JP2006287295A - Light receiving amplifier circuit and display device provided with the same - Google Patents

Light receiving amplifier circuit and display device provided with the same Download PDF

Info

Publication number
JP2006287295A
JP2006287295A JP2005100625A JP2005100625A JP2006287295A JP 2006287295 A JP2006287295 A JP 2006287295A JP 2005100625 A JP2005100625 A JP 2005100625A JP 2005100625 A JP2005100625 A JP 2005100625A JP 2006287295 A JP2006287295 A JP 2006287295A
Authority
JP
Japan
Prior art keywords
light receiving
light
circuit
current
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005100625A
Other languages
Japanese (ja)
Other versions
JP4632837B2 (en
Inventor
Hiroshi Kobori
浩 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005100625A priority Critical patent/JP4632837B2/en
Publication of JP2006287295A publication Critical patent/JP2006287295A/en
Application granted granted Critical
Publication of JP4632837B2 publication Critical patent/JP4632837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light receiving amplifier circuit capable of reducing the effect of noise in the case of measuring the intensity of an incident light. <P>SOLUTION: In the light receiving amplifier circuit provided with a transistor TR<SB>21</SB>, and a current mirror circuit comprising transistors TR<SB>22</SB>, TR<SB>23</SB>and resistors R<SB>21</SB>, R<SB>22</SB>, wherein the emitter of the TR<SB>21</SB>is connected to a terminal to which a light receiving element D is connectable, and a constant voltage is applied to the base of the TR<SB>21</SB>, a collector current of the TR<SB>21</SB>controls a mirror current of the current mirror circuit. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発光素子の光量調整用の受光増幅回路及びそれを備えた表示装置に関する。   The present invention relates to a light receiving amplification circuit for adjusting the light amount of a light emitting element and a display device including the same.

液晶表示装置等の透過制御型の表示装置ではバックライトが必要とされる。そこで、赤(R),緑(G),青(B)の各色の発光ダイオードを二次元的に配列し、各色の光を混合させて白色のバックライトとして利用する技術が用いられるようになっている(非特許文献1等)。このようにR,G,Bの各色の発光ダイオードをマトリックス状に配列して、色毎に発光強度を調節することによって、画像の色味を細かく調整することができる。したがって、白色の蛍光体を用いた表示装置よりも高い色再現性を実現できる利点がある。   In a transmission control type display device such as a liquid crystal display device, a backlight is required. Therefore, a technology is used in which light emitting diodes of each color of red (R), green (G), and blue (B) are two-dimensionally arranged and light of each color is mixed to be used as a white backlight. (Non-Patent Document 1, etc.). Thus, by arranging the light emitting diodes of R, G, and B colors in a matrix and adjusting the light emission intensity for each color, the color of the image can be finely adjusted. Therefore, there is an advantage that higher color reproducibility can be realized than a display device using a white phosphor.

一方、発光ダイオードの発光強度には素子毎の個体差があり、発光ダイオードの色毎の発光強度の温度依存性が異なるため、画面内に色むらや色ずれが発生する可能性がある。そこで、色毎の発光強度を測定する受光増幅回路を用いて、その測定値に応じて発光ダイオードの発光強度を調整することによって画面内の色むらや色ずれを抑制するフィードバック制御が行われている。   On the other hand, there are individual differences in the light emission intensity of the light emitting diodes, and the temperature dependence of the light emission intensity for each color of the light emitting diodes is different, which may cause color unevenness and color shift in the screen. Therefore, feedback control is performed to suppress color unevenness and color misregistration in the screen by adjusting the light emission intensity of the light emitting diode according to the measured value using a light receiving amplification circuit that measures the light emission intensity for each color. Yes.

従来の受光増幅回路100は、図4に示すように、抵抗R11,R13、トランジスタTr11及び積分回路10を備えたエミッタフォロワ回路により構成される。受光増幅回路100は、光電変換用の受光素子D1と組み合わされて用いられる。受光増幅回路100は、表示装置の発光部を分割した各領域においてRGB各色に対応付けてそれぞれ1つずつ設けられる。受光素子D1に入射される光が強くなるにつれて、受光素子D1に流れる電流が増加する。トランジスタTr11のエミッタは、固定抵抗R11と受光素子D1との抵抗で分圧されたベース電圧とほぼ等しい電圧となる。この電圧が積分回路10で時間的に平均化されて出力される。この出力信号を発光ダイオードの発光強度を調整するフィードバック信号として利用することによって画面内に色むらや色ずれを抑制する。 As shown in FIG. 4, the conventional photoreceiver / amplifier circuit 100 includes an emitter follower circuit including resistors R 11 and R 13 , a transistor Tr 11, and an integrating circuit 10. The light receiving amplification circuit 100 is used in combination with a light receiving element D 1 for photoelectric conversion. One photoreceiver / amplifier circuit 100 is provided in association with each color of RGB in each region obtained by dividing the light emitting unit of the display device. As light incident on the light receiving element D 1 becomes strong, the current flowing through the light-receiving element D 1 is increased. The emitter of the transistor Tr 11 has a voltage substantially equal to the base voltage divided by the resistances of the fixed resistor R 11 and the light receiving element D 1 . This voltage is temporally averaged by the integrating circuit 10 and output. By using this output signal as a feedback signal for adjusting the light emission intensity of the light emitting diode, color unevenness and color shift are suppressed in the screen.

