JP2006287399A - Overcurrent protective circuit - Google Patents

Overcurrent protective circuit Download PDF

Info

Publication number
JP2006287399A
JP2006287399A JP2005102043A JP2005102043A JP2006287399A JP 2006287399 A JP2006287399 A JP 2006287399A JP 2005102043 A JP2005102043 A JP 2005102043A JP 2005102043 A JP2005102043 A JP 2005102043A JP 2006287399 A JP2006287399 A JP 2006287399A
Authority
JP
Japan
Prior art keywords
overcurrent
fet
switching element
semiconductor switching
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005102043A
Other languages
Japanese (ja)
Other versions
JP4595630B2 (en
Inventor
Kazuhiro Kurihara
和弘 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2005102043A priority Critical patent/JP4595630B2/en
Publication of JP2006287399A publication Critical patent/JP2006287399A/en
Application granted granted Critical
Publication of JP4595630B2 publication Critical patent/JP4595630B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit facilitating the adjustment of an overcurrent and improving the accuracy of a detection. <P>SOLUTION: The overcurrent protective circuit has an FET 24 having the power-supply interrupting function of a device 10, an analog-digital conversion circuit (A/D) 21 converting a voltage between a source and a drain for the FET 24 into a digital value and a storage circuit 22 storing a potential difference between both ends of the FET 24 at a time when a current value deciding the overcurrent is made to flow through the FET 24 as an overcurrent-voltage threshold. The overcurrent protective circuit further has a comparator 23 comparing the voltage between the source and the drain for the FET 24 output from the A/D 21 and the overcurrent-voltage threshold of the storage circuit 22 and outputting the voltage corresponding to the result of decision deciding whether or not a current is the overcurrent to a control terminal for the FET 24. The overcurrent protective circuit further has a changeover switch 25 disposed between one end of the FET 24 and a load circuit 13, having a function changing over the load circuit 13 and a measuring apparatus on the outside, connecting one end of the FET 24 to the load circuit 13 in the case of a normal operation and connecting one end of the FET 24 to the measuring apparatus on the outside when the threshold of an overcurrent voltage is adjusted and an external test terminal 26. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、過電流保護回路に関し、特に、過電流閾値の調整等に好適な過電流保護回路に関する。   The present invention relates to an overcurrent protection circuit, and more particularly to an overcurrent protection circuit suitable for adjusting an overcurrent threshold.

携帯電話機などの移動無線通信端末の過電流保護回路として、ヒューズを用いるか、あるいは、端末装置本体には組み込まずに、装着するバッテリ内に組み込む構成が多用されている。   As an overcurrent protection circuit for a mobile radio communication terminal such as a cellular phone, a configuration in which a fuse is used, or a configuration in which the fuse is incorporated in a battery to be attached without being incorporated in the terminal device main body is frequently used.

ところで、近時の携帯電話機は、音声通話機能のほかに、例えばテレビ電話や高速データ通信等各種機能を備え、該機能に対応した動作モードが存在し、各動作モードによってその消費電流も、高低と幅広い値を示している。これは、無線回路(RF回路、変復調回路等)の消費電流とは別に、CPU(Central Processing Unit)やDSP(Digital Signal Processor)等の制御回路に割り当てられる消費電流が、動作モードの処理量や動作速度等に応じて増加している、ためである。   By the way, recent mobile phones are equipped with various functions such as videophone and high-speed data communication in addition to the voice call function, and there are operation modes corresponding to the functions. And shows a wide range of values. This is because, apart from the current consumption of the radio circuit (RF circuit, modulation / demodulation circuit, etc.), the current consumption allocated to a control circuit such as a CPU (Central Processing Unit) or DSP (Digital Signal Processor) This is because it increases according to the operating speed.

過電流保護回路は、過電流の電流値を、装置の最大消費電流よりも大きくする必要がある。携帯電話機においては、無線回路や制御回路の消費電流のばらつきを考慮すると、過電流としての電流値は、装置の最大消費電流に、所定のマージンをもたせて設定する必要がある。   The overcurrent protection circuit needs to make the current value of the overcurrent larger than the maximum current consumption of the device. In a mobile phone, in consideration of variations in current consumption of radio circuits and control circuits, the current value as an overcurrent needs to be set with a predetermined margin on the maximum current consumption of the device.

一方、過電流保護回路が過電流と判定する精度にもばらつきが存在する。ヒューズの場合、ヒューズ切れしてはいけない電流値からヒューズ切れする電流値までに、幅があり、バッテリ内に組み込まれた過電流保護回路も、過電流と判定する電流値にばらつきを持っている。   On the other hand, there are variations in the accuracy with which the overcurrent protection circuit determines that an overcurrent occurs. In the case of a fuse, there is a range from the current value that should not be blown to the current value that blows the fuse, and the overcurrent protection circuit built in the battery also has variations in the current value that is judged as overcurrent. .

この結果、過電流保護回路の過電流と判定する電流閾値は、装置の最大消費電流よりかなり大きな値になってしまう場合がある。この場合、装置の異常により、過電流が発生したとしても、過電流と判定できず、電源断できない装置が発生するという問題があった。   As a result, the current threshold value for determining the overcurrent of the overcurrent protection circuit may be a value considerably larger than the maximum current consumption of the device. In this case, even if an overcurrent occurs due to an abnormality in the apparatus, there is a problem that an apparatus that cannot be determined as an overcurrent and cannot be turned off occurs.

