JP2005246180A - Method for manufacturing functional ultrafine particle material - Google Patents

Method for manufacturing functional ultrafine particle material Download PDF

Info

Publication number
JP2005246180A
JP2005246180A JP2004058254A JP2004058254A JP2005246180A JP 2005246180 A JP2005246180 A JP 2005246180A JP 2004058254 A JP2004058254 A JP 2004058254A JP 2004058254 A JP2004058254 A JP 2004058254A JP 2005246180 A JP2005246180 A JP 2005246180A
Authority
JP
Japan
Prior art keywords
silica glass
glass powder
functional ultrafine
ultrafine particles
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004058254A
Other languages
Japanese (ja)
Inventor
Junichi Hojo
純一 北條
Nobuyori Kano
伸自 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP2004058254A priority Critical patent/JP2005246180A/en
Publication of JP2005246180A publication Critical patent/JP2005246180A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a functional ultrafine particle material which has high light-transmitting property and high heat resistance, shows high photocatalytic activity even being baked at a high temperature, and is useful as a photocatalytic material, and a product by the method. <P>SOLUTION: The method for manufacturing the functional ultrafine particle material having high light-transmitting property and high heat resistance is that a silica glass powder is used as a raw material, it is mixed together with a metal alcoxide, the surface of hydrolyzed silica glass powder is coated with Ti, and obtained Ti-coated powder is baked in the air. This functional ultrafine particle material can suitably be used for metal products, ceramic products, and the like, for example, because it exhibits high photocatalytic activity even being baked at a high temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高い耐熱性を有する光触媒の原料となる機能性超微粒子材料の製造方法とその製品等に関するものであり、更に詳しくは、例えば、産業廃棄物の廃シリカガラス粉末等を利用して、金属アルコキシドを加水分解させて、基材表面にTiを被覆し、大気中で高温で焼成することで、高温で焼成ても光触媒機能を発現する機能性超微粒子材料を製造する方法及びその製品に関するものである。本発明は、酸化チタン光触媒、その製造方法及びその応用製品の技術分野において、従来の酸化チタン光触媒は、例えば、900℃以上の高温で加熱すると、活性の高いアナターゼ相は、活性の低いルチル相へ変化してしまい、例えば、陶磁器用の光触媒としては使用することができないという問題があったことを踏まえ、高温で焼成しても、高い光触媒活性を発揮する耐熱性光触媒を製造することを可能とする新しい光触媒材料の製造技術を提供するものであり、本発明は、例えば、産業廃棄物の廃シリカガラス等を有効利用して新しい耐熱性光触媒及びその製品を製造し、提供することを実現化することにより、当技術分野における新技術・新産業の創出に資するものとして有用である。   The present invention relates to a method for producing a functional ultrafine particle material that is a raw material for a photocatalyst having high heat resistance and its product. More specifically, for example, waste silica glass powder of industrial waste is used. A method for producing a functional ultrafine particle material that exhibits a photocatalytic function even when baked at a high temperature by hydrolyzing a metal alkoxide, coating the surface of the substrate with Ti, and baking at high temperature in the air, and its product It is about. The present invention relates to a titanium oxide photocatalyst, a method for producing the same, and an applied product thereof. When a conventional titanium oxide photocatalyst is heated at a high temperature of, for example, 900 ° C. or higher, a highly active anatase phase is converted into a less active rutile phase It is possible to produce a heat-resistant photocatalyst that exhibits high photocatalytic activity even when baked at high temperature, considering that there is a problem that it cannot be used as a photocatalyst for ceramics, for example. The present invention provides a new heat-resistant photocatalyst and its product by effectively utilizing, for example, waste silica glass of industrial waste. It is useful for contributing to the creation of new technologies and new industries in this technical field.

従来、酸化チタンの光触媒効果を利用した方法及び製品は、例えば、防汚、脱臭、抗菌、大気浄化、及び浄水等の広範な用途に使用されている(例えば、特許文献1〜3参照)。しかし、この酸化チタン光触媒は、高温で焼成すると、活性の高いアナターゼ相から、活性の低いルチル相へ相変態を起こし、光触媒活性が低下すること、そのために、製造過程で高温焼成が必要とされる製品等への適用が制限されること、が知られている。   Conventionally, methods and products using the photocatalytic effect of titanium oxide have been used in a wide range of applications such as antifouling, deodorizing, antibacterial, air purification, and water purification (see, for example, Patent Documents 1 to 3). However, this titanium oxide photocatalyst undergoes a phase transformation from a highly active anatase phase to a less active rutile phase when calcined at a high temperature, resulting in a decrease in photocatalytic activity. For this reason, high temperature calcination is required in the production process. It is known that application to products and the like is limited.