「LEDバックライトがテレビの色を変える」,日経エレクトロニクス、2004年12月20日、p57〜62"LED backlight changes the color of TV", Nikkei Electronics, December 20, 2004, p57-62

表示装置の発光強度を正確に測定するために、受光素子D1は発光領域の近傍に設置する必要がある。一方、受光増幅回路100を受光素子D1の近傍に設置するためには、受光素子D1の近傍まで信号線のみならず受光増幅回路100の電源の配線を引く必要がある。したがって、受光素子D1は発光領域の近傍に設置し、受光増幅回路100は受光素子D1と離れた位置に配置されることが多い。 To accurately measure the luminous intensity of the display device, the light-receiving element D 1 it should be installed in the vicinity of the light emitting region. Meanwhile, in order to install the light receiving amplifier circuit 100 in the vicinity of the light-receiving element D 1, it is necessary to pull the power wiring of the light receiving amplifier circuit 100 not to the signal line only in the vicinity of the light-receiving element D 1. Therefore, the light receiving element D 1 is often installed in the vicinity of the light emitting region, and the light receiving amplification circuit 100 is often arranged at a position away from the light receiving element D 1 .

このとき、受光素子D1をトランジスタTr11のベースに接続すると入力インピーダンスが高くなり、受光素子D1から離れた位置に配置された受光増幅回路100までの配線からノイズが重畳され易くなる。 At this time, when the light receiving element D 1 is connected to the base of the transistor Tr 11 , the input impedance is increased, and noise is easily superimposed from the wiring to the light receiving amplification circuit 100 disposed at a position away from the light receiving element D 1 .

また、受光増幅回路100への電源の配線を設けて、受光増幅回路100を受光素子D1の近傍に設置するためには、受光増幅回路100を多数の発光領域の各々に対応付けて配置する必要があるため場合、複数の受光増幅回路100に含まれるトランジスタTr11や抵抗R11,R13を集積化することが困難となる。したがって、受光増幅回路100の製造コストが増加してしまう問題がある。 Further, by providing a wiring of the power supply to the light receiving amplifier circuit 100, in order to install the light receiving amplifier circuit 100 in the vicinity of the light-receiving element D 1 is arranged in association with the light receiving amplifier circuit 100 to each of the plurality of light emitting regions If necessary, it is difficult to integrate the transistors Tr 11 and the resistors R 11 and R 13 included in the plurality of light receiving and amplifying circuits 100. Therefore, there is a problem that the manufacturing cost of the light receiving amplifier circuit 100 increases.

本発明は、上記従来技術の問題の少なくとも1つを解決した発光素子の光量調整用の受光増幅回路及びそれを備えた表示装置を提供することを目的とする。   It is an object of the present invention to provide a light receiving amplification circuit for adjusting the light amount of a light emitting element and a display device including the same, which have solved at least one of the problems of the prior art.

本発明は、入射光を電気信号に変換する受光素子の出力を増幅して出力する受光増幅回路であって、トランジスタと、カレントミラー回路と、を備え、前記トランジスタのエミッタは前記受光素子が接続可能な端子に接続されると共に前記トランジスタのベースには定電圧が印加されることによって、前記トランジスタのコレクタ電流によって前記カレントミラー回路のミラー電流を制御することを特徴とする。   The present invention is a light receiving amplifier circuit that amplifies and outputs an output of a light receiving element that converts incident light into an electric signal, and includes a transistor and a current mirror circuit, and the emitter of the transistor is connected to the light receiving element. The mirror current of the current mirror circuit is controlled by the collector current of the transistor by being connected to a possible terminal and applying a constant voltage to the base of the transistor.

トランジスタのエミッタは入力インピーダンスが低いので、トランジスタのエミッタに受光素子を接続可能とすることによって、受光素子からの配線へのノイズの重畳を低減することができる。したがって、受光増幅回路を受光素子と離れた位置に配置することができる。また、受光増幅回路をIC化することができ、製造コストを低減することができる。   Since the emitter of the transistor has a low input impedance, the superimposition of noise from the light receiving element to the wiring can be reduced by enabling the light receiving element to be connected to the emitter of the transistor. Therefore, the light receiving amplification circuit can be disposed at a position away from the light receiving element. In addition, the photoreceiver / amplifier circuit can be integrated, and the manufacturing cost can be reduced.

さらに、差動増幅回路を備え、前記差動増幅回路において前記カレントミラー回路に流れるミラー電流の直流成分に応じた電圧値と所定の参照電圧とを比較することによって、前記カレントミラー回路に流れるミラー電流の直流成分を補償するフィードバック制御を行うことも好適である。   A mirror that flows through the current mirror circuit by comparing a voltage value corresponding to a DC component of a mirror current flowing through the current mirror circuit with a predetermined reference voltage in the differential amplifier circuit; It is also preferable to perform feedback control that compensates for the DC component of the current.

これによって、直流成分のノイズを発生させるホワイトノイズに強い回路を構成することができる。例えば、測定対象となる波長領域以外の波長領域を含む光から測定対象となる波長領域のみを選択的に測定する場合にノイズの影響を軽減することができる。したがって、測定対象とする波長領域における光量を高い精度で測定することができる。   This makes it possible to configure a circuit that is resistant to white noise that generates DC component noise. For example, the influence of noise can be reduced when only the wavelength region to be measured is selectively measured from the light including the wavelength region other than the wavelength region to be measured. Therefore, the amount of light in the wavelength region to be measured can be measured with high accuracy.

