JP2006287056A - Wiring board and method of manufacturing the same - Google Patents

Wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP2006287056A
JP2006287056A JP2005106672A JP2005106672A JP2006287056A JP 2006287056 A JP2006287056 A JP 2006287056A JP 2005106672 A JP2005106672 A JP 2005106672A JP 2005106672 A JP2005106672 A JP 2005106672A JP 2006287056 A JP2006287056 A JP 2006287056A
Authority
JP
Japan
Prior art keywords
wiring board
substrate
support
main surface
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005106672A
Other languages
Japanese (ja)
Inventor
Seiji Mori
聖二 森
Sumio Ota
純雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005106672A priority Critical patent/JP2006287056A/en
Publication of JP2006287056A publication Critical patent/JP2006287056A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board which is hardly to generate a mounting defect of an integrated circuit chip and is hardly to generate the mounting defect to another board such as a mother board or the like, neither. <P>SOLUTION: The wiring board 200 using a resin as an insulating material is provided with a board central-portion 21 having a solder bump 11 (terminal) for mounting the integrated circuit chip 25 at a first main face 100p side, a board periphery 23 to be a part of the periphery of the board central-portion 21, and a plate-shaped reinforcing material 61 connected to the first main face 100p of the board periphery 23 as surrounding the solder bump 11 which is arranged in a lattice shape at the board central-portion 21. The board periphery 23 takes a shape inclining toward the first main face 100p together with the reinforcing material 61. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、配線基板および配線基板の製造方法に関する。特に、絶縁材料として樹脂を用いたオーガニック配線基板に関連が深い。   The present invention relates to a wiring board and a manufacturing method of the wiring board. In particular, it is deeply related to organic wiring boards using resin as an insulating material.

近年、一つのチップに複数のプロセッサ機能を内蔵した、いわゆるマルチコアプロセッサの開発が急速に進められている。シングルコアプロセッサからマルチコアプロセッサに向かう流れは、シングルコアプロセッサをより複雑かつ高機能にする方向性に限界が近づいてきているという、プロセッサ開発の実情が深く関係している。
特開2004−80027号公報
In recent years, so-called multi-core processors in which a plurality of processor functions are built in one chip have been rapidly developed. The trend toward single-core processors to multi-core processors is deeply related to the fact that processor development is approaching the limits of making single-core processors more complex and sophisticated.
Japanese Patent Laid-Open No. 2004-80027

プロセッサのマルチコア化に応じて浮上する問題の一つは、チップサイズが大きくなることである。チップサイズの拡大は、集積回路チップを実装する配線基板にも影響を及ぼす。チップサイズの拡大に比例してサイズの大きい配線基板が必要になってくるが、サイズの大きい配線基板は反りが発生しやすいという弱点がある。この問題は、絶縁材料に樹脂を用いたオーガニック配線基板で特に深刻である。   One of the problems that emerges as the number of processors becomes multi-core is that the chip size increases. The increase in chip size also affects the wiring board on which the integrated circuit chip is mounted. A wiring board having a large size is required in proportion to the increase in chip size, but the wiring board having a large size has a weak point that warpage is likely to occur. This problem is particularly serious in an organic wiring board using a resin as an insulating material.

配線基板に反りが生じている場合、集積回路チップの実装不良が生じやすくなったり、マザーボードへの配線基板自体の実装不良が生じやすくなったりする。反り量を低減するために配線基板の厚さを増すことも考えられるが、配線基板の低背化という流れに逆行するため、その案は簡単には採用できない。   When the wiring board is warped, the mounting failure of the integrated circuit chip is likely to occur, or the mounting failure of the wiring board itself to the mother board is likely to occur. Although it is conceivable to increase the thickness of the wiring board in order to reduce the amount of warpage, it goes against the trend of lowering the height of the wiring board, so that proposal cannot be easily adopted.

上記の問題に鑑み、本発明は、集積回路チップの実装不良が生じ難く、かつマザーボード等の別基板への実装不良も生じ難い配線基板を提供することを課題とする。また、その配線基板の製造方法を提供する。   In view of the above problems, an object of the present invention is to provide a wiring board in which mounting failure of an integrated circuit chip hardly occurs and mounting failure on another substrate such as a mother board hardly occurs. A method for manufacturing the wiring board is also provided.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために本発明の配線基板は、絶縁材料として樹脂を用いた配線基板であって、集積回路チップに接続する端子を第一主面側に有する基板中央部と、基板中央部より外側の部分であって該基板中央部よりも第一主面側へ傾いた形状をなす基板外周部と、を備えたことを主要な特徴とする。本明細書において“主面”とは、面積が最も広い面のことをいう。   In order to solve the above-described problems, a wiring board according to the present invention is a wiring board using a resin as an insulating material, and has a substrate central portion having terminals connected to an integrated circuit chip on the first main surface side, and a substrate central portion. A main feature is that it includes an outer peripheral portion that is an outer portion and is inclined toward the first main surface side from the central portion of the substrate. In this specification, the “main surface” refers to a surface having the largest area.

集積回路チップの熱膨張係数は4ppm/℃程度である一方、絶縁材料として樹脂を用いたオーガニック配線基板の熱膨張係数は、使用する樹脂の種類や配線密度によっても異なるが、30ppm〜80ppm/℃と高い。したがって、集積回路チップを実装するためのリフロー工程およびアンダーフィル材のキュア工程を行なうと、集積回路チップはわずかしか伸縮しないが配線基板は大きく伸縮する。この結果、図16に示すごとく、集積回路チップ25を実装している側に凸の反りを生ずる。このような反りがある状態で裏面側の端子パッド91に半田ボール92を載せてマザーボードMBへの配線基板90の実装を試みると、図16に示すごとく、半田ボール92とマザーボードMBとの間に大きな隙間SHが生じる。この隙間SHは、実装不良の発生確率を高める原因となる。   While the thermal expansion coefficient of the integrated circuit chip is about 4 ppm / ° C., the thermal expansion coefficient of the organic wiring substrate using a resin as an insulating material varies depending on the type of resin used and the wiring density, but is 30 ppm to 80 ppm / ° C. And high. Therefore, when the reflow process for mounting the integrated circuit chip and the curing process of the underfill material are performed, the integrated circuit chip expands and contracts slightly, but the wiring board expands and contracts greatly. As a result, as shown in FIG. 16, a convex warp occurs on the side on which the integrated circuit chip 25 is mounted. When mounting the wiring board 90 on the motherboard MB by placing the solder ball 92 on the terminal pad 91 on the back surface side in such a warp state, as shown in FIG. A large gap SH is generated. This gap SH becomes a cause of increasing the occurrence probability of mounting failure.

上記本発明は、予め逆方向の反りを与えておくことにより、集積回路チップの実装時に生ずる反りを相殺しようとするものであるが、集積回路チップに接続する端子が形成されている基板中央部は平坦としつつ、基板外周部を反らせておく点に特徴がある。反りを反りで相殺するという考えを導入するだけでは、却って集積回路チップの実装を困難にするだけである。ところが本発明の配線基板によれば、基板外周部だけを積極的に反らせるため、基板中央部の平坦性は失われておらず集積回路チップの実装に支障はない。そして、集積回路チップの実装時に生ずる反りを、基板外周部の傾き(跳ね上がり)で相殺することにより、集積回路チップ実装後の反り量を低減することが可能である。したがって、本発明の配線基板は、集積回路チップの実装不良が生じ難く、かつマザーボード等の別基板への実装不良も生じ難いものとなる。   The above-mentioned present invention is intended to cancel the warpage occurring when the integrated circuit chip is mounted by giving a warp in the reverse direction in advance, but the central portion of the substrate on which the terminals connected to the integrated circuit chip are formed. Is characterized in that the outer periphery of the substrate is warped while being flat. Simply introducing the idea of offsetting warpage with warpage only makes it difficult to mount integrated circuit chips. However, according to the wiring board of the present invention, since only the outer peripheral part of the board is actively warped, the flatness of the central part of the board is not lost and there is no problem in mounting the integrated circuit chip. Then, the amount of warpage after mounting the integrated circuit chip can be reduced by offsetting the warpage occurring when the integrated circuit chip is mounted by the inclination (bounce) of the outer peripheral portion of the substrate. Therefore, the wiring board according to the present invention is less likely to cause mounting failure of the integrated circuit chip and is less likely to cause mounting failure to another substrate such as a mother board.

一つの好適な態様において、上記本発明の配線基板は、集積回路チップに接続する端子が設けられた第一主面側とは反対側である第二主面側においてマザーボード等の別部品(別基板)と半田接続するために基板中央部と基板外周部との両方にわたって格子状に配列する複数の裏面端子を備えたものとすることができる。本発明が対象とする配線基板には、たとえばBGA(Ball Grid Array)とPGA(Pin Grid Array)との二つのタイプが考えられる。裏面端子(実施例では裏面端子パッドという)に配置した半田ボールでマザーボードに実装するのがBGA配線基板であり、裏面端子に取り付けたピンでマザーボードに実装するのがPGA配線基板である。PGA配線基板の場合は、多少の反りが生じていてもマザーボードに設けたピン孔にピンを押し込むことにより、強引ではあるがマザーボードに実装することができる。ところが、BGA配線基板に大きな反りが生じている場合は、先に図16で説明したように、半田ボール92とマザーボードMBとの間に生ずる隙間SHが原因で、実装不良の発生確率が高くなる。つまり、本発明はBGA配線基板に適用した場合に特に有効といえる。もちろん、PGA配線基板に対しても有効であることに疑いはない。   In one preferred embodiment, the wiring board of the present invention described above is provided with a separate component (another component such as a mother board) on the second main surface side opposite to the first main surface side on which the terminals connected to the integrated circuit chip are provided. In order to make a solder connection with the substrate), a plurality of back terminals arranged in a grid pattern may be provided over both the central portion of the substrate and the outer peripheral portion of the substrate. For example, two types of BGA (Ball Grid Array) and PGA (Pin Grid Array) are conceivable as wiring boards targeted by the present invention. The BGA wiring board is mounted on the motherboard with solder balls arranged on the back terminal (referred to as the back terminal pad in the embodiment), and the PGA wiring board is mounted on the motherboard with pins attached to the back terminal. In the case of the PGA wiring board, even if some warping occurs, it can be forcibly mounted on the motherboard by pushing the pins into the pin holes provided on the motherboard. However, if the BGA wiring board is greatly warped, the probability of mounting failure increases due to the gap SH between the solder ball 92 and the motherboard MB, as described above with reference to FIG. . That is, the present invention is particularly effective when applied to a BGA wiring board. Of course, there is no doubt that it is also effective for PGA wiring boards.

また、本発明の配線基板は次のような方法で製造することができる。すなわち、本発明にかかる配線基板の製造方法は、絶縁材料として樹脂を用い、集積回路チップに接続する端子を第一主面側に有する基板中央部と、基板中央部の周りの部分である基板外周部とを備えた配線基板ワークを作製する工程と、配線基板ワークに第一主面側から接触したとき基板中央部の全体が臨む空間を第一主面上に形成するための開口を有した第一支持体と、配線基板ワークに第二主面側から接触したとき第一支持体の開口の全体を面内方向において包含する広さの空間を第二主面上に形成する第二支持体とを準備したのち、第一主面側から第一支持体が基板外周部に接触し、その基板外周部を第二主面側から第二支持体で支持するように、第一支持体と、配線基板ワークと、第二支持体とを基板厚さ方向にこの順番で並べる工程と、第二支持体によって基板外周部を支持した状態で配線基板ワークに接触する側とは反対側から第一支持体を押圧し、配線基板ワークを第二主面側に付勢することにより、基板中央部の平坦性を維持したまま基板外周部が第一主面側へ傾くように配線基板ワークを成形する工程と、を含むことを主要な特徴とする。   Moreover, the wiring board of the present invention can be manufactured by the following method. That is, the method for manufacturing a wiring board according to the present invention uses a resin as an insulating material and has a substrate central portion having terminals connected to the integrated circuit chip on the first main surface side, and a substrate around the substrate central portion. A wiring board workpiece having an outer peripheral portion, and an opening for forming a space on the first main surface where the entire central portion of the board faces when contacting the wiring board workpiece from the first main surface side. Forming a space on the second main surface with a width that includes the entire opening of the first support in the in-plane direction when contacting the first support and the wiring board workpiece from the second main surface side. After preparing the support, the first support comes into contact with the outer peripheral portion of the substrate from the first main surface side, and the substrate outer peripheral portion is supported by the second support from the second main surface side. The body, the wiring board work, and the second support are arranged in this order in the board thickness direction. The first support body is pressed from the side opposite to the side that contacts the wiring board workpiece while the outer peripheral portion of the board is supported by the second support body, and the wiring board workpiece is biased to the second main surface side. Thus, a main feature is that a circuit board work is formed so that the outer peripheral portion of the substrate is inclined toward the first main surface while maintaining the flatness of the central portion of the substrate.

上記の製造方法によれば、配線基板ワークの基板中央部の上下(第一主面側と第二主面側)は空間とし、基板外周部の上下のそれぞれに第一支持体と第二支持体を配置する。面内方向において第二支持体が形成する空間は、第一主面側において第一支持体の開口の内周縁を包含する大きさである(図6参照)。そして、第一支持体と配線基板ワークと第二支持体とを重ねて、第一支持体を押圧する。このとき、基板中央部の全体が第二支持体の形成する空間に臨んでいるので、第一支持体からの荷重は基板中央部に直に懸からない。この結果、基板中央部の平坦性を維持しつつ、基板外周部が斜めに傾く(跳ね上がる)ように配線基板ワークの成形を行なうことができる。また、第一支持体が配線基板ワークに伝達する荷重は面内分布を持つので、基板中央部と基板外周部との間に極端な段差は生じず、内層の配線にダメージが及ぶこともない。   According to the above manufacturing method, the upper and lower sides (the first main surface side and the second main surface side) of the substrate central portion of the wiring board work are spaces, and the first support and the second support are respectively provided above and below the outer peripheral portion of the substrate. Place the body. The space formed by the second support in the in-plane direction has a size including the inner peripheral edge of the opening of the first support on the first main surface side (see FIG. 6). And a 1st support body, a wiring board workpiece | work, and a 2nd support body are piled up, and a 1st support body is pressed. At this time, since the entire substrate central portion faces the space formed by the second support, the load from the first support does not hang directly on the substrate central portion. As a result, it is possible to form the wiring board workpiece so that the outer peripheral part of the board is inclined (splashed up) obliquely while maintaining the flatness of the central part of the board. In addition, since the load transmitted by the first support to the wiring board workpiece has an in-plane distribution, there is no extreme step between the central part of the board and the outer peripheral part of the board, and the inner layer wiring is not damaged. .

一つの好適な態様において、上記した第一支持体は、基板中央部に格子状に配列する複数の端子を露出させるための通孔を厚さ方向に有した枠形態の板状体とすることができる。また、上記した第二支持体は、面内方向において、第一支持体の通孔を形作る内周縁の全体を包含する広口の開口を有して基板中央部の全体が臨む空間を第二主面上に形成する枠形態の板状体とすることができる。そして、配線基板ワークを成形する工程においては、基板中央部を第二支持体の開口内に沈み込ませるようにして、配線基板ワークを第二主面側に付勢することができる。第一支持体と第二支持体の両者を枠形態とすることにより、基板中央部の上下に形成する空間の広さを容易に調整できるとともに、配線基板ワークを面支持することに基づいて、配線基板ワークの局所的な変形を防ぐことができる。   In one preferred embodiment, the first support described above is a frame-shaped plate-like body having through holes in the thickness direction for exposing a plurality of terminals arranged in a lattice at the center of the substrate. Can do. Further, the above-mentioned second support has a wide-opening that includes the entire inner peripheral edge forming the through hole of the first support in the in-plane direction, and a space where the entire central portion of the substrate faces is the second main. It can be set as the frame-shaped plate-shaped body formed on a surface. In the process of forming the wiring board workpiece, the wiring board workpiece can be biased toward the second main surface side by sinking the central portion of the board into the opening of the second support. By making both the first support body and the second support body into a frame form, it is possible to easily adjust the width of the space formed above and below the center part of the board, and based on supporting the surface of the wiring board work, Local deformation of the wiring board workpiece can be prevented.

また、配線基板ワークを成形する工程は、第一支持体と、配線基板ワークと、第二支持体とによる積層体を、配線基板ワークの端子の表面に配置した半田、または端子を構成する半田の融点よりも低い温度で加熱しながら行なうことが好ましい。このようにすれば、配線基板ワークの内部に形成されている配線にクラックが生ずるなどのダメージが及びにくくなるとともに、得られる配線基板の残留応力を低減できる。   In addition, the step of forming the wiring board work includes a solder in which a laminate of the first support, the wiring board work, and the second support is arranged on the surface of the terminal of the wiring board work, or a solder constituting the terminal. It is preferable to carry out heating at a temperature lower than the melting point. This makes it difficult to cause damage such as cracks in the wiring formed inside the wiring board workpiece, and reduces the residual stress of the wiring board to be obtained.

ところで、配線基板の反りの問題を解決する一つの技術として、集積回路チップを実装する面に補強材を取り付けるという技術がある。補強材は、配線基板のスティフネスを向上させるので、反りを抑制する効果をもたらす。しかしながら、マルチコアプロセッサのようにサイズの大きい集積回路チップ用の配線基板ともなると基板サイズが相当大きいため、補強材を取り付けるだけでは反りの抑制効果が薄い。補強材の厚さを増加するということも考えられなくはないが、配線基板の低背化の流れに逆行することになる。また、補強材の素材を改善するとなると開発費用も高くつく。こうした問題に対し、本発明者らは次のような配線基板を提案する。   By the way, as one technique for solving the problem of warping of the wiring board, there is a technique of attaching a reinforcing material to the surface on which the integrated circuit chip is mounted. Since the reinforcing material improves the stiffness of the wiring board, it has an effect of suppressing warpage. However, when the wiring board for an integrated circuit chip having a large size such as a multi-core processor is used, the board size is considerably large. Therefore, the effect of suppressing warping is small by simply attaching a reinforcing material. Increasing the thickness of the reinforcing material is not unthinkable, but it goes against the trend of low-profile wiring boards. Also, if the material of the reinforcing material is improved, the development cost is high. In response to these problems, the present inventors propose the following wiring board.

すなわち、課題を解決するために本発明の配線基板の第二は、絶縁材料として樹脂を用いた配線基板であって、集積回路チップに接続する端子を第一主面側に有する基板中央部と、基板中央部の周りの部分である基板外周部と、基板中央部に格子状に配列する複数の端子を取り囲むように基板外周部の第一主面に接合された板状の補強材とを備え、基板外周部が補強材とともに第一主面側へ傾いた形状をなしていることを主要な特徴とする。   That is, in order to solve the problem, the second of the wiring boards of the present invention is a wiring board using a resin as an insulating material, and has a central portion of the board having terminals connected to the integrated circuit chip on the first main surface side. A peripheral portion of the substrate that is a portion around the central portion of the substrate, and a plate-shaped reinforcing member that is joined to the first main surface of the peripheral portion of the substrate so as to surround a plurality of terminals arranged in a lattice pattern in the central portion of the substrate. The main feature is that the outer peripheral portion of the substrate is inclined with the reinforcing material toward the first main surface.

上記本発明は、予め逆方向の反りを与えておくことにより、集積回路チップの実装時に生ずる反りを相殺しようとするものであるが、集積回路チップを実装するための端子が形成されている基板中央部は平坦としつつ、基板外周部を補強材とともに反らせておく点に特徴がある。反りを反りで相殺するという考えを導入するだけでは、却って集積回路チップの実装を困難にするだけである。ところが本発明の配線基板によれば、基板外周部だけを積極的に反らせるため、基板中央部の平坦性は失われておらず集積回路チップの実装に支障はない。そして、集積回路チップの実装時に生ずる反りを、基板外周部の傾き(跳ね上がり)で相殺することにより、集積回路チップ実装後の反り量を低減することが可能である。したがって、本発明の配線基板は、集積回路チップの実装不良が生じ難く、かつマザーボード等の別基板への実装不良も生じ難いものとなる。   The above-mentioned present invention is intended to cancel the warpage occurring when the integrated circuit chip is mounted by giving a warp in the reverse direction in advance, but the substrate on which the terminals for mounting the integrated circuit chip are formed. The center portion is flat and the substrate outer peripheral portion is warped together with the reinforcing material. Simply introducing the idea of offsetting warpage with warpage only makes it difficult to mount integrated circuit chips. However, according to the wiring board of the present invention, since only the outer peripheral part of the board is actively warped, the flatness of the central part of the board is not lost and there is no problem in mounting the integrated circuit chip. Then, the amount of warpage after mounting the integrated circuit chip can be reduced by offsetting the warpage occurring when the integrated circuit chip is mounted by the inclination (bounce) of the outer peripheral portion of the substrate. Therefore, the wiring board according to the present invention is less likely to cause mounting failure of the integrated circuit chip and is less likely to cause mounting failure to another substrate such as a mother board.

また、補強材を備えた本発明の配線基板は、次のような方法で製造することができる。すなわち、本発明の配線基板の製造方法の第二は、絶縁材料として樹脂を用い、集積回路チップに接続する端子を第一主面側に有する基板中央部と、基板中央部の周りの部分である基板外周部とを備えた配線基板ワークを作製する工程と、配線基板ワークに第一主面側から接触したとき、基板中央部に格子状に配列する複数の端子を露出させるための通孔を有する枠形態をなし、基板外周部に接合する板状の補強材と、配線基板ワークに第二主面側から接触したとき、補強材の通孔を形作る内周縁の全体を面内方向において包含する広さの空間を基板中央部の第二主面側に形成する支持体とを準備したのち、補強材と配線基板ワークとの間に熱硬化性樹脂を含む接着剤を介在させた状態で、補強材が第一主面側から基板外周部に面接触し、その基板外周部を第二主面側から第二支持体で支持するように、補強材と、配線基板ワークと、支持体とを厚さ方向にこの順番で並べる工程と、支持体によって基板外周部を支持した状態で、通孔を形作る内周縁に荷重が集中するように配線基板ワークに面接触する側とは反対側から補強材を押圧することにより、配線基板ワークを第二主面側に付勢し、その付勢した状態を維持したまま接着剤を硬化させて配線基板ワークと補強材とを接合する工程と、を含むことを主要な特徴とする。   Moreover, the wiring board of the present invention provided with a reinforcing material can be manufactured by the following method. That is, the second method of manufacturing a wiring board according to the present invention uses a resin as an insulating material and has a central portion of the substrate having terminals connected to the integrated circuit chip on the first main surface side, and a portion around the central portion of the substrate. A step of producing a wiring board work provided with a certain board outer peripheral part, and a through-hole for exposing a plurality of terminals arranged in a lattice form in the central part of the board when contacting the wiring board work from the first main surface side In the in-plane direction, the whole of the inner peripheral edge forming the through-hole of the reinforcing material when the plate-shaped reinforcing material joined to the outer peripheral portion of the board is brought into contact with the wiring board workpiece from the second main surface side is formed. After preparing a support body that forms a space of the included area on the second main surface side of the central part of the board, a state in which an adhesive containing a thermosetting resin is interposed between the reinforcing material and the wiring board workpiece Thus, the reinforcing material comes into surface contact with the outer periphery of the substrate from the first main surface side. The step of arranging the reinforcing material, the wiring board work, and the support in this order in the thickness direction so that the substrate outer periphery is supported by the second support from the second main surface side, and the substrate outer periphery by the support. In a state where the wiring board work is supported, the reinforcing material is pressed from the side opposite to the side in contact with the wiring board work so that the load is concentrated on the inner peripheral edge forming the through-hole. And a step of bonding the wiring board workpiece and the reinforcing material by curing the adhesive while maintaining the biased state.

