JP2006289356A - Functional hyperfine particulate material for photocatalyst, its manufacturing method and its product - Google Patents

Functional hyperfine particulate material for photocatalyst, its manufacturing method and its product Download PDF

Info

Publication number
JP2006289356A
JP2006289356A JP2006075761A JP2006075761A JP2006289356A JP 2006289356 A JP2006289356 A JP 2006289356A JP 2006075761 A JP2006075761 A JP 2006075761A JP 2006075761 A JP2006075761 A JP 2006075761A JP 2006289356 A JP2006289356 A JP 2006289356A
Authority
JP
Japan
Prior art keywords
titanium
phase
silica
ultrafine particle
functional ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006075761A
Other languages
Japanese (ja)
Inventor
Junichi Hojo
純一 北條
Nobuyori Kano
伸自 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP2006075761A priority Critical patent/JP2006289356A/en
Publication of JP2006289356A publication Critical patent/JP2006289356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a functional hyperfine particulate material which has high light transmissivity and is useful as a photocatalytic material and to provide a method for manufacturing the functional hyperfine particulate material and a product of the functional hyperfine particulate material. <P>SOLUTION: The functional hyperfine particulate material for a photocatalyst is characterized in that the surface of a silica particle is covered with a nanometer-sized fine particle of titanium oxide (containing a hydrate or amorphous content) having an anatase phase or a mixed phase of the anatase phase with a rutile phase, the single anatase phase or the mixed phase of the anatase phase with the rutile phase is kept even in a temperature range up to 1,200°C and the functional hyperfine particulate material keeps photocatalytic activity even in the temperature range up to 1,200°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高い光触媒活性及び耐熱性を有する光触媒の原材料となる光触媒用の機能性超微粒子材料、その製造方法及びその製品に関するものであり、更に詳しくは、例えば、産業廃棄物の廃非晶質シリカガラス粉末や廃石英粉末等を基材として利用して、該基材表面に酸化チタン(水和物・非晶質分を含む)を被覆し、アナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタン(水和物・非晶質分を含む)微粒子がシリカ粒子の表面に被覆されている機能性超微粒子材料を製造する方法、該機能性超微粒子材料を赤外線加熱(RTA)方式やマイクロ波加熱方式等により焼成て、1200℃迄の温度域でも光触媒機能を発現する耐熱性機能性超微粒子材料を製造する方法、該機能性超微粒子材料及びその応用製品に関するものである。   The present invention relates to a functional ultrafine particle material for a photocatalyst that is a raw material of a photocatalyst having high photocatalytic activity and heat resistance, a production method thereof, and a product thereof, and more specifically, for example, a waste amorphous material of industrial waste The surface of the base material is coated with titanium oxide (including hydrate / amorphous content) using a porous silica glass powder or waste quartz powder as a base material, and an anatase phase or a mixed phase of anatase phase and rutile phase For producing functional ultrafine particle material in which fine particles of titanium oxide (including hydrate / amorphous content) are coated on the surface of silica particles, infrared heating (RTA) method for the functional ultrafine particle material And a method for producing a heat-resistant functional ultrafine particle material that exhibits a photocatalytic function even in a temperature range of up to 1200 ° C. by baking, microwave heating method, etc., and the functional ultrafine particle material and its application products. It is.

従来の酸化チタン光触媒は、例えば、900℃以上の高温で加熱すると、活性の高いアナターゼ相は、活性の低いルチル相へ変化してしまい、例えば、陶磁器用の光触媒としては使用することができないという問題があったが、本発明は、1200℃迄の温度域でも、高い光触媒活性を発現する光触媒用の機能性超微粒子材料及びその応用製品を製造し、提供することを可能とする新しい光触媒材料の製造技術及びその製品を提供するものである。本発明は、例えば、産業廃棄物の廃非晶質シリカガラス等を有効利用して新しい耐熱性光触媒及びその製品を製造し、提供することを実現化することにより、当技術分野における新技術・新産業の創出に資するものである。   For example, when a conventional titanium oxide photocatalyst is heated at a high temperature of 900 ° C. or higher, the highly active anatase phase changes to a less active rutile phase, and cannot be used as a photocatalyst for ceramics, for example. Although there was a problem, the present invention provides a new photocatalyst material that can produce and provide a functional ultrafine particle material for a photocatalyst that exhibits high photocatalytic activity even in a temperature range up to 1200 ° C. and an application product thereof. Manufacturing technology and its products. The present invention provides a new heat-resistant photocatalyst and its product by effectively utilizing, for example, industrial waste waste amorphous silica glass and the like. Contributes to the creation of new industries.

従来、酸化チタンの光触媒効果を利用した方法及びその製品は、例えば、防汚、脱臭、抗菌、大気浄化、及び浄水等の広範な用途に使用されている(例えば、特許文献1〜3参照)。しかし、従来の酸化チタン光触媒は、900℃以上の高温で焼成すると、活性の高いアナターゼ相から、活性の低いルチル相へ相変態を起こし、光触媒活性が低下することから、製造過程で高温焼成が必要とされる製品等への適用が制限されるという問題点を有していた。   Conventionally, methods utilizing the photocatalytic effect of titanium oxide and products thereof have been used in a wide range of applications such as antifouling, deodorizing, antibacterial, air purification, and water purification (for example, see Patent Documents 1 to 3). . However, when a conventional titanium oxide photocatalyst is calcined at a high temperature of 900 ° C. or more, it undergoes a phase transformation from a highly active anatase phase to a less active rutile phase, and the photocatalytic activity is reduced. There was a problem that application to required products was limited.

光触媒の性能は、一般的には、例えば、メチレンブルー溶液の色素分解能力によって評価することができる。光触媒を高活性化するためには、光透過性と高い比表面積を有し、活性の高いアナターゼ相あるいはアナターゼ相とルチル相の混相を持つようにすることが必要である。一例として、例えば、シリカに適当な金属アルコキシド溶液を添加して光触媒材料を製造する方法として、以下の方法が採用されている。すなわち、この方法は、シリカ粉末と金属アルコキシド溶液を所定量秤量し、水又は特定の溶媒中で加水分解を起こし、粉末の表面に酸化チタンを被覆した後、この被覆粉末を大気中で焼成して光触媒材料とするものである。   In general, the performance of the photocatalyst can be evaluated by, for example, the ability of the methylene blue solution to decompose the dye. In order to make the photocatalyst highly active, it is necessary to have a light-transmitting property, a high specific surface area, and a highly active anatase phase or a mixed phase of an anatase phase and a rutile phase. As an example, for example, the following method is employed as a method for producing a photocatalytic material by adding an appropriate metal alkoxide solution to silica. That is, in this method, a predetermined amount of silica powder and metal alkoxide solution are weighed, hydrolyzed in water or a specific solvent, and the surface of the powder is coated with titanium oxide, and then the coated powder is fired in the air. Therefore, it is used as a photocatalytic material.

しかしながら、このような上記金属被覆粉末を大気中で焼成して光触媒粉末材料を製造する方法では、高い比表面積と活性の高いアナターゼ相を維持するために、低温焼成を行うことが必要とされる。すなわち、この種の光触媒粉末材料は、600℃以上、特に、900℃以上で加熱してしまうと、活性の高いアナターゼ相は、活性の低いルチル相へ変化してしまうので、そのような加熱を施す製品へ適用することができず、例えば、その製造過程で高温焼成が必要とされる各種セラミックス、陶磁器素材、及び金属材料等の表面処理に使用することができなかった。そこで、当技術分野では、例えば、900℃以上の高温で焼成しても、高い光触媒活性を維持することが可能な耐熱性光触媒及びその応用製品の開発が強く望まれていた。   However, in the method for producing a photocatalytic powder material by firing such metal-coated powder in the air, it is necessary to perform low-temperature firing in order to maintain a high specific surface area and a highly active anatase phase. . That is, when this type of photocatalytic powder material is heated at 600 ° C. or higher, particularly 900 ° C. or higher, the highly active anatase phase changes to a less active rutile phase. For example, it could not be used for surface treatment of various ceramics, ceramic materials, metal materials and the like that require high-temperature firing in the manufacturing process. Therefore, in this technical field, for example, development of a heat-resistant photocatalyst capable of maintaining high photocatalytic activity even when baked at a high temperature of 900 ° C. or higher and its application product have been strongly desired.

特開平6−65012号公報JP-A-6-65012 特開平1−218635号公報JP-A-1-218635 特開平10−87384号公報Japanese Patent Laid-Open No. 10-87384

このような状況の中で、本発明者らは、上記従来技術に鑑みて、例えば、各種セラミックスや陶磁器の焼成過程で、1200℃迄の温度域でも光触媒機能を維持することが可能な新しい耐熱性光触媒を開発することを目標として鋭意研究を積み重ねた結果、例えば、シリカガラス粉末(産業廃棄物)と金属アルコキシド溶液等を混合し、得られるチタン・シリカ複合材料粉末を、大気中又は不活性ガス、酸化性ガス若しくは還元性ガス中、混合ガス中又は真空中でRTA(赤外線加熱)方式やマイクロ波加熱方式等により焼成することで作製される、焼成されたアナターゼ相からなる酸化チタンナノ微粒子がシリカ粒子(0.1nm以上)の表面に強固に担持されている機能性超微粒子材料が、1200℃迄の温度域でも、高い比表面積と光触媒活性の高いアナターゼ相あるいはアナターゼ相とルチル相の混相を維持することができることを見出し、更に研究を重ねて、本発明を完成するに至った。   Under such circumstances, the present inventors have taken into consideration the above prior art, for example, a new heat-resistant function capable of maintaining the photocatalytic function even in the temperature range up to 1200 ° C. in the firing process of various ceramics and ceramics. As a result of earnest research with the goal of developing a photocatalyst, for example, silica glass powder (industrial waste) and metal alkoxide solution are mixed, and the resulting titanium-silica composite material powder in the atmosphere or inert Titanium oxide nanoparticles comprising a calcined anatase phase produced by firing in a gas, oxidizing gas or reducing gas, mixed gas or in vacuum by an RTA (infrared heating) method, a microwave heating method, etc. A functional ultrafine particle material firmly supported on the surface of silica particles (0.1 nm or more) has a high specific surface area and light even in the temperature range up to 1200 ° C. It found that it is possible to maintain a mixed phase of high medium active anatase phase or anatase phase and rutile phase, and further repeated studies and completed the present invention.

本発明は、原料としてシリカ材料とチタン源を利用して、シリカ粒子の表面に酸化チタン(水和物・非晶質分を含む)微粒子を被覆し、アナターゼ相からなる酸化チタン微粒子がシリカ粒子の表面に被覆されている機能性超微粒子材料を製造すること、次いで、これを粉末の状態で、大気中又は不活性ガス、酸化性ガス若しくは還元性ガス中、混合ガス中又は真空中でRTA(赤外線加熱)方式やマイクロ波加熱方式等の加熱手段で焼成することで、1200℃迄の温度域でも、活性の高いアナターゼ相と高い比表面積を維持し、光透過性と耐熱性を有し、高い光触媒活性を発現する新規な機能性超微粒子材料を製造すること、を可能とする新しい機能性超微粒子材料の製造方法を提供することを目的とするものである。本発明は、例えば、溶融非晶質シリカガラス粉末、廃非晶質シリカガラス粉末(産業廃棄物)や廃石英粉末(産業廃棄物)を有効利用して、上記機能性超微粒子材料及びその応用製品を提供すること、及び高温で焼成しても高い比表面積と、光触媒活性の高いアナターゼ相を維持し、光透過性と耐熱性を有する耐熱性機能性超微粒子材料を作製することを可能とする耐熱性機能性超微粒子材料の製造方法及びその応用製品を提供すること、を目的とするものである。   The present invention uses a silica material and a titanium source as raw materials to coat the surface of silica particles with titanium oxide (including hydrate / amorphous) fine particles, and the titanium oxide fine particles comprising anatase phase are silica particles. A functional ultrafine particle material coated on the surface of the substrate, and then in a powder state, in the atmosphere or in an inert gas, oxidizing gas or reducing gas, mixed gas or in vacuum By baking with heating means such as (infrared heating) method or microwave heating method, it maintains a highly active anatase phase and high specific surface area even in the temperature range up to 1200 ° C, and has light transmission and heat resistance. It is an object of the present invention to provide a novel method for producing a functional ultrafine particle material that makes it possible to produce a novel functional ultrafine particle material that exhibits high photocatalytic activity. The present invention effectively uses, for example, fused amorphous silica glass powder, waste amorphous silica glass powder (industrial waste) and waste quartz powder (industrial waste), and the functional ultrafine particle material and its application. Providing products and maintaining high specific surface area and anatase phase with high photocatalytic activity even when baked at high temperature, making it possible to produce heat-resistant functional ultrafine particle materials with light transmission and heat resistance It is an object of the present invention to provide a method for producing a heat-resistant functional ultrafine particle material and an application product thereof.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)光触媒用の機能性超微粒子材料であって、1)アナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタン(水和物・非晶質分を含む)ナノ微粒子がシリカ粒子の表面に被覆されている、2)光触媒作用を有する、3)1200℃迄の温度域で熱処理がある場合でも、ない場合でも単一のアナターゼ相が維持される、ことを特徴とする機能性超微粒子材料。
(2)光触媒用の耐熱性機能性超微粒子材料であって、1)焼成されたアナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタンナノ微粒子がシリカ粒子の表面に担持されている、2)光触媒作用を有する、3)1200℃迄の温度域でも単一のアナターゼ相が維持される、ことを特徴とする機能性超微粒子材料。
(3)前記(1)に記載の光触媒用の機能性超微粒子材料を含むことを特徴とする光触媒製品。
(4)上記光触媒製品が、上記機能性超微粒子材料を含む、粉末、ゾル液、コーティング液又は塗料である、前記(3)に記載の光触媒製品。
(5)前記(1)又は(2)に記載の機能性超微粒子材料を使用して光触媒機能を付与したことを特徴とする製品。
(6)上記製品が、セラミック製品、高分子材料製品、陶磁器製品又は金属製品である、前記(5)に記載の光触媒機能を付与した製品。
(7)前記(1)に記載の光触媒用の機能性超微粒子材料を製造する方法であって、原料のシリカ材料とチタン源から調製されるチタン・シリカ複合材料を溶媒中で混合し、シリカ材料表面に酸化チタン(水和物・非晶質分を含む)を被覆して、アナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタンナノ微粒子がシリカ粒子表面に被覆された機能性超微粒子を製造することを特徴とする機能性超微粒子材料の製造方法。
(8)前記(2)に記載の光触媒用の耐熱性機能性超微粒子材料を製造する方法であって、1)原料のシリカ材料とチタン源から調製されるチタン・シリカ複合材料を溶媒中で混合し、シリカ材料表面に酸化チタン(水和物・非晶質分を含む)を被覆する、2)これを、所定の温度範囲で焼成することにより、酸化チタンナノ微粒子をシリカ粒子表面に強固に担持させる、3)それにより、1200℃迄の温度域でも単一のアナターゼ相が維持されて光触媒作用を保持する耐熱性機能性超微粒子材料を製造する、ことを特徴とする機能性超微粒子材料の製造方法。
(9)原料シリカ材料として、1)非天然鉱物の非晶質シリカガラス粉末、石英粉末、溶融シリカガラス粉末、ガラスから選ばれる一種、2)天然鉱物のクリストバル石、鱗ケイ石、石英、玉髄、瑪瑙、タンパク石、シリカゲルから選ばれる一種、又は3)産業廃棄物の廃シリカガラス粉末、廃石英粉末、廃溶融シリカガラス粉末、廃ガラス、廃シリカゲルから選ばれる一種、を使用する、前記(8)に記載の機能性超微粒子材料の製造方法。
(10)シリカ材料表面に、0〜500℃の温度範囲で酸化チタン(水和物・非晶質分を含む)を被覆する、前記(7)又は(8)に記載の機能性超微粒子材料の製造方法。
(11)酸化チタン(水和物・非晶質分を含む)を被覆した材料を、凍結乾燥法、真空乾燥法、噴霧乾燥法又は大気中にて乾燥する、前記(8)に記載の機能性超微粒子材料の製造方法。
(12)赤外線加熱(RTA)方式、マイクロ波加熱又はプラズマ焼結(SPS)方式又は常圧焼成・焼結方式により焼成する、前記(8)に記載の機能性超微粒子の製造方法。
(13)大気又は不活性ガス中、酸化性ガス若しくは還元性ガス中、混合ガス中又は真空中で1200℃迄の温度範囲で焼成する、前記(8)に記載の機能性超微粒子材料の製造方法。
(14)焼成工程において、昇温速度を0.01℃/min〜2000℃/minに制御する、前記(8)に記載の機能性超微粒子材料の製造方法。
(15)前記(7)又は(8)に記載の方法により、産業廃棄物の廃非晶質シリカガラス粉末、廃石英粉末、廃溶融シリカガラス粉末、廃ガラス、又は廃シリカゲルを光触媒用の機能性超微粒子材料として再利用することを特徴とする上記産業廃棄物の再資源化方法。
(16)チタン源が、塩化チタン、塩化チタン溶液、硫酸チタン溶液、チタニウムテトライソプロポキシド・チタニウムエトキシド・チタニウムテトラエトキシド・チタニウムテトラ−n−ブトキシド,モノマー、チタニウムテトラ−n−ブトキシド,テトラマー、チタニウム−n−ブチラート,モノマー、チタニウム−n−ブチラート,テトラマー、又はチタンを含んだ化成品(工業用を含む)である、前記(7)又は(8)に記載の機能性超微粒子材料の製造方法。
(17)上記溶媒が、水、無水エタノール、1−プロパノール、2−プロパノール、アセトン、メタノール、1−ブタノール、2−ブタノール、2−メチル−1−ブタノール、2−メチル−3−ブタノール、3−メチル−1−ブタノール、3−メチル−2−ブタノール、3−メチル−2−ブタノン又はエタノール(各溶媒の工業用を含む)である、前記(7)又は(8)に記載の機能性超微粒子材料の製造方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) Functional ultrafine particle material for photocatalyst, 1) Titanium oxide (including hydrate / amorphous) nanoparticle composed of anatase phase or mixed phase of anatase phase and rutile phase is the surface of silica particle 2) having a photocatalytic action, 3) a functional ultrafine particle that maintains a single anatase phase in the presence or absence of heat treatment in the temperature range up to 1200 ° C. material.
(2) A heat-resistant functional ultrafine particle material for photocatalyst, 1) Titanium oxide nanoparticle composed of a calcined anatase phase or a mixed phase of anatase phase and rutile phase is supported on the surface of silica particles 2) 3) A functional ultrafine particle material having a photocatalytic action and 3) maintaining a single anatase phase even in a temperature range up to 1200 ° C.
(3) A photocatalyst product comprising the functional ultrafine particle material for photocatalyst described in (1) above.
(4) The photocatalyst product according to (3), wherein the photocatalyst product is a powder, a sol solution, a coating solution, or a paint containing the functional ultrafine particle material.
(5) A product provided with a photocatalytic function using the functional ultrafine particle material according to (1) or (2).
(6) The product provided with the photocatalytic function according to (5), wherein the product is a ceramic product, a polymer material product, a ceramic product, or a metal product.
(7) A method for producing a functional ultrafine particle material for a photocatalyst according to (1), wherein a raw material silica material and a titanium-silica composite material prepared from a titanium source are mixed in a solvent, and silica Functional ultrafine particles in which the surface of the material is coated with titanium oxide (including hydrates and amorphous content), and the surface of the silica particles is coated with titanium oxide nanoparticles composed of anatase phase or mixed phase of anatase phase and rutile phase A method for producing a functional ultrafine particle material, characterized by comprising:
(8) A method for producing a heat-resistant functional ultrafine particle material for a photocatalyst described in (2) above, wherein 1) a titanium-silica composite material prepared from a raw silica material and a titanium source in a solvent Mix and coat the surface of the silica material with titanium oxide (including hydrate / amorphous content). 2) Titanium oxide nanoparticles on the silica particle surface are baked at a predetermined temperature range. 3) to produce a heat-resistant functional ultrafine particle material that maintains a single anatase phase and maintains a photocatalytic action even in the temperature range up to 1200 ° C. Manufacturing method.
(9) As a raw material silica material, 1) a kind selected from non-natural mineral amorphous silica glass powder, quartz powder, fused silica glass powder, glass, 2) natural mineral cristobalite, clinopite, quartz, chalcedony , A kind selected from agate, protein stone, silica gel, or 3) a waste silica glass powder of industrial waste, waste quartz powder, waste fused silica glass powder, waste glass, a kind selected from waste silica gel, The method for producing a functional ultrafine particle material according to 8).
(10) The functional ultrafine particle material according to (7) or (8), wherein the surface of the silica material is coated with titanium oxide (including a hydrate / amorphous component) in a temperature range of 0 to 500 ° C. Manufacturing method.
(11) The function according to (8) above, wherein the material coated with titanium oxide (including hydrate / amorphous content) is dried in a freeze drying method, a vacuum drying method, a spray drying method or in the air. For producing conductive ultrafine particle material.
(12) The method for producing functional ultrafine particles according to (8), wherein firing is performed by infrared heating (RTA) method, microwave heating or plasma sintering (SPS) method, or normal pressure firing / sintering method.
(13) Production of the functional ultrafine particle material according to (8), which is fired in the air or in an inert gas, in an oxidizing gas or a reducing gas, in a mixed gas or in a vacuum in a temperature range up to 1200 ° C. Method.
(14) The method for producing a functional ultrafine particle material according to (8), wherein in the firing step, the rate of temperature rise is controlled to 0.01 ° C./min to 2000 ° C./min.
(15) A function for photocatalyst by converting the waste amorphous silica glass powder, waste quartz powder, waste fused silica glass powder, waste glass, or waste silica gel of industrial waste by the method described in (7) or (8) A method for recycling industrial waste as described above, characterized in that it is reused as a porous ultrafine particle material.
(16) Titanium source is titanium chloride, titanium chloride solution, titanium sulfate solution, titanium tetraisopropoxide, titanium ethoxide, titanium tetraethoxide, titanium tetra-n-butoxide, monomer, titanium tetra-n-butoxide, tetramer The functional ultrafine particle material according to (7) or (8) above, which is a chemical product (including industrial products) containing titanium, n-butyrate, monomer, titanium-n-butyrate, tetramer, or titanium. Production method.
(17) The solvent is water, absolute ethanol, 1-propanol, 2-propanol, acetone, methanol, 1-butanol, 2-butanol, 2-methyl-1-butanol, 2-methyl-3-butanol, 3- The functional ultrafine particles according to the above (7) or (8), which are methyl-1-butanol, 3-methyl-2-butanol, 3-methyl-2-butanone or ethanol (including industrial solvents). Material manufacturing method.

次に、本発明について更に詳細に説明する。
本発明は、光触媒用の機能性超微粒子材料であって、(1)アナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタン(水和物・非晶質分を含む)ナノ微粒子がシリカ粒子の表面に被覆されている、(2)光触媒作用を有する、(3)1200℃迄の温度域で熱処理がある場合でも、ない場合でも単一のアナターゼ相あるいはアナターゼ相とルチル相の混相が維持されることを特徴とするものである。また、本発明は、光触媒用の耐熱性機能性超微粒子材料であって、(1)焼成されたアナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタンナノ微粒子がシリカ粒子の表面に担持されている、(2)光触媒作用を有する、(3)1200℃迄の温度域でも単一のアナターゼ相あるいはアナターゼ相とルチル相の混相が維持されることを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention relates to a functional ultrafine particle material for photocatalyst, wherein (1) titanium oxide (including hydrate / amorphous content) nanoparticle composed of anatase phase or mixed phase of anatase phase and rutile phase is silica particles (2) Having photocatalytic action, (3) Maintaining a single anatase phase or a mixed phase of anatase and rutile phases with or without heat treatment in the temperature range up to 1200 ° C It is characterized by that. The present invention also relates to a heat-resistant functional ultrafine particle material for a photocatalyst, wherein (1) titanium oxide nanoparticles having a calcined anatase phase or a mixed phase of an anatase phase and a rutile phase are supported on the surface of silica particles. (2) It has a photocatalytic action, and (3) a single anatase phase or a mixed phase of an anatase phase and a rutile phase is maintained even in a temperature range up to 1200 ° C.

また、本発明は、上述の光触媒用の機能性超微粒子材料を含むことを特徴とする光触媒製品であり、上記光触媒製品が、上記機能性超微粒子材料を含む、粉末、ゾル液、コーティング液又は塗料であること、を好ましい実施態様としている。また、本発明は、上述の機能性超微粒子材料を使用して光触媒機能を付与したことを特徴とする製品であり、上記製品が、セラミック製品、高分子材料製品、陶磁器製品又は金属製品であること、を好ましい実施態様としている。   Further, the present invention is a photocatalyst product comprising the above-mentioned functional ultrafine particle material for photocatalyst, wherein the photocatalyst product comprises the functional ultrafine particle material, powder, sol solution, coating liquid or It is a preferred embodiment that it is a paint. Further, the present invention is a product provided with a photocatalytic function using the above functional ultrafine particle material, and the product is a ceramic product, a polymer material product, a ceramic product, or a metal product. This is a preferred embodiment.

また、本発明は、上述の光触媒用の機能性超微粒子材料を製造する方法であって、原料のシリカ材料とチタン源から調製されるチタン・シリカ複合材料を溶媒中で混合し、シリカ材料表面に酸化チタン(水和物・非晶質分を含む)を被覆して、アナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタン(水和物・非晶質分を含む)ナノ微粒子がシリカ粒子表面に被覆された機能性超微粒子を製造すること、を特徴とするものである。   The present invention also relates to a method for producing the above-mentioned functional ultrafine particle material for photocatalyst, wherein a raw material silica material and a titanium-silica composite material prepared from a titanium source are mixed in a solvent, and the surface of the silica material Titanium oxide (including hydrate / amorphous content) is coated on the surface, and titanium oxide (including hydrate / amorphous content) nanoparticle consisting of anatase phase or mixed phase of anatase phase and rutile phase is silica. It is characterized by producing functional ultrafine particles coated on the particle surface.

更に、本発明は、上述の光触媒用の耐熱性機能性超微粒子材料を製造する方法であって、原料のシリカ材料とチタン源から調製されるチタン・シリカ複合材料を溶媒中で混合し、シリカ材料表面に酸化チタン(水和物・非晶質分を含む)を被覆すること、これを、所定の温度範囲で焼成することにより、酸化チタンナノ微粒子をシリカ粒子表面に強固に担持させること、それにより、1200℃迄の温度域でも単一のアナターゼ相あるいはアナターゼ相とルチル相の混相が維持されて光触媒作用を保持する耐熱性機能性超微粒子材料を製造すること、を特徴とするものである。   Furthermore, the present invention is a method for producing the above heat-resistant functional ultrafine particle material for photocatalyst, comprising mixing a raw material silica material and a titanium-silica composite material prepared from a titanium source in a solvent, Covering the surface of the material with titanium oxide (including hydrate / amorphous content), and firing this within a predetermined temperature range to firmly support the titanium oxide nanoparticles on the silica particle surface; Thus, a heat-resistant functional ultrafine particle material that maintains a single anatase phase or a mixed phase of an anatase phase and a rutile phase and maintains a photocatalytic action even in a temperature range up to 1200 ° C. is produced. .

本発明の「光触媒用の機能性超微粒子材料」は、アナターゼ相あるいはアナターゼ相とルチル相の混相からなる0.1nm〜1000μmの酸化チタン微粒子が、0.1nm以上のシリカ粒子の表面に被覆された複合構造を有し、該機能性超微粒子を含む粉末、ゾル液、コーティング液又は塗料からなる光触媒製品として応用することができる。   The “functional ultrafine particle material for photocatalyst” of the present invention is obtained by coating the surface of silica particles of 0.1 nm or more with 0.1 nm to 1000 μm of titanium oxide fine particles comprising anatase phase or a mixed phase of anatase phase and rutile phase. It can be applied as a photocatalytic product having a composite structure and comprising a powder, sol liquid, coating liquid or paint containing the functional ultrafine particles.

本発明の上記機能性超微粒子材料は、従来製品、例えば、シリカ粉末と金属アルコキシド溶液を所定量秤量し、水又は特定の溶媒中で加水分解を起こし、粉末表面に金属を被覆した後、この金属被覆粉末を大気中で焼成した光触媒材料もしくはその中間製品と比較して、1200℃迄の温度域でも単一のアナターゼ相あるいはアナターゼ相とルチル相の混相が維持されて光触媒作用を保持することで本質的に区別される特徴を有している。   The functional ultrafine particle material of the present invention is obtained by weighing a predetermined amount of a conventional product such as silica powder and a metal alkoxide solution, causing hydrolysis in water or a specific solvent, and coating the metal on the powder surface. Compared with photocatalyst materials obtained by firing metal-coated powders in the air or their intermediate products, a single anatase phase or a mixed phase of anatase phase and rutile phase is maintained even in the temperature range up to 1200 ° C., and photocatalytic action is maintained. It has the characteristic which is essentially distinguished by.

これは、原料のシリカ材料とチタン源から調製されるチタン・シリカ複合材料、すなわち、酸化チタン(水和物・非晶質分を含む)被覆シリカ複合材料を溶媒中で十分に混合することにより、それらの成分の微細化と、分散性及び均一性が飛躍的に向上し、微細化された酸化チタンナノ微粒子がシリカ粒子表面に高分散、高均一に被覆された複合構造が形成されることによるものと考えられる。しかし、上述の従来製品では、このような複合構造を形成することは不可能であり、1200℃迄の温度域で単一のアナターゼ相あるいはアナターゼ相とルチル相の混相を維持することはできない。   This is achieved by thoroughly mixing a titanium-silica composite material prepared from a raw silica material and a titanium source, that is, a titanium oxide (including hydrate / amorphous content) -coated silica composite material in a solvent. , Due to the formation of a composite structure in which the fineness and dispersibility and uniformity of these components are dramatically improved, and the finely divided titanium oxide nanoparticles are highly dispersed and uniformly coated on the surface of the silica particles. It is considered a thing. However, in the above-mentioned conventional products, it is impossible to form such a composite structure, and a single anatase phase or a mixed phase of anatase phase and rutile phase cannot be maintained in a temperature range up to 1200 ° C.

本発明では、例えば、シリカガラス粉末や溶融シリカガラス粉末等のシリカ原料とチタン源から調製されるチタン・シリカ複合材料を溶媒中で混合して、シリカ粉末の表面に酸化チタン(水和物・非晶質分を含む)を被覆し、アナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタン微粒子がシリカ粒子の表面に被覆された機能性超微粒子材料を製造する。次いで、得られた粉末を、大気中又は不活性ガス、酸化性ガス若しくは還元性ガス中、混合ガス中又は真空中でRTA(赤外線加熱)法やマイクロ波加熱方式等の加熱方式で焼成することにより、酸化チタン微粒子をシリカ粒子の表面に強固に担持させ、高比表面積にした耐熱性機能性超微粒子材料を製造する。   In the present invention, for example, a silica raw material such as silica glass powder or fused silica glass powder and a titanium-silica composite material prepared from a titanium source are mixed in a solvent, and titanium oxide (hydrate. A functional ultrafine particle material in which the surface of silica particles is coated with titanium oxide fine particles comprising an anatase phase or a mixed phase of an anatase phase and a rutile phase is produced. Next, the obtained powder is baked by a heating method such as an RTA (infrared heating) method or a microwave heating method in the air, in an inert gas, an oxidizing gas or a reducing gas, in a mixed gas or in a vacuum. Thus, titanium oxide fine particles are firmly supported on the surface of the silica particles to produce a heat-resistant functional ultrafine particle material having a high specific surface area.

本発明では、上記機能性超微粒子材料の構成元素のシリカ源として、酸化シリコン、シリカガラス及びガラスや天然長石等が用いられ、例えば、これらの構成元素のシリカを含むシリカガラス粉末、石英粉末、溶融シリカガラス粉末、ガラス、天然鉱物として、クリストバル石、鱗ケイ石、石英、玉髄、瑪瑙、タンパク石、シリカゲル、上記構成元素を含む産業廃棄物の廃シリカガラス粉末、廃石英粉末、廃溶融シリカガラス、廃ガラス、廃シリカゲル等がシリカ材料として用いられる。   In the present invention, silicon oxide, silica glass, glass, natural feldspar, and the like are used as the silica source of the constituent elements of the functional ultrafine particle material. For example, silica glass powder containing these constituent elements of silica, quartz powder, Fused silica glass powder, glass, natural minerals such as cristobalite, scale silica, quartz, chalcedony, coral, protein stone, silica gel, industrial waste waste silica glass powder, waste quartz powder, waste fused silica containing the above constituent elements Glass, waste glass, waste silica gel and the like are used as the silica material.

しかし、これらの原料に限らず、これらの原料と同等あるいは類似の原料であれば同様に使用することができる。本発明では、上記シリカ材料として、好適には、例えば、球状な廃シリカ粉末、例えば、天然長石を粗砕してから高温雰囲気を通過してくることで球状に溶融されて出てくる材料を使った粉末が好適に用いられる。高い光触媒活性が期待できる廃シリカ粉末として、例えば、平均粒子径(D50):0.001ミクロン以上、粒子径:0.1nm以上、比表面積:0.1m/g以上、組成分析:SiO成分(濃度)が1.0%以上、不純物:Fe成分(濃度)が99.9%以下、の廃シリカ粉末が例示される。 However, the present invention is not limited to these raw materials, and any raw material equivalent to or similar to these raw materials can be used in the same manner. In the present invention, as the silica material, for example, a spherical waste silica powder, for example, a material that is melted into a spherical shape by crushing natural feldspar and then passing through a high-temperature atmosphere is used. The used powder is preferably used. As waste silica powder that can be expected to have high photocatalytic activity, for example, average particle diameter (D50): 0.001 micron or more, particle diameter: 0.1 nm or more, specific surface area: 0.1 m 2 / g or more, composition analysis: SiO 2 Examples include waste silica powder having a component (concentration) of 1.0% or more and an impurity: Fe 2 O 3 component (concentration) of 99.9% or less.

また、本発明では、目的とする光触媒用の機能性超微粒子材料を製造するために、好ましくは、チタン源から調製される金属アルコキシドが用いられる。このような金属アルコキシドとしては、好適には、例えば、Ti(OC 〔テトラエチルオルトチタン酸)、Ti((CHCHO)〔チタニウムテトライソプロポキシド〕又はTi(OC〔チタニウムテトラ−n−ブトキシド〕を例示することができるが、これらに制限されるものではなく、これらと同効のものであれば同様に使用することができる。また、本発明では、上記チタン源として、塩化チタン、塩化チタン溶液、硫酸チタン溶液、チタニウムテトライソプロポキシド・チタニウムエトキシド・チタニウムテトラエトキシド・チタニウムテトラ−n−ブトキシド,モノマー、チタニウムテトラ−n−ブトキシド,テトラマー、チタニウム−n−ブチラート,モノマー、チタニウム−n−ブチラート,テトラマー、又はチタンを含んだ化成品(工業用を含む)が例示される。 In the present invention, a metal alkoxide prepared from a titanium source is preferably used in order to produce the desired functional ultrafine particle material for a photocatalyst. As such a metal alkoxide, for example, Ti (OC 2 H 5 ) 4 [tetraethylorthotitanic acid], Ti ((CH 3 ) 2 CHO) 4 [titanium tetraisopropoxide] or Ti (OC 4 H 9 ) 4 [titanium tetra-n-butoxide] can be exemplified, but the present invention is not limited thereto, and can be used in the same manner as long as they have the same effect. Further, in the present invention, as the titanium source, titanium chloride, titanium chloride solution, titanium sulfate solution, titanium tetraisopropoxide, titanium ethoxide, titanium tetraethoxide, titanium tetra-n-butoxide, monomer, titanium tetra-n Examples include chemicals (including industrial products) containing butoxide, tetramer, titanium-n-butyrate, monomer, titanium-n-butyrate, tetramer, or titanium.

本発明では、原料として、これらのシリカ材料及びチタン源を所定量秤量したものを配合し、この配合物から調製されるチタン・シリカ複合材料を水又は特定の溶媒中で混合して、シリカ材料表面に酸化チタン(水和物・非晶質分を含む)微粒子を被覆して、光触媒用の機能性超微粒子材料を製造する。この場合、溶媒として、好適には、例えば、水、無水エタノール、1−プロパノール、2−プロパノール、アセトン、メタノール、1−ブタノール、2−ブタノール、2−メチル−1−ブタノール、2−メチル−3−ブタノール、3−メチル−1−ブタノール、3−メチル−2−ブタノール、3−メチル−2−ブタノン又はエタノール(各溶媒の工業用を含む)等が用いられる。   In the present invention, as a raw material, a mixture of these silica materials and a titanium source weighed in a predetermined amount is blended, and a titanium-silica composite material prepared from this blend is mixed in water or a specific solvent to obtain a silica material. The surface is coated with fine particles of titanium oxide (including hydrate / amorphous content) to produce a functional ultrafine particle material for photocatalyst. In this case, the solvent is preferably, for example, water, absolute ethanol, 1-propanol, 2-propanol, acetone, methanol, 1-butanol, 2-butanol, 2-methyl-1-butanol, 2-methyl-3. -Butanol, 3-methyl-1-butanol, 3-methyl-2-butanol, 3-methyl-2-butanone, ethanol (including industrial use of each solvent) or the like is used.

本発明において、Tiの配合比率は、シリカ粉末に対して0.001〜200%以上であり、この配合比率でシリカ粉末にチタン源を配合して調製されるチタン・シリカ複合材料を溶媒中で混合し、酸化チタン(水和物・非晶質分を含む)微粒子をシリカ粉末表面に被覆する。酸化チタン(水和物・非晶質分を含む)の被覆は、好適には、例えば、0〜500℃、好ましくは室温(15〜40℃)で行われる。また、酸化チタン(水和物・非晶質分を含む)被覆材料の合成は、大気中又は不活性ガス雰囲気中で行われるが、大気中で合成することが、経済的で、簡易であるので好ましい。次いで、これを、乾燥後、大気中又は不活性ガス、酸化性ガス若しくは還元性ガス中、混合ガス中又は真空中で、RTA(赤外線加熱)やマイクロ波加熱等の加熱法又はプラズマ焼結(SPS)や常圧焼成・焼結で100℃以上、好ましくは100〜1300℃で焼成する。この場合、好適には、RTA(赤外線加熱)やマイクロ波加熱等の急速加熱方法が使用される。   In the present invention, the mixing ratio of Ti is 0.001 to 200% or more with respect to the silica powder, and the titanium / silica composite material prepared by mixing the titanium source with the silica powder at this mixing ratio in the solvent. Mix and coat the silica powder surface with fine particles of titanium oxide (including hydrate and amorphous content). The coating of titanium oxide (including a hydrate / amorphous component) is suitably performed, for example, at 0 to 500 ° C., preferably at room temperature (15 to 40 ° C.). In addition, the synthesis of the titanium oxide (including hydrate / amorphous) coating material is performed in the air or in an inert gas atmosphere, but it is economical and simple to synthesize in the air. Therefore, it is preferable. Then, after drying, in the air, in an inert gas, an oxidizing gas or a reducing gas, in a mixed gas or in a vacuum, a heating method such as RTA (infrared heating) or microwave heating or plasma sintering ( SPS) or atmospheric pressure firing / sintering at 100 ° C. or higher, preferably 100-1300 ° C. In this case, a rapid heating method such as RTA (infrared heating) or microwave heating is preferably used.

上記焼成工程において、昇温時間は30秒間以上で、昇温速度は0.01℃/min〜2000℃/min、好ましくは1℃/min〜2000℃/min、焼成時間は0.01〜8時間が望ましい。乾燥方法としては、凍結乾燥、真空乾燥又は噴霧乾燥を用いることが好ましい。それにより、凝集の少ない粉末が得られる。しかし、これらの条件は、これらに制限されるものではない。このように、大気中又は不活性ガス、酸化性ガス若しくは還元性ガス中、混合ガス中又は真空中でRTA(赤外線加熱)法やマイクロ波加熱又はプラズマ焼結等の加熱方式で焼成を行うことによって、耐熱性で、例えば、1200℃迄の温度域で焼成しても、光触媒活性の高いアナターゼ相あるいはアナターゼ相とルチル相の混相と高い比表面積を維持し、高い光触媒機能を発現することが可能な機能性超微粒子が得られる。昇温速度が0.01℃/minを下回ると光触媒能力の低下、また、2000℃/minを上回ると比表面積の減少の可能性がある。   In the baking step, the temperature rising time is 30 seconds or more, the temperature rising rate is 0.01 ° C./min to 2000 ° C./min, preferably 1 ° C./min to 2000 ° C./min, and the baking time is 0.01 to 8 Time is desirable. As a drying method, freeze drying, vacuum drying or spray drying is preferably used. Thereby, a powder with less aggregation is obtained. However, these conditions are not limited to these. In this way, firing is performed in the atmosphere, in an inert gas, an oxidizing gas or a reducing gas, in a mixed gas, or in a vacuum by a heating method such as an RTA (infrared heating) method, microwave heating, or plasma sintering. Due to the heat resistance, for example, even when baked in the temperature range up to 1200 ° C., the high anatase phase or the mixed phase of the anatase phase and the rutile phase and the high specific surface area can be maintained and the high photocatalytic function can be exhibited. Possible functional ultrafine particles are obtained. If the rate of temperature rise is less than 0.01 ° C./min, the photocatalytic ability may decrease, and if it exceeds 2000 ° C./min, the specific surface area may decrease.

不活性ガスとしてはAr、N、酸化性ガスとしてはO、還元性ガスあるいは混合ガスとしてはAr+H、N+H、CO、Hが用いられる。大気中又は不活性ガス、酸化性ガス若しくは還元性ガス中又は真空中でRTA(赤外線加熱)法やマイクロ波加熱又はプラズマ焼結方式等の加熱方式で焼成して、1200℃迄の温度域でも単一のアナターゼ相あるいはアナターゼ相とルチル相の混相が維持される酸化チタン微粒子をシリカ粒子表面に強固に担持させた機能性超微粒子材料が得られる。得られた上記機能性超微粒子材料は、特に、高温焼成、高温環境下で高い光触媒活性を発現する光触媒材料として、例えば、自動車の排ガスなどから排出される窒素酸化物(NOx)や硫黄酸化物(SOx)などの環境汚染物質を除去したり、汚染水に含まれるテトラクロロエチレンやトリハロメタンなどの有機塩素化合物を分解除去するための光触媒として好適に用いられる。 Ar and N 2 are used as the inert gas, O 2 is used as the oxidizing gas, and Ar + H 2 , N 2 + H 2 , CO, and H 2 are used as the reducing gas or mixed gas. In the atmosphere or in an inert gas, oxidizing gas, reducing gas, or vacuum, firing by a heating method such as RTA (infrared heating) method, microwave heating or plasma sintering method, even in the temperature range up to 1200 ° C A functional ultrafine particle material in which titanium oxide fine particles capable of maintaining a single anatase phase or a mixed phase of an anatase phase and a rutile phase are firmly supported on the surface of the silica particles can be obtained. The obtained functional ultrafine particle material is, for example, a nitrogen oxide (NOx) or sulfur oxide discharged from automobile exhaust gas or the like as a photocatalyst material exhibiting high photocatalytic activity under high temperature firing and high temperature environments. It is suitably used as a photocatalyst for removing environmental pollutants such as (SOx) and decomposing and removing organic chlorine compounds such as tetrachloroethylene and trihalomethane contained in contaminated water.

本発明の機能性超微粒子材料は、粉体自体又は他の製品に複合化されて光触媒材料として使用される。この機能性超微粒子材料は、耐熱性を有し、高温で焼成しても、アナターゼ相あるいはアナターゼ相とルチル相の混相に基づく高い光触媒活性を維持している。そのため、本発明の機能性超微粒子材料は、例えば、各種セラミックス、金属製品及び陶磁器素材等の表面処理に使用可能であり、例えば、板状、ブロック状、ペレット状、チューブ状、棒状、及びパイプ状のセラミックス製品等に応用できる。本発明は、基本的に、その製造過程で高温焼成が必要とされる製品であれば、その種類に制限されることなく好適に適用し得るものであり、これらの製品に光触媒機能を付加する方法及び材料として有用である。更に、光触媒作用を有する酸化チタン微粒子は、シリカ粒子の表面に強固に担持されており、例えば、水系やガス系における処理にも好適に利用することができる。   The functional ultrafine particle material of the present invention is used as a photocatalyst material by being combined with powder itself or other products. This functional ultrafine particle material has heat resistance and maintains high photocatalytic activity based on the anatase phase or a mixed phase of anatase phase and rutile phase even when fired at a high temperature. Therefore, the functional ultrafine particle material of the present invention can be used for surface treatment of various ceramics, metal products, ceramic materials, etc., for example, plate shape, block shape, pellet shape, tube shape, rod shape, and pipe It can be applied to ceramic products. Basically, the present invention can be suitably applied to any product that requires high-temperature firing in the production process without being limited to the type thereof, and a photocatalytic function is added to these products. Useful as methods and materials. Furthermore, the titanium oxide fine particles having a photocatalytic action are firmly supported on the surface of the silica particles, and can be suitably used for, for example, treatment in an aqueous system or a gas system.

本発明の応用製品には、例えば、耐熱性機能性超微粒子材料や熱処理前の機能性超微粒子材料を利用した二次製品、例えば、粉体、ゾル液、コーティング液、塗料、陶土、釉薬、化粧品、食器(食器洗浄機対応食器も含む)、陶磁器、調理器具、屋根材、光学レンズ、フィルム、ガラス、布、不織布、ビーズ、板材、マット、紙(和紙も含む)、衣類、カーテン、造花、脱臭器、空気清浄機、排ガス処理装置、排水・循環水処理装置、チラー、冷却塔、高温槽、水質浄化装置(地下水・淡水・海水(養殖海水・活魚水槽水も含む)・浴槽水・プール水・循環水・天然温泉水・加熱水・飲料水・農薬廃液・溶液肥料・屋内・屋外用を含む)、土壌浄化装置、ビニルハウス、ミラー(ガラス・ドアミラーも含む)、環境ホルモン分解装置・空調・冷凍設備、ダイオキシン類分解装置、浮遊細菌除去装置、有機塩素化合物分解装置、殺菌・殺藻装置、吸音板、照明器具(屋内・屋外用含む)、蛍光管、家電製品、透明遮音板、視線誘導標、道路反射鏡、トンネル照明器具、Nox削減防音壁、放熱部材(アルミ・ガラスも含む)、医療用材料、医療器具、タイル(屋上緑化用も含む)、膜構造体、建材(内装材・外装材含む)、外壁材、内壁材、透水性ブロック、看板、アミューズメント機器(娯楽設備・パチンコ・スロット台等)、温室資材、コンクリート、光触媒シート、テント、成形体、吸着材(アパタイト・活性炭・炭化物・メソポーラスシリカ・ゼオライト・モルデナイトを含む)との複合化製品、傾斜材料・セルフクリーニング製品、抗菌・抗カビ製品、ハニカム、多孔体、多孔質フィルター、繊維(ガラスも含む)、フッ素・ポリプロピレン・ウレタン等の樹脂との複合化製品、低熱膨張基板、焼結体、焼成品が含まれる。   Application products of the present invention include, for example, secondary products using heat-resistant functional ultrafine particle material or functional ultrafine particle material before heat treatment, such as powder, sol liquid, coating liquid, paint, porcelain clay, glaze, Cosmetics, tableware (including dishes for dishwashers), ceramics, cooking utensils, roofing materials, optical lenses, films, glass, cloth, non-woven fabrics, beads, board materials, mats, paper (including Japanese paper), clothing, curtains, artificial flowers , Deodorizer, air purifier, exhaust gas treatment device, drainage / circulation water treatment device, chiller, cooling tower, high-temperature tank, water purification device (groundwater, freshwater, seawater (including aquaculture seawater, live fish tank water), bath water, Pool water, circulating water, natural hot spring water, heated water, drinking water, pesticide waste liquid, solution fertilizer, indoor and outdoor use), soil purification equipment, vinyl houses, mirrors (including glass and door mirrors), environmental hormone decomposition equipment ·air conditioning· Refrigeration equipment, dioxins decomposition device, floating bacteria removal device, organochlorine compound decomposition device, sterilization / algaecidal device, sound absorbing plate, lighting equipment (including indoor and outdoor use), fluorescent tube, home appliances, transparent sound insulation plate, line of sight guidance Marks, road reflectors, tunnel lighting fixtures, Nox reduction noise barriers, heat dissipation members (including aluminum and glass), medical materials, medical instruments, tiles (including rooftop greenery), membrane structures, building materials (interior materials / Exterior materials), outer wall materials, inner wall materials, water permeable blocks, signboards, amusement equipment (amusement equipment, pachinko slots, etc.), greenhouse materials, concrete, photocatalytic sheets, tents, molded bodies, adsorbents (apatite, activated carbon, (Including carbide, mesoporous silica, zeolite, and mordenite), graded materials, self-cleaning products, antibacterial and antifungal products, honeycombs, porous materials, Porous filter, fibers (glass included), composite products with resin such as fluorine-polypropylene urethane, low-thermal-expansion substrate include sintered body, the sintered product.

本発明により、次のような効果が奏される。
(1)1200℃迄の温度域でも、活性の高いアナターゼ相あるいはアナターゼ相とルチル相の混相と高い比表面積を維持し、高い光触媒活性を発揮する機能性超微粒子材料が得られる。
(2)光透過性と高い比表面積を有し、活性の高いアナターゼ相あるいはアナターゼ相とルチル相の混相を持つ耐熱性光触媒材料を製造し、提供できる。
(3)本発明の機能性超微粒子材料を利用することにより、製品の製造過程で高温焼成することが必要とされる各種セラミックス、金属製品及び陶磁器製品等に光触媒機能を付加することができる。
(4)産業廃棄物の廃非晶質シリカガラス粉末や、廃石英粉末を有効利用して再資源化することを可能とする新技術を提供できる。
(5)RTA(赤外線加熱)法やマイクロ波加熱又はプラズマ焼結方式等の加熱方式で焼成することで、短時間の焼成が可能となり、1日の処理回数も大幅に増加するため、多品種・少量の製品にも応用できる。
The present invention has the following effects.
(1) Even in a temperature range up to 1200 ° C., a functional ultrafine particle material that maintains a highly active anatase phase or a mixed phase of anatase phase and a rutile phase and a high specific surface area and exhibits high photocatalytic activity can be obtained.
(2) It is possible to produce and provide a heat-resistant photocatalytic material having a light transmittance and a high specific surface area and having a highly active anatase phase or a mixed phase of an anatase phase and a rutile phase.
(3) By using the functional ultrafine particle material of the present invention, a photocatalytic function can be added to various ceramics, metal products, ceramic products, and the like that are required to be fired at a high temperature in the production process.
(4) It is possible to provide a new technology that enables the waste amorphous silica glass powder of industrial waste and the waste quartz powder to be effectively recycled.
(5) Baking by heating method such as RTA (infrared heating) method, microwave heating or plasma sintering method enables short-time baking and greatly increases the number of treatments per day.・ It can be applied to small quantities of products.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

(1)原料シリカ粉末
シリカガラス粉末とガラス粉末をペレット状に成形し、吸光度測定を行った。この結果、シリカガラス粉末はガラス粉末に比べて、短波長(紫外線)領域で低い吸光度を示すことが分かった。本発明では、原料として、例えば、シリカ粉末やガラス粉末とは別異のシリカガラス粉末、溶融シリカガラス粉末や石英粉末等が用いられ、更に、非晶質シリカガラス粉末を含有する産業廃棄物の廃非晶質シリカガラス粉末や石英粉末を含有する産業廃棄物の廃石英粉末等が用いられるが、本実施例では、非晶質シリカガラス粉末含有未処理産業廃棄物を用いた例を示す。尚、他のシリカ粉末を用いた場合にも、同様の結果が得られる。
(1) Raw material silica powder Silica glass powder and glass powder were formed into pellets, and the absorbance was measured. As a result, it was found that the silica glass powder showed lower absorbance in the short wavelength (ultraviolet) region than the glass powder. In the present invention, for example, silica glass powder different from silica powder or glass powder, fused silica glass powder, quartz powder or the like is used as a raw material, and further, industrial waste containing amorphous silica glass powder is used. Industrial waste waste quartz powder containing waste amorphous silica glass powder or quartz powder is used. In this embodiment, an example of using untreated industrial waste containing amorphous silica glass powder is shown. Similar results are obtained when other silica powders are used.

(2)チタン源
本実施例では、チタン源として、各種Tiアルコキシドを用いた。また、比較として、テトラエチルオルトチタン酸を用いた。上記Tiアルコキシドは、無水エタノール溶媒に混合して用いた。尚、他のチタン源を用いた場合にも、同様の結果が得られる。
(2) Titanium source In this example, various Ti alkoxides were used as the titanium source. For comparison, tetraethylorthotitanic acid was used. The Ti alkoxide was used by mixing with an absolute ethanol solvent. Similar results can be obtained when other titanium sources are used.

(3)機能性超微粒子材料の作製
300mlフラスコ中に100ml無水エタノールとシリカガラス粉末含有未処理産業廃棄物(以下、単にシリカガラス粉末と記載する。)とチタン源(テトラエチルオルトチタン酸、チタニウムテトライソプロポキシド、チタニウムテトラ−n−ブトキシのいずれか)を所定量秤量し、混合した。このフラスコを40℃に保持した恒温槽に固定してフラスコ内に水を所定量入れてから30分間攪拌混合した。その後、遠心分離機を用いて固液分離した。その後、凍結乾燥や真空乾燥や、大気中乾燥させ、非晶質シリカガラス粉末表面に酸化チタン微粒子を被覆した試料(光触媒用の機能性超微粒子材料)を得た。次に、この試料を大気中、600〜1300℃で10分間焼成し、アナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタン微粒子をシリカガラス粒子の表面に担持させた機能性超微粒子(耐熱性機能性超微粒子材料)を得た。
(3) Production of functional ultrafine particle material 100 ml absolute ethanol and silica glass powder-containing untreated industrial waste (hereinafter simply referred to as silica glass powder) and titanium source (tetraethylorthotitanic acid, titanium tetra) in a 300 ml flask A predetermined amount of either isopropoxide or titanium tetra-n-butoxy) was weighed and mixed. This flask was fixed to a thermostat kept at 40 ° C., and a predetermined amount of water was put into the flask, followed by stirring and mixing for 30 minutes. Thereafter, solid-liquid separation was performed using a centrifuge. Then, the sample (functional ultrafine particle material for photocatalyst) was obtained by freeze-drying, vacuum drying, or drying in the air, and coating the surface of amorphous silica glass powder with titanium oxide fine particles. Next, this sample is baked in the atmosphere at 600 to 1300 ° C. for 10 minutes, and functional ultrafine particles (heat resistant) in which titanium oxide fine particles composed of anatase phase or a mixed phase of anatase phase and rutile phase are supported on the surface of silica glass particles. Functional ultrafine particle material) was obtained.

恒温槽を40℃で保持した時に、種々のチタン源でシリカガラス粉末に被覆した試料を図1に示す。テトラエチルオルトチタン酸をチタン源として使用した場合、シリカガラス粉末表面にTiが被覆された様子が観察されなかった。しかし、チタン源にチタニウムテトライソプロポキシドやチタニウムテトラ−n−ブトキシを使用すると、非晶質シリカガラス粉末表面や石英粉末表面に酸化チタン(水和物・非晶質分を含む)微粒子が被覆され、アナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタン(水和物・非晶質分を含む)微粒子がシリカ粒子表面に強固に担持されている酸化チタン(水和物・非晶質分を含む)被覆粉末が得られることが分かった。   Samples coated with silica glass powder with various titanium sources when the thermostat is held at 40 ° C. are shown in FIG. When tetraethylorthotitanic acid was used as the titanium source, it was not observed that the surface of the silica glass powder was coated with Ti. However, when titanium tetraisopropoxide or titanium tetra-n-butoxy is used as the titanium source, the surface of the amorphous silica glass powder or the surface of the quartz powder is covered with titanium oxide (including hydrate / amorphous) fine particles. Titanium oxide (hydrate / amorphous) in which titanium oxide (hydrate / amorphous content) fine particles composed of anatase phase or mixed phase of anatase phase and rutile phase are firmly supported on the silica particle surface It was found that a coated powder was obtained.

上記実施例1で説明した操作内容で、チタン源をチタニウムテトライソプロポキシドに固定して反応温度を0〜40℃に変化させた場合のシリカガラス粉末の表面を図2に示す。この結果から、チタン源にチタニウムテトライソプロポキシドを用いれば、0〜40℃の温度範囲でシリカガラス粉末表面に酸化チタン(水和物・非晶質分を含む)微粒子をコーティング可能であり、アナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタン微粒子がシリカ粒子表面に強固に担持されている酸化チタン(水和物・非晶質分を含む)被覆粉末が得られることが分かった。   FIG. 2 shows the surface of the silica glass powder when the titanium source is fixed to titanium tetraisopropoxide and the reaction temperature is changed to 0 to 40 ° C. with the operation described in Example 1 above. From this result, if titanium tetraisopropoxide is used as the titanium source, it is possible to coat titanium oxide (including hydrate / amorphous) fine particles on the silica glass powder surface in a temperature range of 0 to 40 ° C. It was found that a titanium oxide (including hydrate / amorphous) coated powder in which titanium oxide fine particles composed of anatase phase or a mixed phase of anatase phase and rutile phase are firmly supported on the surface of silica particles can be obtained.

上記実施例2で説明した操作内容で、恒温槽を0℃で保持して反応させた試料を、大気中、通常の電気炉とRTA(赤外線加熱)法でそれぞれ昇温速度が5℃/minと2000℃/minで1000℃で10分間焼成した後の粉末のX線回折測定の結果を図3に示す。これによれば、RTA法を利用して昇温速度が2000℃/minで焼成した粉末は、単一のアナターゼ相のみであることが分かった、そして、通常の電気炉で昇温速度が5℃/minで焼成した粉末は、アナターゼ相とルチル相の混相であることが分かった。   With the operation described in Example 2 above, samples heated and reacted at 0 ° C. were heated at a rate of 5 ° C./min in the atmosphere using a normal electric furnace and an RTA (infrared heating) method. FIG. 3 shows the results of X-ray diffraction measurement of the powder after firing at 1000 ° C. for 10 minutes at 2000 ° C./min. According to this, it was found that the powder fired at a heating rate of 2000 ° C./min using the RTA method was only a single anatase phase, and the heating rate was 5 in a normal electric furnace. It was found that the powder fired at a temperature of ° C / min was a mixed phase of anatase phase and rutile phase.

このように、シリカガラス粉末の表面に酸化チタン(水和物・非晶質分を含む)微粒子を被覆して作製した酸化チタン(水和物・非晶質分を含む)被覆粉末は、RTA(赤外線加熱)法で高温焼成(1000℃)すれば、活性の高い単一のアナターゼ相を維持しており、耐熱性を有することが分かった。更に、RTA(赤外線加熱)法で作製した試料は、通常の電気炉で作製した試料に比べて約2倍高い比表面積を示した。   Thus, the titanium oxide (including hydrate / amorphous content) coated powder produced by coating the surface of silica glass powder with titanium oxide (including hydrate / amorphous content) fine particles is RTA. It was found that if high-temperature firing (1000 ° C.) was performed by the (infrared heating) method, a single anatase phase having high activity was maintained and it had heat resistance. Furthermore, the sample produced by the RTA (infrared heating) method showed a specific surface area that was approximately twice as high as that of a sample produced by a normal electric furnace.

上記実施例3で説明した内容の試料を用いて、メチレンブルー溶液の色素分解能力を評価した。サンプルは、通常の電気炉で昇温速度が5℃/minとRTA(赤外線加熱)法で2000℃/minで1000℃でそれぞれ10分間焼成したものを使用した。各試料のメチレンブルー色素分解能力を評価した結果を図4に示す。その結果、大気中、RTA(赤外線加熱)法で1000℃で10分間焼成した試料が、通常の電気炉で作製した試料に比べて約2.7倍高い分解能力を示すことが分かった。本発明製品についての他の試験結果として、図5に、各種乾燥方法と色素分解能力との関係を試験した結果を示す。凍結乾燥法を採用した場合、最も高い光触媒活性が得られることが分かった。図6に、1200℃で酸化焼成後の粉末のXRD回折結果を示す。図7に、本発明製品と市販品を同じ温度で電気炉で焼成した酸化チタンの写真を示す(右:本発明製品、左:市販品)。図8に、市販の光触媒粉末(酸化チタン)を1000℃で焼成した後の、XRDデータを示す(高温になると全てルチル相になり、光触媒の機能性が低下する)。図9に、本発明製品を1200℃で焼成した後の、XRDデータを示す(1200℃焼成後に単一のアナターゼ相が維持されている)。   Using the sample having the contents described in Example 3 above, the ability of the methylene blue solution to decompose the dye was evaluated. The samples used were those fired at 1000 ° C. for 10 minutes each at a heating rate of 5 ° C./min in an ordinary electric furnace and 2000 ° C./min by an RTA (infrared heating) method. The results of evaluating the ability of each sample to decompose methylene blue are shown in FIG. As a result, it was found that a sample fired at 1000 ° C. for 10 minutes by the RTA (infrared heating) method in the atmosphere exhibits a decomposition capability approximately 2.7 times higher than that of a sample manufactured in a normal electric furnace. As other test results for the product of the present invention, FIG. 5 shows the results of testing the relationship between various drying methods and the ability to decompose the pigment. It was found that the highest photocatalytic activity was obtained when the freeze-drying method was employed. FIG. 6 shows an XRD diffraction result of the powder after oxidation and baking at 1200 ° C. FIG. 7 shows a photograph of titanium oxide obtained by firing the product of the present invention and a commercial product at the same temperature in an electric furnace (right: product of the present invention, left: commercial product). FIG. 8 shows XRD data after a commercially available photocatalyst powder (titanium oxide) is baked at 1000 ° C. (all become a rutile phase at a high temperature, and the functionality of the photocatalyst decreases). FIG. 9 shows XRD data after baking the product of the present invention at 1200 ° C. (a single anatase phase is maintained after baking at 1200 ° C.).

以上詳述したように、本発明は、光触媒用の機能性超微粒子材料、その製造方法及び製品に係るものであり、本発明により、光触媒用の機能性超微粒子材料及び該材料を含むゾル・コーティング液等の光触媒製品を提供することができる。また、本発明の方法によって得られる耐熱性機能性超微粒子材料は、1200℃迄の温度域でも活性の高い単一のアナターゼ相あるいはアナターゼ相とルチル相の混相を維持し、高い耐熱性を示し、また、光透過性を有し、高い光触媒活性を発現する。本発明の方法は、粉末の焼成が大気中ででき、短時間で終了するので、経済性に優れており、低コストで光触媒材料を作製することができる。この耐熱性機能性超微粒子材料は、高温で焼成しても、高い光触媒機能を発現するため、各種セラミックス、金属製品及び陶磁器素材等の表面処理に代表される、製品の製造過程で高温焼成が必要とされる種々の製品に適用することが可能である。   As described above in detail, the present invention relates to a functional ultrafine particle material for a photocatalyst, a production method and a product thereof. According to the present invention, a functional ultrafine particle material for a photocatalyst and a sol A photocatalytic product such as a coating solution can be provided. In addition, the heat-resistant functional ultrafine particle material obtained by the method of the present invention maintains a single active anatase phase or a mixed phase of an anatase phase and a rutile phase even in a temperature range up to 1200 ° C., and exhibits high heat resistance. In addition, it has optical transparency and exhibits high photocatalytic activity. In the method of the present invention, the powder can be fired in the air and is completed in a short time. Therefore, the method is excellent in economic efficiency and a photocatalytic material can be produced at low cost. Since this heat-resistant functional ultrafine particle material exhibits a high photocatalytic function even when fired at high temperatures, it can be fired at high temperatures during the production process of products represented by surface treatment of various ceramics, metal products and ceramic materials. It can be applied to various required products.

種々のチタン源をシリカガラス粉末に被覆した試料(反応温度:40℃)の表面の観察結果を示す。The observation result of the surface of the sample (reaction temperature: 40 degreeC) which coat | covered various titanium sources on the silica glass powder is shown. 0〜40℃の温度範囲で廃シリカガラス粉末に酸化チタン(水和物・非晶質分を含む)微粒子を被覆した試料(Ti源:チタニウムテトライソプロポキシド)の表面の観察結果を示す。The observation result of the surface of a sample (Ti source: titanium tetraisopropoxide) in which waste silica glass powder is coated with fine particles of titanium oxide (including hydrate / amorphous content) in a temperature range of 0 to 40 ° C. is shown. 大気中、通常の電気炉で5℃/minの昇温速度とRTA(赤外線加熱)法で2000℃/minの昇温速度で1000℃で焼成した後の廃シリカガラス粉末のXRD回折の結果と比表面積を示す。Results of XRD diffraction of waste silica glass powder after firing at 1000 ° C. in the atmosphere at a heating rate of 5 ° C./min with a normal electric furnace and a heating rate of 2000 ° C./min by the RTA (infrared heating) method Specific surface area is shown. 通常の電気炉とRTA法で作製した試料の光触媒活性能力の関係を示す。The relationship of the photocatalytic activity ability of the sample produced with the normal electric furnace and RTA method is shown. 各種乾燥方法と色素分解能力との関係を示す。The relationship between various drying methods and pigment decomposition ability is shown. 1200℃で酸化焼成後の粉末のXRD回折結果を示す。The XRD diffraction result of the powder after oxidation baking at 1200 degreeC is shown. 本発明製品(機能性超微粒子粉末)と市販品(酸化チタン粉末)を同じ温度で電気炉で焼成した酸化チタンの写真を示す(右:本発明製品、左:市販品)。A photograph of titanium oxide obtained by firing the product of the present invention (functional ultrafine particle powder) and a commercial product (titanium oxide powder) in an electric furnace at the same temperature is shown (right: product of the present invention, left: commercial product). 市販の光触媒粉末(酸化チタン)を1000℃で焼成した後の、XRDデータを示す(高温になると全てルチル相になり、光触媒の機能性が低下する)。The XRD data after burning a commercially available photocatalyst powder (titanium oxide) at 1000 ° C. are shown (all become a rutile phase at a high temperature, and the functionality of the photocatalyst decreases). 本発明製品を1200℃で焼成した後の、XRDデータを示す(1200℃焼成後に単一のアナターゼ相が維持されている)。XRD data after firing the product of the present invention at 1200 ° C is shown (a single anatase phase is maintained after firing at 1200 ° C).

Claims (17)

光触媒用の機能性超微粒子材料であって、(1)アナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタン(水和物・非晶質分を含む)ナノ微粒子がシリカ粒子の表面に被覆されている、(2)光触媒作用を有する、(3)1200℃迄の温度域で熱処理がある場合でも、ない場合でも単一のアナターゼ相あるいはアナターゼ相とルチル相の混相が維持される、ことを特徴とする機能性超微粒子材料。   Functional ultrafine particle material for photocatalyst, (1) Titanium oxide (including hydrate / amorphous) nanoparticle consisting of anatase phase or mixed phase of anatase phase and rutile phase is coated on the surface of silica particle (2) having photocatalytic action, (3) maintaining a single anatase phase or a mixed phase of anatase phase and rutile phase with or without heat treatment in the temperature range up to 1200 ° C. Functional ultrafine particle material characterized by 光触媒用の耐熱性機能性超微粒子材料であって、(1)焼成されたアナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタンナノ微粒子がシリカ粒子の表面に担持されている、(2)光触媒作用を有する、(3)1200℃迄の温度域でも単一のアナターゼ相あるいはアナターゼ相とルチル相の混相が維持される、ことを特徴とする機能性超微粒子材料。   A heat-resistant functional ultrafine particle material for a photocatalyst, wherein (1) a titanium oxide nanoparticle comprising a calcined anatase phase or a mixed phase of an anatase phase and a rutile phase is supported on the surface of a silica particle, (2) a photocatalyst (3) A functional ultrafine particle material having a function, wherein a single anatase phase or a mixed phase of an anatase phase and a rutile phase is maintained even in a temperature range up to 1200 ° C. 請求項1に記載の光触媒用の機能性超微粒子材料を含むことを特徴とする光触媒製品。   A photocatalyst product comprising the functional ultrafine particle material for photocatalyst according to claim 1. 上記光触媒製品が、上記機能性超微粒子材料を含む、粉末、ゾル液、コーティング液又は塗料である、請求項3に記載の光触媒製品。   The photocatalyst product according to claim 3, wherein the photocatalyst product is a powder, a sol solution, a coating solution or a paint containing the functional ultrafine particle material. 請求項1又は2に記載の機能性超微粒子材料を使用して光触媒機能を付与したことを特徴とする製品。   A product obtained by imparting a photocatalytic function using the functional ultrafine particle material according to claim 1. 上記製品が、セラミック製品、高分子材料製品、陶磁器製品又は金属製品である、請求項5に記載の光触媒機能を付与した製品。   6. The product imparted with a photocatalytic function according to claim 5, wherein the product is a ceramic product, a polymer material product, a ceramic product, or a metal product. 請求項1に記載の光触媒用の機能性超微粒子材料を製造する方法であって、原料のシリカ材料とチタン源から調製されるチタン・シリカ複合材料を溶媒中で混合し、シリカ材料表面に酸化チタン(水和物・非晶質分を含む)を被覆して、アナターゼ相あるいはアナターゼ相とルチル相の混相からなる酸化チタンナノ微粒子がシリカ粒子表面に被覆された機能性超微粒子を製造することを特徴とする機能性超微粒子材料の製造方法。   A method for producing a functional ultrafine particle material for a photocatalyst according to claim 1, wherein a raw material silica material and a titanium-silica composite material prepared from a titanium source are mixed in a solvent and oxidized on the surface of the silica material. Covering titanium (including hydrate / amorphous content) to produce functional ultrafine particles in which titanium oxide nanoparticles composed of anatase phase or mixed phase of anatase phase and rutile phase are coated on the surface of silica particles A method for producing a functional ultrafine particle material. 請求項2に記載の光触媒用の耐熱性機能性超微粒子材料を製造する方法であって、(1)原料のシリカ材料とチタン源から調製されるチタン・シリカ複合材料を溶媒中で混合し、シリカ材料表面に酸化チタン(水和物・非晶質分を含む)を被覆する、(2)これを、所定の温度範囲で焼成することにより、酸化チタンナノ微粒子をシリカ粒子表面に強固に担持させる、(3)それにより、1200℃迄の温度域でも単一のアナターゼ相あるいはアナターゼ相とルチル相の混相が維持されて光触媒作用を保持する耐熱性機能性超微粒子材料を製造する、ことを特徴とする機能性超微粒子材料の製造方法。   A method for producing a heat-resistant functional ultrafine particle material for a photocatalyst according to claim 2, wherein (1) a raw material silica material and a titanium-silica composite material prepared from a titanium source are mixed in a solvent, The surface of the silica material is coated with titanium oxide (including a hydrate / amorphous component). (2) By firing this in a predetermined temperature range, the titanium oxide nanoparticles are firmly supported on the surface of the silica particle. (3) Thereby, a heat-resistant functional ultrafine particle material maintaining a photocatalytic action by maintaining a single anatase phase or a mixed phase of anatase phase and rutile phase even in a temperature range up to 1200 ° C. is produced. A method for producing a functional ultrafine particle material. 原料シリカ材料として、(1)非天然鉱物の非晶質シリカガラス粉末、石英粉末、溶融シリカガラス粉末、ガラスから選ばれる一種、(2)天然鉱物のクリストバル石、鱗ケイ石、石英、玉髄、瑪瑙、タンパク石、シリカゲルから選ばれる一種、又は(3)産業廃棄物の廃シリカガラス粉末、廃石英粉末、廃溶融シリカガラス粉末、廃ガラス、廃シリカゲルから選ばれる一種、を使用する、請求項8に記載の機能性超微粒子材料の製造方法。   As a raw material silica material, (1) a kind selected from non-natural mineral amorphous silica glass powder, quartz powder, fused silica glass powder, glass, (2) natural mineral cristobalite, clinopite, quartz, chalcedony, A kind selected from agate, protein stone and silica gel, or (3) a kind selected from waste silica glass powder, waste quartz powder, waste fused silica glass powder, waste glass and waste silica gel of industrial waste. 9. A method for producing a functional ultrafine particle material according to 8. シリカ材料表面に、0〜500℃の温度範囲で酸化チタン(水和物・非晶質分を含む)を被覆する、請求項7又は8に記載の機能性超微粒子材料の製造方法。   The method for producing a functional ultrafine particle material according to claim 7 or 8, wherein the surface of the silica material is coated with titanium oxide (including a hydrate / amorphous component) in a temperature range of 0 to 500 ° C. 酸化チタン(水和物・非晶質分を含む)を被覆した材料を、凍結乾燥法、真空乾燥法、噴霧乾燥法又は大気中にて乾燥する、請求項8に記載の機能性超微粒子材料の製造方法。   The functional ultrafine particle material according to claim 8, wherein the material coated with titanium oxide (including a hydrate / amorphous component) is dried in a freeze drying method, a vacuum drying method, a spray drying method or in the air. Manufacturing method. 赤外線加熱(RTA)方式、マイクロ波加熱又はプラズマ焼結(SPS)方式又は常圧焼成・焼結方式により焼成する、請求項8に記載の機能性超微粒子の製造方法。   The method for producing functional ultrafine particles according to claim 8, wherein firing is performed by an infrared heating (RTA) method, microwave heating or plasma sintering (SPS) method, or a normal pressure firing / sintering method. 大気又は不活性ガス中、酸化性ガス若しくは還元性ガス中、混合ガス中又は真空中で1200℃迄の温度範囲で焼成する、請求項8に記載の機能性超微粒子材料の製造方法。   The method for producing a functional ultrafine particle material according to claim 8, wherein the firing is performed in the atmosphere or in an inert gas, in an oxidizing gas or a reducing gas, in a mixed gas or in a vacuum at a temperature range up to 1200 ° C. 焼成工程において、昇温速度を0.01℃/min〜2000℃/minに制御する、請求項8に記載の機能性超微粒子材料の製造方法。   The method for producing a functional ultrafine particle material according to claim 8, wherein in the firing step, the temperature rising rate is controlled to 0.01 ° C./min to 2000 ° C./min. 請求項7又は8に記載の方法により、産業廃棄物の廃非晶質シリカガラス粉末、廃石英粉末、廃溶融シリカガラス粉末、廃ガラス、又は廃シリカゲルを光触媒用の機能性超微粒子材料として再利用することを特徴とする上記産業廃棄物の再資源化方法。   The waste amorphous silica glass powder, waste quartz powder, waste fused silica glass powder, waste glass, or waste silica gel of industrial waste is recycled as a functional ultrafine particle material for photocatalyst by the method according to claim 7 or 8. A method for recycling industrial waste as described above, characterized by being used. チタン源が、塩化チタン、塩化チタン溶液、硫酸チタン溶液、チタニウムテトライソプロポキシド・チタニウムエトキシド・チタニウムテトラエトキシド・チタニウムテトラ−n−ブトキシド,モノマー、チタニウムテトラ−n−ブトキシド,テトラマー、チタニウム−n−ブチラート,モノマー、チタニウム−n−ブチラート,テトラマー、又はチタンを含んだ化成品(工業用を含む)である、請求項7又は8に記載の機能性超微粒子材料の製造方法。   Titanium source is titanium chloride, titanium chloride solution, titanium sulfate solution, titanium tetraisopropoxide, titanium ethoxide, titanium tetraethoxide, titanium tetra-n-butoxide, monomer, titanium tetra-n-butoxide, tetramer, titanium- The method for producing a functional ultrafine particle material according to claim 7 or 8, which is a chemical product (including industrial products) containing n-butyrate, monomer, titanium-n-butyrate, tetramer, or titanium. 上記溶媒が、水、無水エタノール、1−プロパノール、2−プロパノール、アセトン、メタノール、1−ブタノール、2−ブタノール、2−メチル−1−ブタノール、2−メチル−3−ブタノール、3−メチル−1−ブタノール、3−メチル−2−ブタノール、3−メチル−2−ブタノン又はエタノール(各溶媒の工業用を含む)である、請求項7又は8に記載の機能性超微粒子材料の製造方法。   The solvent is water, absolute ethanol, 1-propanol, 2-propanol, acetone, methanol, 1-butanol, 2-butanol, 2-methyl-1-butanol, 2-methyl-3-butanol, 3-methyl-1 The method for producing a functional ultrafine particle material according to claim 7 or 8, which is -butanol, 3-methyl-2-butanol, 3-methyl-2-butanone or ethanol (including industrial use of each solvent).
JP2006075761A 2005-03-18 2006-03-18 Functional hyperfine particulate material for photocatalyst, its manufacturing method and its product Pending JP2006289356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075761A JP2006289356A (en) 2005-03-18 2006-03-18 Functional hyperfine particulate material for photocatalyst, its manufacturing method and its product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005080253 2005-03-18
JP2006075761A JP2006289356A (en) 2005-03-18 2006-03-18 Functional hyperfine particulate material for photocatalyst, its manufacturing method and its product

Publications (1)

Publication Number Publication Date
JP2006289356A true JP2006289356A (en) 2006-10-26

Family

ID=37410529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075761A Pending JP2006289356A (en) 2005-03-18 2006-03-18 Functional hyperfine particulate material for photocatalyst, its manufacturing method and its product

Country Status (1)

Country Link
JP (1) JP2006289356A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142636A2 (en) * 2013-03-11 2014-09-18 (주) 개마텍 Composition of fingerprint-resistant layer consisting of a plurality of thin films and preparation method therefor
CN105209568A (en) * 2014-04-23 2015-12-30 凯玛科技株式会社 Composition of fingerprint-resistant layer consisting of a plurality of thin films and preparation method therefor
JP2017018862A (en) * 2015-07-07 2017-01-26 国立大学法人 長崎大学 photocatalyst
CN106873841A (en) * 2017-03-22 2017-06-20 合肥仁德电子科技有限公司 A kind of touch-screen and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246180A (en) * 2004-03-02 2005-09-15 Nagasaki Prefecture Method for manufacturing functional ultrafine particle material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246180A (en) * 2004-03-02 2005-09-15 Nagasaki Prefecture Method for manufacturing functional ultrafine particle material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142636A2 (en) * 2013-03-11 2014-09-18 (주) 개마텍 Composition of fingerprint-resistant layer consisting of a plurality of thin films and preparation method therefor
WO2014142636A3 (en) * 2013-03-11 2014-11-06 (주) 개마텍 Composition of fingerprint-resistant layer consisting of a plurality of thin films and preparation method therefor
KR101524271B1 (en) * 2013-03-11 2015-05-29 (주) 개마텍 A composition of anti-fingerprint coating layer with a plurality of thin films and method of manufacturing the same.
US10329192B2 (en) 2013-03-11 2019-06-25 Gaema Tech. Co., Ltd. Composition of fingerprint-resistant layer consisting of a plurality of thin films and preparation method therefor
CN105209568A (en) * 2014-04-23 2015-12-30 凯玛科技株式会社 Composition of fingerprint-resistant layer consisting of a plurality of thin films and preparation method therefor
CN105209568B (en) * 2014-04-23 2018-04-13 凯玛科技株式会社 Composition of anti-fingerprint layer formed by multiple films and preparation method thereof
JP2017018862A (en) * 2015-07-07 2017-01-26 国立大学法人 長崎大学 photocatalyst
CN106873841A (en) * 2017-03-22 2017-06-20 合肥仁德电子科技有限公司 A kind of touch-screen and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3356437B2 (en) Photocatalyst, method for producing the same, and multifunctional member
KR102686704B1 (en) Nitrogen-doped TiO2 nanoparticles and their use in photocatalysis
Tezza et al. Effect of firing temperature on the photocatalytic activity of anatase ceramic glazes
JP4883912B2 (en) Visible light responsive photocatalyst and method for producing the same
JP2001072419A (en) Titanium oxide, photo-catalyst produced by using the oxide and photo-catalytic coating agent
Wang et al. BiOBr@ SiO2 flower-like nanospheres chemically-bonded on cement-based materials for photocatalysis
JP2006289356A (en) Functional hyperfine particulate material for photocatalyst, its manufacturing method and its product
JP2007130267A (en) Deodorant made of tubular titanium oxide particle
Kumar et al. Production of self-cleaning cement using modified titanium dioxide
JP4980204B2 (en) Method for producing titanium oxide-based deodorant
Lucas et al. Multifunctional wall coating combining photocatalysis, self-cleaning and latent heat storage
JP4883913B2 (en) Photocatalyst and method for producing the same
KR101677842B1 (en) Multifunctional Cu-TiO2-PU having both photocatalyst and adsorbent activity and manufacturing method thereof
Ratan et al. Microsized-titanium dioxide based self-cleaning cement: Incorporation of calcined dolomite for enhancement of photocatalytic activity
JP3885248B2 (en) Photocatalyst composition
JP4849862B2 (en) Novel heteropolyacid salt, photocatalyst using the same, and photocatalytic functional member
JP4580197B2 (en) Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same
JP4848500B2 (en) Porous photocatalyst
JP2011020033A (en) Visible light-responsive photocatalyst, method for producing the same and photocatalyst coating agent and photocatalyst dispersion obtained by using the same
JP2002186861A (en) Porous photocatalyst and method for manufacturing the same
RU2789160C2 (en) NITROGEN-DOPED TiO2 NANOPARTICLES AND THEIR USE IN PHOTOCATALYSIS
JP6628271B1 (en) Photocatalyst particles, method for producing the same, material containing the particles, and product containing the material
JP3908717B2 (en) How to remove air pollutants
KR100590612B1 (en) Method for producing Photo-catalytical titanium-dioxide solution
JP2004322052A (en) Visible light-responsive photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100113

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110712

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111104