なお、特許文献1には、負荷のスイッチング素子個体差、温度差の激しいMOSFET(Field Effect Transistor)を使用する場合に、MOSFET自身をシャント抵抗の代替として使用し駆動電流を監視する負荷駆動回路として、マイコンが負荷のスイッチング素子としてもMOSFETの両端の電位差を検知し、その検知結果に基づいて駆動電流が過電流検知ラインを超えているか否かを監視し、あらかじめEPROM等に記憶されたMOSFET自身の個体差の情報と温度センサで検知されたMOSFETの温度情報に基づき過電流検知ラインを補正しながら監視を行う構成が開示されている。しかし、特許文献1の過電流保護回路においては、MOSFETのオン抵抗をMOSFETの出荷検査時に測定して、数段階の範囲にグループ分けし、その結果を、装置上の記憶回路に記憶させている。この場合、次のような問題がある。   In Patent Document 1, as a load drive circuit for monitoring a drive current by using a MOSFET (Field Effect Transistor) having a large difference between individual load switching elements and a large temperature difference, the MOSFET itself is used as an alternative to a shunt resistor. The microcomputer detects the potential difference between both ends of the MOSFET as a load switching element, monitors whether the drive current exceeds the overcurrent detection line based on the detection result, and the MOSFET itself stored in the EPROM or the like in advance A configuration is disclosed in which monitoring is performed while correcting the overcurrent detection line based on the individual difference information and the MOSFET temperature information detected by the temperature sensor. However, in the overcurrent protection circuit of Patent Document 1, the on-resistance of the MOSFET is measured at the time of shipping inspection of the MOSFET, grouped into a range of several stages, and the result is stored in the storage circuit on the device. . In this case, there are the following problems.

MOSFETのオン抵抗はゲート電圧に強く依存する。このため、出荷検査時における過電流保護回路のMOSFETのゲート電圧と、装置を実際に使用するときの過電流保護回路のMOSFETのゲート電圧とを全く同じにしなければならない。しかしながら、これは、装置の設計上、及び、装置の製造過程において、厳しく管理する必要があり、ばらつき等を考慮すると、実際的には困難である。   The on-resistance of the MOSFET strongly depends on the gate voltage. For this reason, the gate voltage of the MOSFET of the overcurrent protection circuit at the time of shipping inspection must be exactly the same as the gate voltage of the MOSFET of the overcurrent protection circuit when the device is actually used. However, this must be strictly controlled in the design of the device and in the manufacturing process of the device, and is difficult in practice in consideration of variations and the like.

また、過電流保護回路のMOSFETのオン抵抗をグループ分けした結果について、グループ毎に梱包する場合、精度向上のために、グループ分けの段階数を増やすと、装置の梱包作業等の管理が複雑化し、コスト増につながる、という問題がある。   In addition, regarding the results of grouping the on-resistances of the MOSFETs of the overcurrent protection circuit, when packing each group, increasing the number of stages for grouping to improve accuracy complicates the management of equipment packing operations, etc. There is a problem that it leads to cost increase.

特開2002−290222号公報JP 2002-290222 A

従来の過電流保護回路においては、過電流と判定する閾値(過電流閾値)のとり得る幅が大きく、その下限値を装置の最大消費電流より大きく設定すると、検出できる過電流が非常に高くなってしまうことがある。この場合、装置の異常により過電流が流れても、それを過電流として判定できず、装置を電源断する保護機能が働かない、という問題がある。   In a conventional overcurrent protection circuit, the threshold that can be determined as overcurrent (overcurrent threshold) is large, and if the lower limit is set larger than the maximum current consumption of the device, the overcurrent that can be detected becomes very high. May end up. In this case, even if an overcurrent flows due to an abnormality in the apparatus, it cannot be determined as an overcurrent, and there is a problem that a protection function for turning off the apparatus does not work.

また上記特許文献1の構成の場合、過電流保護回路のMOSFETのオン抵抗を、MOSFETの出荷検査時に測定して、数段階の範囲にグループ分けし、その結果を、装置上の記憶回路に記憶させているが、装置設計上、及び装置製造過程において厳しく管理する必要があり、実現が困難であるほか、グループ毎に梱包する場合、精度向上のためにグループ分けの段階数を増やすと、装置の梱包の管理が複雑となり、コスト増につながる、という問題がある。   Further, in the case of the configuration of Patent Document 1, the on-resistance of the MOSFET of the overcurrent protection circuit is measured at the time of shipping inspection of the MOSFET, grouped into several stages, and the result is stored in the storage circuit on the device. However, it must be strictly controlled in the device design and in the device manufacturing process, and it is difficult to realize.In addition, when packing for each group, if the number of grouping steps is increased to improve accuracy, the device There is a problem that the management of the packaging of the container becomes complicated and leads to an increase in cost.

したがって、本発明の目的は、過電流の検出精度を向上する装置を提供することにある。   Therefore, an object of the present invention is to provide an apparatus that improves the detection accuracy of overcurrent.

また、本発明は、上記目的を達成しながら、検査時等における、過電流閾値の調整を簡略化する装置を提供することもその目的としている。   Another object of the present invention is to provide an apparatus that simplifies the adjustment of the overcurrent threshold at the time of inspection or the like while achieving the above object.

さらに、本発明は、装置の動作に応じた過電流の検出を容易化する装置を提供することもその目的としている。   Another object of the present invention is to provide a device that facilitates detection of overcurrent according to the operation of the device.

本願で開示される発明は、上記目的を達成するため、概略以下の構成とされる。   The invention disclosed in the present application is generally configured as follows in order to achieve the above object.

本発明においては、装置の電源断機能を有する半導体スイッチング素子を実装した状態で、例えば過電流と判定される電流値まで、半導体スイッチング素子に電流を流し、その時の半導体スイッチング素子の両端間の電位差を過電流電圧閾値として記憶することで、過電流の正確な判定を可能としている。   In the present invention, in a state where the semiconductor switching element having the power-off function of the device is mounted, for example, a current is passed through the semiconductor switching element up to a current value determined to be an overcurrent, and the potential difference between both ends of the semiconductor switching element at that time Is stored as an overcurrent voltage threshold value, thereby enabling accurate determination of overcurrent.

本発明の1つのアスペクトに係る過電流保護回路は、給電端子に一端が接続された半導体スイッチング素子と、前記半導体スイッチング素子の他端を、負荷回路と外部端子のいずれか一方に接続する切替スイッチと、前記半導体スイッチング素子の前記一端と前記他端の両端間の電圧を受け、記憶回路に記憶された過電流閾値と比較し、比較結果に対応したレベルの信号を、前記半導体スイッチング素子の制御端子に供給する比較手段と、を備えている。   An overcurrent protection circuit according to one aspect of the present invention includes a semiconductor switching element having one end connected to a power supply terminal, and a changeover switch that connects the other end of the semiconductor switching element to one of a load circuit and an external terminal. And receiving a voltage across the one end and the other end of the semiconductor switching element, comparing it with an overcurrent threshold stored in a memory circuit, and controlling the signal of the level corresponding to the comparison result of the semiconductor switching element And comparison means for supplying to the terminal.