上記の製造方法によれば、配線基板ワークの基板中央部の上下(第一主面側と第二主面側)は空間とし、基板外周部の上下のそれぞれに補強材と支持体を配置する。面内方向において支持体が第二主面側に形成する空間は、補強材の内周縁を包含する大きさである(詳細は図6の説明を参照)。そして、補強材と配線基板ワークと支持体とを重ね、内周縁に荷重が集中するように補強材を押圧する。補強材からの荷重は基板中央部と基板外周部の境界近傍に集中するが、基板中央部の全体が支持体の形成する空間に臨んでいるので、基板中央部には荷重が直に懸からない。この結果、基板中央部の平坦性を維持しつつ、基板外周部が斜めに傾く(跳ね上がる)ように配線基板ワークを成形することができる。また、補強材が配線基板ワークに伝達する荷重は面内分布を持つため、基板中央部と基板外周部との間に極端な段差は生じず、内層の配線にダメージが及ぶこともない。さらに、補強材を押圧しつつ、該補強材と配線基板ワークとを接合するので、補強材の荷重を抜いても得られる配線基板は元の形状に復帰しにくい   According to the above manufacturing method, the upper and lower sides (the first main surface side and the second main surface side) of the substrate center portion of the wiring board work are spaces, and the reinforcing material and the support are disposed on the upper and lower portions of the outer peripheral portion of the substrate, respectively. . The space formed by the support on the second main surface side in the in-plane direction has a size that includes the inner peripheral edge of the reinforcing material (refer to the description of FIG. 6 for details). Then, the reinforcing material, the wiring board workpiece, and the support are overlapped, and the reinforcing material is pressed so that the load is concentrated on the inner peripheral edge. The load from the reinforcing material is concentrated near the boundary between the center of the substrate and the outer periphery of the substrate, but the entire center of the substrate faces the space formed by the support, so the load is directly suspended from the center of the substrate. Absent. As a result, it is possible to form the wiring board workpiece so that the outer peripheral portion of the substrate is inclined (splashed up) while maintaining the flatness of the central portion of the substrate. Further, since the load transmitted to the wiring board workpiece by the reinforcing material has an in-plane distribution, an extreme step does not occur between the central part of the board and the outer peripheral part of the board, and the inner layer wiring is not damaged. Furthermore, since the reinforcing material and the wiring board work are joined while pressing the reinforcing material, the wiring board obtained even when the load of the reinforcing material is removed is difficult to return to the original shape.

一つの好適な態様において、上記した支持体は、面内方向において、補強材の通孔を形作る内周縁の全体を包含する広口の通孔を有して基板中央部の全体が臨む空間を第二主面上に形成する枠形態の板状体とすることができる。そして、配線基板ワークと補強材とを接合する工程においては、基板外周部を支持体で支持しつつ補強材を押圧し、基板中央部を支持体の通孔内に沈み込ませるようにして、配線基板ワークを支持体の方向に付勢することができる。支持体を枠形態の板状体とすることにより、基板中央部の第二主面側に形成する空間の広さを容易に調整できるとともに、配線基板ワークの局所的な変形を防ぐことができる。   In one preferred embodiment, the support described above has a wide-mouthed through hole including the entire inner peripheral edge forming the through hole of the reinforcing material in the in-plane direction, and a space that the entire central portion of the substrate faces is provided. It can be set as the plate-shaped body of the frame form formed on two main surfaces. And, in the step of joining the wiring board workpiece and the reinforcing material, the reinforcing material is pressed while supporting the outer peripheral portion of the substrate with the support, and the central portion of the substrate is submerged in the through hole of the supporting body. The wiring board workpiece can be biased in the direction of the support. By making the support body a frame-shaped plate-like body, the size of the space formed on the second main surface side of the central portion of the substrate can be easily adjusted, and local deformation of the wiring board workpiece can be prevented. .

より具体的には、補強材は方形状の通孔を有する枠形態とする一方、支持体は補強材の通孔の対角線よりも大きい直径の円形の通孔を有する枠形態とすることができる。そして、面内方向において、補強材の通孔を形作る内周縁の全体が支持体の通孔を形作る内周縁の内側に収まる相対位置関係となるように、補強材と、配線基板ワークと、支持体とを厚さ方向にこの順番で並べる工程を行なう。このようにすれば、補強材を押圧したときに、該補強材の内周縁に荷重が集中しやすいため、基板中央部を支持体の開口内に沈み込ませることができる。また、面内方向において、支持体の通孔は補強材の通孔の全体を包含する大きさとしているので、補強材の内周縁の全体に均一に荷重が懸かるようになり、配線基板ワークの局所的な変形を防ぐことができる。   More specifically, the reinforcing material may be in the form of a frame having a rectangular through hole, while the support may be in the form of a frame having a circular through hole having a diameter larger than the diagonal of the through hole of the reinforcing material. . Then, in the in-plane direction, the reinforcing material, the wiring board work, and the support are arranged so that the entire inner peripheral edge forming the through hole of the reinforcing material is in a relative positional relationship within the inner peripheral edge forming the through hole of the support. The process of arranging the body in the thickness direction in this order is performed. In this way, when the reinforcing material is pressed, the load tends to concentrate on the inner peripheral edge of the reinforcing material, so that the central portion of the substrate can be submerged in the opening of the support. In addition, in the in-plane direction, the through hole of the support body is sized to encompass the entire through hole of the reinforcing material, so that a load is uniformly applied to the entire inner peripheral edge of the reinforcing material. Local deformation can be prevented.

また、配線基板ワークと補強材とを接合する工程は、補強材と、配線基板ワークと、支持体とによる積層体を、配線基板ワークの端子の表面に配置した半田、または端子を構成する半田の融点よりも低く、かつ接着剤が硬化する温度で加熱しながら行なうことができる。このようにすれば、補強材を押圧しつつ、該補強材と配線基板ワークとを容易に接合することができる。   In addition, the step of joining the wiring board workpiece and the reinforcing material is performed by soldering a laminated body of the reinforcing material, the wiring board workpiece, and the support on the surface of the terminal of the wiring board workpiece, or solder constituting the terminal. It can be carried out while heating at a temperature lower than the melting point of the adhesive and the adhesive is cured. If it does in this way, this reinforcing material and a wiring board work can be joined easily, pressing a reinforcing material.

また、少なくとも一部の壁が可撓膜で形成された真空チャンバ内に、補強材と、配線基板ワークと、支持体とを厚さ方向にこの順番で並べた板状の積層体を、補強材が可撓膜に向かい合う姿勢で形成することができる。そして、配線基板ワークを支持体で支持した状態で真空チャンバ内を排気し、可撓膜を撓ませて大気圧で補強材を押圧することにより、補強材と基板外周部との面接触状態を維持しつつ、基板中央部を支持体の通孔内に沈み込ませるようにして、配線基板ワークを第二主面側に付勢する。このようにすれば、真空チャンバ内を排気したとき、可撓膜によって補強材を面で押圧することができる。このとき、補強材は枠形態を有するので、通孔内に可撓膜が垂れ下がるような形となる。すると、補強材の内周縁に荷重が集中するので、補強材とともに基板外周部に内向きの倒れを生じさせることができる。   In addition, in a vacuum chamber in which at least a part of the wall is formed of a flexible film, a plate-like laminate in which a reinforcing material, a wiring board workpiece, and a support are arranged in this order in the thickness direction is reinforced. The material can be formed so as to face the flexible film. Then, the inside of the vacuum chamber is evacuated in a state where the wiring board work is supported by the support body, and the surface contact state between the reinforcing material and the substrate outer peripheral portion is obtained by bending the flexible film and pressing the reinforcing material at atmospheric pressure. While maintaining, the circuit board work is urged toward the second main surface so as to sink the central portion of the substrate into the through hole of the support. If it does in this way, when the inside of a vacuum chamber is exhausted, a reinforcing material can be pressed on a surface by a flexible membrane. At this time, since the reinforcing material has a frame shape, the flexible film hangs in the through hole. Then, since the load concentrates on the inner peripheral edge of the reinforcing material, it is possible to cause an inward tilt on the outer peripheral portion of the substrate together with the reinforcing material.

以下、添付の図面を参照しつつ本発明の実施形態について説明する。
図1は、本発明の配線基板の断面模式図である。配線基板100は、集積回路チップを実装する部分である基板中央部21と、その基板中央部21を取り囲む外側の部分である基板外周部23とから構成されている。配線基板100の第一主面100p側には、集積回路チップを実装するための半田バンプ11が金属端子パッド10(図2)に対応する形で、基板中央部21にのみ設けられている。半田バンプ11と金属端子パッド10は、集積回路チップに接続する端子を構成する。また、第二主面100q側には、マザーボード等の別基板と半田接続するために基板中央部21と基板外周部23との両方にわたってマトリクス状に複数の裏面端子パッド17が設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic sectional view of a wiring board according to the present invention. The wiring substrate 100 includes a substrate central portion 21 that is a portion on which an integrated circuit chip is mounted, and a substrate outer peripheral portion 23 that is an outer portion surrounding the substrate central portion 21. On the first main surface 100p side of the wiring substrate 100, solder bumps 11 for mounting the integrated circuit chip are provided only on the substrate central portion 21 so as to correspond to the metal terminal pads 10 (FIG. 2). The solder bump 11 and the metal terminal pad 10 constitute a terminal connected to the integrated circuit chip. In addition, on the second main surface 100q side, a plurality of back surface terminal pads 17 are provided in a matrix form over both the substrate center portion 21 and the substrate outer peripheral portion 23 for solder connection to another substrate such as a mother board.

図1に示すごとく、基板中央部21と基板外周部23とは、滑らかにつながった一体のものとして構成されているが、基板外周部23は基板中央部21から第一主面100p側へ斜めに傾いた形状をなしている。このような形状を持った配線基板100を用いると、半導体装置300を組立てる際に下記に示す有意な効果を得ることができる。図4に半導体装置の組立手順を示す。   As shown in FIG. 1, the substrate central portion 21 and the substrate outer peripheral portion 23 are configured as a single unit that is smoothly connected, but the substrate outer peripheral portion 23 is inclined from the substrate central portion 21 toward the first main surface 100 p side. The shape is inclined to When the wiring board 100 having such a shape is used, the following significant effects can be obtained when the semiconductor device 300 is assembled. FIG. 4 shows a procedure for assembling the semiconductor device.

図4に示すごとく、配線基板100の基板中央部21に集積回路チップ25を載置する。集積回路チップ25は、基板中央部21の半田バンプ11に接触している。この状態を保持しつつリフロー工程を行なう。リフロー工程では、半田バンプ11を構成する半田の融点よりも高い温度に配線基板100を加熱する。その後、集積回路チップ25と配線基板100との隙間にアンダーフィル材UFに充填して硬化させるキュア工程を行なう。アンダーフィル材UFは、熱硬化性樹脂、たとえばエポキシ系樹脂からなるものが一般的なので、キュア工程はアンダーフィル材UFを硬化させる熱処理工程である。キュア工程は、リフロー工程の温度よりも低い温度域で行なう。   As shown in FIG. 4, the integrated circuit chip 25 is mounted on the central portion 21 of the wiring substrate 100. The integrated circuit chip 25 is in contact with the solder bump 11 in the central portion 21 of the substrate. The reflow process is performed while maintaining this state. In the reflow process, the wiring board 100 is heated to a temperature higher than the melting point of the solder constituting the solder bump 11. Thereafter, a curing process is performed in which the gap between the integrated circuit chip 25 and the wiring substrate 100 is filled with the underfill material UF and cured. Since the underfill material UF is generally made of a thermosetting resin, for example, an epoxy resin, the curing process is a heat treatment process for curing the underfill material UF. The curing process is performed in a temperature range lower than the temperature of the reflow process.

上記のようにリフロー工程とキュア工程とを行なうことにより、配線基板100に集積回路チップ25を実装した半導体装置300が得られる。たとえば、集積回路チップ25がマルチコアプロセッサのようなサイズの大きいチップであり、配線基板100のサイズが大きい場合(たとえば□35mm以上)であっても、配線基板100を用いた半導体装置300は平坦性が良好である。なぜなら、配線基板100は集積回路チップ25を実装する以前に、図1に示すごとく第一主面100p側が凹となる反りを有しており、この反りによって図4のリフロー工程およびキュア工程時で発生する反りが相殺されるからである。しかも、予め反りがあるといっても基板中央部21の平坦性は失われていないので、集積回路チップ25の実装不良が発生する確率は小さい。   By performing the reflow process and the curing process as described above, the semiconductor device 300 in which the integrated circuit chip 25 is mounted on the wiring substrate 100 is obtained. For example, even if the integrated circuit chip 25 is a large chip such as a multi-core processor and the size of the wiring board 100 is large (for example, □ 35 mm or more), the semiconductor device 300 using the wiring board 100 is flat. Is good. This is because, before the integrated circuit chip 25 is mounted, the wiring substrate 100 has a warp in which the first main surface 100p side is concave as shown in FIG. 1, and this warp causes the reflow process and the cure process in FIG. This is because the warping that occurs is offset. In addition, even if there is a warp in advance, the flatness of the central portion 21 of the substrate is not lost, so the probability that a mounting failure of the integrated circuit chip 25 will occur is small.

