JP2006287016A - Method of manufacturing circuit board - Google Patents

Method of manufacturing circuit board Download PDF

Info

Publication number
JP2006287016A
JP2006287016A JP2005105831A JP2005105831A JP2006287016A JP 2006287016 A JP2006287016 A JP 2006287016A JP 2005105831 A JP2005105831 A JP 2005105831A JP 2005105831 A JP2005105831 A JP 2005105831A JP 2006287016 A JP2006287016 A JP 2006287016A
Authority
JP
Japan
Prior art keywords
mask
resins
insulating substrate
circuit
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005105831A
Other languages
Japanese (ja)
Inventor
Tetsuo Yumoto
哲男 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Kasei Co Ltd
Original Assignee
Sankyo Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Kasei Co Ltd filed Critical Sankyo Kasei Co Ltd
Priority to JP2005105831A priority Critical patent/JP2006287016A/en
Publication of JP2006287016A publication Critical patent/JP2006287016A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate eliminating a mask and reduce a manufacturing cost by enabling to use a diffusion ray and a parallel ray of an ultraviolet ray in manufacturing a circuit board. <P>SOLUTION: In this method, a circuit patterning is performed while interrupting an ultraviolet ray L via a mask 4 on an insulating base 1 on which a conductive layer 2 is formed on the entire surface and a resist 3 is applied. The mask 4 is three-dimensionally formed in a state of adhering on the insulating base 1 by ejecting a covering material for covering the insulating base 1 with a portion to be a circuit exposed. The covering material of this mask is obtained by adding an ultraviolet absorber to a base material selected from among a biodegradabile resin, a water soluble resin, a hydrolytic resin, a decomposable resin with enzymes, and an organic acid-soluble resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、回路基板、特に三次元の回路基板が製造可能な製造方法に関する。   The present invention relates to a manufacturing method capable of manufacturing a circuit board, particularly a three-dimensional circuit board.

従来の回路基板の製造方法は、図2に示すように、絶縁性基体101の表面に無電解めっき、例えば無電解銅めっきにより酸化膜の導体層102を形成し(A)、この導体層の上にマスクのパターンを焼き付けるために有機溶剤で溶かした感光材料のレジスト103を塗布する(B)。そこで、このレジスト103との間に所定間隙をもって位置するマスク104を介して紫外線Lを照射するが、この紫外線はマスク104がレジスト103との間に間隙があるため拡散光を使用すると、形成された回路基板の回路パターンの輪郭がシャープにならないため、この拡散光の使用はできない。そこで拡散光を平行光に加工することが不可避となる。このような平行光の紫外線Lを照射して、マスクを通過した平行光の紫外線によりレジスト103の一部は感光して感光部103aとなり、その他は未感光部103bとなる(C)。そこで、未感光部103bを除去し(D)、さらに、感光部103aで被覆されていない導体層102をエッチング除去する(E)。そこで、感光されたレジスト部103aを除去することにより回路パターニングするものであった。   As shown in FIG. 2, a conventional circuit board manufacturing method forms an oxide film conductor layer 102 on the surface of an insulating substrate 101 by electroless plating, for example, electroless copper plating (A). A resist 103 made of a photosensitive material dissolved in an organic solvent is applied on the mask pattern (B). Therefore, the ultraviolet ray L is irradiated through the mask 104 positioned with a predetermined gap between the resist 103 and the ultraviolet ray is formed when diffused light is used because there is a gap between the mask 104 and the resist 103. Since the outline of the circuit pattern on the circuit board is not sharp, this diffused light cannot be used. Therefore, it becomes inevitable to process the diffused light into parallel light. By irradiating such parallel ultraviolet light L, a part of the resist 103 is exposed to the photosensitive part 103a by the parallel light ultraviolet light that has passed through the mask, and the other part becomes the unexposed part 103b (C). Therefore, the unexposed portion 103b is removed (D), and the conductor layer 102 not covered with the exposed portion 103a is removed by etching (E). Therefore, circuit patterning is performed by removing the exposed resist portion 103a.

解決しようとする問題点は、紫外線を拡散光からレンズで予め平行光に修正加工することが必要であるが、この加工装置が高価なものであるため、製造コストを引き上げる大きな要因となっている。   The problem to be solved is that it is necessary to correct the ultraviolet rays from the diffused light to the parallel light in advance with a lens, but this processing apparatus is expensive, which is a major factor that raises the manufacturing cost. .

本発明に係る回路基板の製造方法の第1の特徴は、全表面に導体層を形成し、レジストを塗布した絶縁性基体にマスクを介して紫外線を遮断させ回路パターニングする方法であって、上記マスクは、上記絶縁性基体に、回路となる部分を露出させた状態で被覆する被覆材料を射出して、この基体に密着した状態で三次元的に形成したものであって、上記マスクの被覆材料は、生分解性樹脂、水溶性樹脂、加水分解性樹脂、酵素分解性樹脂、有機酸溶解性樹脂のいずれかから選ばれた素材に紫外線吸収剤を添加したものであるところにある。上記絶縁性基体はレジストを塗布したものでもよい。   A first feature of the method for producing a circuit board according to the present invention is a method for patterning a circuit by forming a conductor layer on the entire surface and blocking an ultraviolet ray through an insulating insulating substrate coated with a resist through a mask. The mask is formed by three-dimensionally injecting a coating material that covers the insulating substrate in a state where a circuit portion is exposed, and in close contact with the substrate. The material is a material obtained by adding an ultraviolet absorber to a material selected from any of biodegradable resins, water-soluble resins, hydrolyzable resins, enzyme-decomposable resins, and organic acid-soluble resins. The insulating substrate may be one coated with a resist.

本発明の第2の特徴は、全表面に導体層を形成し、フォトレジストを塗布した絶縁性基体にマスクを介して紫外線を遮断させ回路パターニングする方法であって、絶縁性基体を形成する工程と、めっき前処理としてのエッチング工程及び触媒附与工程と、上記絶縁性基体に導体層を形成する工程と、上記導体層にフォトレジストを塗布する工程と、上記絶縁性基体に、回路となる部分を露出させた状態で被覆する被覆材料を射出して、この基体に密着した状態で三次元的にマスクを形成する工程と、上記マスクの材料は、生分解性樹脂、水溶性樹脂、加水分解性樹脂、酵素分解性樹脂、有機酸溶解性樹脂のいずれかから選ばれた素材に、紫外線吸収剤を添加したものであり、紫外線により上記絶縁性基体を露光する工程と、上記マスクの除去工程と、上記感光部のフォトレジストを除去工程と、上記感光部のフォトレジストを除去した部分に電解めっきする工程と、上記フォトレジストの上記未感光部を除去する工程と、上記導体層を除去する工程とを含むところにある。なお、上記紫外線の拡散光ばかりでなく、平行光も使用できる。   The second feature of the present invention is a method of forming a conductive layer on the entire surface and patterning a circuit by blocking ultraviolet rays through a mask on an insulating substrate coated with a photoresist, and forming the insulating substrate. An etching process and a catalyst application process as plating pretreatment, a process of forming a conductor layer on the insulating base, a process of applying a photoresist to the conductive layer, and a circuit on the insulating base A step of injecting a coating material to be coated with the portion exposed and forming a mask three-dimensionally in close contact with the substrate, and the mask material includes a biodegradable resin, a water-soluble resin, An ultraviolet absorber is added to a material selected from a degradable resin, an enzyme degradable resin, and an organic acid-soluble resin, and the step of exposing the insulating substrate with ultraviolet rays and the removal of the mask The step of removing the photoresist of the photosensitive portion, the step of electrolytic plating the portion of the photosensitive portion where the photoresist has been removed, the step of removing the unexposed portion of the photoresist, and the conductor layer are removed. Including the step of performing. In addition to the ultraviolet diffused light, parallel light can also be used.

本発明の効果は、マスク除去が容易かつ効率的に行うことができ、さらに、紫外線は拡散光も平行光も使用することができ、そのため、レンズで予め平行光に修正加工することが不要で、従来例に比較して製造コストを引き下げることができる。   The effect of the present invention is that mask removal can be performed easily and efficiently, and furthermore, ultraviolet light can use both diffused light and parallel light, so that it is not necessary to modify the light into parallel light in advance with a lens. The manufacturing cost can be reduced compared to the conventional example.

そこで、図1を参照して本発明を実施するための最良の形態を説明すると、本発明に係る回路基板の製造方法は、全表面に導体層を形成し、フォトレジストを塗布した絶縁性基体にマスクを介して紫外線を遮断させ回路パターニングする方法である。具体的には次の工程から構成されている。   The best mode for carrying out the present invention will now be described with reference to FIG. 1. A circuit board manufacturing method according to the present invention comprises an insulating substrate in which a conductor layer is formed on the entire surface and a photoresist is applied. The circuit patterning is performed by blocking ultraviolet rays through a mask. Specifically, it consists of the following steps.

図1(A)は絶縁性基体1を形成する工程であって、金型を閉じた状態でキャビティ内にめっきグレードの液晶ポリマーを射出して形成する。この液晶ポリマーは、芳香族系ポリエステル液晶ポリマーであって、例えば「ベクトラ」(ポリプラスチックス株式会社製の商品名)のめっきグレードC810がある。   FIG. 1A shows a process of forming an insulating substrate 1, which is formed by injecting a plating grade liquid crystal polymer into a cavity with the mold closed. This liquid crystal polymer is an aromatic polyester liquid crystal polymer, for example, there is a plating grade C810 of “Vectra” (trade name, manufactured by Polyplastics Co., Ltd.).

これをシリンダー温度 320℃、金型温度 110℃、射出圧力 1200Kg/cm2、冷却時間 20秒の条件で射出成形する。   This is injection molded under the conditions of a cylinder temperature of 320 ° C., a mold temperature of 110 ° C., an injection pressure of 1200 kg / cm 2, and a cooling time of 20 seconds.

そこで、めっき前処理としてのエッチング処理工程及び触媒附与工程に入るが、このエッチング処理工程の例としては、苛性ソーダまたは苛性カリを所定濃度、例えば45wt%に溶解したアルカリ性水溶液を所定温度、例えば50〜90℃に加熱し、基体1を所定時間、例えば30分浸漬して行う。このエッチング処理により基体1の全表面は粗面化する。また、触媒附与工程は、粗面化した基体1の表面に、例えば錫、パラジウム系の混合触媒液に基体1を浸漬した後、塩酸、硫酸などの酸で活性化し、表面にパラジウムを析出させる。または、塩化第1錫などの比較的強い還元剤を表面に吸着させ、金などの貴金属イオンを含む触媒溶液に浸漬し、表面に金を析出させる。液の温度は15〜23℃で5分浸漬すればよい。   Therefore, the etching treatment process and the catalyst application process as the plating pretreatment are performed. As an example of the etching treatment process, an alkaline aqueous solution in which caustic soda or caustic potash is dissolved at a predetermined concentration, for example, 45 wt% is set at a predetermined temperature, for example, 50 to 50%. It is heated to 90 ° C. and the substrate 1 is immersed for a predetermined time, for example, 30 minutes. By this etching process, the entire surface of the substrate 1 is roughened. Further, in the catalyst application step, the substrate 1 is immersed in a mixed catalyst solution of, for example, tin and palladium on the roughened surface of the substrate 1 and then activated with an acid such as hydrochloric acid or sulfuric acid to deposit palladium on the surface. Let Alternatively, a relatively strong reducing agent such as stannous chloride is adsorbed on the surface and immersed in a catalyst solution containing a noble metal ion such as gold to deposit gold on the surface. What is necessary is just to immerse the temperature of a liquid at 15-23 degreeC for 5 minutes.

その後、図1(B)に示すように、絶縁性基体1の全表面に無電解銅めっきすることにより導体層2、つまり下地めっきを形成する。   Thereafter, as shown in FIG. 1B, the entire surface of the insulating substrate 1 is subjected to electroless copper plating to form a conductor layer 2, that is, a base plating.

そこで、図1(C)に示すように、導体層2の上に次に説明するマスク4のパターンを焼き付けるために有機溶剤で溶かしたフォトレジスト3、つまり感光材料を塗布する。このフォトレジストは写真の印画紙に相当するものである。フォトレジスト3と導体層2とを密着させるために、このレジストに含まれている有機溶剤を蒸発させるため、温度80〜100℃で予備乾燥させる。これが、いわゆるプリベーク工程である。   Therefore, as shown in FIG. 1C, a photoresist 3 dissolved in an organic solvent, that is, a photosensitive material is applied on the conductor layer 2 in order to bake a pattern of a mask 4 described below. This photoresist corresponds to a photographic printing paper. In order to bring the photoresist 3 and the conductor layer 2 into close contact with each other, preliminary drying is performed at a temperature of 80 to 100 ° C. in order to evaporate the organic solvent contained in the resist. This is a so-called pre-bake process.

次に、図1(D)に示すように、絶縁性基体1に、回路となる部分を露出させた状態、つまり非回路となる部分を被覆する被覆材料を射出して、この基体に密着した状態で三次元的にマスク4を形成する。これは通常の上下の金型の対向面に、基体1の外周に所定の空隙を有する形状に合致する形状のキャビティが形成されており、回路となる部分には突条が突設してある。そのため、金型を閉じた状態で被覆材料を射出した後で、金型から取出すと、マスク4が形成された二次成形品が形成されている。   Next, as shown in FIG. 1 (D), the insulating substrate 1 is exposed to a state in which a portion that becomes a circuit is exposed, that is, a coating material that covers a portion that becomes a non-circuit, and is in close contact with the substrate. The mask 4 is formed three-dimensionally in the state. This is because a cavity having a shape matching a shape having a predetermined gap on the outer periphery of the base 1 is formed on the opposing surfaces of the upper and lower molds, and a protrusion is provided in a portion that becomes a circuit. . Therefore, after injecting the coating material in a state in which the mold is closed and then taking out from the mold, a secondary molded product in which the mask 4 is formed is formed.

マスク4の被覆材料は、生分解性樹脂、水溶性樹脂、加水分解性樹脂、酵素分解性樹脂、有機酸溶解性樹脂のいずれかから選ばれた素材に、紫外線吸収剤を添加したものである。生分解性かつ水溶性樹脂としてポリビニルアルコール(PVA)があり、生分解性かつ加水分解性樹脂としてポリL乳酸樹脂(PLLA)、澱粉樹脂、加水分解性かつ酵素分解性樹脂としてポリブチレン サクシネート ラクテート樹脂(PBSL)があり、有機酸溶解性樹脂として共重合ナイロン、ポリアミドとポリアミドポアミンの交換反応したポリアミド(例えば、特開2004−59829)がある。   The covering material of the mask 4 is obtained by adding an ultraviolet absorber to a material selected from any of biodegradable resins, water-soluble resins, hydrolyzable resins, enzyme-decomposable resins, and organic acid-soluble resins. . There is polyvinyl alcohol (PVA) as a biodegradable and water-soluble resin, poly L-lactic acid resin (PLLA) as a biodegradable and hydrolyzable resin, starch resin, polybutylene succinate lactate resin as a hydrolyzable and enzyme-degradable resin ( PBSL), and organic acid-soluble resins include copolymer nylon and polyamide (for example, JP-A-2004-59829) obtained by exchange reaction of polyamide and polyamidepoamine.

また、紫外線吸収剤として「トミソーブ 100」(株式会社エーピーアイコーポレーション製の商品名)、「SEESORB 706」(2-(2H-benzotriazole-2-yl)-4-mentyl-6-(3,4,5,6-tetrahydrophthalimidylmethyl)phenol、シプロ化成株式会社製の商品名)があり、この「トミソーブ 100」はベンゾトリアゾール系UVAの中では最も低波長に最大吸収を持っており、特に、PVC、PVDC、スチレン系、ポリエステル系、アクリル系ポリマーなどに有用である。   Moreover, as a UV absorber, “Tomisorb 100” (trade name, manufactured by API Corporation), “SEESORB 706” (2- (2H-benzotriazole-2-yl) -4-mentyl-6- (3,4, 5,6-tetrahydrophthalimidylmethyl) phenol (trade name manufactured by Cypro Kasei Co., Ltd.), and this “Tomisorb 100” has the maximum absorption at the lowest wavelength among the benzotriazole UVA, especially PVC, PVDC, Useful for styrene-based, polyester-based, and acrylic polymers.

そこで、図1(E)に示すように、紫外線の拡散光により絶縁性基板1を露光する。なお、この実施の形態では拡散光を照射した例であるが、勿論平行光を照射してもよく、本発明では拡散光の照射が可能であるのが特徴である。この紫外線により基体1を露光することにより、露光された部分のレジスト3は感光部3aとなり、マスク4により被覆されて露光されなかった部分は、当然未感光部3bとなる。   Therefore, as shown in FIG. 1E, the insulating substrate 1 is exposed with ultraviolet diffused light. Although this embodiment is an example in which diffused light is irradiated, it is of course possible to irradiate parallel light, and the present invention is characterized in that it can be irradiated with diffused light. By exposing the substrate 1 with the ultraviolet rays, the exposed portion of the resist 3 becomes the photosensitive portion 3a, and the portion that is covered with the mask 4 and is not exposed naturally becomes the unexposed portion 3b.

次に、図1(F)に示すように、マスク4を除去する工程となる。例えば、PBSLを素材とするマスク4は、アルカリ水溶液とリパーゼ酵素液の混合液によるアルカリ分解と酵素分解を併用して除去する。この酵素分解は、リパーゼ酵素1〜10重量%の水溶液で、温度25〜80℃の水溶液に1〜240分浸漬してマスク4を除去する。   Next, as shown in FIG. 1F, the mask 4 is removed. For example, the mask 4 made of PBSL is removed by using both alkaline decomposition and enzymatic decomposition using a mixed solution of an alkaline aqueous solution and a lipase enzyme solution. In this enzymatic degradation, the mask 4 is removed by immersing the lipase enzyme in an aqueous solution of 1 to 10% by weight in an aqueous solution at a temperature of 25 to 80 ° C. for 1 to 240 minutes.

ポリ乳酸等樹脂を素材とするマスク4の除去は、アルカリ水溶液分解並びに加水分解により除去するもので、詳しくは、濃度2〜15重量%程度で、温度25〜70℃程度の苛性アルカリ(NaOH、KOHなど)水溶液中に1〜120分浸漬して除去する。なお、ポリ乳酸樹脂はアルカリ水溶液で加水分解する性質を有し、酸性水溶液に対して耐性を示す性質があるためアルカリ水溶液で簡単に分解できる。   Removal of the mask 4 made of a resin such as polylactic acid is performed by alkaline aqueous solution decomposition and hydrolysis. Specifically, caustic alkali (NaOH, having a concentration of about 2 to 15% by weight and a temperature of about 25 to 70 ° C. Immerse it in an aqueous solution for 1 to 120 minutes to remove it. The polylactic acid resin has a property of hydrolyzing with an alkaline aqueous solution and has a property of being resistant to an acidic aqueous solution, so that it can be easily decomposed with an alkaline aqueous solution.

このように、樹脂マスク4の素材に対応して、アルカリ水溶液でアルカリ分解、並びに加水分解により除去する方法、アルカリ水溶液とリパーゼ酵素液の混合液によりアルカリ分解と酵素分解を併用してマスクを除去する。   Thus, corresponding to the material of the resin mask 4, a method of removing by alkaline decomposition and hydrolysis with an alkaline aqueous solution, and removing the mask by using both alkaline decomposition and enzymatic decomposition with a mixed solution of alkaline aqueous solution and lipase enzyme solution. To do.

そこで、図1(G)に示すように、感光しているレジストの感光部3aを除去する。そして、図1(H)に示すように、感光部3aのレジストを除去した部分に電解めっき5、例えば電解銅めっきする。   Therefore, as shown in FIG. 1 (G), the exposed photosensitive portion 3a of the resist is removed. Then, as shown in FIG. 1 (H), electrolytic plating 5, for example, electrolytic copper plating is performed on the portion of the photosensitive portion 3 a where the resist is removed.