本発明においては、前記比較手段が、前記半導体スイッチング素子の前記両端間の電圧を受けデジタル信号に変換するアナログデジタル変換回路と、前記アナログデジタル変換回路の出力と前記記憶回路に記憶された過電流閾値とを比較し、比較結果を2値信号として前記半導体スイッチング素子の制御端子に供給する比較回路と、を備えている。   In the present invention, the comparison means receives the voltage across the semiconductor switching element and converts it into a digital signal, an output of the analog-digital conversion circuit, and an overcurrent stored in the storage circuit A comparison circuit for comparing the threshold value and supplying the comparison result as a binary signal to the control terminal of the semiconductor switching element.

本発明においては、前記半導体スイッチング素子を実装した状態で、前記外部端子に接続された測定装置から、過電流と判定される電流値まで前記半導体スイッチング素子に電流を流し、その時の前記半導体スイッチング素子の両端間の電圧が、過電流電圧閾値として前記記憶回路に記憶される。   In the present invention, in a state where the semiconductor switching element is mounted, a current is passed through the semiconductor switching element from a measuring device connected to the external terminal to a current value determined to be an overcurrent, and the semiconductor switching element at that time Is stored in the storage circuit as an overcurrent voltage threshold.

本発明においては、前記外部端子に接続された前記測定装置が、前記外部端子と前記給電端子間に直列形態に接続された直流電源と電流計とを含む。   In the present invention, the measuring device connected to the external terminal includes a DC power source and an ammeter connected in series between the external terminal and the power feeding terminal.

本発明においては、前記過電流保護回路を備えた装置の複数の動作モードにそれぞれ対応する複数の過電流閾値が、前記記憶回路に記憶されており、前記記憶回路から前記装置の動作モードに対応する過電流閾値を読み出して、前記比較回路に供給する手段を備えている。   In the present invention, a plurality of overcurrent thresholds respectively corresponding to a plurality of operation modes of the device having the overcurrent protection circuit are stored in the storage circuit, and the operation mode of the device is supported from the storage circuit. Means for reading out an overcurrent threshold to be supplied to the comparison circuit.

本発明によれば、装置の電源断機能を有する半導体スイッチング素子を実装した状態で、過電流と判定される電流値まで半導体スイッチング素子に電流を流し、その時の半導体スイッチング素子の両端間の電圧を、過電流電圧閾値として記憶しており、過電流の正確な判定を可能としている。   According to the present invention, in a state where a semiconductor switching element having a power-off function of the device is mounted, a current is passed through the semiconductor switching element up to a current value determined to be an overcurrent, and the voltage across the semiconductor switching element at that time is , And stored as an overcurrent voltage threshold value, enabling accurate determination of overcurrent.

また、本発明によれば、検査時等において、実使用時に対応した過電流電圧閾値の設定を可能とし、且つその調整工程を簡略化し、容易なものとしている。   In addition, according to the present invention, it is possible to set an overcurrent voltage threshold value corresponding to the actual use at the time of inspection or the like, and the adjustment process is simplified and easy.

さらに、本発明によれば、装置の動作モードに対応した過電流電圧閾値と、半導体スイッチング素子の両端間の電圧を比較することで、過電流の検出を容易化している。   Furthermore, according to the present invention, overcurrent detection is facilitated by comparing the overcurrent voltage threshold corresponding to the operation mode of the apparatus with the voltage across the semiconductor switching element.

上記した本発明についてさらに詳細に説述すべく添付図面を参照して以下に説明する。本発明の一実施形態は、装置10の電源断機能を有し半導体スイッチング素子をなすFET24と、半導体スイッチング素子の両端の電位差をデジタル値に変換するアナログデジタル変換回路(A/D)21と、過電流と判定する電流値を半導体スイッチング素子に流した時の半導体スイッチング素子の両端間の電位差を過電流電圧閾値として記憶する記憶回路22と、A/D21から出力される半導体スイッチング素子の両端間の電位差と記憶回路22の過電流電圧閾値を比較し、過電流であるか否かを判定し判定結果に対応する電圧を半導体スイッチング素子の制御端子に出力する比較器23と、半導体スイッチング素子の一端と負荷回路13の間に配設され、負荷回路13と外部の測定機器とを切り替える機能を有し、通常動作時には、半導体スイッチング素子の一端を負荷回路13に接続し、過電流電圧の閾値調整時には、半導体スイッチング素子の一端を外部測定機器と接続する切替スイッチ25と、外部の測定機器と接続させるための端子としての外部テスト端子26とを備えている。   The above-described present invention will be described below with reference to the accompanying drawings in order to explain in more detail. One embodiment of the present invention includes an FET 24 having a power-off function of the device 10 and forming a semiconductor switching element, an analog-digital conversion circuit (A / D) 21 that converts a potential difference between both ends of the semiconductor switching element into a digital value, A memory circuit 22 that stores a potential difference between both ends of the semiconductor switching element when a current value determined to be an overcurrent flows through the semiconductor switching element as an overcurrent voltage threshold, and between both ends of the semiconductor switching element output from the A / D 21 Is compared with the overcurrent voltage threshold value of the memory circuit 22 to determine whether the current is an overcurrent and to output a voltage corresponding to the determination result to the control terminal of the semiconductor switching element; It is disposed between one end and the load circuit 13 and has a function of switching between the load circuit 13 and an external measuring device, and during normal operation When one end of the semiconductor switching element is connected to the load circuit 13 and the threshold value of the overcurrent voltage is adjusted, the changeover switch 25 that connects one end of the semiconductor switching element to the external measurement device and a terminal for connecting to the external measurement device An external test terminal 26 is provided.

半導体スイッチング素子の一端を実装し、且つ、半導体スイッチング素子の制御端子に実使用状態と同じ電圧を印加した状態において、切替スイッチ25の接続を外部テスト端子26側に設定し、外部測定機器から電圧を供給して半導体スイッチング素子に過電流と判定する電流値を流し、その時にA/D21が出力する半導体スイッチング素子の両端間の電位差を過電流電圧閾値として決定し、記憶回路22に記憶する。以下実施例に即して説明する。   In the state where one end of the semiconductor switching element is mounted and the same voltage as the actual use state is applied to the control terminal of the semiconductor switching element, the connection of the changeover switch 25 is set to the external test terminal 26 side, Is supplied to the semiconductor switching element, and a potential difference between both ends of the semiconductor switching element output by the A / D 21 at that time is determined as an overcurrent voltage threshold value and stored in the storage circuit 22. Hereinafter, description will be made with reference to examples.