上記本発明の受光増幅回路は、表示装置に適用することができる。上記本発明の受光増幅回路と、発光素子と、前記発光素子からの光を受けて電気信号に変換する受光素子と、前記発光素子の発光強度を制御する制御回路と、を備え、前記受光増幅回路の前記トランジスタのエミッタに前記受光素子が接続され、前記制御回路は、前記受光増幅回路における前記カレントミラー回路のミラー電流に対応する信号に基づいて前記発光素子の発光強度を制御することを特徴とする表示装置が実現できる。   The light receiving amplification circuit of the present invention can be applied to a display device. The light receiving amplification circuit according to the present invention, a light emitting element, a light receiving element that receives light from the light emitting element and converts it into an electrical signal, and a control circuit that controls the light emission intensity of the light emitting element, the light receiving amplification The light receiving element is connected to an emitter of the transistor of the circuit, and the control circuit controls light emission intensity of the light emitting element based on a signal corresponding to a mirror current of the current mirror circuit in the light receiving amplifier circuit. A display device can be realized.

本発明によれば、入射光の強度を測定する際のノイズの影響を軽減することができる。また、受光素子と受光増幅回路とを離れた位置に配置することが可能となる。さらに、ホワイトノイズによる直流成分を補償し、測定対象とする波長領域の光の強度を正確に測定することができる。   According to the present invention, it is possible to reduce the influence of noise when measuring the intensity of incident light. In addition, it is possible to dispose the light receiving element and the light receiving amplification circuit at positions separated from each other. Furthermore, the direct current component due to white noise can be compensated, and the intensity of light in the wavelength region to be measured can be accurately measured.

本発明の実施の形態における表示装置200は、図1に示すように、発光部20、受光部22、駆動部24及び制御部21を含んで構成される。   As shown in FIG. 1, the display device 200 according to the embodiment of the present invention includes a light emitting unit 20, a light receiving unit 22, a driving unit 24, and a control unit 21.

発光部20は、例えば、複数の画素がマトリックス状に配置された構成を有する。各画素には、それぞれ独立して透過率が制御可能な液晶透過層が設けられる。一般的に、発光部20は複数の分割領域に分割され、各分割領域には赤(R),緑(G),青(B)の発光ダイオードをそれぞれ3つを含むバックライトが配置される。バックライトを発光させると共に各画素の液晶透過層の透過率を制御することで、発光部20の画面上に画像が表示可能となる。   For example, the light emitting unit 20 has a configuration in which a plurality of pixels are arranged in a matrix. Each pixel is provided with a liquid crystal transmission layer whose transmittance can be controlled independently. Generally, the light emitting unit 20 is divided into a plurality of divided regions, and backlights each including three red (R), green (G), and blue (B) light emitting diodes are arranged in each divided region. . An image can be displayed on the screen of the light emitting unit 20 by causing the backlight to emit light and controlling the transmittance of the liquid crystal transmission layer of each pixel.

なお、説明の煩雑さを避けるために、図1では赤(R),緑(G),青(B)の発光領域をそれぞれ1つだけ含む構成を例示した。   In order to avoid complicated explanation, FIG. 1 exemplifies a configuration including only one red (R), green (G), and blue (B) light emitting region.

受光部22は、バックライトを構成する赤(R),緑(G),青(B)の発光ダイオードの発光強度をフィードバック制御するために用いられる。受光部22は、複数の受光素子Dを備える。受光素子Dは、発光部20の各分割領域において赤(R)、緑(G)、青(B)の色毎に対応付けて設けられる。各受光素子Dには、対応する色の波長領域のみを透過させる光学フィルタが設けられることが好適である。各受光素子Dは、発光部20の各分割領域における赤(R),緑(G),青(B)の色毎の発光ダイオードの発光強度を検出して制御部21へ出力する。   The light receiving unit 22 is used for feedback control of light emission intensities of red (R), green (G), and blue (B) light emitting diodes constituting the backlight. The light receiving unit 22 includes a plurality of light receiving elements D. The light receiving element D is provided in association with each color of red (R), green (G), and blue (B) in each divided region of the light emitting unit 20. Each light receiving element D is preferably provided with an optical filter that transmits only the wavelength region of the corresponding color. Each light receiving element D detects the light emission intensity of the light emitting diode for each color of red (R), green (G), and blue (B) in each divided region of the light emitting unit 20 and outputs it to the control unit 21.

制御部21は、受光部22の各受光素子Dから各分割領域における色毎の発光強度の信号を受けて、それらの信号に基づいて発光部20の各分割領域におけるバックライトの発光を制御する。駆動部24は、各分割領域における色毎にそれぞれ発光制御回路30及び受光増幅回路40を含んで構成される。制御部21は、IC等として集積化することができる。   The control unit 21 receives signals of the emission intensity for each color in each divided region from each light receiving element D of the light receiving unit 22, and controls the light emission of the backlight in each divided region of the light emitting unit 20 based on those signals. . The drive unit 24 includes a light emission control circuit 30 and a light reception amplification circuit 40 for each color in each divided region. The control unit 21 can be integrated as an IC or the like.

発光制御回路30は、パルス幅変調回路(PWM回路)32、スイッチ34、トランジスタ36及び定電流回路38を含んで構成される。PWM回路32は、受光増幅回路40からの出力信号を受けて、その出力信号の強度に応じたパルス幅の発光制御信号を生成して出力する。具体的には、PWM回路32は制御部21により、受光増幅回路40からの出力信号の強度が所定の値より高くなるほど出力する発光制御信号のパルス幅を狭くし、受光増幅回路40からの出力信号の強度が所定の値より低くなるほど出力する発光制御信号のパルス幅を広くする。スイッチ34は、発光ダイオードの発光を制御するトランジスタ36のベースに印加される信号を切り換える。スイッチ34を切り換えることによって、PWM回路32又は外部端子EXTのいずれか一方が選択される。トランジスタ36は、発光部20の発光ダイオードに流れる電流を駆動する。スイッチ34によりPWM回路32が選択されている場合、トランジスタ36のベースには受光増幅回路40からの出力信号に応じたパルス幅の発光制御信号が印加される。そして、発光制御信号がハイレベル(H)になっている期間だけ発光ダイオードに定電流回路38で設定する定電流が供給される。なお、発光部20の各分割領域における色毎に発光強度及び発光波長を初期調整するために、駆動部24の外部端子CNTに印加する電圧によって定電流回路38の電流値を調整可能とすることが好適である。   The light emission control circuit 30 includes a pulse width modulation circuit (PWM circuit) 32, a switch 34, a transistor 36, and a constant current circuit 38. The PWM circuit 32 receives the output signal from the photoreceiver / amplifier circuit 40, and generates and outputs a light emission control signal having a pulse width corresponding to the intensity of the output signal. Specifically, the PWM circuit 32 causes the control unit 21 to narrow the pulse width of the light emission control signal to be output as the intensity of the output signal from the light reception amplification circuit 40 becomes higher than a predetermined value, and output from the light reception amplification circuit 40. The pulse width of the emission control signal to be output is increased as the signal intensity is lower than a predetermined value. The switch 34 switches a signal applied to the base of the transistor 36 that controls light emission of the light emitting diode. By switching the switch 34, either the PWM circuit 32 or the external terminal EXT is selected. The transistor 36 drives a current flowing through the light emitting diode of the light emitting unit 20. When the PWM circuit 32 is selected by the switch 34, a light emission control signal having a pulse width corresponding to the output signal from the light receiving amplifier circuit 40 is applied to the base of the transistor 36. Then, the constant current set by the constant current circuit 38 is supplied to the light emitting diode only during the period when the light emission control signal is at the high level (H). It should be noted that the current value of the constant current circuit 38 can be adjusted by the voltage applied to the external terminal CNT of the drive unit 24 in order to initially adjust the emission intensity and emission wavelength for each color in each divided region of the light emitting unit 20. Is preferred.

以上のように、発光制御回路30によって、発光ダイオードの発光強度が強くなるとそれを弱め、発光ダイオードの発光強度が弱くなるとそれを強め、発光ダイオードの発光強度が所定の値で規定される発光強度を維持するようにフィードバック制御が行われる。   As described above, when the light emission intensity of the light emitting diode is increased by the light emission control circuit 30, it is weakened. When the light emission intensity of the light emitting diode is weakened, the light emission intensity is increased, and the light emission intensity of the light emitting diode is defined by a predetermined value. Feedback control is performed so as to maintain the above.

受光増幅回路40は、増幅回路42及び積分回路44を含んで構成される。図2に、本実施の形態における増幅回路42の基本構成を示す。増幅回路42は、トランジスタTr21,Tr22,Tr23,Tr24、抵抗R21,R22,R23、定電圧源Q1、定電流源Q2を含んで構成される。 The light receiving amplification circuit 40 includes an amplification circuit 42 and an integration circuit 44. FIG. 2 shows a basic configuration of the amplifier circuit 42 in the present embodiment. The amplifier circuit 42 includes transistors Tr 21 , Tr 22 , Tr 23 , Tr 24 , resistors R 21 , R 22 , R 23 , a constant voltage source Q 1 , and a constant current source Q 2 .

トランジスタTr21のエミッタには受光部22の受光素子Dが接続可能となるように端子が設けられる。この端子に受光素子Dが接続される。トランジスタTr21のベースには定電圧源Q1が接続される。定電圧源Q1としては、駆動部24のIC内部に備わるバイアス電圧を利用することができる。受光素子Dには、定電圧源Q1の電圧V1からトランジスタTr21のベース−エミッタ間電圧VBEを引いた(V1−VBE)が逆バイアスとして印加される。 The emitter of the transistor Tr 21 is provided with a terminal so that the light receiving element D of the light receiving unit 22 can be connected. The light receiving element D is connected to this terminal. A constant voltage source Q 1 is connected to the base of the transistor Tr 21 . As the constant voltage source Q 1 , a bias voltage provided in the IC of the drive unit 24 can be used. To the light receiving element D, (V 1 −V BE ) obtained by subtracting the base-emitter voltage V BE of the transistor Tr 21 from the voltage V 1 of the constant voltage source Q 1 is applied as a reverse bias.

トランジスタTr22,Tr23及び抵抗R21,R22はカレントミラー回路を構成している。受光素子Dの受光量に応じて、受光素子Dを流れる電流は変化する。受光素子Dの電流は、トランジスタTr22を介して、トランジスタTr21からトランジスタTr23のコレクタ電流(ミラー電流)へ伝達される。その結果、受光素子Dの電流は、カレントミラー回路に接続される抵抗R23の端子間の電圧に変換される。抵抗R23の端子間の電圧は、定電流源Q2及びトランジスタTr24により構成されるバッファ回路を介して、積分回路44へ出力される。 Transistors Tr 22 and Tr 23 and resistors R 21 and R 22 constitute a current mirror circuit. The current flowing through the light receiving element D changes according to the amount of light received by the light receiving element D. The current of the light receiving element D is transmitted from the transistor Tr 21 to the collector current (mirror current) of the transistor Tr 23 through the transistor Tr 22 . As a result, the current of the light-receiving element D is converted into a voltage between the terminals of the resistor R 23 is connected to the current mirror circuit. Voltage across the terminals of the resistor R 23 is connected via a buffer circuit composed of a constant current source Q 2 and the transistor Tr 24, is output to the integrating circuit 44.

積分回路44は、増幅回路42からの出力電圧を時間的に平均化させて出力する。この出力信号が検出信号として、制御部21に入力される。制御部21では、この検出信号を所望のレベルと比較し、制御信号を作成し出力する。この出力された制御信号は、発光制御回路30のPWM回路32に入力される。これによって、発光ダイオードの発光強度を所定の強度に維持するようにフィードバック制御が可能となる。   The integrating circuit 44 averages the output voltage from the amplifying circuit 42 and outputs the result. This output signal is input to the control unit 21 as a detection signal. The control unit 21 compares this detection signal with a desired level, and creates and outputs a control signal. The output control signal is input to the PWM circuit 32 of the light emission control circuit 30. Thus, feedback control can be performed so that the light emission intensity of the light emitting diode is maintained at a predetermined intensity.

以上のように、発光ダイオードの発光強度に基づいてフィードバック制御を行うことによって、発光部20の温度や動作時間による発光効率の変化によって発生する、表示装置200における画面内の色むらや色ずれを抑制することができる。このとき、トランジスタTr21のエミッタは入力インピーダンスが低いので、トランジスタTr21のエミッタに受光素子Dを接続することによって、受光素子Dと受光増幅回路40との間の配線から混入するノイズの影響を低減することができる。したがって、受光増幅回路40を受光素子Dと離れた位置に配置することができる。また、複数の受光増幅回路40を纏めて集積化することができる。 As described above, by performing feedback control based on the light emission intensity of the light emitting diode, color unevenness and color shift in the screen of the display device 200 caused by a change in the light emission efficiency due to the temperature and operation time of the light emitting unit 20 can be prevented. Can be suppressed. At this time, since the input impedance of the emitter of the transistor Tr 21 is low, the influence of noise mixed in from the wiring between the light receiving element D and the light receiving amplification circuit 40 is affected by connecting the light receiving element D to the emitter of the transistor Tr 21. Can be reduced. Therefore, the light receiving amplification circuit 40 can be disposed at a position away from the light receiving element D. In addition, a plurality of light receiving amplifier circuits 40 can be integrated together.

上記のように、発光部20の光量の調整はパルス幅変調により行われることが一般的である。このような場合、例えば、赤(R)の波長領域の光量を検出するための受光素子Dには、赤(R)の波長領域を透過させるための光学フィルタが設けられる。パルス幅変調で制御されることにより、検出すべき赤(R)の波長領域の光は光パルスとして受光される。しかしながら、光学フィルタで赤(R)以外の緑(G)又は青(B)の波長領域の光を完全に遮断することは不可能である。バックライトの中では赤(R),緑(G),青(B)の各波長領域の光が散乱及び屈折を繰り返しており、波長もパルス位相もランダムなホワイトノイズの状態にある。このホワイトノイズは、外部から入射する外乱光と同様に、受光素子Dにおいて直流成分のノイズとして影響する。このような状況下において、光学フィルタを用いたとしても不必要な波長領域の影響を受けることになる。   As described above, adjustment of the light amount of the light emitting unit 20 is generally performed by pulse width modulation. In such a case, for example, the light receiving element D for detecting the amount of light in the red (R) wavelength region is provided with an optical filter for transmitting the red (R) wavelength region. By being controlled by pulse width modulation, light in the red (R) wavelength region to be detected is received as an optical pulse. However, it is impossible to completely block light in the wavelength region of green (G) or blue (B) other than red (R) with an optical filter. In the backlight, light in each wavelength region of red (R), green (G), and blue (B) is repeatedly scattered and refracted, and the wavelength and the pulse phase are in a state of random white noise. This white noise influences as noise of a DC component in the light receiving element D, like disturbance light incident from the outside. Under such circumstances, even if an optical filter is used, it is affected by an unnecessary wavelength region.

そこで、改良した受光増幅回路を用いることが好適である。図3は、本実施の形態における改良された受光増幅回路50の構成を示す図である。受光増幅回路50は、上記受光増幅回路40の基本構成に加えて、トランジスタTr31,Tr32,Tr33,Tr34,Tr35,Tr36、抵抗R31,R32,R33、コンデンサC31、定電圧源Q3、定電流源Q4を含んで構成される。 Therefore, it is preferable to use an improved light receiving amplification circuit. FIG. 3 is a diagram showing a configuration of the light receiving amplification circuit 50 improved in the present embodiment. Receiving amplifier circuit 50, in addition to the basic configuration of the light receiving amplifier circuit 40, the transistors Tr 31, Tr 32, Tr 33 , Tr 34, Tr 35, Tr 36, resistors R 31, R 32, R 33 , capacitors C 31 The constant voltage source Q 3 and the constant current source Q 4 are included.

受光素子Dでの受光量に比例する電流は、トランジスタTr21,Tr22,Tr23を介して、抵抗R23の端子間の電圧に変換される。受光増幅回路50では、トランジスタTr31もトランジスタTr22とカレントミラー回路を構成している。したがって、トランジスタTr31には、トランジスタTr22のコレクタ電流、すなわち受光素子Dに流れる電流に対応した電流(ミラー電流)が流れる。トランジスタTr31を流れる電流は、抵抗R32とコンデンサC31との直列回路及び抵抗R31に流れる。ここで、抵抗R23は抵抗R31とほぼ等しい抵抗値を有するものとする。トランジスタTr33,Tr34は差動アンプを構成している。トランジスタTr34のベースには、定電圧源Q3から参照電圧V2が印加されている。トランジスタTr33のベースには、抵抗R32とコンデンサC31との直列回路の時定数で充電された充電電圧V3が印加される。 A current proportional to the amount of light received by the light receiving element D is converted into a voltage between the terminals of the resistor R 23 via the transistors Tr 21 , Tr 22 , Tr 23 . The light receiving amplifier circuit 50, the transistor Tr 31 also constitute a transistor Tr 22 and the current mirror circuit. Therefore, a current (mirror current) corresponding to the collector current of the transistor Tr 22 , that is, the current flowing through the light receiving element D, flows through the transistor Tr 31 . Current flowing through the transistor Tr 31 flows in the series circuit and the resistor R 31 and resistor R 32 and capacitor C 31. Here, it is assumed that the resistor R 23 has a resistance value substantially equal to the resistor R 31 . The transistors Tr 33 and Tr 34 constitute a differential amplifier. A reference voltage V 2 is applied from the constant voltage source Q 3 to the base of the transistor Tr 34 . A charging voltage V 3 charged with a time constant of a series circuit of a resistor R 32 and a capacitor C 31 is applied to the base of the transistor Tr 33 .

波長もパルス位相もランダムなホワイトノイズによる直流成分が受光され、トランジスタTr34にその直流成分に応じた電流が流れ始めると、その電流がトランジスタTr32を介してフィードバックされる。これによって、ホワイトノイズによる直流成分がキャンセルされた出力信号が積分回路44へ出力されることとなる。 When a direct current component due to white noise whose wavelength and pulse phase are random is received and a current corresponding to the direct current component starts to flow through the transistor Tr 34 , the current is fed back via the transistor Tr 32 . As a result, an output signal from which the DC component due to white noise has been canceled is output to the integrating circuit 44.

以上のように、受光におけるノイズの影響を軽減することができる。したがって、測定対象とする波長領域における光量を高い精度で測定することができる。   As described above, the influence of noise in light reception can be reduced. Therefore, it is possible to measure the amount of light in the wavelength region to be measured with high accuracy.

本発明の適用範囲は、発光ダイオードを利用したバックライトに限定されるものではない。例えば、発光ダイオードを用いた光通信に応用することができる。   The application range of the present invention is not limited to a backlight using a light emitting diode. For example, it can be applied to optical communication using a light emitting diode.

光通信の場合、受光感度を非常に高くする必要があるが、特に、太陽光等の光ノイズが極めて大きい影響を及ぼす。光ノイズである直流成分が大きい環境では、必要とする信号パルス成分の検出の妨げとなり、ノイズの影響を軽減することは重要となる。本発明における受光増幅回路を表示装置に適用する場合には、カレントミラー回路のトランジスタTr22とトランジスタTr23,Tr31及びトランジスタTr35とトランジスタTr36,Tr32の電流比を決めるミラー比は1対1程度でよく、ノイズを低減する作用を奏することができる。光通信の場合、検出対象となる交流成分の信号よりもノイズとなる直流成分のほうが大きい強度を有する場合が多く、カレントミラー回路のトランジスタTr35よりもトランジスタTr36,Tr32の電流比を大きくすることが好適である。これにより、ノイズとなる直流成分を補償する量が増大し、ノイズを低減することができる。補償量を大きく設定することにより、光ノイズである直流成分によって受光増幅回路の飽和を防ぐことができる。 In the case of optical communication, it is necessary to make the light receiving sensitivity very high. In particular, optical noise such as sunlight has an extremely large influence. In an environment where the direct current component, which is optical noise, is large, detection of a required signal pulse component is hindered, and it is important to reduce the influence of noise. When the photoreceiver / amplifier circuit according to the present invention is applied to a display device, the mirror ratio that determines the current ratio of the transistors Tr 22 and Tr 23 and Tr 31 and the transistor Tr 35 and transistors Tr 36 and Tr 32 of the current mirror circuit is 1. It may be about 1 to 1 and can exhibit an effect of reducing noise. In the case of optical communication, the DC component that causes noise is often stronger than the AC component signal to be detected, and the current ratio of the transistors Tr 36 and Tr 32 is larger than the transistor Tr 35 of the current mirror circuit. It is preferable to do. As a result, the amount of compensation for the DC component that becomes noise increases, and noise can be reduced. By setting the compensation amount large, saturation of the light receiving and amplifying circuit can be prevented by a direct current component that is optical noise.

本発明の実施の形態における表示装置の構成を示す図である。It is a figure which shows the structure of the display apparatus in embodiment of this invention. 本発明の実施の形態における受光増幅回路の基本構成を示す図である。It is a figure which shows the basic composition of the light reception amplifier circuit in embodiment of this invention. 本発明の実施の形態における受光増幅回路の変形例を示す図である。It is a figure which shows the modification of the light reception amplifier circuit in embodiment of this invention. 従来の受光増幅回路の構成を示す図である。It is a figure which shows the structure of the conventional light reception amplifier circuit.

符号の説明Explanation of symbols

10 積分回路、20 発光部、21 制御部、22 受光部、24 駆動部、30 発光制御回路、
34 スイッチ、36 トランジスタ、38 定電流回路、40 受光増幅回路、42 増幅回路、44 積分回路、50 受光増幅回路、100 受光増幅回路、200 表示装置、C31 コンデンサ、Q1 定電圧源、Q2 定電流源、Q3 定電圧源、Q4 定電流源、R11,R12,R13,R21,R22,R23,R31,R32,R33 抵抗、Tr11,Tr21,Tr22,Tr23,Tr24,Tr31,Tr32,Tr33,Tr34,Tr35,Tr36 トランジスタ。
10 integration circuit, 20 light emitting unit, 21 control unit, 22 light receiving unit, 24 drive unit, 30 light emission control circuit,
34 switch, 36 transistor, 38 constant current circuit, 40 light receiving amplifier circuit, 42 amplifier circuit, 44 integrating circuit, 50 light receiving amplifier circuit, 100 light receiving amplifier circuit, 200 display device, C 31 capacitor, Q 1 constant voltage source, Q 2 constant current source, Q 3 constant voltage source, Q 4 constant current source, R 11, R 12, R 13, R 21, R 22, R 23, R 31, R 32, R 33 resistors, Tr 11, Tr 21, Tr 22 , Tr 23 , Tr 24 , Tr 31 , Tr 32 , Tr 33 , Tr 34 , Tr 35 , Tr 36 transistors.

Claims (3)

入射光を電気信号に変換する受光素子の出力を増幅して出力する受光増幅回路であって、
トランジスタと、カレントミラー回路と、を備え、
前記トランジスタのエミッタは前記受光素子が接続可能な端子に接続されると共に前記トランジスタのベースには定電圧が印加されることによって、前記トランジスタのコレクタ電流によって前記カレントミラー回路のミラー電流を制御することを特徴とする受光増幅回路。
A light receiving amplification circuit that amplifies and outputs an output of a light receiving element that converts incident light into an electrical signal,
A transistor and a current mirror circuit;
The emitter of the transistor is connected to a terminal to which the light receiving element can be connected, and a constant voltage is applied to the base of the transistor, thereby controlling the mirror current of the current mirror circuit by the collector current of the transistor. A light receiving amplifier circuit characterized by the above.
請求項1に記載の受光増幅回路において、
さらに、差動増幅回路を備え、
前記差動増幅回路において前記カレントミラー回路に流れるミラー電流の直流成分に応じた電圧値と所定の参照電圧とを比較することによって、前記カレントミラー回路に流れるミラー電流の直流成分を補償するフィードバック制御を行うことを特徴とする受光増幅回路。
The light receiving amplifier circuit according to claim 1,
In addition, a differential amplifier circuit is provided.
Feedback control for compensating the DC component of the mirror current flowing through the current mirror circuit by comparing a voltage value corresponding to the DC component of the mirror current flowing through the current mirror circuit and a predetermined reference voltage in the differential amplifier circuit. A light receiving amplifier circuit characterized in that
請求項1又は2に記載の受光増幅回路と、
発光素子と、前記発光素子からの光を受けて電気信号に変換する受光素子と、前記発光素子の発光強度を制御する制御回路と、を備え、
前記受光増幅回路の前記トランジスタのエミッタに前記受光素子が接続され、
前記制御回路は、前記受光増幅回路における前記カレントミラー回路のミラー電流に対応する信号に基づいて前記発光素子の発光強度を制御することを特徴とする表示装置。
The light receiving amplifier circuit according to claim 1 or 2,
A light emitting element, a light receiving element that receives light from the light emitting element and converts it into an electrical signal, and a control circuit that controls the light emission intensity of the light emitting element,
The light receiving element is connected to an emitter of the transistor of the light receiving amplification circuit;
The display device, wherein the control circuit controls light emission intensity of the light emitting element based on a signal corresponding to a mirror current of the current mirror circuit in the light receiving amplification circuit.
JP2005100625A 2005-03-31 2005-03-31 Light receiving amplifier circuit and display device including the same Expired - Fee Related JP4632837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100625A JP4632837B2 (en) 2005-03-31 2005-03-31 Light receiving amplifier circuit and display device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100625A JP4632837B2 (en) 2005-03-31 2005-03-31 Light receiving amplifier circuit and display device including the same

Publications (2)

Publication Number Publication Date
JP2006287295A true JP2006287295A (en) 2006-10-19
JP4632837B2 JP4632837B2 (en) 2011-02-16

Family

ID=37408773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100625A Expired - Fee Related JP4632837B2 (en) 2005-03-31 2005-03-31 Light receiving amplifier circuit and display device including the same

Country Status (1)

Country Link
JP (1) JP4632837B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043532A1 (en) * 2005-10-11 2007-04-19 Rohm Co., Ltd. Current detection circuit, light receiving device using the same, and electronic device
JP2014130325A (en) * 2012-10-23 2014-07-10 Semiconductor Energy Lab Co Ltd Display device and program
JP2015192266A (en) * 2014-03-28 2015-11-02 日本電信電話株式会社 transimpedance amplifier circuit
CN109541347A (en) * 2018-11-26 2019-03-29 国网冀北电力有限公司唐山供电公司 A kind of sensor for electrical energy measurement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117930A (en) * 1983-11-30 1985-06-25 Fujitsu Ltd Photo-electric conversion circuit
JPH048004A (en) * 1990-04-26 1992-01-13 Matsushita Electric Ind Co Ltd Current/voltage conversion circuit
JPH04207511A (en) * 1990-11-30 1992-07-29 Yokogawa Electric Corp Buffer circuit
JPH06303048A (en) * 1993-04-13 1994-10-28 Sharp Corp Optical signal amplifier circuit
JPH1049074A (en) * 1996-08-02 1998-02-20 Shichizun Denshi:Kk Color display device
JP2001292036A (en) * 2000-04-05 2001-10-19 Toyo Commun Equip Co Ltd Current-voltage conversion circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117930A (en) * 1983-11-30 1985-06-25 Fujitsu Ltd Photo-electric conversion circuit
JPH048004A (en) * 1990-04-26 1992-01-13 Matsushita Electric Ind Co Ltd Current/voltage conversion circuit
JPH04207511A (en) * 1990-11-30 1992-07-29 Yokogawa Electric Corp Buffer circuit
JPH06303048A (en) * 1993-04-13 1994-10-28 Sharp Corp Optical signal amplifier circuit
JPH1049074A (en) * 1996-08-02 1998-02-20 Shichizun Denshi:Kk Color display device
JP2001292036A (en) * 2000-04-05 2001-10-19 Toyo Commun Equip Co Ltd Current-voltage conversion circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043532A1 (en) * 2005-10-11 2007-04-19 Rohm Co., Ltd. Current detection circuit, light receiving device using the same, and electronic device
JP2007107926A (en) * 2005-10-11 2007-04-26 Rohm Co Ltd Current detection circuit, light receiving device using it, and electronic device
US7880126B2 (en) 2005-10-11 2011-02-01 Rohm Co., Ltd. Current detection circuit, light receiving device using the same, and electronic device
JP2014130325A (en) * 2012-10-23 2014-07-10 Semiconductor Energy Lab Co Ltd Display device and program
JP2015192266A (en) * 2014-03-28 2015-11-02 日本電信電話株式会社 transimpedance amplifier circuit
CN109541347A (en) * 2018-11-26 2019-03-29 国网冀北电力有限公司唐山供电公司 A kind of sensor for electrical energy measurement
CN109541347B (en) * 2018-11-26 2020-11-06 国网冀北电力有限公司唐山供电公司 Sensor for electric energy metering

Also Published As

Publication number Publication date
JP4632837B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
US8658958B2 (en) Light sensing circuit having programmable current source and method thereof
KR100854192B1 (en) Flat lighting source, luminance correcting circuit, luminance correcting method and liquid crystal display
TWI305999B (en) Led array driving apparatus and backlight driving apparatus using the same
KR101212617B1 (en) Lighting device and method for the control
KR100968451B1 (en) Display apparatus and control method thereof
US20080272277A1 (en) Apparatus and method for controlling brightness of light source and displaying apparatus
US7821491B2 (en) LED driver circuit for a backlight device
US20060221047A1 (en) Liquid crystal display device
US7973759B2 (en) System and method for driving light emitters of backlight module using current mixing
JP2007108383A (en) Image display device
US20130033194A1 (en) Apparatus and method for controlling led driving circuit and apparatus and method for driving led
JP2005259704A (en) Sampling for color control feedback using optical cable
US9306554B2 (en) Semiconductor circuit and semiconductor apparatus
KR101010380B1 (en) Circuit arrangement and method for controlling at least one light source
JPH1049074A (en) Color display device
JP3994514B2 (en) Liquid crystal display
US9078321B2 (en) Light emitting system with light emitting power stabilization
KR20110120623A (en) Driver ic for electrical road and driving method thereof
TW200539538A (en) Control of spectral content of a laser diode light source
JP4632837B2 (en) Light receiving amplifier circuit and display device including the same
US8975830B2 (en) Light emitting system, optical power control device, and control signal module
JP4245495B2 (en) Rear light source for display device and display device
US8704458B2 (en) Light emitting system capable of color temperature stabilization
JP2008091301A (en) Dimming circuit
JP2006058058A (en) Photodetection circuit and automatic dimmer circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees