting point of about 300 ° C. and is superior in heat resistance as compared with a resin-based bonding material. It is often used when bonding an element to a wiring board. Pb—Sn alloys are also used as structural materials for electronic components in applications other than fixing semiconductor elements. This is because when an electronic component is mounted on a wiring board, a solder alloy having a melting point of approximately 200 ° C. is generally used. However, since a Pb—Sn alloy has a higher melting point, it does not remelt during soldering. It is.

一方、近年自然環境への配慮からはんだやロウ材中のPbを削減しようとするいわゆるPbフリー化の動きがあり、Pb−Sn合金の代替材が各種検討されている。
たとえば特許文献1や特許文献2では、CuとSnの粒子を還元作用のあるフラックスと混ぜてペースト状にした接合部材が提案されている。この接合部材は、ロウ付け時に融点の低いSn粒子のみを溶融させてCu粒子と反応させ、Sn粒子よりも融点の高いCu−Sn化合物をCu粒子間に拡散相として形成させて接合する。この提案はPbを含有しないロウ材であり、かつSnの融点まで再加熱されても構造材としての強度を保つという点で優れている。
特開2002−254194号公報 特開2003−211289号公報
On the other hand, in recent years, there has been a so-called Pb-free movement to reduce Pb in solder and brazing material in consideration of the natural environment, and various alternative materials for Pb—Sn alloys have been studied.
For example, Patent Literature 1 and Patent Literature 2 propose a joining member in which Cu and Sn particles are mixed with a reducing flux to form a paste. In this joining member, only Sn particles having a low melting point are melted and reacted with Cu particles at the time of brazing, and a Cu—Sn compound having a melting point higher than that of the Sn particles is formed as a diffusion phase between the Cu particles and joined. This proposal is excellent in that it is a brazing material containing no Pb and maintains the strength as a structural material even when reheated to the melting point of Sn.
JP 2002-254194 A JP 2003-211289 A

上述した特許文献1や特許文献2に開示される接合材料は、Pbを含有せず高温環境でも接合を確保するという点では有利であるものの、Sn粒子とCu粒子をフラックスと混錬しただけの素材であるため、粒子間に多くの隙間が存在しており、ロウ付けした後にその空隙が残存しやすい。またSn粒子とCu粒子の接触が基本的に点接触であるため、粒子同士の反応性が悪いといった問題もある。さらにSn粒子が溶融した際にCu粒子間に形成されるCu−Sn拡散相は非常に脆い金属間化合物であることに加え、実使用中に半導体素子の発熱等により高温に曝された場合CuおよびSn原子の拡散が活発化し著しく成長することで強度低下を引き起こす。これらの問題は、電子部品や電子機器の信頼性低下という点で大きな問題となる。
本発明の目的は、ロウ材中の空隙や粒子間に形成される化合物相に起因する接合信頼性低下の問題を解決した、Pbを含有しないロウ材シートを提供することである。
The bonding materials disclosed in Patent Document 1 and Patent Document 2 described above are advantageous in that they do not contain Pb and ensure bonding even in a high-temperature environment, but only Sn particles and Cu particles are kneaded with flux. Since it is a material, there are many gaps between the particles, and the voids tend to remain after brazing. Further, since the contact between the Sn particles and the Cu particles is basically a point contact, there is a problem that the reactivity between the particles is poor. Further, the Cu—Sn diffusion phase formed between the Cu particles when the Sn particles melt is not only a very brittle intermetallic compound, but also when exposed to high temperatures due to heat generation of the semiconductor element during actual use. In addition, the diffusion of Sn atoms is activated and remarkably grows, causing a decrease in strength. These problems are serious problems in terms of reducing the reliability of electronic components and electronic devices.
An object of the present invention is to provide a brazing material sheet containing no Pb, which solves the problem of reduction in bonding reliability caused by a compound phase formed between voids and particles in the brazing material.

本発明者は、特定の圧粉体とすることで、ロウ付け後も空隙の発生を抑えられることを見出し本発明に到達した。   The present inventor has found that the use of a specific green compact can suppress the generation of voids even after brazing, and has reached the present invention.

すなわち本発明は、mass%で70〜90%のAgと残部Snからなるロウ材シートであって、Agの粒径が300μm以下、Snの粒径が100μm以下であり、空隙率が30%以下であるロウ材シートである。
また、好ましくは、前記ロウ材シートにおけるAg粒子のアスペクト比は、平均で1.2以上である。
That is, the present invention is a brazing material sheet composed of 70% to 90% Ag and the remaining Sn in mass%, wherein the particle size of Ag is 300 μm or less, the particle size of Sn is 100 μm or less, and the porosity is 30% or less. This is a brazing material sheet.
Preferably, the aspect ratio of Ag particles in the brazing material sheet is 1.2 or more on average.

また、本発明は、mass%で70〜90%のAgと残部Snからなるロウ材シートの製造方法であって、粒径が300μm以下のAg粒子と、粒径が100μm以下のSn粒子とを混合して混合体とし、該混合体を押圧して空隙率が30%以下の圧粉体として成形されるロウ材シートの製造方法である。   Further, the present invention is a method for producing a brazing material sheet consisting of 70 to 90% Ag in mass% and the balance Sn, Ag particles having a particle size of 300 μm or less, and Sn particles having a particle size of 100 μm or less. This is a method for producing a brazing material sheet which is mixed to form a mixture, and the mixture is pressed to form a green compact having a porosity of 30% or less.

また、本発明はmass%で70〜90%のAgと残部Snで構成される組織であって、300μm以下のAg粒子の周囲に形成されるAg−Sn拡散相の厚さが10μm以下の組織を有する接合部を具備する電子部品である。
好ましくは、接合部組織中に残存する金属Sn相が面積率で20%以下の電子部品である。
Further, the present invention is a structure composed of 70% to 90% Ag and the remaining Sn in mass%, and a structure in which the thickness of the Ag—Sn diffusion phase formed around Ag particles of 300 μm or less is 10 μm or less. It is an electronic component which comprises the junction part which has.
Preferably, the electronic component has an area ratio of 20% or less of the metal Sn phase remaining in the joint structure.

本発明によれば、電子部品等の接合部における強度低下の問題を飛躍的に改善することができ、Pbを含有しないロウ材の実用化にとって欠くことのできない技術となる。   According to the present invention, it is possible to drastically improve the problem of strength reduction at a joint portion of an electronic component or the like, and this is an indispensable technique for practical use of a brazing material not containing Pb.

上述したように、本発明の重要な特徴は、Ag粒子とSn粒子の混合体であって、Agの粒径が300μm以下、Snの粒径が100μm以下であり、空隙率が30%以下であることである。これはAg粒子が300μmよりも大きい場合、比表面積が小さいためSn粒子との接触率が低く反応性が低下することに加え、Ag粒子の周囲にAg−Sn化合物が形成されていない部分が多くなり、粒子間の接合強度不足が生じる。またSn粒子が100μmよりも大きい場合もAg粒子との接触率が低く、ロウ付け時にSnが溶融してもAg−Sn化合物がAg粒子の周囲に局所的にしか形成されない。その結果接合部強度が不足する。また混合体の空隙率が30%よりも大きい場合、ロウ付け後の接合部中に多数の空隙が残存し強度が十分でない。   As described above, the important feature of the present invention is a mixture of Ag particles and Sn particles, the particle size of Ag is 300 μm or less, the particle size of Sn is 100 μm or less, and the porosity is 30% or less. That is. This is because when the Ag particles are larger than 300 μm, the specific surface area is small, so the contact ratio with the Sn particles is low and the reactivity is lowered. In addition, there are many portions where no Ag—Sn compound is formed around the Ag particles. As a result, the bonding strength between particles is insufficient. Also, when the Sn particles are larger than 100 μm, the contact ratio with the Ag particles is low, and even if Sn melts during brazing, the Ag—Sn compound is formed only locally around the Ag particles. As a result, the joint strength is insufficient. On the other hand, when the porosity of the mixture is larger than 30%, a large number of voids remain in the joint after brazing, and the strength is not sufficient.

また、本発明のロウ材シートにおけるAgの含有率は、mass%で70〜90%であることが好ましい。これは70mass%よりも少ない場合、ロウ付け後も未反応のSnが接合部中に残存し、再度高温環境に曝された場合に接合部が再溶融することで強度が低下する場合があるためである。また、90mass%よりも大きい場合、Ag−Sn化合物を拡散相として形成するには不十分なSn粒子の量であり、Ag粒子間の接合が十分に行われないためである。   Moreover, it is preferable that the content rate of Ag in the brazing material sheet | seat of this invention is 70 to 90% by mass%. This is because when the amount is less than 70 mass%, unreacted Sn remains in the joint even after brazing, and the joint may be melted again when exposed to a high temperature environment, resulting in a decrease in strength. It is. Moreover, when larger than 90 mass%, it is the quantity of Sn particle | grains inadequate to form an Ag-Sn compound as a diffused phase, and it is because joining between Ag particle | grains is not fully performed.

さらに本発明のロウ材シートにおけるAg粒子のアスペクト比は平均で1.2以上であることが好ましい。これはアスペクト比が平均で1.2以上であれば、ロウ付け時に溶融したSnと接した際、Ag粒子の比表面積が大きく、Snとの反応が促進されるためである。   Further, the aspect ratio of Ag particles in the brazing material sheet of the present invention is preferably 1.2 or more on average. This is because if the average aspect ratio is 1.2 or more, the specific surface area of the Ag particles is large when contacting with the molten Sn during brazing, and the reaction with Sn is promoted.

さらに、本発明のロウ材シートにおけるAg粒子は、純Agである必要はない。例えば、Agを主成分とし、Sn、Cuの何れか一つ以上を含むAg合金であってもよい。これらの元素がAgに添加されても接合性に問題はなく、より安価なロウ材シートを提供することが可能である。
さらに、本発明のロウ材シートにおけるSn粒子は、純Snである必要はない。例えば、Snを主としAg、Cu、Bi、Znの何れか一つ以上を含むSn合金であってもよい。これらの元素がSnに添加されるとSnの融点を下げる効果があり、より低いロウ付け温度での接合が可能となる。
Furthermore, the Ag particles in the brazing material sheet of the present invention need not be pure Ag. For example, an Ag alloy containing Ag as a main component and containing one or more of Sn and Cu may be used. Even if these elements are added to Ag, there is no problem in bondability, and it is possible to provide a cheaper brazing material sheet.
Furthermore, the Sn particles in the brazing material sheet of the present invention need not be pure Sn. For example, a Sn alloy mainly containing Sn and containing any one or more of Ag, Cu, Bi, and Zn may be used. When these elements are added to Sn, there is an effect of lowering the melting point of Sn, and bonding at a lower brazing temperature becomes possible.

また、本発明のロウ材シートは、例えば粒径が300μm以下のAgと、100μm以下のSnを用い、mass%で70〜90%のAgと残部Snを混合して混合体とし、該混合体を押圧して空隙率が30%以下の圧粉体とすることで得ることができる。本発明の製造方法においては、Ag粒子とSn粒子を混合して混合体とすることでSn粒子がAg粒子間に均一に分散し、ロウ付け時に接合部全体でSn粒子とAg粒子が反応することが可能となる。また該混合体の状態では粒子間に空隙が多数存在するが、押圧することにより混合体の空隙率を低下できることに加え、粒子が変形して粒子同士が面接触するようになり、Ag粒子とSn粒子の間の反応性が向上する。さらに、本発明では、押圧後展伸することもできる。押圧によって十分に空隙率を低減できるが、展伸工程の付与により空隙率をさらに低下させることもでき、加えて小型化・薄型化が進む電子部品の接合部材として適当な薄いロウ材シートを製造することも容易である。   Further, the brazing material sheet of the present invention uses, for example, Ag having a particle size of 300 μm or less and Sn having a particle size of 100 μm or less, and mixes 70% to 90% Ag in mass% and the remaining Sn to form a mixture. To obtain a green compact having a porosity of 30% or less. In the production method of the present invention, the Ag particles and the Sn particles are mixed to form a mixture, whereby the Sn particles are uniformly dispersed between the Ag particles, and the Sn particles and the Ag particles react with each other in the entire joint portion during brazing. It becomes possible. Further, in the state of the mixture, there are many voids between the particles, but in addition to being able to reduce the porosity of the mixture by pressing, the particles are deformed so that the particles come into surface contact with each other. The reactivity between the Sn particles is improved. Furthermore, in this invention, it can also extend after pressing. The porosity can be reduced sufficiently by pressing, but the porosity can be further reduced by applying a stretching process, and in addition, a thin solder sheet suitable for joining electronic components that are becoming smaller and thinner is manufactured. It is also easy to do.

また、本発明のロウ材シートを用いてロウ付けした電子部品の接合部は、300μm以下のAg粒子の周囲に10μm以下の拡散相が形成された組織を有することが好ましい。
粒子の周囲にAg−Sn拡散相が形成されることで粒子同士が接合されるが、本拡散相はAg粒子やSn粒子よりも脆いため、10μmよりも大きな拡散相が形成された場合、接合部の延性が低下し、電子部品の接合強度が低下するためである。
さらに、該ロウ材シートを用いてロウ付けした電子部品の接合部の平面断面において、接合部に残存する金属Sn層は面積率で20%以下であることが好ましい。これは20%よりも大きくても接合部としての機能を有するが、電子部品の発熱等により高温下に再度曝されるような場合には接合部中の金属Snが再溶融し、接合強度が低下するためである。
Moreover, it is preferable that the junction part of the electronic component brazed using the brazing material sheet of the present invention has a structure in which a diffusion phase of 10 μm or less is formed around Ag particles of 300 μm or less.
Particles are joined together by forming an Ag—Sn diffusion phase around the particles, but since this diffusion phase is more brittle than Ag particles and Sn particles, if a diffusion phase larger than 10 μm is formed, This is because the ductility of the portion is lowered and the bonding strength of the electronic component is lowered.
Furthermore, in the plane cross section of the joint portion of the electronic component brazed using the brazing material sheet, the metal Sn layer remaining in the joint portion is preferably 20% or less in area ratio. Even if it is larger than 20%, it has a function as a joint part. However, when it is exposed again to a high temperature due to heat generation of electronic parts, the metal Sn in the joint part is remelted and the joint strength is increased. It is because it falls.

300μm以下のAg粒子と60μm以下のSn粒子を重量比で95:5、90:10、80:20および60:40の割合で混合して混合体を作製した。次に加圧プレスにて525MPaまたは700MPaの圧力を加え、長さ70mm、幅8mmのロウ材シートを作製した。また、比較として未加圧の混合体も用意した。それぞれの未加圧混合体および加圧成形体に対してAg粒子のアスペクト比を求めた。ここでアスペクト比は、混合体あるいは成形体の平面断面における、Ag粒子の最大長と最大長に対し垂直な方向の長さの比として定義し、平面断面1mm当りのAg粒子の平均値として求めた。また、混合体および成形体の空隙率は、混合体あるいは成形体の重量と体積を測定して見かけ密度Tを求め、充填率が100%の場合の理論密度T100とした場合に100(1−T/T100)として求めた。測定結果を表1に示す。実施例1から実施例4より、加圧することで混合体の空隙率を大幅に低減できており、シート中のAg粒子のアスペクト比を1.2以上とすることができた。 Ag particles of 300 μm or less and Sn particles of 60 μm or less were mixed at a weight ratio of 95: 5, 90:10, 80:20 and 60:40 to prepare a mixture. Next, a pressure of 525 MPa or 700 MPa was applied by a pressure press to produce a brazing material sheet having a length of 70 mm and a width of 8 mm. For comparison, an unpressurized mixture was also prepared. The aspect ratio of Ag particle | grains was calculated | required with respect to each non-pressurized mixture and a press-molded body. Here, the aspect ratio is defined as the ratio of the maximum length of Ag particles and the length in the direction perpendicular to the maximum length in the plane cross section of the mixture or molded body, and the average value of Ag particles per 1 mm 2 of the plane cross section. Asked. The porosity of the mixture and the molded body is 100 (1 when the apparent density T is obtained by measuring the weight and volume of the mixture or the molded body and the theoretical density T 100 is 100% when the filling rate is 100%. -T / T 100) was determined as. The measurement results are shown in Table 1. From Example 1 to Example 4, the porosity of the mixture could be significantly reduced by pressurization, and the aspect ratio of Ag particles in the sheet could be 1.2 or more.

次に、未加圧混合体および加圧成形体を電子部品の端子を模した無電解Ni/Auめっきを施した基材上にAg−Sn混合体を置き、280℃まで窒素雰囲気中で昇温してロウ付けを行った。ロウ付け後の接合部は、Ag粒子およびSn粒子の反応によりAg−Sn化合物が形成され密度が変化する。そこで、ロウ付け後の接合部の空隙率は、接合部の平面断面1mmに占める空隙の面積率として求めた。また、ロウ付け後に接合部に残存する金属Snについても同様に、ロウ付け後の接合部における平面断面1mmに占めるSn相の面積率として定義し測定した。加えて、接合部の接合度合いを評価するため、ロウ付け後に基材を引き剥がした。接合度合いは、素手で剥がせられる場合を未接合、素手で全くはがせない場合を接合として判定した。評価結果を表2に、ロウ付け前の加圧成形体の組織写真を図1に、ロウ付け後の接合部の組織写真を図2に、およびAg粒子の周囲に形成される拡散相の組織写真を図3に示す。表2より、未加圧混合体を用いてロウ付けした比較例2および比較例3ではロウ付け後の接合部の空隙率が30%を超えており、引き剥がしを行ったところ接合部の強度が不足しており破壊した。また空隙が多いため多量の金属Snが接合部から染み出しており、接合部に残存する金属Snの面積率を測定することができなかった。一方、加圧成形しロウ材シート中の空隙率を低減した場合は、ロウ付け後の接合部における空隙率が10%未満であり、加圧により大幅に低減できたことがわかる。ただし、Sn粒子の混合割合が低い比較例1は加圧しても接合に必要な拡散相が十分に形成されなかったため、基材が手で剥がせるほどの不完全な接合であり、ロウ材としての機能を満足するものではなかった。逆にSn粒子の混合割合が高い比較例4では十分接合しているものの接合部に残存する金属Sn相の面積率がほぼ半分を占めた。 Next, the Ag-Sn mixture is placed on the base material on which the non-pressurized mixture and the pressure-formed body are subjected to electroless Ni / Au plating imitating the terminals of the electronic component, and the mixture is heated up to 280 ° C in a nitrogen atmosphere. Warm and braze. In the joint portion after brazing, an Ag—Sn compound is formed by the reaction of Ag particles and Sn particles, and the density changes. Therefore, the void ratio of the joint after brazing was obtained as the area ratio of the void in the plane cross section of 1 mm 2 of the joint. Similarly, the metal Sn remaining in the joint after brazing was defined and measured as the area ratio of the Sn phase occupying 1 mm 2 in the plane cross section in the joint after brazing. In addition, the base material was peeled off after brazing in order to evaluate the degree of joining at the joint. The degree of joining was determined as unjoined when peeled with a bare hand, and joined when not peeled at all with a bare hand. The evaluation results are shown in Table 2, the structure photograph of the pressure-formed body before brazing is shown in FIG. 1, the structure photograph of the joint after brazing is shown in FIG. 2, and the structure of the diffusion phase formed around the Ag particles. A photograph is shown in FIG. From Table 2, in Comparative Example 2 and Comparative Example 3 brazed using an unpressurized mixture, the porosity of the joint after brazing exceeded 30%, and when peeled, the strength of the joint was obtained. Was missing and destroyed. Further, since there are many voids, a large amount of metal Sn oozes out from the joint, and the area ratio of metal Sn remaining in the joint cannot be measured. On the other hand, when the void ratio in the brazing material sheet is reduced by pressure forming, the void ratio in the joint after brazing is less than 10%, and it can be seen that the pressure can be greatly reduced by pressing. However, in Comparative Example 1 in which the mixing ratio of Sn particles is low, the diffusion phase necessary for bonding was not sufficiently formed even when pressed, so that the base material was incompletely bonded so that it could be peeled off by hand. The function of was not satisfied. On the contrary, in Comparative Example 4 where the mixing ratio of Sn particles was high, the area ratio of the metal Sn phase remaining in the joint portion was almost half although it was sufficiently joined.

ロウ付け時にAg粒子の周囲に形成される拡散相の厚さが接合部の接合信頼性へ及ぼす影響について、3点曲げ試験を行い評価した。3点曲げ試験の結果はロウ材を接合する基材によって大きく左右され、接合部の特性を正確に把握することができない。このため、基材には接合せず、ロウ材シートのみを280℃まで加熱することで、接合部を模したバルク材を作製した。バルク材の寸法は幅8mm、長さ60mm、厚さ1mmとした。Ag粒子の周囲に形成される拡散相の厚さは、金属顕微鏡を用い、ロウ付け後の接合部平面断面1mmにおいてAg粒子の周囲に形成された拡散相の平均厚さとして求めた。
また3点曲げ試験における支点の間隔は50mmとし、曲げ強度と破断時のたわみ量を測定した。これらの測定結果を表3に示す。拡散相の厚い比較例4では曲げ強度が低く、たわみ量も小さかったが、本発明の実施例では強度、たわみ量とも大幅に改善された。試験後の破面を観察したところ拡散相が多く露出していたことから、破壊は主に拡散相内で起こったことがわかった。したがって拡散相が薄い接合部を提供できる本発明のロウ材シートのほうが接合信頼性に優れることがわかった。
The effect of the thickness of the diffusion phase formed around the Ag particles during brazing on the bonding reliability of the joint was evaluated by a three-point bending test. The result of the three-point bending test depends greatly on the base material to which the brazing material is joined, and the characteristics of the joint cannot be accurately grasped. For this reason, the bulk material which simulated the junction part was produced by heating only a brazing material sheet to 280 degreeC, without joining to a base material. The bulk material had a width of 8 mm, a length of 60 mm, and a thickness of 1 mm. The thickness of the diffusion phase formed around the Ag particles was determined by using a metal microscope as the average thickness of the diffusion phase formed around the Ag particles in a plane cross section of 1 mm 2 after brazing.
The fulcrum interval in the three-point bending test was 50 mm, and the bending strength and the amount of deflection at break were measured. These measurement results are shown in Table 3. In Comparative Example 4 in which the diffusion phase was thick, the bending strength was low and the amount of deflection was small, but in the examples of the present invention, both the strength and the amount of deflection were greatly improved. Observation of the fracture surface after the test revealed that a large amount of the diffuse phase was exposed, indicating that the fracture mainly occurred in the diffuse phase. Therefore, it was found that the brazing material sheet of the present invention, which can provide a joint having a thin diffusion phase, is superior in joining reliability.

実施例1のロウ材シートの断面組織写真である。2 is a cross-sectional structure photograph of a brazing material sheet of Example 1. FIG. 実施例1のロウ付け後の接合部断面組織写真である。2 is a cross-sectional structure photograph of a joint after brazing in Example 1. FIG. 実施例1のロウ付け後のAg粒子の周囲に形成される拡散相の組織写真である。2 is a structure photograph of a diffusion phase formed around Ag particles after brazing in Example 1. FIG.

Claims (5)

mass%で70〜90%のAgと残部Snからなるロウ材シートであって、Agの粒径が300μm以下、Snの粒径が100μm以下であり、空隙率が30%以下であることを特徴とするロウ材シート。 A brazing material sheet consisting of 70 to 90% Ag and the rest Sn in mass%, wherein the Ag particle size is 300 μm or less, the Sn particle size is 100 μm or less, and the porosity is 30% or less. A brazing material sheet. Ag粒子のアスペクト比が平均で1.2以上であることを特徴とする請求項1に記載のロウ材シート。 The brazing material sheet according to claim 1, wherein an average aspect ratio of the Ag particles is 1.2 or more. mass%で70〜90%のAgと残部Snからなるロウ材シートの製造方法であって、粒径が300μm以下のAg粒子と、粒径が100μm以下のSn粒子とを混合して混合体とし、該混合体を押圧して空隙率が30%以下の圧粉体として成形されることを特徴とするロウ材シートの製造方法。 A method for producing a brazing material sheet comprising 70% to 90% Ag in mass% and the remaining Sn, wherein Ag particles having a particle size of 300 μm or less and Sn particles having a particle size of 100 μm or less are mixed to form a mixture. A method for producing a brazing material sheet, wherein the mixture is pressed into a green compact having a porosity of 30% or less. mass%で70〜90%のAgと残部Snで構成され、300μm以下のAg粒子の周囲に形成されるAg−Sn拡散相の厚さが10μm以下の組織を有する接合部を具備することを特徴とする電子部品。 It is composed of 70% to 90% Ag in mass% and the remaining Sn, and has a junction having a structure in which the thickness of the Ag-Sn diffusion phase formed around Ag particles of 300 μm or less is 10 μm or less. Electronic parts. 接合部組織中に残存する金属Sn相が面積率で20%以下であることを特徴とする請求項4に記載の電子部品。 The electronic component according to claim 4, wherein the metal Sn phase remaining in the joint structure is 20% or less in terms of area ratio.
JP2005117010A 2005-04-14 2005-04-14 Brazing filler metal sheet, its manufacturing method, and electronic component Pending JP2006289474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117010A JP2006289474A (en) 2005-04-14 2005-04-14 Brazing filler metal sheet, its manufacturing method, and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117010A JP2006289474A (en) 2005-04-14 2005-04-14 Brazing filler metal sheet, its manufacturing method, and electronic component

Publications (1)

Publication Number Publication Date
JP2006289474A true JP2006289474A (en) 2006-10-26