これに対して従来の配線基板は、図15に示すように、集積回路チップ25を実装する以前の平坦性には確かに優れる。ところが、リフロー工程とキュア工程とを行なって得られる半導体装置500の状態では、配線基板90の平坦性が大きく失われている。このような反りを有した半導体装置500は、図16に示すごとく、配線基板90部分の裏面端子パッド17に半田ボール92を載せてマザーボードMBへの実装を試みた場合、配線基板90の部分とマザーボードMBとの間に大きな隙間SHが生じてしまう。このように大きな隙間SHがある状態でリフロー工程を行なうと、強度不足や導通不良などの実装不良の発生確率が高くなる。従来は、基板サイズが小さかったので(たとえば□35mm未満)、こうした隙間SHも比較的小さく実装不良という不具合に直結しにくかったが、基板サイズが大きくなるにつれて半導体装置500となった時点での反りの問題が表面化してくる。本発明の配線基板100は、そうした基板サイズの拡大に対して極めて有効であるといえる。もちろん、基板サイズが小さい場合でも効果がある。なお、本明細書で説明する配線基板100,200は、□50mmのサイズである。   On the other hand, the conventional wiring board is certainly excellent in flatness before the integrated circuit chip 25 is mounted, as shown in FIG. However, in the state of the semiconductor device 500 obtained by performing the reflow process and the curing process, the flatness of the wiring board 90 is greatly lost. As shown in FIG. 16, when the semiconductor device 500 having such a warp is mounted on the motherboard MB by placing the solder balls 92 on the back surface terminal pads 17 of the wiring board 90 portion, A large gap SH is generated between the motherboard MB. When the reflow process is performed in a state where there is such a large gap SH, the probability of occurrence of mounting defects such as insufficient strength and poor conduction increases. Conventionally, since the substrate size was small (for example, less than □ 35 mm), such a gap SH was also relatively small and was not directly connected to the problem of poor mounting, but warpage when the semiconductor device 500 was formed as the substrate size increased. The problem comes to the surface. The wiring board 100 of the present invention can be said to be extremely effective for such an increase in board size. Of course, it is effective even when the substrate size is small. Note that the wiring boards 100 and 200 described in this specification have a size of □ 50 mm.

また、リフロー工程およびキュア工程で生ずる反りが大きい場合、その反りを完全に相殺するに至らず結果的には第一主面100p側に凸となるが、これは反りの低減効果が最大限に発揮されたことを意味している。マザーボードMBへの実装不良が生じないレベルまで反りを低減できれば、リフロー工程およびキュア工程で生ずる反りを完全に相殺する必要性はないといえる。   In addition, when the warpage generated in the reflow process and the curing process is large, the warpage does not completely cancel out, and as a result, the first main surface 100p is convex, but this has the maximum effect of reducing warpage. It means that it was demonstrated. If the warpage can be reduced to a level at which mounting failure to the motherboard MB does not occur, it can be said that there is no need to completely cancel the warpage generated in the reflow process and the curing process.

また、図4においては、配線基板100に集積回路チップ25を直接実装するようにしているが、配線基板100と集積回路チップ25との間に中間基板を配置し、この中間基板を介して配線基板1に集積回路チップ25を実装するようにしてもよい。そのような中間基板は、絶縁材料としてセラミックを用いたものであり、配線基板100と集積回路チップ25の間の熱膨張係数を有して両者の熱膨張係数の相違を吸収する役割を担う。   In FIG. 4, the integrated circuit chip 25 is directly mounted on the wiring substrate 100. However, an intermediate substrate is disposed between the wiring substrate 100 and the integrated circuit chip 25, and wiring is performed via the intermediate substrate. The integrated circuit chip 25 may be mounted on the substrate 1. Such an intermediate substrate uses ceramic as an insulating material, has a thermal expansion coefficient between the wiring substrate 100 and the integrated circuit chip 25, and plays a role of absorbing the difference between the two.

次に、配線基板100の内部構造について説明する。
図2は図1の配線基板100の詳細な断面構造を示すものである。配線基板100は、耐熱性樹脂板(たとえばビスマレイミド−トリアジン樹脂板)や、繊維強化樹脂板(たとえばガラス繊維強化エポキシ樹脂)等で構成された板状コア2の両表面に、所定のパターンにコア導体層M1,M11がそれぞれ形成される。これらコア導体層M1,M11は板状コア2の表面の大部分を被覆する面導体パターンとして形成され、電源層またはグランド層として用いられるものである。他方、板状コア2には、ドリル等により穿設されたスルーホール12が形成され、その内壁面にはコア導体層M1,M11を互いに導通させるスルーホール導体30が形成されている。また、スルーホール12は、エポキシ樹脂等の樹脂製穴埋め材31により充填されている。
Next, the internal structure of the wiring board 100 will be described.
FIG. 2 shows a detailed cross-sectional structure of the wiring board 100 of FIG. The wiring substrate 100 has a predetermined pattern on both surfaces of the plate-like core 2 made of a heat-resistant resin plate (for example, bismaleimide-triazine resin plate), a fiber reinforced resin plate (for example, glass fiber reinforced epoxy resin), or the like. Core conductor layers M1 and M11 are formed, respectively. These core conductor layers M1 and M11 are formed as a plane conductor pattern that covers most of the surface of the plate-like core 2, and are used as a power supply layer or a ground layer. On the other hand, a through-hole 12 drilled by a drill or the like is formed in the plate-like core 2, and a through-hole conductor 30 that connects the core conductor layers M 1 and M 11 to each other is formed on the inner wall surface thereof. The through hole 12 is filled with a resin filling material 31 such as an epoxy resin.

また、コア導体層M1,M11の上層には、熱硬化性樹脂組成物6にて構成された誘電体層V1,V11がそれぞれ形成されている。さらに、その表面にはそれぞれ金属端子パッド10,17を有する導体層M2,M12がCuメッキにより形成されている。なお、コア導体層M1,M11と導体層M2,M12とは、それぞれビア34により層間接続がなされている。ビア34は、ビアホール34hとそのビアホール34hに充填されたビア導体34sとを有している。   Moreover, dielectric layers V1 and V11 made of the thermosetting resin composition 6 are formed on the core conductor layers M1 and M11, respectively. Further, conductor layers M2 and M12 having metal terminal pads 10 and 17 are formed on the surface by Cu plating. The core conductor layers M1, M11 and the conductor layers M2, M12 are interconnected by vias 34, respectively. The via 34 has a via hole 34h and a via conductor 34s filled in the via hole 34h.

板状コア2の第一主表面MP1上においては、コア導体層M1、誘電体層V1および導体層M2が第一配線積層部L1を形成している。また、板状コア2の第二主表面MP2上においては、コア導体層M11、誘電体層V11および導体層M12が第二配線積層部L2を形成している。いずれも、誘電体層と導体層とが交互に積層されたものであり、誘電体層V1,V11上には複数の金属端子パッド10,17がそれぞれ形成されている。第一配線積層部L1側の金属端子パッド10は、集積回路チップを直接または中間基板を介してフリップチップ接続するための端子パッドであり、半田バンプ11を載置する半田ランドを構成している。また、第二配線積層部L2側の金属端子パッド17は、配線基板100自体をマザーボード等の別基板に、ピングリッドアレイ(PGA)あるいはボールグリッドアレイ(BGA)により接続するための裏面端子パッドである。   On the first main surface MP1 of the plate-like core 2, the core conductor layer M1, the dielectric layer V1, and the conductor layer M2 form the first wiring laminated portion L1. On the second main surface MP2 of the plate-like core 2, the core conductor layer M11, the dielectric layer V11, and the conductor layer M12 form the second wiring laminated portion L2. In either case, dielectric layers and conductor layers are alternately laminated, and a plurality of metal terminal pads 10 and 17 are formed on the dielectric layers V1 and V11, respectively. The metal terminal pad 10 on the first wiring laminated portion L1 side is a terminal pad for flip chip connection of the integrated circuit chip directly or via an intermediate substrate, and constitutes a solder land on which the solder bump 11 is placed. . The metal terminal pad 17 on the second wiring laminated portion L2 side is a back surface terminal pad for connecting the wiring board 100 itself to another board such as a mother board by a pin grid array (PGA) or a ball grid array (BGA). is there.

図3(a)に示すように、第一主面100p側の端子パッド10は、配線基板100の中央部分である基板中央部21に格子状に配列し、各々その上に形成された半田バンプ11とともにチップ搭載部4を形成している。また、図3(b)に示すように、第二主面100q側の裏面端子パッド17も、格子状に配列形成されている。各導体層M2,M12上には、それぞれ、熱硬化性樹脂組成物または感光性樹脂組成物よりなるソルダーレジスト8,18が配置されている。ソルダーレジスト8,18には、金属端子パッド10,17を露出させるために、各金属端子パッド10,17に一対一に対応する形で開口8a,18aが形成されている。第一配線積層部L1側に設けられた半田バンプ11は、Sn−Pb半田もしくはSn−Ag、Sn−Cu、Sn−Ag−Cu、Sn−Sbなど実質的にPbを含有しない半田にて構成することができる。   As shown in FIG. 3A, the terminal pads 10 on the first main surface 100p side are arranged in a grid pattern in the substrate central portion 21 which is the central portion of the wiring substrate 100, and solder bumps formed thereon, respectively. 11 and the chip mounting portion 4 are formed. Further, as shown in FIG. 3B, the back surface terminal pads 17 on the second main surface 100q side are also arranged in a grid pattern. Solder resists 8 and 18 made of a thermosetting resin composition or a photosensitive resin composition are disposed on the conductor layers M2 and M12, respectively. In the solder resists 8 and 18, openings 8 a and 18 a are formed so as to correspond to the metal terminal pads 10 and 17 on a one-to-one basis in order to expose the metal terminal pads 10 and 17. The solder bump 11 provided on the first wiring laminated portion L1 side is composed of Sn—Pb solder or solder that does not substantially contain Pb, such as Sn—Ag, Sn—Cu, Sn—Ag—Cu, or Sn—Sb. can do.

次に、配線基板100の製造方法について説明する。
配線基板100は、公知のビルドアップ法等により、板状コア2の両主表面MP1,MP2に、配線積層部L1,L2をそれぞれ形成することにより製造することができる。誘電体層V1,V11は、たとえば以下のようにして形成される。すなわち、熱硬化樹脂組成物ワニスをフィルム化した熱硬化接着フィルムをラミネートし、ビアホール34hに対応したパターンを有する透明マスク(たとえばガラスマスク)を重ねて露光する。ビアホール34h以外のフィルム部分は、この露光により硬化する一方、ビアホール34h部分は未硬化のまま残留するので、これを溶剤に溶かして除去すれば、所期のパターンにてビアホール34hを簡単に形成することができる(いわゆるフォトビアプロセス)。なお、フォトビアプロセスの代わりにレーザによりビアホール34hを形成するレーザビアプロセスを採用することもできる。
Next, a method for manufacturing the wiring board 100 will be described.
The wiring board 100 can be manufactured by forming the wiring laminated portions L1 and L2 on the main surfaces MP1 and MP2 of the plate-like core 2 by a known buildup method or the like. Dielectric layers V1 and V11 are formed as follows, for example. That is, a thermosetting adhesive film obtained by forming a thermosetting resin composition varnish into a film is laminated, and a transparent mask (for example, a glass mask) having a pattern corresponding to the via hole 34h is overlaid and exposed. The film portions other than the via hole 34h are cured by this exposure, while the via hole 34h portion remains uncured, so that the via hole 34h can be easily formed in an intended pattern by removing it by dissolving it in a solvent. (So-called photovia process). Note that a laser via process in which the via hole 34h is formed by a laser may be employed instead of the photo via process.

各導体層M1,M2,M11,M12は、フォトリソグラフィー技術を用いたパターンCuメッキにより形成することができる。そして、一方の主面側の導体層M2と、他方の主面側の導体層M12まで形成したのち、ソルダーレジスト8,18で導体層M2,M12を被覆するとともに、金属端子パッド10,17の形成位置に開口8a,18aを形成する。そして、金属端子パッド10,17の表面にNi/Auメッキを施し、ソルダーレジスト8の開口8aに半田ペーストを充填する。こうして、集積回路チップを搭載する側の金属端子パッド10の上に半田バンプ11を形成する。   Each of the conductor layers M1, M2, M11, and M12 can be formed by pattern Cu plating using a photolithography technique. Then, after forming the conductor layer M2 on one main surface side and the conductor layer M12 on the other main surface side, the conductor layers M2 and M12 are covered with the solder resists 8 and 18, and the metal terminal pads 10 and 17 are covered. Openings 8a and 18a are formed at the formation positions. Then, Ni / Au plating is performed on the surfaces of the metal terminal pads 10 and 17, and the solder paste is filled in the openings 8 a of the solder resist 8. Thus, the solder bumps 11 are formed on the metal terminal pads 10 on the side where the integrated circuit chip is mounted.

上記のようにして半田バンプ11まで作りこんだ配線基板ワークに対し、次のような成形工程を行なうことにより、図1の配線基板100を得ることができる。図5〜図8は、その成形工程を具体的に説明している。まず、図5に示すごとく、第一支持体27、配線基板ワーク100wおよび第二支持体29をこの順番で重ね合わせて積層体40Aとする。第一支持体27は、配線基板ワーク100wと略同一の大きさの外形を持つ板状体であり、第一主面100p側から配線基板ワーク100wの基板外周部23に重ね合わせたとき、基板中央部21に配列する半田バンプ11(端子パッド10を含む)には接触せずに露出させるための通孔27hを厚さ方向に有した枠形態をなす。通孔27hは、集積回路チップの形に合わせて正方形状を有している。第一支持体27に使用する素材としては、樹脂、金属、セラミックもしくはこれらの複合素材など、特に問われるものではない。ただし、適度な剛性を持っていることが配線基板ワーク100wを成形する上で望ましいので、配線基板ワーク100wと同程度の厚さを持った金属板(Cu板やSUS板)を配線基板ワーク100wと同形状に切断して通孔27tを設けたものを、第一支持体27として用いるとよい。   The wiring board 100 shown in FIG. 1 can be obtained by performing the following forming process on the wiring board workpiece formed up to the solder bumps 11 as described above. 5 to 8 specifically illustrate the molding process. First, as shown in FIG. 5, the first support 27, the wiring board workpiece 100w, and the second support 29 are overlapped in this order to form a laminated body 40A. The first support 27 is a plate-like body having an outer shape substantially the same size as the wiring board workpiece 100w. When the first supporting body 27 is superimposed on the board outer peripheral portion 23 of the wiring board workpiece 100w from the first main surface 100p side, The solder bumps 11 (including the terminal pads 10) arranged in the central portion 21 are in the form of a frame having through holes 27h in the thickness direction for exposure without contact. The through hole 27h has a square shape according to the shape of the integrated circuit chip. The material used for the first support 27 is not particularly limited, such as resin, metal, ceramic, or a composite material thereof. However, since it is desirable that the wiring board workpiece 100w is formed with an appropriate rigidity, a metal plate (Cu plate or SUS board) having a thickness similar to that of the wiring board workpiece 100w is used as the wiring board workpiece 100w. What is cut in the same shape as that and provided with a through hole 27t may be used as the first support 27.

一方、第二支持体29は、第一支持体27と同様に配線基板ワーク100wと略同一の大きさの外形を持つ板状体であり、第二主面100q側から配線基板ワーク100wの基板外周部23に重ね合わせたとき、基板中央部21の真下が空間となるように円形の通孔29hを有した枠形態をなす。第二支持体29に使用する素材としては、樹脂、金属、セラミックもしくはこれらの複合素材など、特に問われるものではない。ただし、配線基板ワーク100qの裏面端子パッド17にコンタミが付着したりすることを防止する観点から、ポリエチレンテレフタラート、ポリプロピレン、ポリエチレンなどの樹脂シートの使用が望ましい。なお、通常こうした樹脂シートは薄いので(数十μm)、複数枚を重ね合わせたものを第二支持体29として使用するとよい。また、第二支持体29の厚さは、配線基板ワーク100wよりも小さくすることができ、成形により付与したい反りに応じて調節するとよい。また、第二支持体29の通孔29tは、円形に限定されるわけではなく、たとえば方形(正方形)や楕円形としてもよい。   On the other hand, the second support body 29 is a plate-like body having an outer shape substantially the same size as the wiring board workpiece 100w, similar to the first support body 27, and the substrate of the wiring board workpiece 100w from the second main surface 100q side. When superposed on the outer peripheral portion 23, a frame shape having a circular through hole 29h is formed so that a space is directly below the central portion 21 of the substrate. The material used for the second support 29 is not particularly limited, such as resin, metal, ceramic, or a composite material thereof. However, it is desirable to use a resin sheet such as polyethylene terephthalate, polypropylene, or polyethylene from the viewpoint of preventing contamination from adhering to the back surface terminal pad 17 of the wiring board workpiece 100q. Since such a resin sheet is usually thin (several tens of μm), it is preferable to use a laminate of a plurality of sheets as the second support 29. Further, the thickness of the second support 29 can be made smaller than that of the wiring board workpiece 100w, and may be adjusted according to the warp desired to be imparted by molding. Further, the through hole 29t of the second support 29 is not limited to a circle, and may be, for example, a square (square) or an ellipse.

図5の斜視図から分かるように、第二支持体29の通孔29hの直径は第一支持体27の通孔27hの対角線の長さよりも大である。したがって、図6の投影図に示すように、積層体40Aの面内方向において、第一支持体27の通孔27hを形作る内周縁27tは、第二支持体29の通孔29hを形作る内周縁29tの内側に、その全体が収まる。また、第二主面100q側において配線基板ワーク100wが臨む空間は、第一主面100p側において臨む空間よりも面内方向に広い。こうした関係となるような第一支持体27と第二支持体29とを用いることにより、図7に示すようにして配線基板ワーク100wを成形することができる。   As can be seen from the perspective view of FIG. 5, the diameter of the through hole 29 h of the second support 29 is larger than the length of the diagonal line of the through hole 27 h of the first support 27. Therefore, as shown in the projection view of FIG. 6, in the in-plane direction of the stacked body 40A, the inner peripheral edge 27t that forms the through hole 27h of the first support 27 is the inner peripheral edge that forms the through hole 29h of the second support 29. The whole fits inside 29t. Further, the space that the wiring board workpiece 100w faces on the second main surface 100q side is wider in the in-plane direction than the space that faces the first main surface 100p side. By using the first support body 27 and the second support body 29 that have such a relationship, the wiring board workpiece 100w can be formed as shown in FIG.

図7は積層体40Aに荷重をかけて配線基板ワーク100wを成形する様子を示す説明図である。具体的には、配線基板ワーク100wの基板外周部23を第二支持体29で支持しつつ、配線基板ワーク100wに接する側とは反対側から第一支持体27に荷重をかけて配線基板ワーク100wを第二支持体29に向けて付勢する。第一支持体27に対しては、面全体に一定以上の荷重をかけることが望ましい。配線基板ワーク100wを挟んだ内周部分271の反対側は空間になっているので、外側の抑えを効かせつつも内周部分271に荷重を集中して懸けるようにすると、図中に破線で示すごとく、第二支持体29の通孔29h内に基板中央部21が徐々に沈み込むような形となり、これにより配線基板ワーク100wが成形される。ただし、半田バンプ11が形成されている基板中央部21には荷重が直に懸かっていないので、基板中央部21の平坦性は維持される。また、基板外周部23についても、基板中央部21に近い部分にはやや大きい力が加わるものの、基板中央部21から遠い部分の抑えも効いているので、極端な変形を起こして段差ができるといった問題は生じない。本実施形態に示す方法は、そういった点にも配慮がなされている。   FIG. 7 is an explanatory view showing a state in which the wiring board workpiece 100w is formed by applying a load to the laminate 40A. Specifically, while the substrate outer peripheral portion 23 of the wiring board workpiece 100w is supported by the second support 29, a load is applied to the first supporting body 27 from the side opposite to the side in contact with the wiring board workpiece 100w. 100 w is urged toward the second support 29. It is desirable to apply a certain load or more to the entire surface of the first support 27. Since the opposite side of the inner peripheral portion 271 across the wiring board workpiece 100w is a space, if the load is concentrated and hung on the inner peripheral portion 271 while suppressing the outer side, a broken line is shown in the figure. As shown, the substrate central portion 21 gradually sinks into the through hole 29h of the second support 29, thereby forming the wiring substrate workpiece 100w. However, since the load is not directly applied to the substrate central portion 21 where the solder bumps 11 are formed, the flatness of the substrate central portion 21 is maintained. Further, the substrate outer peripheral portion 23 also has a slightly large force applied to a portion close to the substrate central portion 21, but is also effective in suppressing a portion far from the substrate central portion 21, thereby causing a step by causing extreme deformation. There is no problem. In the method shown in the present embodiment, such points are also taken into consideration.

図8は、基板製造装置41(基板成形装置)を用いて配線基板ワーク100wを成形する様子を断面図にて示すものである。この基板製造装置41によれば、図7中に矢印で示した荷重分布を第一支持体27に容易に付与することができるので、高効率かつ高精度にて配線基板ワーク100wを成形することが可能である。そのような基板製造装置41は、真空チャンバ44と、積層体40Aを真空チャンバ44内で固定するための固定具47と、図示しないアスピレータまたは真空ポンプとを備えている。   FIG. 8 is a cross-sectional view showing how the wiring board workpiece 100w is molded using the board manufacturing apparatus 41 (board forming apparatus). According to this board manufacturing apparatus 41, the load distribution indicated by the arrow in FIG. 7 can be easily applied to the first support 27, so that the wiring board workpiece 100w can be formed with high efficiency and high accuracy. Is possible. Such a substrate manufacturing apparatus 41 includes a vacuum chamber 44, a fixture 47 for fixing the stacked body 40A in the vacuum chamber 44, and an aspirator or a vacuum pump (not shown).

真空チャンバ44は、固定具47の所定位置に積層体40Aを配置した場合に、積層体40Aの第一支持体27が向かい合う壁部分を可撓膜43で構成し、残りを金属壁45で構成したものである。可撓膜43はゴム弾性を有する樹脂、たとえばシリコンゴムからなる。固定具47は積層体40Aを取り囲み、第一支持体27、配線基板ワーク100wおよび第二支持体29が成形工程の最中に面内にずれることを阻止する部品である。また、積層体40Aと可撓膜43との間に、金属薄板49を配置するようにしている。   In the vacuum chamber 44, when the laminated body 40 </ b> A is disposed at a predetermined position of the fixture 47, the wall portion of the laminated body 40 </ b> A facing the first support 27 is constituted by the flexible film 43 and the rest is constituted by the metal wall 45. It is a thing. The flexible film 43 is made of a resin having rubber elasticity, for example, silicon rubber. The fixing tool 47 surrounds the laminated body 40A, and is a component that prevents the first support 27, the wiring board workpiece 100w, and the second support 29 from shifting in-plane during the molding process. In addition, a thin metal plate 49 is disposed between the laminate 40A and the flexible film 43.

まず、図8の上段図のごとく、積層体40Aを固定具47の内側の所定位置にセットする。固定具47が積層体40Aよりもやや低背であるため、第一支持体27が固定具47から少し上に食み出るが、面内方向にずれることが無いように固定具47の高さ調整がなされている。積層体40Aの上には金属薄板49を載置する。次に、真空チャンバ44内を排気する。真空チャンバ44内を減圧するにつれて、図8の中段図のごとく可撓膜43が大気圧に押されて撓み、金属薄板49に密着する。第一支持体27は、金属薄板49を介して可撓膜43からの押圧力を受け、配線基板ワーク100wを第二支持体29に向けて付勢する。配線基板ワーク100wの基板外周部23は第二支持体29に支えられているが、基板中央部21の真下は第二支持体29の通孔29hによる空間になっている。   First, as shown in the upper diagram of FIG. 8, the stacked body 40 </ b> A is set at a predetermined position inside the fixture 47. Since the fixture 47 has a slightly lower height than the laminated body 40A, the first support 27 protrudes slightly from the fixture 47, but the height of the fixture 47 does not shift in the in-plane direction. Adjustments have been made. A thin metal plate 49 is placed on the stacked body 40A. Next, the inside of the vacuum chamber 44 is evacuated. As the inside of the vacuum chamber 44 is depressurized, the flexible film 43 is pressed by the atmospheric pressure and bent as shown in the middle diagram of FIG. The first support 27 receives a pressing force from the flexible film 43 through the thin metal plate 49 and biases the wiring board workpiece 100 w toward the second support 29. The substrate outer peripheral portion 23 of the wiring board workpiece 100 w is supported by the second support 29, but a space just below the substrate center portion 21 is a space formed by the through hole 29 h of the second support 29.

上記のようにして真空チャンバ44内を排気したとき、金属薄板49は若干撓んで第一支持体27の通孔27h内に入るものの、配線基板ワーク100wに直接接するには至らない。つまり、可撓膜43が配線基板ワーク100wに直接接して押圧することを金属薄板49によって阻止している。このようにすると、可撓膜43からの荷重が第一支持体27の内周部分271に集中しやすい。結果として、基板外周部23,23に内向きの倒れ(傾き)が徐々に生じるとともに、第二支持体29の通孔29h内に基板中央部21が平坦性を維持したまま徐々に沈み込むような形で配線基板ワーク100wが成形され、図1の配線基板100が得られる。こうした作用については図7で説明した通りである。また、半田バンプ11に可撓膜43および金属薄板49が接触しない構成とすることにより、半田バンプ11へのコンタミ付着や半田バンプ11(通常は頂面が平らになるように予め成形してある)の変形を防ぐことにもなり一石二鳥である。   When the vacuum chamber 44 is evacuated as described above, the metal thin plate 49 is slightly bent and enters the through hole 27h of the first support 27, but does not come into direct contact with the wiring board workpiece 100w. That is, the metal thin plate 49 prevents the flexible film 43 from directly contacting and pressing the wiring board workpiece 100w. In this way, the load from the flexible film 43 tends to concentrate on the inner peripheral portion 271 of the first support 27. As a result, inward tilts (tilts) gradually occur in the substrate outer peripheral portions 23 and 23, and the substrate central portion 21 gradually sinks into the through holes 29h of the second support 29 while maintaining flatness. The wiring board workpiece 100w is formed in a desired shape, and the wiring board 100 of FIG. 1 is obtained. Such an action is as described in FIG. Further, by adopting a configuration in which the flexible film 43 and the metal thin plate 49 are not in contact with the solder bump 11, contamination adheres to the solder bump 11 and the solder bump 11 (usually shaped so that the top surface is flattened). ) Is also a bird with two stones.

また、図8の成形工程は、赤外線ヒータ51,51によって積層体40Aを加熱しながら行なうことができる。このようにすれば、得られる配線基板100の残留応力を低減することができる。図8の中段図に示す赤外線ヒータ51は真空チャンバ44内に配置してあってもよい。積層体40Aの加熱は、配線基板ワーク100wの半田バンプ11を構成する半田の融点よりも低い温度域で行なう。   8 can be performed while heating the stacked body 40A by the infrared heaters 51 and 51. In this way, the residual stress of the obtained wiring board 100 can be reduced. The infrared heater 51 shown in the middle diagram of FIG. 8 may be disposed in the vacuum chamber 44. The laminated body 40A is heated in a temperature range lower than the melting point of the solder constituting the solder bump 11 of the wiring board workpiece 100w.

次に、第一支持体、配線基板ワークおよび第二支持体を重ね合わせた積層体の変形例について説明する。図9は積層体の他の一つの例を上面図で説明している。図9に示すごとく、積層体40Bは配線基板ワーク100wの第二主面100q側の四隅に、シート状の第二支持体35を配置したものである。第一支持体27と配線基板ワーク100wについては先の実施形態と同一のものである。先の実施形態の第二支持体29は円形の通孔29hを有した枠形態であったが、図9の第二支持体35のように一定の厚さを有して基板外周部23を支持できるものであればよい。このことから、第二支持体に通孔が必須でないことが分かる。ただし、図7で説明した作用が得られるように、基板中央部21の第二主面100q上(基板中央部21の真下)は空間であることが必要である。また、これら第二支持体35,35を基板製造装置41の一部品として予め真空チャンバ44内に予め配置しておき、真空チャンバ44内で積層体40Cを準備するようにしてもよい。   Next, a modified example of the laminated body in which the first support, the wiring board workpiece, and the second support are overlapped will be described. FIG. 9 illustrates another example of the laminate in a top view. As shown in FIG. 9, the laminated body 40B is configured by disposing sheet-like second supports 35 at the four corners on the second main surface 100q side of the wiring board workpiece 100w. The first support 27 and the wiring board workpiece 100w are the same as those in the previous embodiment. The second support 29 in the previous embodiment was in the form of a frame having a circular through hole 29h. However, like the second support 35 in FIG. Anything that can be supported is acceptable. From this, it can be seen that a through hole is not essential in the second support. However, in order to obtain the operation described with reference to FIG. 7, the second main surface 100q of the substrate central portion 21 (just below the substrate central portion 21) needs to be a space. Alternatively, the second supports 35 and 35 may be arranged in advance in the vacuum chamber 44 as a part of the substrate manufacturing apparatus 41, and the stacked body 40 </ b> C may be prepared in the vacuum chamber 44.

図10は、積層体の他の一つの例を断面図で説明している。先の実施形態において、第二支持体29が樹脂シートを複数枚重ね合わせたものであることを説明したが、図10に示す積層体40Cの第二支持体36は、そのように複数枚重ね合わせた個々の樹脂シートの通孔の大きさ(直径)を互いに異ならせたものである。具体的に、第二支持体36は、三枚の樹脂シート37,38,39からなる。配線基板ワーク100wに接する樹脂シートである第一樹脂シート37による通孔37hと、配線基板ワーク100wから最も遠くに位置する樹脂シートである第二樹脂シート39による通孔39hと、両者の間に位置する第三樹脂シート38による通孔38hとは、互いに同心であるが、配線基板ワーク100wから厚さ方向に遠ざかるにつれて段階的に縮径している。この結果、第二支持体36は、全体として段付きの擂り鉢形状を呈する。第二支持体36がこのような擂り鉢状になっていると、段差ごとに基板外周部23を支持しつつ配線基板ワーク100wを成形することになるから、過度な成形による段差発生を抑制する効果や基板内部の配線へのダメージを防ぐ効果が期待できる。   FIG. 10 illustrates another example of the laminated body in a cross-sectional view. In the previous embodiment, it has been described that the second support 29 is a laminate of a plurality of resin sheets. However, the second support 36 of the laminate 40C shown in FIG. The sizes (diameters) of the through holes of the combined individual resin sheets are different from each other. Specifically, the second support 36 includes three resin sheets 37, 38, and 39. Between the through hole 37h formed by the first resin sheet 37 which is a resin sheet in contact with the wiring board workpiece 100w, and the through hole 39h formed by the second resin sheet 39 which is the resin sheet located farthest from the wiring board workpiece 100w. The through holes 38h formed by the third resin sheet 38 that are positioned are concentric with each other, but the diameter gradually decreases as the distance from the wiring board workpiece 100w increases in the thickness direction. As a result, the second support 36 has a stepped bowl shape as a whole. When the second support body 36 has such a bowl shape, the wiring board workpiece 100w is formed while supporting the substrate outer peripheral portion 23 for each step, so that generation of a step due to excessive forming is suppressed. The effect and the effect which prevents the damage to the wiring inside a board | substrate can be anticipated.

(第二実施形態)
図11は本発明の第二実施形態にかかる配線基板の断面図であり、図12は図11の配線基板の上面図である。配線基板200は、配線基板本体100と、配線基板本体100の第一主面100pに接合された補強材61とを備える。配線基板本体100は、先の実施形態で説明した配線基板100そのものであるが、本実施形態では補強材61を含めて配線基板200であると考えるため、あえて“本体”という。また、先の実施形態の説明は、大部分が本実施形態に援用できる。
(Second embodiment)
FIG. 11 is a cross-sectional view of a wiring board according to the second embodiment of the present invention, and FIG. 12 is a top view of the wiring board of FIG. The wiring board 200 includes a wiring board body 100 and a reinforcing member 61 bonded to the first main surface 100p of the wiring board body 100. The wiring board main body 100 is the wiring board 100 itself described in the previous embodiment, but in the present embodiment, the wiring board main body 100 is considered to be the wiring board 200 including the reinforcing member 61, and hence is referred to as a “main body”. In addition, most of the description of the previous embodiment can be incorporated into this embodiment.

図11に示すごとく、配線基板200の第一主面100p側には、集積回路チップを実装するための半田バンプ11が金属端子パッド10(図2)に対応する形で、基板中央部21にのみ設けられている。そして、その半田バンプ11を取り囲むようにして補強材61が配置されており、基板外周部23が補強材61とともに基板中央部21から第一主面100p側へ斜めに傾いた形状をなしている。補強材61は、配線基板本体100に一致する外形を持った板状体であり、半田バンプ11の形成されている基板中央部21を第一主面100p側に露出させる通孔61hを有した枠形態をなしている。補強材61の素材としては金属を使用できる。たとえば、Cu、SUS、コバールおよび42アロイのグループから選択される一種の金属を使用できる。特に、Cuは、経済性や配線基板200の放熱性という観点から推奨できる。   As shown in FIG. 11, on the first main surface 100p side of the wiring board 200, solder bumps 11 for mounting an integrated circuit chip are formed on the substrate central portion 21 so as to correspond to the metal terminal pads 10 (FIG. 2). Only provided. The reinforcing member 61 is disposed so as to surround the solder bump 11, and the substrate outer peripheral portion 23 forms an inclined shape with the reinforcing member 61 from the substrate central portion 21 to the first main surface 100 p side. . The reinforcing member 61 is a plate-like body having an outer shape that matches the wiring board main body 100, and has a through hole 61h that exposes the substrate central portion 21 on which the solder bumps 11 are formed on the first main surface 100p side. It has a frame shape. A metal can be used as the material of the reinforcing member 61. For example, a kind of metal selected from the group of Cu, SUS, Kovar and 42 alloy can be used. In particular, Cu can be recommended from the viewpoints of economy and heat dissipation of the wiring board 200.

図11に示すごとく、補強材61は基板外周部23とともに第一主面100p側へ傾いた形状をなしている。このような形状となっている場合、図13に示すごとく、基板中央部21に集積回路チップ25を実装してリフロー工程およびキュア工程を行なうことにより得られる半導体装置400の平坦性を改善することができる。理由は先にも説明したように、リフロー工程時およびキュア工程時において、反りを反りで相殺する作用が働くからである。また、本実施形態の配線基板200によれば、配線基板本体100の基板外周部23に補強材61を接合しているので配線基板200全体としてのスティフネスは配線基板本体100単独よりも高い。半導体装置400となったときの平坦性の改善を図る観点において、補強材61を設けた方が有利である。   As shown in FIG. 11, the reinforcing member 61 has a shape inclined to the first main surface 100 p side together with the substrate outer peripheral portion 23. In the case of such a shape, as shown in FIG. 13, the flatness of the semiconductor device 400 obtained by mounting the integrated circuit chip 25 on the substrate central portion 21 and performing the reflow process and the curing process is improved. Can do. The reason is that, as described above, the action of canceling the warp with the warp works during the reflow process and the cure process. Moreover, according to the wiring board 200 of this embodiment, since the reinforcing material 61 is joined to the board outer peripheral portion 23 of the wiring board body 100, the stiffness of the wiring board 200 as a whole is higher than that of the wiring board body 100 alone. From the viewpoint of improving the flatness of the semiconductor device 400, it is advantageous to provide the reinforcing member 61.

次に、図11の配線基板200の製造方法について説明する。
基本的には、先の実施形態における第一支持体27が補強材61に置き換わったと考えればよい。まず、図5に示すごとく、補強材61と、配線基板ワーク100wと、支持体29とを厚さ方向にこの順番で並べて積層体40Dを得る。配線基板ワーク100wは、配線基板本体100となるべき部分である。支持体29(先の実施形態では第二支持体29とした)は、補強材61の通孔61hの対角線よりも大きい直径の円形の通孔29hを有する枠形態である。したがって、図6の括弧書きで示すように積層体40Dの面内方向においては、補強材61の通孔61hを形作る内周縁61t(正方形)の全体が支持体27の通孔29hを形作る内周縁29t(円形)の内側に収まる相対位置関係となっている。また、先に説明したように、支持体29は基板製造装置41の一部とすることができる。その場合、積層体40Dの形成は、図14に示す基板製造装置41の真空チャンバ44内にて行なう。
Next, a method for manufacturing the wiring board 200 of FIG. 11 will be described.
Basically, it can be considered that the first support 27 in the previous embodiment is replaced with the reinforcing member 61. First, as shown in FIG. 5, the reinforcing member 61, the wiring board workpiece 100w, and the support body 29 are arranged in this order in the thickness direction to obtain a stacked body 40D. The wiring board workpiece 100 w is a portion that should become the wiring board main body 100. The support body 29 (referred to as the second support body 29 in the previous embodiment) has a frame shape having a circular through hole 29h having a diameter larger than the diagonal line of the through hole 61h of the reinforcing member 61. Accordingly, as shown in parentheses in FIG. 6, in the in-plane direction of the laminate 40D, the entire inner peripheral edge 61t (square) forming the through hole 61h of the reinforcing member 61 forms the through hole 29h of the support body 27. The relative positional relationship is within 29t (circular). Further, as described above, the support 29 can be a part of the substrate manufacturing apparatus 41. In that case, the stacked body 40D is formed in the vacuum chamber 44 of the substrate manufacturing apparatus 41 shown in FIG.

また、補強材61は接着剤で配線基板ワーク100wに接合するので、配線基板ワーク100wの基板外周部23または補強材61の裏面に接着剤を塗布し、補強材61と配線基板ワーク100wとの間に接着剤62を介在させる。接着剤62として熱硬化型のエポキシ系接着剤を使用することにより、補強材61を配線基板ワーク100wに接合する工程と、先の実施形態で説明した配線基板ワーク100wの成形工程とを同時進行させることができる。すなわち、図14に示すごとく、基板製造装置41の真空チャンバ44内に積層体40Dを配置し、赤外線ヒータ51,51でこの積層体40Dを加熱しながら配線基板ワーク100wの成形を行なうようにすれば、接着剤62は自ずと硬化し、配線基板ワーク100wに補強材61を固定することができる。   Further, since the reinforcing member 61 is bonded to the wiring board workpiece 100w with an adhesive, the adhesive is applied to the substrate outer peripheral portion 23 of the wiring board workpiece 100w or the back surface of the reinforcing member 61, and the reinforcing member 61 and the wiring board workpiece 100w are connected. An adhesive 62 is interposed therebetween. By using a thermosetting epoxy adhesive as the adhesive 62, the process of joining the reinforcing member 61 to the wiring board workpiece 100w and the molding process of the wiring board workpiece 100w described in the previous embodiment are simultaneously performed. Can be made. That is, as shown in FIG. 14, the laminated body 40D is disposed in the vacuum chamber 44 of the substrate manufacturing apparatus 41, and the wiring board workpiece 100w is formed while the laminated body 40D is heated by the infrared heaters 51 and 51. In this case, the adhesive 62 is naturally cured, and the reinforcing material 61 can be fixed to the wiring board workpiece 100w.

図14に示すごとく、積層体40Dを基板製造装置41の真空チャンバ44内に配置し、さらに真空チャンバ44内を排気すると、可撓膜43が撓んで金属薄板49を介して補強材61を押圧する。先に説明したように、可撓膜43からの荷重が補強材61の内周部分に強くかかるので、配線基板ワーク100wの基板外周部23,23および補強材61に内向きの倒れ(傾き)が徐々に生じるとともに、支持体29の通孔29h内に基板中央部21が平坦性を維持したまま徐々に沈み込む形で、図11の配線基板200が得られる。また、十分な成形が施された頃合にちょうど接着剤62が硬化するので、真空チャンバ43をパージしても基板外周部23の弾性復帰量は小さく済む。   As shown in FIG. 14, when the laminated body 40 </ b> D is disposed in the vacuum chamber 44 of the substrate manufacturing apparatus 41 and the vacuum chamber 44 is further evacuated, the flexible film 43 is bent and presses the reinforcing member 61 through the metal thin plate 49. To do. As described above, since the load from the flexible film 43 is strongly applied to the inner peripheral portion of the reinforcing member 61, the board outer peripheral portions 23 and 23 of the wiring board workpiece 100 w and the reinforcing member 61 are tilted inward (inclined). 11 is obtained in such a manner that the central portion 21 of the substrate gradually sinks into the through hole 29h of the support 29 while maintaining flatness. Further, since the adhesive 62 is cured just when sufficient molding is performed, even if the vacuum chamber 43 is purged, the elastic return amount of the substrate outer peripheral portion 23 can be small.

以上、本明細書においては板状コア2上に配線層と樹脂絶縁層とを交互に形成した配線基板を例に説明したが、板状コアを有さない配線基板、いわゆるコアレス基板に本発明の要旨を適用できることはもちろんである。   In the present specification, the wiring board in which the wiring layers and the resin insulating layers are alternately formed on the plate core 2 has been described as an example. However, the present invention is applied to a wiring board having no plate core, that is, a so-called coreless board. Of course, the gist can be applied.

本発明の配線基板の断面模式図。The cross-sectional schematic diagram of the wiring board of this invention. 図1の配線基板の詳細な断面図。FIG. 2 is a detailed cross-sectional view of the wiring board of FIG. 1. 図1の配線基板の上面図および下面図。The top view and bottom view of the wiring board of FIG. 図1の配線基板を用いた半導体装置の組立工程説明図。FIG. 3 is an explanatory diagram of an assembly process of a semiconductor device using the wiring board of FIG. 1. 配線基板ワークの成形工程説明図。FIG. 6 is an explanatory diagram of a wiring board workpiece forming process. 第一支持体と第二支持体との位置関係を示す厚さ方向投影図。The thickness direction projection figure which shows the positional relationship of a 1st support body and a 2nd support body. 図5に続く図。The figure following FIG. 配線基板ワークの成形工程の具体例を示す断面図。Sectional drawing which shows the specific example of the shaping | molding process of a wiring board workpiece | work. 第二支持体の別例を示す上面図。The top view which shows the other example of a 2nd support body. 同じく第二支持体の別例を示す断面図。Sectional drawing which similarly shows the other example of a 2nd support body. 第二実施形態の配線基板の断面模式図。The cross-sectional schematic diagram of the wiring board of 2nd embodiment. 図11の配線基板の上面図。The top view of the wiring board of FIG. 図11の配線基板を用いた半導体装置の組立工程説明図。FIG. 12 is an explanatory diagram of an assembly process of a semiconductor device using the wiring board of FIG. 11. 配線基板ワークに補強材を接合する工程の具体例を示す断面図。Sectional drawing which shows the specific example of the process of joining a reinforcing material to a wiring board workpiece | work. 従来の配線基板の問題点を説明する図。The figure explaining the problem of the conventional wiring board. 図15に続く図。The figure following FIG.

符号の説明Explanation of symbols

10 端子パッド
11 半田バンプ
17 裏面端子パッド
21 基板中央部
23 基板外周部
25 集積回路チップ
27 第一支持体
29,35,36 第二支持体(支持体)
27h,29h,61h 通孔
40A,40B,40C,40D 積層体
41 基板製造装置
43 可撓膜
44 真空チャンバ
61 補強材
100,200 配線基板(配線基板本体)
100w,200w 配線基板ワーク
100p,200p 第一主面
100q,200q 第二主面
DESCRIPTION OF SYMBOLS 10 Terminal pad 11 Solder bump 17 Back surface terminal pad 21 Board | substrate center part 23 Board | substrate outer peripheral part 25 Integrated circuit chip 27 1st support body 29,35,36 2nd support body (support body)
27h, 29h, 61h Through holes 40A, 40B, 40C, 40D Laminate 41 Substrate manufacturing apparatus 43 Flexible film 44 Vacuum chamber 61 Reinforcement material 100, 200 Wiring substrate (wiring substrate body)
100w, 200w wiring board workpieces 100p, 200p first main surface 100q, 200q second main surface

Claims (11)

絶縁材料として樹脂を用いた配線基板であって、集積回路チップに接続する端子を第一主面側に有する基板中央部と、前記基板中央部より外側の部分であって該基板中央部よりも前記第一主面側へ傾いた形状をなす基板外周部と、を備えたことを特徴とする配線基板。   A wiring board using a resin as an insulating material, the central part of the board having terminals connected to the integrated circuit chip on the first main surface side, and the part outside the central part of the board, which is more than the central part of the board A wiring board comprising: a substrate outer peripheral portion having a shape inclined toward the first main surface side. 絶縁材料として樹脂を用いた配線基板であって、集積回路チップに接続する端子を第一主面側に有する基板中央部と、前記基板中央部の周りの部分である基板外周部と、前記基板中央部に格子状に配列する複数の前記端子を取り囲むように前記基板外周部の前記第一主面に接合された板状の補強材とを備え、前記基板外周部が前記補強材とともに前記第一主面側へ傾いた形状をなしていることを特徴とする配線基板。   A wiring board using a resin as an insulating material, the board central part having a terminal connected to the integrated circuit chip on the first main surface side, a board outer peripheral part which is a part around the board central part, and the board A plate-shaped reinforcing member joined to the first main surface of the outer peripheral portion of the substrate so as to surround the plurality of terminals arranged in a lattice form in the central portion, and the outer peripheral portion of the substrate together with the reinforcing material A wiring board having a shape inclined to one main surface side. 前記集積回路チップに接続する前記端子が設けられた前記第一主面側とは反対側である第二主面側に、マザーボード等の別部品と半田接続するために前記基板中央部と前記基板外周部との両方にわたって格子状に配列する複数の裏面端子を備えた請求項1または2記載の配線基板。   The central portion of the substrate and the substrate for solder connection with another component such as a mother board on the second main surface side opposite to the first main surface side provided with the terminals to be connected to the integrated circuit chip The wiring board according to claim 1, further comprising a plurality of back surface terminals arranged in a lattice pattern over both the outer peripheral portion and the outer peripheral portion. 絶縁材料として樹脂を用い、集積回路チップに接続する端子を第一主面側に有する基板中央部と、前記基板中央部の周りの部分である基板外周部とを備えた配線基板ワークを作製する工程と、
前記配線基板ワークに前記第一主面側から接触したとき前記基板中央部の全体が臨む空間を前記第一主面上に形成するための開口を有した第一支持体と、前記配線基板ワークに第二主面側から接触したとき前記第一支持体の前記開口の全体を面内方向において包含する広さの空間を前記第二主面上に形成する第二支持体とを準備したのち、前記第一主面側から前記第一支持体が前記基板外周部に接触し、その基板外周部を前記第二主面側から前記第二支持体で支持するように、前記第一支持体と、前記配線基板ワークと、前記第二支持体とを基板厚さ方向にこの順番で並べる工程と、
前記第二支持体によって前記基板外周部を支持した状態で前記配線基板ワークに接触する側とは反対側から前記第一支持体を押圧し、前記配線基板ワークを前記第二主面側に付勢することにより、前記基板中央部の平坦性を維持したまま前記基板外周部が前記第一主面側へ傾くように前記配線基板ワークを成形する工程と、
を含むことを特徴とする配線基板の製造方法。
Using a resin as an insulating material, a wiring board work including a substrate central portion having terminals connected to the integrated circuit chip on the first main surface side and a substrate outer peripheral portion that is a portion around the substrate central portion is manufactured. Process,
A first support having an opening for forming, on the first main surface, a space over which the entire central portion of the substrate faces when contacting the wiring substrate work from the first main surface side; and the wiring substrate work And a second support that forms a space on the second main surface that is wide enough to include the entire opening of the first support in the in-plane direction when contacted from the second main surface side. The first support body is configured such that the first support body contacts the substrate outer peripheral portion from the first main surface side, and the substrate outer peripheral portion is supported by the second support body from the second main surface side. And arranging the wiring board workpiece and the second support in this order in the board thickness direction;
The first support body is pressed from the side opposite to the side in contact with the wiring board workpiece while the outer peripheral portion of the board is supported by the second support body, and the wiring board workpiece is attached to the second main surface side. Forming the wiring board workpiece so that the outer peripheral portion of the substrate is inclined toward the first main surface while maintaining the flatness of the central portion of the substrate.
A method for manufacturing a wiring board, comprising:
前記第一支持体は、前記基板中央部に格子状に配列する複数の前記端子を露出させるための通孔を厚さ方向に有した枠形態の板状体であり、
前記第二支持体は、面内方向において、前記第一支持体の前記通孔を形作る内周縁の全体を包含する広口の開口を有して前記基板中央部の全体が臨む空間を前記第二主面上に形成する枠形態の板状体であり、
前記配線基板ワークを成形する工程においては、前記基板中央部を前記第二支持体の前記開口内に沈み込ませるようにして、前記配線基板ワークを前記第二主面側に付勢する請求項4記載の配線基板の製造方法。
The first support is a frame-shaped plate-like body having through holes in the thickness direction for exposing the plurality of terminals arranged in a lattice form in the center of the substrate,
In the in-plane direction, the second support has a wide-opening that includes the entire inner peripheral edge forming the through hole of the first support, and a space that the entire center of the substrate faces is the second support. A plate-shaped body in the form of a frame formed on the main surface,
The step of forming the wiring board work includes biasing the wiring board work toward the second main surface side so as to sink the central portion of the board into the opening of the second support. 4. A method for producing a wiring board according to 4.
前記配線基板ワークを成形する工程は、前記第一支持体と、前記配線基板ワークと、前記第二支持体とによる積層体を、前記配線基板ワークの前記端子の表面に配置した半田、または前記端子を構成する半田の融点よりも低い温度で加熱しながら行なう請求項4または5記載の配線基板の製造方法。   The step of forming the wiring board work includes a solder in which a laminate of the first support, the wiring board work, and the second support is disposed on a surface of the terminal of the wiring board work, or 6. The method for manufacturing a wiring board according to claim 4, wherein the method is carried out while heating at a temperature lower than the melting point of the solder constituting the terminal. 絶縁材料として樹脂を用い、集積回路チップに接続する端子を第一主面側に有する基板中央部と、前記基板中央部の周りの部分である基板外周部とを備えた配線基板ワークを作製する工程と、
前記配線基板ワークに前記第一主面側から接触したとき、前記基板中央部に格子状に配列する複数の前記端子を露出させるための通孔を有する枠形態をなし、前記基板外周部に接合する板状の補強材と、前記配線基板ワークに第二主面側から接触したとき、前記補強材の前記通孔を形作る内周縁の全体を面内方向において包含する広さの空間を前記基板中央部の第二主面側に形成する支持体とを準備したのち、前記補強材と前記配線基板ワークとの間に熱硬化性樹脂を含む接着剤を介在させた状態で、前記補強材が前記第一主面側から前記基板外周部に面接触し、その基板外周部を前記第二主面側から前記第二支持体で支持するように、前記補強材と、前記配線基板ワークと、前記支持体とを厚さ方向にこの順番で並べる工程と、
前記支持体によって前記基板外周部を支持した状態で前記配線基板ワークに面接触する側とは反対側から前記補強材を押圧することにより、前記配線基板ワークを前記第二主面側に付勢し、その付勢した状態を維持したまま前記接着剤を硬化させて前記配線基板ワークと前記補強材とを接合する工程と、
を含むことを特徴とする配線基板の製造方法。
Using a resin as an insulating material, a wiring board work including a substrate central portion having terminals connected to the integrated circuit chip on the first main surface side and a substrate outer peripheral portion that is a portion around the substrate central portion is manufactured. Process,
When coming into contact with the wiring board work from the first main surface side, it forms a frame shape having a through hole for exposing the plurality of terminals arranged in a lattice at the center of the board, and is joined to the outer peripheral part of the board A board-shaped reinforcing material and a space having an area including the entire inner peripheral edge forming the through hole of the reinforcing material in the in-plane direction when contacting the wiring board workpiece from the second main surface side. After preparing a support body to be formed on the second main surface side of the central portion, the reinforcing material is in a state where an adhesive containing a thermosetting resin is interposed between the reinforcing material and the wiring board work. The reinforcing material, the wiring board workpiece, and the substrate outer peripheral portion in surface contact from the first main surface side, the substrate outer peripheral portion is supported by the second support body from the second main surface side, Arranging the support in the thickness direction in this order;
The wiring board work is urged toward the second main surface side by pressing the reinforcing material from the side opposite to the side in surface contact with the wiring board work in a state where the outer peripheral portion of the board is supported by the support. And, the step of curing the adhesive while maintaining the energized state to join the wiring board work and the reinforcing material,
A method for manufacturing a wiring board, comprising:
前記支持体は、面内方向において、前記補強材の前記通孔を形作る内周縁の全体を包含する広口の通孔を有して前記基板中央部の全体が望む空間を前記第二主面上に形成する枠形態の板状体であり、
前記配線基板ワークと前記補強材とを接合する工程においては、前記基板外周部を前記支持体で支持しつつ前記補強材を押圧し、前記基板中央部を前記支持体の前記通孔内に沈み込ませるようにして、前記配線基板ワークを前記支持体の方向に付勢する請求項7記載の配線基板の製造方法。
In the in-plane direction, the support has a wide-mouth through hole including the entire inner peripheral edge forming the through-hole of the reinforcing material, and a space desired by the entire central portion of the substrate is formed on the second main surface. A frame-shaped plate-like body formed in
In the step of joining the wiring board workpiece and the reinforcing material, the reinforcing material is pressed while supporting the outer peripheral portion of the substrate with the support body, and the central portion of the board sinks into the through hole of the support body. The method of manufacturing a wiring board according to claim 7, wherein the wiring board work is biased in the direction of the support body.
前記補強材は方形状の通孔を有する枠形態である一方、前記支持体は前記補強材の通孔の対角線よりも大きい直径の円形の通孔を有する枠形態とされ、
面内方向において、前記補強材の通孔を形作る内周縁の全体が前記支持体の通孔を形作る内周縁の内側に収まる相対位置関係となるように、前記補強材と、前記配線基板ワークと、前記支持体とを厚さ方向にこの順番で並べる工程を行なう請求項8記載の配線基板の製造方法。
The reinforcing member is in the form of a frame having a rectangular through hole, while the support is in the form of a frame having a circular through hole having a diameter larger than the diagonal line of the through hole of the reinforcing material,
In the in-plane direction, the reinforcing material, the wiring board work, and the inner peripheral edge forming the through hole of the reinforcing material are in a relative positional relationship within the inner peripheral edge forming the through hole of the support. 9. The method of manufacturing a wiring board according to claim 8, wherein the step of arranging the support in the thickness direction in this order is performed.
前記配線基板ワークと前記補強材とを接合する工程は、前記補強材と、前記配線基板ワークと、前記支持体とによる積層体を、前記配線基板ワークの前記端子の表面に配置した半田、または前記端子を構成する半田の融点よりも低く、かつ前記接着剤が硬化する温度で加熱しながら行なう請求項7ないし9のいずれか1項に記載の配線基板の製造方法。   The step of joining the wiring board workpiece and the reinforcing material includes a step of soldering a laminate of the reinforcing material, the wiring board workpiece, and the support disposed on the surface of the terminal of the wiring board workpiece, or The method for manufacturing a wiring board according to claim 7, wherein the method is performed while heating at a temperature lower than a melting point of solder constituting the terminal and the adhesive is cured. 少なくとも一部の壁が可撓膜で形成された真空チャンバ内に、前記補強材と、前記配線基板ワークと、前記支持体とを厚さ方向にこの順番で並べた板状積層体を、前記補強材が前記可撓膜に向かい合う姿勢で形成し、
前記配線基板ワークを前記支持体で支持した状態で前記真空チャンバ内を排気し、前記可撓膜を撓ませて大気圧で前記補強材を押圧することにより、前記補強材と前記基板外周部との面接触状態を維持しつつ、前記基板中央部を前記支持体の前記通孔内に沈み込ませるようにして、前記配線基板ワークを前記第二主面側に付勢する請求項7ないし10のいずれか1項に記載の配線基板の製造方法。
A plate-like laminate in which the reinforcing material, the wiring board work, and the support are arranged in this order in the thickness direction in a vacuum chamber in which at least a part of the walls is formed of a flexible film, The reinforcing material is formed in a posture facing the flexible membrane,
By exhausting the inside of the vacuum chamber with the wiring board work supported by the support, bending the flexible film and pressing the reinforcing material at atmospheric pressure, the reinforcing material and the substrate outer periphery 11. The circuit board work is urged toward the second main surface side so as to sink the central portion of the substrate into the through-hole of the support body while maintaining the surface contact state. The manufacturing method of the wiring board of any one of these.
JP2005106672A 2005-04-01 2005-04-01 Wiring board and method of manufacturing the same Pending JP2006287056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106672A JP2006287056A (en) 2005-04-01 2005-04-01 Wiring board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106672A JP2006287056A (en) 2005-04-01 2005-04-01 Wiring board and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006287056A true JP2006287056A (en) 2006-10-19

Family

ID=37408604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106672A Pending JP2006287056A (en) 2005-04-01 2005-04-01 Wiring board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2006287056A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300805A (en) * 2007-06-04 2008-12-11 Denso Corp Method and apparatus of manufacturing circuit board
US8024857B2 (en) 2008-11-07 2011-09-27 Hynix Semiconductor Inc. Substrate for semiconductor package having a reinforcing member that prevents distortions and method for fabricating the same
CN102347287A (en) * 2010-08-02 2012-02-08 日本特殊陶业株式会社 Multilayer wiring substrate
JP2012038991A (en) * 2010-08-10 2012-02-23 Ngk Spark Plug Co Ltd Method of manufacturing wiring board
JP2012074743A (en) * 2012-01-16 2012-04-12 Ngk Spark Plug Co Ltd Multilayer wiring board
JP2013131532A (en) * 2011-12-20 2013-07-04 Sumitomo Bakelite Co Ltd Method of manufacturing semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300805A (en) * 2007-06-04 2008-12-11 Denso Corp Method and apparatus of manufacturing circuit board
US8024857B2 (en) 2008-11-07 2011-09-27 Hynix Semiconductor Inc. Substrate for semiconductor package having a reinforcing member that prevents distortions and method for fabricating the same
CN102347287A (en) * 2010-08-02 2012-02-08 日本特殊陶业株式会社 Multilayer wiring substrate
JP2012033790A (en) * 2010-08-02 2012-02-16 Ngk Spark Plug Co Ltd Multilayer wiring board
US8530751B2 (en) 2010-08-02 2013-09-10 Ngk Spark Plug Co., Ltd. Multilayer wiring substrate
KR101322126B1 (en) 2010-08-02 2013-10-28 니혼도꾸슈도교 가부시키가이샤 Multilayer Wiring Substrate
TWI461117B (en) * 2010-08-02 2014-11-11 Ngk Spark Plug Co Multilayer wiring substrate
JP2012038991A (en) * 2010-08-10 2012-02-23 Ngk Spark Plug Co Ltd Method of manufacturing wiring board
JP2013131532A (en) * 2011-12-20 2013-07-04 Sumitomo Bakelite Co Ltd Method of manufacturing semiconductor device
JP2012074743A (en) * 2012-01-16 2012-04-12 Ngk Spark Plug Co Ltd Multilayer wiring board

Similar Documents

Publication Publication Date Title
JP2007158174A (en) Process for producing wiring board and process for producing electronic component mounting structure
JP6029958B2 (en) Wiring board manufacturing method
WO2006054637A1 (en) Wiring board, method for manufacturing same and semiconductor device
JP2006287056A (en) Wiring board and method of manufacturing the same
JP2007300147A (en) Method of manufacturing wiring substrate and electronic component mounting structure
JP2007150275A (en) Semiconductor built-in substrate and manufacturing method of the same
CN210668333U (en) Chip packaging assembly
JP5280032B2 (en) Wiring board
TW201328463A (en) Electronic component embedded printed circuit board and method of manufacturing the same
JP2009081358A (en) Wiring board, and manufacturing method thereof
KR101755814B1 (en) Semiconductor device and method of manufacturing semiconductor device
JP2008091814A (en) Circuit substrate, and method of manufacturing circuit substrate
JP7359531B2 (en) Wiring board, wiring board manufacturing method, and semiconductor package manufacturing method
JP2009004447A (en) Printed circuit board, electronic apparatus, and semiconductor package
TWI741891B (en) Circuit board structure and manufacturing method thereof
JP2006140401A (en) Semiconductor integrated circuit device
WO2023246418A1 (en) Circuit board assembly, electronic apparatus, and method for manufacturing circuit board assembly
JP2020004926A (en) Wiring board and manufacturing method thereof
JP2019079878A (en) Assembly of printed wiring board and support and manufacturing method thereof
JP2019169559A (en) Coreless substrate with fine wiring layer, semiconductor package and semiconductor device, and method of manufacturing coreless substrate with fine wiring layer and semiconductor package
JP4913650B2 (en) Wiring board manufacturing method
JP2012156325A (en) Manufacturing method of multilayer wiring board and mask for paste printing
JP2009224732A (en) Manufacturing method of multiple patterning circuit board, and intermediate product of multiple patterning circuit board
JP5067107B2 (en) Circuit board and semiconductor device
JP3979404B2 (en) Semiconductor device