光触媒の性能は、一般的には、例えば、メチレンブルー溶液の色素分解能力によって評価することができる。光触媒を高活性化するためには、光透過性と高い比表面積を有し、活性の高いアナターゼ相を持つようにすることが必要である。一例として、例えば、シリカに適当な金属アルコキシド溶液を添加して光触媒材料を製造する方法として、以下の方法が採用されている。すなわち、この方法は、シリカ粉末と金属アルコキシド溶液を所定量秤量し、水又は特定の溶媒中で加水分解を起こし、粉末表面に金属を被覆した後、この金属被覆粉末を大気中で焼成して光触媒材料とするものである。   In general, the performance of the photocatalyst can be evaluated by, for example, the ability of the methylene blue solution to decompose the dye. In order to make the photocatalyst highly active, it is necessary to have a light-transmitting property, a high specific surface area, and a highly active anatase phase. As an example, for example, the following method is employed as a method for producing a photocatalytic material by adding an appropriate metal alkoxide solution to silica. That is, in this method, a predetermined amount of silica powder and a metal alkoxide solution are weighed, hydrolyzed in water or a specific solvent, coated with metal on the powder surface, and then the metal-coated powder is fired in the air. It is a photocatalytic material.

しかし、このように、上記金属被覆粉末を大気中で焼成して光触媒粉末材料を製造する方法では、高い比表面積と活性の高いアナターゼ相を維持するために、低温焼成を行うことが必要とされる。すなわち、この種の光触媒粉末材料は、特に、900℃以上で加熱してしまうと、活性の高いアナターゼ相は、活性の低いルチル相へ変化してしまうので、そのような加熱を施す製品へ適用することができず、例えば、その製造過程で高温焼成が必要とされる各種セラミックス、陶磁器素材、及び金属等の表面処理に使用することができないという問題があった。そこで、当技術分野では、例えば、900℃以上の高温で焼成しても、高い光触媒活性を維持することが可能な耐熱性光触媒の開発が強く望まれていた。   However, as described above, in the method of producing the photocatalyst powder material by firing the metal-coated powder in the air, it is necessary to perform low-temperature firing in order to maintain a high specific surface area and a highly active anatase phase. The That is, this type of photocatalytic powder material is applied to products that are heated, especially when heated at 900 ° C. or higher, because the highly active anatase phase changes to the less active rutile phase. For example, there is a problem that it cannot be used for surface treatment of various ceramics, ceramic materials, metals, and the like that require high-temperature firing in the manufacturing process. Therefore, in this technical field, for example, development of a heat-resistant photocatalyst capable of maintaining high photocatalytic activity even when baked at a high temperature of 900 ° C. or higher has been strongly desired.

特開平6−65012号公報JP-A-6-65012 特開平1−218635号公報JP-A-1-218635 特開平10−87384号公報Japanese Patent Laid-Open No. 10-87384

このような状況の中で、本発明者らは、上記従来技術に鑑みて、例えば、各種セラミックスや陶磁器の焼成過程で、高温焼成しても光触媒機能を維持する新しい高耐熱性光触媒を開発することを目標として鋭意研究を積み重ねた結果、シリカガラス粉末(産業廃棄物)と金属アルコキシド溶液を混合し、加水分解して得られる粉末を大気中で焼成することで、所期の目的が達成し得ることを知見し、更に研究を重ねて、本発明を完成するに至った。   Under such circumstances, the present inventors have developed a new high heat-resistant photocatalyst that maintains the photocatalytic function even when fired at a high temperature, for example, in the firing process of various ceramics and ceramics, in view of the above-described prior art. As a result of intensive research with the goal of achieving this goal, the desired purpose was achieved by mixing silica glass powder (industrial waste) and metal alkoxide solution and then firing the powder obtained by hydrolysis in the atmosphere. The inventors have found out that the present invention can be obtained, and have further researched to complete the present invention.