Family

ID=37410631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117010A Pending JP2006289474A (en) 2005-04-14 2005-04-14 Brazing filler metal sheet, its manufacturing method, and electronic component

Country Status (1)

Country Link
JP (1) JP2006289474A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516478A (en) * 2007-01-22 2010-05-20 ユニヴァーシティー オブ メリーランド High temperature solder material
JP2010131618A (en) * 2008-12-03 2010-06-17 Toyota Central R&D Labs Inc METHOD OF MANUFACTURING Bi-CONTAINING SOLDER FOIL, Bi-CONTAINING SOLDER FOIL, JOINED BODY AND POWER SEMICONDUCTOR MODULE
JP2013013933A (en) * 2011-06-30 2013-01-24 Rohm Co Ltd Laminated high melting point soldering layer and fabrication method for the same, and semiconductor device
JP2021030276A (en) * 2019-08-27 2021-03-01 株式会社タムラ製作所 Flux and molding solder
WO2022091988A1 (en) * 2020-10-29 2022-05-05 田中貴金属工業株式会社 Bonding structure and semiconductor device having said bonding structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516478A (en) * 2007-01-22 2010-05-20 ユニヴァーシティー オブ メリーランド High temperature solder material
JP2010131618A (en) * 2008-12-03 2010-06-17 Toyota Central R&D Labs Inc METHOD OF MANUFACTURING Bi-CONTAINING SOLDER FOIL, Bi-CONTAINING SOLDER FOIL, JOINED BODY AND POWER SEMICONDUCTOR MODULE
JP2013013933A (en) * 2011-06-30 2013-01-24 Rohm Co Ltd Laminated high melting point soldering layer and fabrication method for the same, and semiconductor device
JP2021030276A (en) * 2019-08-27 2021-03-01 株式会社タムラ製作所 Flux and molding solder
JP7262343B2 (en) 2019-08-27 2023-04-21 株式会社タムラ製作所 Flux and molded solder
WO2022091988A1 (en) * 2020-10-29 2022-05-05 田中貴金属工業株式会社 Bonding structure and semiconductor device having said bonding structure
TWI807465B (en) * 2020-10-29 2023-07-01 日商田中貴金屬工業股份有限公司 A joint structure and a semiconductor device having the joint structure
EP4219059A4 (en) * 2020-10-29 2023-10-25 Tanaka Kikinzoku Kogyo K.K. Bonding structure and semiconductor device having said bonding structure

Similar Documents

Publication Publication Date Title
KR101528515B1 (en) Bonding method, bonding structure, electronic device, manufacturing method for electronic device, and electronic component
JP5943066B2 (en) Bonding method and manufacturing method of bonded structure
KR100867871B1 (en) Solder paste and electronic device
JP5943065B2 (en) Bonding method, electronic device manufacturing method, and electronic component
WO2013132942A1 (en) Bonding method, bond structure, and manufacturing method for same
JP2009060101A (en) Electronic device
CN1977368B (en) Soldering method, solder pellet for die bonding, method for manufacturing solder pellet for die bonding and electronic component
JP2020520807A (en) Lead-free solder film for diffusion soldering and method for its manufacture
JP5784109B2 (en) Lead-free solder alloy
JP2006289474A (en) Brazing filler metal sheet, its manufacturing method, and electronic component
JP2018079480A (en) Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE
JP5231727B2 (en) Joining method
JP6887183B1 (en) Solder alloys and molded solders
WO2017168925A1 (en) Joint
JP2006272449A (en) Brazing filler metal sheet
WO2022091988A1 (en) Bonding structure and semiconductor device having said bonding structure
KR102428494B1 (en) Junction layer of semiconductor module, semiconductor module and manufacturing method thereof
JP2017147285A (en) CONJUGATE JOINED BY CLAD MATERIAL OF Pb-free Zn-Al-based ALLOY SOLDER AND METAL BASE MATERIAL
WO2020179759A1 (en) Molding solder and method for preparing same, and soldering method
JP6579264B2 (en) Semiconductor package manufacturing method and Cu alloy cutting method
JP5744080B2 (en) Bonded body and semiconductor device
JP4513440B2 (en) Semiconductor device
BG113111A (en) Soldering paste
JPH0632670A (en) Brazing material for joining ceramics to metal and method for joining the same
JP2017124426A (en) JOINT BODY OF Cu-BASES BASE MATERIAL WITH Zn-Al BASES ALLOY JOINTED BY CLAD MATERIAL