その後、図1(I)に示すように、フォトレジスト3の未感光部3bを除去する。   Thereafter, as shown in FIG. 1I, the unexposed portion 3b of the photoresist 3 is removed.

そして、最後に図1(J)に示すように、無電解銅めっきの導体層2を除去すると、所定の回路パターンが完成する。なお、この回路パターンは三次元的であるが、二次元的なものの場合も本発明は適用できる。   Finally, as shown in FIG. 1 (J), when the electroless copper plating conductor layer 2 is removed, a predetermined circuit pattern is completed. The circuit pattern is three-dimensional, but the present invention can be applied to a two-dimensional circuit pattern.

発明の活用例として、電子回路の三次元化ができ、また、携帯電話の内蔵アンテナのエレメント形成の技術の開発などに利用可能である。   As an application example of the invention, the electronic circuit can be made three-dimensional and can be used for developing a technology for forming an element of a built-in antenna of a mobile phone.

(A)〜(J)は本発明の製造方法の各工程を示す端面図である。(A)-(J) are the end views which show each process of the manufacturing method of this invention. (A)〜(F)は従来技術の製造方法の各工程を示す端面図である。(A)-(F) are the end views which show each process of the manufacturing method of a prior art.

符号の説明Explanation of symbols

1 絶縁性基体
2 導電層(無電解めっき)
3 フォトレジスト
3a フォトレジストの感光部
3b フォトレジストの未感光部
4 マスク
5 電解めっき
L 紫外線
1 Insulating substrate 2 Conductive layer (electroless plating)
3 Photoresist 3a Photoresist exposed portion 3b Photoresist unexposed portion 4 Mask 5 Electrolytic plating L UV

Claims (2)

全表面に導体層を形成し、絶縁性基体にマスクを介して紫外線を遮断させ回路パターニングする方法であって、
上記マスクは、上記絶縁性基体に、回路となる部分を露出させた状態で被覆する被覆材料を射出して、この基体に密着した状態で三次元的に形成したものであって、
上記マスクの被覆材料は、生分解性樹脂、水溶性樹脂、加水分解性樹脂、酵素分解性樹脂、有機酸溶解性樹脂のいずれかから選ばれた素材に紫外線吸収剤を添加したものである
ことを特徴とする回路基板の製造方法。
A method of patterning a circuit by forming a conductor layer on the entire surface, blocking ultraviolet rays through a mask on an insulating substrate,
The mask is formed by three-dimensionally injecting a coating material that covers the insulating substrate in a state where a portion to be a circuit is exposed, and in close contact with the substrate,
The mask covering material is a material in which an ultraviolet absorber is added to a material selected from biodegradable resins, water-soluble resins, hydrolyzable resins, enzyme-decomposable resins, and organic acid-soluble resins. A method of manufacturing a circuit board characterized by the above.
全表面に導体層を形成し、フォトレジストを塗布した絶縁性基体にマスクを介して紫外線を遮断させ回路パターニングする方法であって、
絶縁性基体を形成する工程と、
めっき前処理としてのエッチング工程及び触媒附与工程と、
上記絶縁性基体に導体層を形成する工程と、
上記導体層にフォトレジストを塗布する工程と、
上記絶縁性基体に、回路となる部分を露出させた状態で被覆する被覆材料を射出して、この基体に密着した状態で三次元的にマスクを形成する工程と、
上記マスクの材料は、生分解性樹脂、水溶性樹脂、加水分解性樹脂、酵素分解性樹脂、有機酸溶解性樹脂のいずれかから選ばれた素材に、紫外線吸収剤を添加したものであり、
紫外線により上記絶縁性基体を露光する工程と、
上記マスクの除去工程と、
上記感光部のフォトレジストを除去工程と、
上記感光部のフォトレジストを除去した部分に電解めっきする工程と、
上記フォトレジストの上記未感光部を除去する工程と、
上記導体層を除去する工程と
を含むことを特徴とする回路基板の製造方法。
A method of patterning a circuit by forming a conductor layer on the entire surface and blocking ultraviolet rays through a mask on an insulating substrate coated with a photoresist,
Forming an insulating substrate;
Etching process and catalyst application process as plating pretreatment,
Forming a conductor layer on the insulating substrate;
Applying a photoresist to the conductor layer;
A step of injecting a coating material that covers the insulating substrate in a state in which a circuit portion is exposed, and forming a mask three-dimensionally in a state of being in close contact with the substrate;
The mask material is a material selected from any one of biodegradable resins, water-soluble resins, hydrolyzable resins, enzyme-decomposable resins, and organic acid-soluble resins, with an ultraviolet absorber added thereto,
Exposing the insulating substrate with ultraviolet rays;
Removing the mask;
Removing the photoresist of the photosensitive portion;
A step of electroplating a portion of the photosensitive portion where the photoresist is removed;
Removing the unexposed portions of the photoresist;
And a step of removing the conductor layer.
JP2005105831A 2005-04-01 2005-04-01 Method of manufacturing circuit board Pending JP2006287016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105831A JP2006287016A (en) 2005-04-01 2005-04-01 Method of manufacturing circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105831A JP2006287016A (en) 2005-04-01 2005-04-01 Method of manufacturing circuit board

Publications (1)

Publication Number Publication Date
JP2006287016A true JP2006287016A (en) 2006-10-19

Family

ID=37408570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105831A Pending JP2006287016A (en) 2005-04-01 2005-04-01 Method of manufacturing circuit board

Country Status (1)

Country Link
JP (1) JP2006287016A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192551A (en) * 2009-02-17 2010-09-02 Sankyo Kasei Co Ltd Method of manufacturing molded circuit part
US11419209B2 (en) 2018-07-20 2022-08-16 Denso Corporation Resin member and method for producing resin member
US11770895B2 (en) 2018-07-20 2023-09-26 Denso Corporation Resin member and method for producing resin member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192551A (en) * 2009-02-17 2010-09-02 Sankyo Kasei Co Ltd Method of manufacturing molded circuit part
US11419209B2 (en) 2018-07-20 2022-08-16 Denso Corporation Resin member and method for producing resin member
US11770895B2 (en) 2018-07-20 2023-09-26 Denso Corporation Resin member and method for producing resin member

Similar Documents

Publication Publication Date Title
KR101724071B1 (en) Laser direct structuring electroless plating method with single-step pre-treatment process and intenna thereof
JP2006287016A (en) Method of manufacturing circuit board
US6653055B1 (en) Method for producing etched circuits
JP5310849B2 (en) Wiring board manufacturing method
JP2004315894A (en) Electroless plating method and plated parts
TWI261127B (en) Die for molding optical panel, process for production thereof, and use thereof
JP2006287077A (en) Method of manufacturing circuit board
JP2006291284A (en) Partial plating method and method for manufacturing circuit board
CN101159179A (en) Element substrate and method of manufacturing the same
JP2004152852A (en) Method of manufacturing circuit base for electronic part
JP2001242618A (en) Pattern forming method
JP4332795B2 (en) Electroless plating method
CN111180333B (en) Display panel manufacturing method and display panel
CN113133224A (en) FPCB plate via hole selective plating process
JP4426690B2 (en) 3D circuit board manufacturing method and 3D circuit board
JP2006057166A (en) Method for forming wiring by plating
JP3121421B2 (en) Non-conductive material plating method
TWI548315B (en) Circuit substrate, method for making the same, and circuit board and electronic device using the same.
JPH09130016A (en) Circuit formation method
JP2020111769A (en) Metal film formation method and nano imprinting material
JP4075005B2 (en) Method for producing resist film and washing solution
JP4961749B2 (en) Manufacturing method of semiconductor mounting substrate
KR101599422B1 (en) A method of forming a metal patterns
JP2019091858A (en) Method for manufacturing print wiring board, print wiring board and, photosensitive resin composition used in the manufacturing method
JP2009278017A (en) Printed wiring board and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209