本発明は、原料としてシリカガラス粉末を利用して、粉末の状態で大気中で高温焼成しても、活性の高いアナターゼ相と高い比表面積を維持し、光透過性と耐熱性を有し、高い光触媒活性を発揮する新規な機能性超微粒子材料の製造方法を提供することを目的とするものである。
更に、本発明は、溶融シリカガラス粉末、廃シリカガラス粉末(産業廃棄物)を有効利用して、高温焼成しても高い比表面積と、活性の高いアナターゼ相を維持し、光透過性と耐熱性を有する光触媒粉末材料を、経済性に優れた方法で、低コストで作製することを可能とする新規な機能性超微粒子材料の製造方法、その機能性超微粒子材料及びその応用製品を提供することを目的とするものである。
The present invention uses silica glass powder as a raw material, maintains a highly active anatase phase and a high specific surface area even when calcined at high temperature in the air in the state of powder, has light transmittance and heat resistance, It is an object of the present invention to provide a method for producing a novel functional ultrafine particle material exhibiting high photocatalytic activity.
Furthermore, the present invention makes effective use of fused silica glass powder and waste silica glass powder (industrial waste), maintains a high specific surface area and a highly active anatase phase even when fired at high temperature, and is light transmissive and heat resistant. Provided a novel functional ultrafine particle material production method capable of producing a photocatalytic powder material having a property by an economical method at a low cost, the functional ultrafine particle material, and an application product thereof It is for the purpose.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)高温で焼成しても、高い光触媒活性を発現する、耐熱性光触媒材料用の機能性超微粒子を製造する方法であって、シリカガラス粉末と金属アルコシキド溶液を所定量秤量し、水又は特定の溶媒中で加水分解を起こし、シリカガラス粉末表面にTiを被覆し、大気中で600〜1300℃で焼成して、酸化チタン微粒子をシリカガラス粒子の表面に強固に担持させた機能性超微粒子を製造することを特徴とする、上記特性を有する機能性超微粒子の製造方法。
(2)シリカガラス粉末表面に、0〜40℃の温度範囲で、Tiを被覆することを特徴とする、前記(1)に記載の機能性超微粒子の製造方法。
(3)大気中で900〜1300℃の温度範囲で焼成することを特徴とする、前記(1)に記載の機能性超微粒子の製造方法。
(4)原料として、シリカガラス粉末、溶融シリカガラス粉末、又は産業廃棄物の廃シリカガラス粉末を使用することを特徴とする、前記(1)に記載の機能性超微粒子の製造方法。
(5)前記(1)から(4)のいずれかに記載の方法で作製した機能性超微粒子からなることを特徴とする耐熱性光触媒。
(6)前記(5)に記載の耐熱性光触媒を製品素材の表面に担持させ、900℃以上で高温焼成して製品化したことを特徴とする光触媒製品。
(7)製品が、セラミックス製品、陶磁器製品又は金属製品であることを特徴とする前記(6)に記載の光触媒製品。
(8)前記(1)から(4)のいずれかに記載の方法により、産業廃棄物の廃シリカガラス粉末を光触媒材料用の機能性超微粒子として再利用することを特徴とする、廃シリカガラス粉末の再資源化方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for producing functional ultrafine particles for a heat-resistant photocatalytic material that exhibits high photocatalytic activity even when baked at a high temperature, wherein a predetermined amount of silica glass powder and a metal alkoxide solution are weighed, and water or Hydrolysis in a specific solvent, coating the surface of the silica glass powder with Ti, firing at 600-1300 ° C. in the atmosphere, and supporting the titanium oxide fine particles firmly on the surface of the silica glass particles A method for producing functional ultrafine particles having the above characteristics, characterized by producing fine particles.
(2) The method for producing functional ultrafine particles according to (1), wherein the silica glass powder surface is coated with Ti in a temperature range of 0 to 40 ° C.
(3) The method for producing functional ultrafine particles according to the above (1), characterized by firing in the air at a temperature range of 900 to 1300 ° C.
(4) The method for producing functional ultrafine particles according to (1) above, wherein silica glass powder, fused silica glass powder, or waste silica glass powder of industrial waste is used as a raw material.
(5) A heat-resistant photocatalyst comprising functional ultrafine particles produced by the method according to any one of (1) to (4).
(6) A photocatalytic product obtained by supporting the heat-resistant photocatalyst described in (5) on the surface of a product material and firing the product at a high temperature of 900 ° C. or higher.
(7) The photocatalytic product according to (6), wherein the product is a ceramic product, a ceramic product, or a metal product.
(8) Waste silica glass, wherein waste silica glass powder of industrial waste is reused as functional ultrafine particles for photocatalyst material by the method according to any one of (1) to (4) How to recycle powder.

次に、本発明について更に詳細に説明する。
本発明は、例えば、シリカガラス粉末や溶融シリカガラス粉末にTi金属アルコキシドを混合して、加水分解し、得られた粉末を大気中で焼成することにより酸化チタン微粒子をシリカガラス粒子の表面に強固に担持させた機能性超微粒子材料を製造することを特徴とするものである。本発明では、機能性超微粒子材料の構成元素として、酸化シリコン、シリカガラス及びガラス等が用いられ、例えば、これらの構成元素を含むシリカガラス粉末、溶融シリカガラス粉末、上記構成元素を含む産業廃棄物の廃シリカガラス粉末等が原料として用いられるが、これらの原料に限らず、これらの原料と同等あるいは類似の原料であれば同様に使用することができる。すなわち、本発明では、構成元素として、上記酸化シリコン、シリカガラス粉末及びガラス等を含む複合材料であれば同様に使用することができる。
Next, the present invention will be described in more detail.
In the present invention, for example, a silica glass powder or a fused silica glass powder is mixed with a Ti metal alkoxide, hydrolyzed, and the obtained powder is fired in the air to firmly attach titanium oxide fine particles to the surface of the silica glass particles. It is characterized in that a functional ultrafine particle material supported on the substrate is produced. In the present invention, silicon oxide, silica glass, glass and the like are used as constituent elements of the functional ultrafine particle material. For example, silica glass powder containing these constituent elements, fused silica glass powder, and industrial waste containing the constituent elements. Waste silica glass powder or the like is used as a raw material, but is not limited to these raw materials, and any raw material equivalent to or similar to these raw materials can be used in the same manner. That is, in this invention, if it is a composite material containing the said silicon oxide, silica glass powder, glass etc. as a structural element, it can be used similarly.

また、本発明では、目的とする光触媒粉末材料を得るために、Ti金属アルコキシドが用いられる。このような金属アルコキシドとしては、好適には、例えば、Ti(OC254 〔テトラエチルオルトチタン酸)、Ti((CH32 CHO)4 〔チタニウムテトライソプロポキシド〕又はTi(OC494 〔チタニウムテトラ−n−ブトキシド〕を例示することができるが、これらに制限されるものではなく、これらと同効のものであれば同様に使用することができる。 In the present invention, Ti metal alkoxide is used in order to obtain the desired photocatalytic powder material. As such a metal alkoxide, for example, Ti (OC 2 H 5 ) 4 [tetraethylorthotitanic acid], Ti ((CH 3 ) 2 CHO) 4 [titanium tetraisopropoxide] or Ti (OC 4 H 9 ) 4 [titanium tetra-n-butoxide] can be exemplified, but the present invention is not limited to these, and any compound having the same effect as these can be used.

本発明では、原料として、これらの機能性超微粒子材料の構成元素及びTi金属アルコキシドを所定量秤量したものを配合し、この配合物を水又は特定の溶媒中で加水分解させ、乾燥後、大気中で焼成することで目的の機能性超微粒子粉末を得ることができる。   In the present invention, as a raw material, a component obtained by weighing a predetermined amount of the constituent elements of these functional ultrafine particle materials and Ti metal alkoxide is blended, the blend is hydrolyzed in water or a specific solvent, dried, and then air The target functional ultrafine particle powder can be obtained by firing in the medium.

本発明において、Tiの配合比率は、シリカガラス粉末に対して1〜200%以上であり、この配合比率でシリカガラス粉末にTi源を配合して加水分解を起こし、Tiをシリカガラス粉末表面に被覆する。Tiの被覆は、好適には、例えば、0〜40℃で行われる。次いで、これを大気中、600〜1300℃で焼成する。焼成時間は0.01〜5時間が望ましい。しかし、これらの条件は、これらに制限されるものではない。このように、大気中で焼成を行うことによって、耐熱性で、例えば、900℃以上の高温で焼成しても、活性の高いアナターゼ相と高い比表面積を維持し、高い光触媒機能を発現することが可能な機能性超微粒子が得られる。   In the present invention, the blending ratio of Ti is 1 to 200% or more with respect to the silica glass powder, and the Ti source is blended with the silica glass powder at this blending ratio to cause hydrolysis, and Ti is added to the silica glass powder surface. Cover. The Ti coating is preferably performed at 0 to 40 ° C., for example. Subsequently, this is baked at 600-1300 degreeC in air | atmosphere. The firing time is preferably 0.01 to 5 hours. However, these conditions are not limited to these. Thus, by firing in the air, it is heat resistant, for example, maintains a highly active anatase phase and a high specific surface area even when fired at a high temperature of 900 ° C. or higher, and exhibits a high photocatalytic function. Can be obtained.

大気中で焼成して得られた上記機能性超微粒子は、特に、高温焼成、高温環境下で高い光触媒活性を発揮する光触媒材料として、例えば、自動車の排ガスなどから排出される窒素酸化物(NOx)や硫黄酸化物(SOx)などの環境汚染物質を除去したり、汚染水に含まれるテトラクロロエチレンやトリハロメタンなどの有機塩素化合物を分解除去するための光触媒として好適に用いられる。   The functional ultrafine particles obtained by firing in the atmosphere are used as photocatalyst materials that exhibit high photocatalytic activity under high-temperature firing and high-temperature environments, for example, nitrogen oxide (NOx) emitted from automobile exhaust gas, etc. ) And sulfur oxides (SOx), and is suitably used as a photocatalyst for decomposing and removing organic chlorine compounds such as tetrachloroethylene and trihalomethane contained in contaminated water.

本発明の機能性超微粒子は、粉体自体又は他の製品に複合化されて光触媒材料として使用される。この機能性超微粒子は、耐熱性を有し、高温で焼成しても、アナターゼ相に基づく高い光触媒活性を維持している。そのため、本発明の機能性超微粒子は、例えば、各種セラミックス、金属製品及び陶磁器素材等の表面処理に使用可能であり、例えば、板状、ブロック状、パイプ状のセラミックス製品等に応用できる。本発明は、基本的に、その製造過程で高温焼成が必要とされる製品であれば、その種類に制限されることなく好適に適用し得るものであり、これらの製品に光触媒機能を付加する方法及び材料として有用である。更に、光触媒作用を有する酸化チタン微粒子は、シリカ粒子の表面に強固に担持されており、例えば、水系における処理にも好適に利用することができる。   The functional ultrafine particles of the present invention are used as a photocatalyst material by being combined with powder itself or other products. The functional ultrafine particles have heat resistance and maintain high photocatalytic activity based on the anatase phase even when baked at a high temperature. Therefore, the functional ultrafine particles of the present invention can be used for surface treatment of various ceramics, metal products, ceramic materials, and the like, and can be applied to, for example, plate-shaped, block-shaped, and pipe-shaped ceramic products. Basically, the present invention can be suitably applied to any product that requires high-temperature firing in the production process without being limited to the type thereof, and a photocatalytic function is added to these products. Useful as methods and materials. Furthermore, the titanium oxide fine particles having a photocatalytic action are firmly supported on the surface of the silica particles, and can be suitably used for, for example, treatment in an aqueous system.

本発明により、1)高温で焼成しても、活性の高いアナターゼ相と高い比表面積を維持し、高い光触媒活性を発揮する機能性超微粒子材料が得られる、2)光透過性と高い比表面積を有し、活性の高いアナターゼ相を持つ耐熱性光触媒材料を製造し、提供できる、3)本発明の機能性超微粒子材料を利用することにより、製品の製造過程で高温焼成することが必要とされる各種セラミックス、金属製品及び陶磁器製品等に光触媒機能を付加することができる、4)産業廃棄物の廃シリカガラス粉末を有効利用して再資源化することを可能とする新技術を提供できる、という格別の効果が奏される。   According to the present invention, 1) a functional ultrafine particle material that maintains a highly active anatase phase and a high specific surface area and exhibits high photocatalytic activity even when baked at a high temperature can be obtained. 2) Light transmittance and high specific surface area 3) It is necessary to produce and provide a heat-resistant photocatalytic material having a highly active anatase phase, and 3) by using the functional ultrafine particle material of the present invention, it is necessary to perform high-temperature firing in the production process of the product. Photocatalytic function can be added to various ceramics, metal products, ceramic products, etc. 4) It is possible to provide new technology that makes it possible to effectively utilize and recycle waste silica glass powder of industrial waste , There is a special effect.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

シリカガラス粉末とガラス粉末をペレット状に成形し、吸光度測定を行った。この結果、シリカガラス粉末はガラス粉末に比べて、短波長(紫外線)領域で低い吸光度を示すことがわかった。本発明では、原料として、例えば、シリカ粉末やガラス粉末とは別異のシリカガラス粉末、溶融シリカガラス粉末等が用いられ、更に、シリカガラス粉末を含有する産業廃棄物の廃シリカガラス粉末が用いられるが、本実施例では、シリカガラス粉末含有未処理産業廃棄物を用いた例を示す。尚、他のシリカガラス粉末を用いた場合にも、同様の結果が得られた。   Silica glass powder and glass powder were formed into pellets, and the absorbance was measured. As a result, it was found that the silica glass powder showed lower absorbance in the short wavelength (ultraviolet) region than the glass powder. In the present invention, as a raw material, for example, silica glass powder different from silica powder or glass powder, fused silica glass powder or the like is used, and further, waste silica glass powder of industrial waste containing silica glass powder is used. However, in this embodiment, an example using untreated industrial waste containing silica glass powder is shown. Similar results were obtained when other silica glass powders were used.

300mlフラスコ中に100ml無水エタノールとシリカガラス粉末含有未処理産業廃棄物(以下、単にシリカガラス粉末と記載する。)とTi源(テトラエチルオルトチタン酸、チタニウムテトライソプロポキシド、チタニウムテトラ−n−ブトキシのいずれか)を所定量秤量し、混合した。このフラスコを40℃に保持した恒温槽に固定してフラスコ内に水を所定量入れてから30分間攪拌した。その後、遠心分離機を用いて固液分離し、超音波で洗浄した。その後、110℃で24時間乾燥させた。その後、大気中、600〜1300℃で10分間焼成した。   Untreated industrial waste containing 100 ml absolute ethanol and silica glass powder in a 300 ml flask (hereinafter simply referred to as silica glass powder) and Ti source (tetraethylorthotitanic acid, titanium tetraisopropoxide, titanium tetra-n-butoxy) 1) was weighed out and mixed. This flask was fixed to a thermostat kept at 40 ° C., and a predetermined amount of water was put into the flask, followed by stirring for 30 minutes. Thereafter, solid-liquid separation was performed using a centrifuge, and washing was performed with ultrasonic waves. Then, it was dried at 110 ° C. for 24 hours. Then, it baked for 10 minutes at 600-1300 degreeC in air | atmosphere.

恒温槽を40℃で保持した時に、種々のTi源でシリカガラス粉末に被覆した試料を図1に示す。テトラエチルオルトチタン酸をTi源として使用した場合、シリカガラス粉末表面にTiが被覆された様子が観察されなかった。しかし、Ti源にチタニウムテトライソプロポキシドやチタニウムテトラ−n−ブトキシを使用すると、シリカガラス粉末表面にTiが被覆され、Ti被覆粉末が得られることが分かった。   Samples coated with silica glass powder with various Ti sources when the thermostat is held at 40 ° C. are shown in FIG. When tetraethylorthotitanic acid was used as the Ti source, it was not observed that the silica glass powder surface was coated with Ti. However, it has been found that when titanium tetraisopropoxide or titanium tetra-n-butoxy is used as the Ti source, the silica glass powder surface is coated with Ti and a Ti-coated powder is obtained.

実施例1で説明した操作内容で、Ti源をチタニウムテトライソプロポキシドに固定して反応温度を0〜40℃に変化させた場合のシリカガラス粉末の表面を図2に示す。この結果から、Ti源にチタニウムテトライソプロポキシドを用いれば、0〜40℃の温度範囲でシリカガラス粉末表面にTiをコーティング可能であり、Ti被覆粉末が得られることが分かった。   FIG. 2 shows the surface of the silica glass powder when the Ti source is fixed to titanium tetraisopropoxide and the reaction temperature is changed to 0 to 40 ° C. with the operation described in Example 1. From this result, it was found that if titanium tetraisopropoxide is used as the Ti source, Ti can be coated on the surface of the silica glass powder in a temperature range of 0 to 40 ° C., and a Ti-coated powder can be obtained.

実施例2で説明した操作内容で、恒温槽を0℃で保持して反応させた試料を、大気中、600℃と1300℃で10分間焼成した後の粉末のX線回折測定の結果を図3に示す。これによれば、600℃で焼成した粉末は、単一のアナターゼ相のみであることが分かった、そして、1300℃で焼成した粉末は、アナターゼ相とルチル相を持つことが分かった。このように、シリカガラス粉末の表面にTiを被覆して作製したTi被覆粉末は、高温焼成(1300℃)しても、活性の高いアナターゼ相を維持しており、耐熱性を有することが分かった。   The result of the X-ray diffraction measurement of the powder after baking the sample which carried out the reaction which hold | maintained the thermostat at 0 degreeC by the operation content demonstrated in Example 2 at 600 degreeC and 1300 degreeC for 10 minutes in air | atmosphere. 3 shows. According to this, it was found that the powder fired at 600 ° C. has only a single anatase phase, and the powder fired at 1300 ° C. has an anatase phase and a rutile phase. Thus, it was found that the Ti-coated powder produced by coating the surface of silica glass powder with Ti maintains a highly active anatase phase even at high temperature firing (1300 ° C.) and has heat resistance. It was.

実施例2で説明した操作内容で、恒温槽を0℃で保持して反応させた試料を、大気中、1000℃で10分間保持した後の粉末と5時間保持した後の粉末のX線回折測定の結果を図4に示す。これによれば、保持時間が異なっても同じ結晶相の強度を示すことが分かった。このように、Tiで表面処理したシリカガラス粉末は、耐熱性を持つ光触媒材料として有用であることが分かった。   X-ray diffraction of a sample obtained by maintaining the thermostatic chamber at 0 ° C. and reacting in the same manner as described in Example 2 in the air, after holding at 1000 ° C. for 10 minutes, and after holding for 5 hours The measurement results are shown in FIG. According to this, it was found that the same crystal phase strength was exhibited even with different holding times. Thus, it turned out that the silica glass powder surface-treated with Ti is useful as a photocatalytic material having heat resistance.

実施例3で説明した内容の試料を、焼成温度を変えて作製し、各試料について、メチレンブルー溶液の色素分解能力を評価した。サンプルは、600℃、900℃、1000℃、1100℃、1200℃及び1300℃でそれぞれ10分間焼成したものを使用した。各試料のメチレンブルー色素分解能力を評価した結果を図5に示す。その結果、大気中、1000℃で10分間焼成した試料が、最も高い分解能力を示すことが分かった。   Samples having the contents described in Example 3 were prepared by changing the firing temperature, and the dye decomposition ability of the methylene blue solution was evaluated for each sample. The samples used were calcined at 600 ° C., 900 ° C., 1000 ° C., 1100 ° C., 1200 ° C. and 1300 ° C. for 10 minutes, respectively. The results of evaluating the ability of each sample to decompose methylene blue are shown in FIG. As a result, it was found that a sample fired at 1000 ° C. for 10 minutes in the atmosphere exhibits the highest decomposition ability.

以上詳述したように、本発明は、機能性超微粒子材料の製造方法に係るものであり、本発明の方法によって得られた機能性超微粒子材料は、高温で焼成しても活性の高いアナターゼ相を維持し、高い耐熱性を示し、また、光透過性を有し、高い光触媒活性を発揮する。本発明の方法は、粉末の焼成が大気中でできるので、経済性に優れており、低コストで光触媒材料を作成することができる。本発明の機能性超微粒子材料は、高温で焼成ても、高い光触媒機能を発現するため、各種セラミックス、金属製品及び陶磁器素材等の表面処理に代表される、製品の製造過程で高温焼成が必要とされる種々の製品に適用することが可能である。   As described above in detail, the present invention relates to a method for producing a functional ultrafine particle material, and the functional ultrafine particle material obtained by the method of the present invention is highly active anatase even when fired at a high temperature. Maintains the phase, exhibits high heat resistance, has light permeability, and exhibits high photocatalytic activity. The method of the present invention is excellent in economic efficiency because the powder can be fired in the air, and a photocatalytic material can be produced at low cost. Since the functional ultrafine particle material of the present invention exhibits a high photocatalytic function even when fired at high temperatures, high-temperature firing is required in the production process of products represented by surface treatment of various ceramics, metal products and ceramic materials. It is possible to apply to various products.

種々のTi源をシリカガラス粉末に被覆した試料(反応温度:40℃)の表面の観察結果を示す。The observation result of the surface of the sample (reaction temperature: 40 degreeC) which coat | covered various Ti sources on the silica glass powder is shown. 0〜40℃の温度範囲で廃シリカガラス粉末にTiを被覆した試料(Ti源:チタニウムテトライソプロポキシド)の表面の観察結果を示す。The observation result of the surface of the sample (Ti source: titanium tetraisopropoxide) which coat | covered Ti to waste silica glass powder in the temperature range of 0-40 degreeC is shown. 大気中、600℃と1300℃で焼成した後の廃シリカガラス粉末のXRD回折の結果を示す。The result of the XRD diffraction of the waste silica glass powder after baking at 600 degreeC and 1300 degreeC in air | atmosphere is shown. 大気中、1000℃で焼成し、保持時間(10分間と5時間)の異なる廃シリカガラス粉末のXRD回折の結果を示す。The result of the XRD diffraction of the waste silica glass powder baked at 1000 degreeC in air | atmosphere and having different holding time (10 minutes and 5 hours) is shown. 焼成温度と光触媒活性能力の関係を示す。The relationship between a calcination temperature and photocatalytic activity ability is shown.

Claims (8)

高温で焼成しても、高い光触媒活性を発現する、耐熱性光触媒材料用の機能性超微粒子を製造する方法であって、シリカガラス粉末と金属アルコシキド溶液を所定量秤量し、水又は特定の溶媒中で加水分解を起こし、シリカガラス粉末表面にTiを被覆し、大気中で600〜1300℃で焼成して、酸化チタン微粒子をシリカガラス粒子の表面に強固に担持させた機能性超微粒子を製造することを特徴とする、上記特性を有する機能性超微粒子の製造方法。   A method for producing functional ultrafine particles for a heat-resistant photocatalytic material that exhibits high photocatalytic activity even when baked at a high temperature, wherein a predetermined amount of silica glass powder and a metal alkoxide solution are weighed, and water or a specific solvent Hydrolysis occurs in the surface, the surface of the silica glass powder is coated with Ti, and is fired at 600 to 1300 ° C. in the air to produce functional ultrafine particles in which the titanium oxide fine particles are firmly supported on the surface of the silica glass particles. A method for producing functional ultrafine particles having the above characteristics. シリカガラス粉末表面に、0〜40℃の温度範囲で、Tiを被覆することを特徴とする、請求項1に記載の機能性超微粒子の製造方法。   The method for producing functional ultrafine particles according to claim 1, wherein the surface of the silica glass powder is coated with Ti in a temperature range of 0 to 40 ° C. 大気中で900〜1300℃の温度範囲で焼成することを特徴とする、請求項1に記載の機能性超微粒子の製造方法。   2. The method for producing functional ultrafine particles according to claim 1, wherein firing is performed in a temperature range of 900 to 1300 ° C. in the atmosphere. 原料として、シリカガラス粉末、溶融シリカガラス粉末、又は産業廃棄物の廃シリカガラス粉末を使用することを特徴とする、請求項1に記載の機能性超微粒子の製造方法。   2. The method for producing functional ultrafine particles according to claim 1, wherein silica glass powder, fused silica glass powder, or industrial waste silica glass powder is used as a raw material. 請求項1から4のいずれかに記載の方法で作製した機能性超微粒子からなることを特徴とする耐熱性光触媒。   A heat-resistant photocatalyst comprising the functional ultrafine particles produced by the method according to claim 1. 請求項5に記載の耐熱性光触媒を製品素材の表面に担持させ、900℃以上で高温焼成して製品化したことを特徴とする光触媒製品。   6. A photocatalyst product obtained by supporting the heat-resistant photocatalyst according to claim 5 on the surface of a product material and calcining it at a high temperature of 900 ° C. or higher. 製品が、セラミックス製品、陶磁器製品又は金属製品であることを特徴とする請求項6に記載の光触媒製品。   The photocatalyst product according to claim 6, wherein the product is a ceramic product, a ceramic product, or a metal product. 請求項1から4のいずれかに記載の方法により、産業廃棄物の廃シリカガラス粉末を光触媒材料用の機能性超微粒子として再利用することを特徴とする、廃シリカガラス粉末の再資源化方法。

A method for recycling waste silica glass powder, wherein the waste silica glass powder of industrial waste is reused as functional ultrafine particles for photocatalyst material by the method according to any one of claims 1 to 4. .

JP2004058254A 2004-03-02 2004-03-02 Method for manufacturing functional ultrafine particle material Withdrawn JP2005246180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058254A JP2005246180A (en) 2004-03-02 2004-03-02 Method for manufacturing functional ultrafine particle material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058254A JP2005246180A (en) 2004-03-02 2004-03-02 Method for manufacturing functional ultrafine particle material

Publications (1)

Publication Number Publication Date
JP2005246180A true JP2005246180A (en) 2005-09-15

Family

ID=35027181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058254A Withdrawn JP2005246180A (en) 2004-03-02 2004-03-02 Method for manufacturing functional ultrafine particle material

Country Status (1)

Country Link
JP (1) JP2005246180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289356A (en) * 2005-03-18 2006-10-26 Nagasaki Prefecture Functional hyperfine particulate material for photocatalyst, its manufacturing method and its product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289356A (en) * 2005-03-18 2006-10-26 Nagasaki Prefecture Functional hyperfine particulate material for photocatalyst, its manufacturing method and its product

Similar Documents

Publication Publication Date Title
KR101124196B1 (en) Carbon-containing, titanium dioxide-based photocatalyst, and process for producing the same
Li et al. Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy
Keshmiri et al. Development of novel TiO2 sol–gel-derived composite and its photocatalytic activities for trichloroethylene oxidation
Bloh et al. Photocatalytic NO x abatement: why the selectivity matters
Nolan et al. Crystallization and phase-transition characteristics of sol− gel-synthesized zinc titanates
Addamo et al. Photocatalytic thin films of TiO2 formed by a sol–gel process using titanium tetraisopropoxide as the precursor
Tezza et al. Effect of firing temperature on the photocatalytic activity of anatase ceramic glazes
Tobaldi et al. Titanium dioxide modified with transition metals and rare earth elements: Phase composition, optical properties, and photocatalytic activity
Hofer et al. Thermally stable and photocatalytically active titania for ceramic surfaces
KR20010107542A (en) Titanium hydroxide, photocatalyst produced from the same and photocatalytic coating agent
JP2004196641A (en) Anatase type crystal composition and method of manufacturing the same
CZ200895A3 (en) TiO2 catalytic structure for catalytic processes up to 1000 degC and process for preparing thereof
Xie et al. New Route to Synthesize Highly Active Nanocrystalline Sulfated Titania− Silica: Synergetic Effects between Sulfate Species and Silica in Enhancing the Photocatalysis Efficiency
Shi et al. Favorable recycling photocatalyst TiO2/CFA: Effects of loading method on the structural property and photocatalytic activity
JP2005520761A (en) Process for preparing oxides based on zirconium and titanium, oxides obtained by this process and the use of these oxides as catalysts
Khaksar et al. In situ solvothermal crystallization of TiO 2 nanostructure on alumina granules for photocatalytic wastewater treatment
JP2011079713A (en) Copper ion-modified titanium oxide, method for producing the same, and photocatalyst
US9555406B2 (en) Method for forming an oxide coated substrate
JP2005246180A (en) Method for manufacturing functional ultrafine particle material
Hafez et al. Synthesis, characterization and color performance of novel Co2+-doped alumina/titania nanoceramic pigments
JP2006289356A (en) Functional hyperfine particulate material for photocatalyst, its manufacturing method and its product
JP2004344863A (en) Photocatalyst support porous gel and manufacturing method therefor
Salehi et al. Chromite spinel nanocatalysts: promising photocatalysts for CO pollutant removal from the air
CN1557540A (en) Nitrogen doped titanium oxide mesoporous photocatalysis material and preparation method thereof
JP2007117999A (en) Titanium oxide-based photocatalyst and its use

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605