図1は、本発明の一実施例としての過電流保護回路の構成を示す図である。特に制限されないが、本実施例において、装置10は、バッテリで駆動される携帯電話機等の移動無線通信端末である。すなわち、電源としてバッテリ1を備え、バッテリ1から負荷回路13に電力が供給される。バッテリ1と装置10との接続においては、バッテリ1のプラス端子2と装置10のプラス端子11同士が接続され、バッテリ1のマイナス端子3と装置10のマイナス端子12同士が接続される。   FIG. 1 is a diagram showing the configuration of an overcurrent protection circuit as an embodiment of the present invention. Although not particularly limited, in the present embodiment, the device 10 is a mobile radio communication terminal such as a mobile phone driven by a battery. That is, the battery 1 is provided as a power source, and power is supplied from the battery 1 to the load circuit 13. In connection between the battery 1 and the device 10, the plus terminal 2 of the battery 1 and the plus terminal 11 of the device 10 are connected, and the minus terminal 3 of the battery 1 and the minus terminal 12 of the device 10 are connected.

負荷回路13は、携帯無線端末の所定の機能を果たすために電力を消費する回路である。FET(Field Effect Transistor;電界効果トランジスタ)24は、装置10の異常により、過電流が流れた際、装置10の電流を強制的に止める電源スイッチとしての機能を果たす素子である。   The load circuit 13 is a circuit that consumes power to perform a predetermined function of the portable wireless terminal. The FET (Field Effect Transistor) 24 is an element that functions as a power switch that forcibly stops the current of the device 10 when an overcurrent flows due to an abnormality of the device 10.

FET24は、N型のFET(NチャネルMOSFET)よりなり、装置10のマイナス端子12と、切替スイッチ25との間に配設され、ソースがマイナス端子12に接続され、ドレインが、切替スイッチ25の一端(固定端)に接続される。   The FET 24 is composed of an N-type FET (N-channel MOSFET), and is arranged between the minus terminal 12 of the device 10 and the changeover switch 25, the source is connected to the minus terminal 12, and the drain is the changeover switch 25. Connected to one end (fixed end).

切替スイッチ25は、FET24のドレインの接続先を、負荷回路13または外部テスト端子26のいずれかに切り替える。すなわち、切替スイッチ25は、FET24のドレインと負荷回路13との間に配設されており、装置10が通常使用される場合には、FET24のドレインを負荷回路13に接続し、テスト時(過電流電圧閾値の調整時)には、FET24のドレインの接続先を外部テスト端子26に切り替える。なお、切替スイッチ25の切替は、マニュアルで設定する構成としてもよいし、あるいは、不図示のCPUから切替制御信号を切替スイッチ25に与える構成としてもよい。   The changeover switch 25 switches the connection destination of the drain of the FET 24 to either the load circuit 13 or the external test terminal 26. In other words, the changeover switch 25 is disposed between the drain of the FET 24 and the load circuit 13, and when the device 10 is normally used, the drain of the FET 24 is connected to the load circuit 13 so that it can be used during a test (excessive). When adjusting the current-voltage threshold), the connection destination of the drain of the FET 24 is switched to the external test terminal 26. Note that the changeover of the changeover switch 25 may be set manually, or a changeover control signal may be given to the changeover switch 25 from a CPU (not shown).

アナログデジタル変換回路(A/D)21は、入力端子(アナログ入力)を、FET24のドレイン、及びソースに接続し、ドレイン・ソース間電圧を入力して、デジタル値に変換する。かかる構成により、FET24のオン抵抗による電圧降下(ドレイン・ソース間電圧)を測定することができる。   The analog-to-digital conversion circuit (A / D) 21 connects an input terminal (analog input) to the drain and source of the FET 24 and inputs a drain-source voltage to convert it to a digital value. With this configuration, the voltage drop (drain-source voltage) due to the on-resistance of the FET 24 can be measured.

記憶回路22には、予め、過電流と判定するための過電流電圧閾値が記憶設定される。   An overcurrent voltage threshold for determining an overcurrent is stored and set in the storage circuit 22 in advance.

比較器23は、A/D21で検出された、FET24のドレイン・ソース間電圧の値(デジタル値)と、記憶回路22から読み出された過電流電圧閾値とを比較し、A/D21からの電圧値が記憶回路22の過電流電圧閾値を超えた場合に、過電流と判定し、出力信号として論理L(LOWレベル)を、FET24のゲートに出力し、FET24をオフさせる。   The comparator 23 compares the drain-source voltage value (digital value) of the FET 24 detected by the A / D 21 with the overcurrent voltage threshold value read from the storage circuit 22, and compares the value from the A / D 21. When the voltage value exceeds the overcurrent voltage threshold value of the memory circuit 22, it is determined as an overcurrent, and a logic L (LOW level) is output as an output signal to the gate of the FET 24 to turn off the FET 24.

A/D21で検出された、FET24のドレイン・ソース間電圧の値(デジタル値)が記憶回路22の過電流電圧閾値よりも低い場合には、過電流は無いものと判定し、比較器23は、出力信号として論理H(HIGHレベル)の固定電圧を出力し、FET24をオン状態に保つ。   When the value (digital value) of the drain-source voltage of the FET 24 detected by the A / D 21 is lower than the overcurrent voltage threshold of the memory circuit 22, it is determined that there is no overcurrent, and the comparator 23 Then, a fixed voltage of logic H (HIGH level) is output as an output signal, and the FET 24 is kept on.

FET24のオン抵抗は、同じ製品でもばらつきがあり、FET24に印加されるゲート電圧によっても変化する。   The on-resistance of the FET 24 varies even in the same product, and changes depending on the gate voltage applied to the FET 24.

比較器23がFET24のゲートに出力する固定電圧も個々の比較器23によりばらつきを生じる可能性がある。例えば、比較器23がFET24のゲートに出力するHIGHレベル/LOWレベルの固定電圧にも、電源電圧、温度等の動作環境、製造プロセス等に依存して、ばらつきが生じる。   The fixed voltage output from the comparator 23 to the gate of the FET 24 may also vary depending on the individual comparator 23. For example, the HIGH level / LOW level fixed voltage output from the comparator 23 to the gate of the FET 24 also varies depending on the operating environment such as the power supply voltage and temperature, the manufacturing process, and the like.

FET24のオン抵抗、ゲート電圧のばらつきを考慮すると、FET24と比較器23を組み合わせた上で、各装置10の過電流電圧閾値を決定する必要がある。   In consideration of variations in the on-resistance and gate voltage of the FET 24, it is necessary to determine the overcurrent voltage threshold of each device 10 after combining the FET 24 and the comparator 23.

そこで、本実施例では、切替スイッチ25と外部テスト端子26とを設け、外部測定機器による調整を可能としている。   Therefore, in this embodiment, the changeover switch 25 and the external test terminal 26 are provided to enable adjustment by an external measuring device.

本実施例において、外部テスト端子26は、過電流電圧閾値の調整時に、外部測定機器との接続を容易にできるように、好ましくは、装置10の基板(不図示)の表面に配置される。   In the present embodiment, the external test terminal 26 is preferably arranged on the surface of a substrate (not shown) of the apparatus 10 so that it can be easily connected to an external measuring device when adjusting the overcurrent voltage threshold.

過電流電圧閾値の調整時には、切替スイッチ25は、FET24のドレインを、外部テスト端子26に接続するように設定される。マイナス端子12と、外部テスト端子26間には、外部測定機器として、直流電源31と電流計32が直列に接続される。直流電源31のプラス端子とマイナス端子は、外部テスト端子26(FET24のドレイン側)とマイナス端子12(FET24のソース側)にそれぞれ接続され、FET24のドレインからソースに電流を流す。FET24のゲートには、通常動作時に比較器23が出力する論理Hの固定電圧を加え、FET24のドレイン電流が過電流を示す値になった時のA/D21の出力値を、記憶回路22に過電流電圧閾値として記憶設定する。   When adjusting the overcurrent voltage threshold, the changeover switch 25 is set so as to connect the drain of the FET 24 to the external test terminal 26. A DC power source 31 and an ammeter 32 are connected in series between the negative terminal 12 and the external test terminal 26 as an external measuring device. The positive terminal and the negative terminal of the DC power supply 31 are connected to the external test terminal 26 (the drain side of the FET 24) and the negative terminal 12 (the source side of the FET 24), respectively, and current flows from the drain to the source of the FET 24. A logic H fixed voltage output from the comparator 23 during normal operation is applied to the gate of the FET 24, and the output value of the A / D 21 when the drain current of the FET 24 becomes a value indicating an overcurrent is stored in the memory circuit 22. Store and set as an overcurrent voltage threshold.

これにより、FET24は、実動作時に過電流が流れたのと同じ状態で調整することができる。特に制限されないが、過電流電圧閾値の調整時に、電流計32の値が過電流値になった時に、検査担当者が装置10の操作部(不図示)等からコマンドを入力することで、不図示のCPUの制御のもと、FET24のドレイン電流が過電流を示す値になった時のA/D21のデジタル出力値を記憶回路22に格納するようにしてもよい。なお、記憶回路22は、装置10の電源断の時(例えばバッテリを外した時)もデータを保持するプログラム(書き換え)可能な不揮発性メモリ(EEPROM)等を用いてもよい。   Thereby, FET24 can be adjusted in the same state as the overcurrent flowed at the time of actual operation. Although not particularly limited, when the value of the ammeter 32 becomes an overcurrent value at the time of adjusting the overcurrent voltage threshold, the person in charge of the inspection inputs a command from the operation unit (not shown) of the apparatus 10 or the like. Under the control of the CPU shown in the figure, the digital output value of the A / D 21 when the drain current of the FET 24 becomes a value indicating an overcurrent may be stored in the storage circuit 22. Note that the memory circuit 22 may use a programmable (rewritable) nonvolatile memory (EEPROM) that retains data even when the power of the apparatus 10 is turned off (for example, when the battery is removed).

次に、本実施例の過電流保護回路の動作を説明する。   Next, the operation of the overcurrent protection circuit of this embodiment will be described.

図1において、記憶回路22に設定する過電流電圧閾値Vthは次式にて決められる。   In FIG. 1, the overcurrent voltage threshold Vth set in the memory circuit 22 is determined by the following equation.

Vth=Ron×Ith
RonはFET24のオン抵抗、IthはFET24のドレイン電流が過電流と判定される電流閾値である。
Vth = Ron × Ith
Ron is an on-resistance of the FET 24, and Ith is a current threshold at which the drain current of the FET 24 is determined to be an overcurrent.

図2は、FET24のゲート・ソース間電圧Vgsに対するドレイン電流Idの関係(V−I特性)を示すグラフである。ゲート電圧によってFET24のドレイン電流が変化する、つまり、ゲート電圧によって、オン抵抗Ronが変化することが分かる。   FIG. 2 is a graph showing the relationship (VI characteristics) of the drain current Id with respect to the gate-source voltage Vgs of the FET 24. It can be seen that the drain current of the FET 24 varies with the gate voltage, that is, the on-resistance Ron varies with the gate voltage.

過電流電圧閾値の調整時には、FET24は実使用時と同じゲート電圧が比較器23から与えられるので、オン抵抗Ronは一意に決めることができる。ドレイン電流Ithは、所定の過電流値になるように、調整時に設定される。したがって、過電流電圧閾値の調整工程において、装置10の実使用時に、過電流と判定するための過電流電圧閾値を、正確に記憶回路22に設定することができる。このため、装置10の実使用時に、FET24のドレイン電流が、記憶回路22に記憶されている過電流電圧閾値に達した際の電流値が、過電流値に等しくなる。すなわち、過電流値を正確に設定することができる。   When the overcurrent voltage threshold is adjusted, the FET 24 is given the same gate voltage from the comparator 23 as in actual use, so the on-resistance Ron can be uniquely determined. The drain current Ith is set at the time of adjustment so as to have a predetermined overcurrent value. Therefore, in the overcurrent voltage threshold adjustment step, the overcurrent voltage threshold for determining an overcurrent can be accurately set in the storage circuit 22 when the device 10 is actually used. Therefore, when the device 10 is actually used, the current value when the drain current of the FET 24 reaches the overcurrent voltage threshold stored in the storage circuit 22 becomes equal to the overcurrent value. That is, the overcurrent value can be set accurately.

過電流電圧閾値は、装置10の最大消費電流より大きくする必要があるが、本実施例においては、過電流保護回路自身が、過電流と判定する電流値に誤差がなくなる構成としたことにより、過電流電圧閾値を必要以上に大きな値にしてしまい過電流と判定できなくなってしまうという問題を解消している。装置10の障害(故障)などの異常現象による過電流の発生時にも、適切に装置10の電源断の制御が可能となる。   Although the overcurrent voltage threshold needs to be larger than the maximum current consumption of the device 10, in this embodiment, the overcurrent protection circuit itself has a configuration in which there is no error in the current value determined as overcurrent. The problem that the overcurrent voltage threshold is set to a value larger than necessary and cannot be determined as an overcurrent is solved. Even when an overcurrent occurs due to an abnormal phenomenon such as a failure (failure) of the device 10, it is possible to appropriately control the power-off of the device 10.

以上説明したように、本実施例においては、過電流電圧閾値の調整において、FET24を実装した状態で、且つ、実使用時と同じゲート電圧を与えた条件下で、FET24のドレイン電流を過電流判定値まで流し、その時のFET24のドレイン・ソース間電圧を、過電流電圧閾値として、記憶回路22に記憶させる構成としたことにより、過電流を正確に判定することができるようになる。これにより、過電流電圧閾値を装置の最大消費電流からあまりマージンをもつ必要なく設定できるようになり、過電流発生時に装置の電源断を行う確率を高めることができる。   As described above, in this embodiment, in adjusting the overcurrent voltage threshold, the drain current of the FET 24 is set to the overcurrent under the condition that the FET 24 is mounted and the same gate voltage as that in actual use is applied. By flowing to the determination value and storing the drain-source voltage of the FET 24 at that time in the storage circuit 22 as the overcurrent voltage threshold value, the overcurrent can be accurately determined. As a result, the overcurrent voltage threshold value can be set from the maximum current consumption of the apparatus without having a margin, and the probability of powering off the apparatus when an overcurrent occurs can be increased.

次に、本発明の別の実施例について説明する。図3は、本発明の第2の実施例の構成を示す図である。本実施例は、図1に示した前記実施例の構成に、さらに、負荷回路13のCPU14が記憶回路22に接続されている。CPU14は、装置10の動作モード状態を認識しており、記憶回路22に、その動作モードを通知する。   Next, another embodiment of the present invention will be described. FIG. 3 is a diagram showing the configuration of the second exemplary embodiment of the present invention. In this embodiment, the CPU 14 of the load circuit 13 is further connected to the storage circuit 22 in addition to the configuration of the embodiment shown in FIG. The CPU 14 recognizes the operation mode state of the apparatus 10 and notifies the storage circuit 22 of the operation mode.

記憶回路22は、各動作モードに対応する過電流電圧閾値を記憶しており、CPU14からの通知により、動作モードに対応する過電流電圧閾値が読み出される。   The storage circuit 22 stores an overcurrent voltage threshold value corresponding to each operation mode, and an overcurrent voltage threshold value corresponding to the operation mode is read by a notification from the CPU 14.

次に、本実施例の動作について説明する。なお、動作モードとは、携帯電話機等の移動体無線端末の場合、待受け時に受信のみ行っているときのモードや、音声通話モード、テレビ電話モード等である。各モードにより、装置10の消費電流は異なる。例えば、待受け時には消費電流は少ないので過電流とする値も小さく設定することができる。過電流値を小さく設定することにより、装置が異常時に発生した余計な電流を容易に検出できるようになる。つまり、異常時の過電流が装置の最大消費電流以下の場合でも、過電流として検出することができるようになる。   Next, the operation of this embodiment will be described. In the case of a mobile radio terminal such as a mobile phone, the operation mode is a mode in which only reception is performed during standby, a voice call mode, a videophone mode, or the like. The current consumption of the device 10 varies depending on each mode. For example, since the current consumption is small during standby, the overcurrent value can be set small. By setting the overcurrent value to be small, it is possible to easily detect an excess current generated when the apparatus is abnormal. That is, even when the overcurrent at the time of abnormality is less than the maximum current consumption of the apparatus, it can be detected as an overcurrent.

各動作モードにおける消費電流は、設計値、もしくは複数台の装置の統計値から知ることができ、その値から各動作モードの過電流値を決める。そして、過電流電圧閾値の調整時に各動作モードに応じた過電流値によって調整し、それぞれの値を各動作モードの過電流電圧閾値として、記憶回路22に記憶させる。   The current consumption in each operation mode can be known from a design value or a statistical value of a plurality of devices, and an overcurrent value in each operation mode is determined from the value. Then, at the time of adjusting the overcurrent voltage threshold value, adjustment is made by the overcurrent value corresponding to each operation mode, and each value is stored in the storage circuit 22 as the overcurrent voltage threshold value for each operation mode.

このように、本実施例によれば、装置10の動作モードに応じて過電流電圧閾値を変更できるので、過電流をより、検出し易くすることができる。また、同じ理由により、過電流が装置の最大消費電流以下の場合にも検出することができる、という効果が得られる。   As described above, according to the present embodiment, the overcurrent voltage threshold can be changed according to the operation mode of the apparatus 10, so that the overcurrent can be detected more easily. Further, for the same reason, it is possible to detect even when the overcurrent is equal to or less than the maximum current consumption of the device.

以上本発明を上記実施例に即して説明したが、本発明は上記実施例の構成にのみ限定されるものでなく、本発明の範囲内で当業者であればなし得るであろう各種変形、修正を含むことは勿論である。   Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the configuration of the above embodiment, and various modifications that can be made by those skilled in the art within the scope of the present invention. Of course, modifications are included.

本発明の一実施例の構成を示す図である。It is a figure which shows the structure of one Example of this invention. FETのゲートソース間電圧とドレイン電流のV−I特性を示す図である。It is a figure which shows the VI characteristic of the gate-source voltage and drain current of FET. 本発明の他の実施例の構成を示す図である。It is a figure which shows the structure of the other Example of this invention.

符号の説明Explanation of symbols

1 バッテリ
2 +端子
3 −端子
10 装置
11 +端子
12 −端子
13 負荷回路
14 CPU
21 A/D変換回路
22 記憶回路
23 比較器
24 FET
25 切替スイッチ
26 外部テスト端子
31 直流電源
32 電流計
DESCRIPTION OF SYMBOLS 1 Battery 2 + terminal 3-terminal 10 Device 11 + terminal 12-terminal 13 Load circuit 14 CPU
21 A / D conversion circuit 22 Memory circuit 23 Comparator 24 FET
25 switch 26 external test terminal 31 DC power supply 32 ammeter

Claims (9)

給電端子に一端が接続された半導体スイッチング素子と、
前記半導体スイッチング素子の他端を、負荷回路と外部端子のいずれか一方に接続する切替スイッチと、
前記半導体スイッチング素子の前記一端と前記他端の両端間の電圧を受け、記憶回路に記憶された過電流閾値と比較し、比較結果に対応したレベルの信号を、前記半導体スイッチング素子の制御端子に供給する比較手段と、
を備えている、ことを特徴とする過電流保護回路。
A semiconductor switching element having one end connected to the power supply terminal;
A changeover switch for connecting the other end of the semiconductor switching element to one of a load circuit and an external terminal;
A voltage across the one end and the other end of the semiconductor switching element is received, compared with an overcurrent threshold stored in a storage circuit, and a signal corresponding to the comparison result is applied to the control terminal of the semiconductor switching element. Comparison means to supply;
An overcurrent protection circuit comprising:
前記比較手段が、前記半導体スイッチング素子の前記両端間の電圧を受けデジタル信号に変換するアナログデジタル変換回路と、
前記アナログデジタル変換回路の出力と前記記憶回路に記憶された過電流閾値とを比較し、比較結果を2値信号として前記半導体スイッチング素子の制御端子に供給する比較回路と、
を備えている、ことを特徴とする請求項1記載の過電流保護回路。
An analog-to-digital conversion circuit that receives the voltage across the semiconductor switching element and converts the voltage into a digital signal;
A comparison circuit that compares the output of the analog-to-digital conversion circuit with the overcurrent threshold stored in the storage circuit and supplies the comparison result to the control terminal of the semiconductor switching element as a binary signal;
The overcurrent protection circuit according to claim 1, further comprising:
前記半導体スイッチング素子を実装した状態で、前記外部端子に接続された測定装置から、過電流と判定される電流値まで前記半導体スイッチング素子に電流を流し、その時の前記半導体スイッチング素子の両端間の電圧が、前記過電流閾値として、前記記憶回路に記憶される、ことを特徴とする請求項1又は2記載の過電流保護回路。   In a state where the semiconductor switching element is mounted, a current is passed through the semiconductor switching element from a measuring device connected to the external terminal to a current value determined to be an overcurrent, and a voltage across the semiconductor switching element at that time The overcurrent protection circuit according to claim 1, wherein the overcurrent protection circuit is stored as the overcurrent threshold in the storage circuit. 前記外部端子に接続された前記測定装置が、前記外部端子と前記給電端子間に接続され、前記半導体スイッチング素子に直流電流を供給する電源を含む、ことを特徴とする請求項3記載の過電流保護回路。   The overcurrent according to claim 3, wherein the measuring device connected to the external terminal includes a power source connected between the external terminal and the power feeding terminal and supplying a direct current to the semiconductor switching element. Protection circuit. 前記外部端子に接続された前記測定装置が、前記外部端子と前記給電端子間に直列形態に接続された直流電源と電流計を含む、ことを特徴とする請求項3記載の過電流保護回路。   4. The overcurrent protection circuit according to claim 3, wherein the measuring device connected to the external terminal includes a direct current power source and an ammeter connected in series between the external terminal and the power feeding terminal. 前記半導体スイッチング素子がFET(電界効果トランジスタ)よりなり、
前記半導体スイッチング素子の一端がFETのソースとドレインの一方よりなり、
前記半導体スイッチング素子の他端がFETのソースとドレインの他方よりなり、
前記半導体スイッチング素子の制御端子がFETのゲートよりなり、
前記アナログデジタル変換回路は、前記FETのドレイン・ソース間電圧を受け、前記記憶回路に記憶された過電流閾値と比較し、比較結果に対応した電圧を、前記FETのゲートに供給する、ことを特徴とする請求項2記載の過電流保護回路。
The semiconductor switching element is an FET (field effect transistor),
One end of the semiconductor switching element is one of the source and drain of the FET,
The other end of the semiconductor switching element is the other of the source and drain of the FET,
The control terminal of the semiconductor switching element consists of the gate of the FET,
The analog-to-digital conversion circuit receives a drain-source voltage of the FET, compares it with an overcurrent threshold stored in the storage circuit, and supplies a voltage corresponding to the comparison result to the gate of the FET. The overcurrent protection circuit according to claim 2, wherein:
前記過電流保護回路を備えた装置の複数の動作モードにそれぞれ対応する複数の過電流閾値が、前記記憶回路に記憶されており、
前記記憶回路から前記装置の動作モードに対応する過電流閾値を読み出して、前記比較手段に供給する手段を備えている、ことを特徴とする請求項1乃至6のいずれか一に記載の過電流保護回路。
A plurality of overcurrent threshold values respectively corresponding to a plurality of operation modes of the device including the overcurrent protection circuit are stored in the storage circuit,
The overcurrent according to any one of claims 1 to 6, further comprising means for reading an overcurrent threshold value corresponding to an operation mode of the device from the storage circuit and supplying the threshold value to the comparison means. Protection circuit.
前記過電流保護回路を備えた装置がバッテリで駆動される装置であり、
前記半導体スイッチング素子の一端が接続される前記給電端子が、前記バッテリの一端に接続される端子である、ことを特徴とする請求項1乃至5のいずれか一に記載の過電流保護回路。
A device provided with the overcurrent protection circuit is a device driven by a battery,
The overcurrent protection circuit according to claim 1, wherein the power supply terminal to which one end of the semiconductor switching element is connected is a terminal connected to one end of the battery.
請求項1乃至8のいずれか一に記載の過電流保護回路を備えた移動無線通信端末。   A mobile radio communication terminal comprising the overcurrent protection circuit according to claim 1.
JP2005102043A 2005-03-31 2005-03-31 Overcurrent protection circuit Expired - Fee Related JP4595630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102043A JP4595630B2 (en) 2005-03-31 2005-03-31 Overcurrent protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102043A JP4595630B2 (en) 2005-03-31 2005-03-31 Overcurrent protection circuit

Publications (2)

Publication Number Publication Date
JP2006287399A true JP2006287399A (en) 2006-10-19
JP4595630B2 JP4595630B2 (en) 2010-12-08

Family

ID=37408859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102043A Expired - Fee Related JP4595630B2 (en) 2005-03-31 2005-03-31 Overcurrent protection circuit

Country Status (1)

Country Link
JP (1) JP4595630B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104299A (en) * 2007-10-22 2009-05-14 Denso Corp Electronic control device
JP2010210547A (en) * 2009-03-12 2010-09-24 Panasonic Corp Battery pack and information processor
JP2011114739A (en) * 2009-11-30 2011-06-09 Hitachi Automotive Systems Ltd Motor control apparatus
JP2015002661A (en) * 2013-06-18 2015-01-05 三菱電機株式会社 Overcurrent protection circuit, and control method of the same
CN107659296A (en) * 2017-10-31 2018-02-02 中国铁道科学研究院 IGBT current foldback circuits and method
CN113037508A (en) * 2019-12-24 2021-06-25 华为技术有限公司 Power-down control circuit and power-down control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02249976A (en) * 1989-03-24 1990-10-05 Hitachi Ltd Output current detecting circuit for mos transistor
JPH1041797A (en) * 1996-05-21 1998-02-13 Harness Sogo Gijutsu Kenkyusho:Kk Switch circuit with excess current detecting function
JPH11326400A (en) * 1998-05-07 1999-11-26 Mitsubishi Electric Corp Overcurrent detection device
JP2001053120A (en) * 1999-08-09 2001-02-23 Sharp Corp Semiconductor integrated circuit with overcurrent detection fountain and manufacture thereof
JP2002078183A (en) * 2000-08-23 2002-03-15 Auto Network Gijutsu Kenkyusho:Kk Current detector circuit
JP2002290222A (en) * 2001-03-28 2002-10-04 Auto Network Gijutsu Kenkyusho:Kk Load drive circuit
JP2005039590A (en) * 2003-07-16 2005-02-10 Nec Saitama Ltd Power supply control circuit, mobile communication device, and power supply control method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02249976A (en) * 1989-03-24 1990-10-05 Hitachi Ltd Output current detecting circuit for mos transistor
JPH1041797A (en) * 1996-05-21 1998-02-13 Harness Sogo Gijutsu Kenkyusho:Kk Switch circuit with excess current detecting function
JPH11326400A (en) * 1998-05-07 1999-11-26 Mitsubishi Electric Corp Overcurrent detection device
JP2001053120A (en) * 1999-08-09 2001-02-23 Sharp Corp Semiconductor integrated circuit with overcurrent detection fountain and manufacture thereof
JP2002078183A (en) * 2000-08-23 2002-03-15 Auto Network Gijutsu Kenkyusho:Kk Current detector circuit
JP2002290222A (en) * 2001-03-28 2002-10-04 Auto Network Gijutsu Kenkyusho:Kk Load drive circuit
JP2005039590A (en) * 2003-07-16 2005-02-10 Nec Saitama Ltd Power supply control circuit, mobile communication device, and power supply control method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104299A (en) * 2007-10-22 2009-05-14 Denso Corp Electronic control device
JP2010210547A (en) * 2009-03-12 2010-09-24 Panasonic Corp Battery pack and information processor
JP2011114739A (en) * 2009-11-30 2011-06-09 Hitachi Automotive Systems Ltd Motor control apparatus
JP2015002661A (en) * 2013-06-18 2015-01-05 三菱電機株式会社 Overcurrent protection circuit, and control method of the same
CN107659296A (en) * 2017-10-31 2018-02-02 中国铁道科学研究院 IGBT current foldback circuits and method
CN113037508A (en) * 2019-12-24 2021-06-25 华为技术有限公司 Power-down control circuit and power-down control method
CN113037508B (en) * 2019-12-24 2022-10-25 华为技术有限公司 Power-down control circuit and power-down control method

Also Published As

Publication number Publication date
JP4595630B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
US8129970B2 (en) Switching regulator with reverse current detection
JP5851821B2 (en) Charge / discharge control circuit and battery device
JP4595630B2 (en) Overcurrent protection circuit
US7936151B2 (en) Battery state monitoring circuitry with low power consumption during a stand-by-state of a battery pack
KR101093965B1 (en) Controlling method for secondary battery
US7719235B2 (en) Charge/discharge protection circuit and power-supply unit
JP2010068637A (en) Charge controlling semiconductor integrated circuit
US10003205B2 (en) Composite integrated circuit for secondary battery, composite device for secondary battery, and battery pack
US9246323B2 (en) Current controller and protection circuit
US8471530B2 (en) Battery state monitoring circuit and battery device
JP2009131020A (en) Overcurrent protection circuit and battery pack
US20110169457A1 (en) Battery pack
US9350180B2 (en) Load switch having load detection
US11575161B2 (en) Secondary battery protection circuit, secondary battery protection apparatus, battery pack and temperature detection circuit
CN102832937A (en) Analog-to-digital converter
US10826308B2 (en) Charge/discharge control device and battery apparatus
US20110299206A1 (en) Battery state monitoring circuit and battery device
US8524385B2 (en) Battery pack
US8378635B2 (en) Semiconductor device and rechargeable power supply unit
US10069493B2 (en) Circuitry and method for operating an electronic switch
US20130257447A1 (en) Portable electronic device
EP3754843B1 (en) Voltage-current conversion circuit and charge-discharge control device
US9397652B2 (en) Circuitry and method for operating such circuitry
KR100662435B1 (en) Circuit for charging battery in order to reducing heat of charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees