JP2006284598A - 走査型プローブ顕微鏡 - Google Patents

走査型プローブ顕微鏡 Download PDF

Info

Publication number
JP2006284598A
JP2006284598A JP2006148810A JP2006148810A JP2006284598A JP 2006284598 A JP2006284598 A JP 2006284598A JP 2006148810 A JP2006148810 A JP 2006148810A JP 2006148810 A JP2006148810 A JP 2006148810A JP 2006284598 A JP2006284598 A JP 2006284598A
Authority
JP
Japan
Prior art keywords
laser
sample
cantilever
position detector
optical position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006148810A
Other languages
English (en)
Inventor
Kazunori Ando
和徳 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2006148810A priority Critical patent/JP2006284598A/ja
Publication of JP2006284598A publication Critical patent/JP2006284598A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】レ−ザ発生器と光位置検出器を真空容器外に設置することでカンチレバ−が熱の影響で反りが発生しても真空中のまま、あるいは加熱中のまま、あるいは冷却中のままの状態でレ−ザ照射位置およびレ−ザ照射角度を変更することでレ−ザ反射光の光位置検出器への到達位置を調整することができ測定を容易にする。
【解決手段】レ−ザ発生器61と光位置検出器8を真空容器63外に設置し、試料9を載せるあるいは加熱あるいは冷却する試料台65を真空容器63内に有し、真空中、加熱中、冷却中でもその場でレ−ザ反射面への照射位置、照射角度を真空容器63外に設置されたレ−ザ発生器61と光位置検出器8により変更するようにした。
【選択図】図9

Description

本発明は、先端に微小な探針を有するカンチレバーとカンチレバ−のレ−ザ反射面に照射するレ−ザとレ−ザの反射光の位置を検出する光位置検出器と試料を移動させる試料移動手段からなり探針の変位を光位置検出器の信号を検出することでサンプル表面の凹凸情報および物理特性を測定する走査型プローブ顕微鏡に関する。
従来の走査型プローブ顕微鏡は、先端に微小な探針を有するカンチレバーとカンチレバ−のレ−ザ反射面に照射するレ−ザとレ−ザの反射光の位置を検出する光位置検出器と試料を移動させる試料移動手段からなり探針の変位を光位置検出器の信号を測定することでサンプル表面の凹凸情報および物理特性を測定する。サンプルの物理特性として 弾性(かたさ)、吸着力などが測定される。
従来の走査型プローブ顕微鏡ではレ−ザ照射位置はカンチレバ−のレ−ザ反射面の先端にしていた。測定できる表面凹凸の高さは光位置検出器の測定レンジの制限を受けることになり、凹凸の激しい試料では測定レンジを越えるため測定できない問題点があった。また、物理特性を測定する場合には、カンチレバ−のレ−ザ反射面先端は敏感である反面、試料表面からの反力にも影響を受けやすくレ−ザ反射面は複雑な変形をしやすく物理特性と対応せず、正確な物理特性が測定できない問題点があった。
そこで、この発明は表面凹凸の激しい試料の測定において測定範囲を広げることを課題とする。さらにカンチレバ−のレ−ザ反射面先端の不安定変形の影響の無い、正確な物理特性を測定することを課題とする。
上記の問題点を解決するために、本発明では、先端に微小な探針を有するカンチレバーとカンチレバ−のレ−ザ反射面に照射するレ−ザとレ−ザの反射光の位置を検出する光位置検出器と試料を移動させる試料移動手段からなり探針の変位を光位置検出器の信号を測定することで試料表面の凹凸情報および物性を測定する走査型プローブ顕微鏡においてレ−ザ照射位置をカンチレバ−のレ−ザ反射面の根元寄り(カンチレバ−長手方向において先端、中間、根元としたとき中間と根元の間)に照射することで同じ凹凸の高さであっても光位置検出器の信号変動量を小さく抑えるようにした。さらにレ−ザ照射位置をカンチレバ−の根元寄り(カンチレバ−長手方向において先端、中間、根元としたとき中間と根元の間)に照射することでカンチレバ−のレ−ザ反射面先端の不安定変形の影響を抑え試料の正確な物理特性を測定できるようにした。
以上のように、レ−ザ照射位置をカンチレバ−のレ−ザ反射面の根元寄り(カンチレバ−長手方向において先端、中間、根元としたとき中間と根元の間)に照射することで試料の凹凸形状が激しい場合でも測定範囲を広げ、さらに、カンチレバ−のレ−ザ反射面先端の不安定変形の影響を抑え正確な物理特性を測定できるようにした。
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
レ−ザ照射位置をカンチレバ−のレ−ザ反射面の根元寄り(カンチレバ−長手方向において先端、中間、根元としたとき中間と根元の間)に照射することで同じ凹凸の高さであっても光位置検出器の信号振幅量を小さく抑えることで凹凸形状が激しい試料でも測定できるようにする効果がある。
さらに試料の凹凸がさらに大きくなって光位置検出器の測定レンジから外れる場合でもレ−ザ照射位置をより根元寄りに照射することで光位置検出器への到達位置の差(振幅量)を小さくでき試料の凹凸の測定範囲をさらに広げる効果がある。
またレ−ザ照射位置をカンチレバ−の根元寄り(カンチレバ−長手方向において先端、中間、根元としたとき中間と根元の間)に照射することでカンチレバ−のやわらかいことと長いことによるカンチレバ−先端の不安定変形の影響を抑え試料の正確な物理特性を測定できるようにする効果がある。
またレ−ザ発生器と光位置検出器を真空容器外に設置することでカンチレバ−が熱の影響で反りが発生しても真空中のまま、あるいは加熱中のまま、あるいは冷却中のままの状態でレ−ザ照射位置およびレ−ザ照射角度を変更することでレ−ザ反射光の光位置検出器への到達位置を調整することができ測定を容易にする効果がある。
本発明は、図1に示すように先端に微小な探針を有するカンチレバーとカンチレバ−のレ−ザ反射面に照射するレ−ザとレ−ザの反射光の位置を検出する光位置検出器と試料を移動させる試料移動手段からなり探針の変位を光位置検出器の信号を検出することで試料表面の凹凸情報および物理特性を測定する走査型プローブ顕微鏡において、レ−ザをカンチレバ−のレ−ザ反射面の根元寄り(カンチレバ−長手方向において先端、中間、根元としたとき中間と根元の間)に照射するようにした。
実施例について図面を参照して説明すると、図1(a)は走査型プローブ顕微鏡の測定において本発明の方式の模式図である。
測定される情報として表面凹凸形状の場合を図1(a)で説明する。探針1を有するカンチレバ−2はレバ−固定部3に取り付けられている。レ−ザ反射面4にはレ−ザ5が根元寄り6に照射されていて反射光7は光位置検出器8の位置として検出される。探針1は試料9の表面に接触していて試料移動手段10のスキャン動作11により試料の凹凸に応じて上下動する。例えば探針が試料の凹部に接触しているときはレ−ザの反射光は光検出器の位置Dに到達する。次にスキャン動作によって探針が試料の凸部に乗り上げると反射光は位置Cに到達する。位置Dと位置Cの差により試料の高さの差が得られる。左右方向にスキャンすることで試料の断面形状が得られ、紙面と垂直方向に少しずらしてスキャンを繰り返すことで試料の表面凹凸形状が得られる。または試料の凹凸に応じて探針が上下動するときレ−ザ反射光の光位置検出器への到達位置が同じになるように試料移動手段の上下動作12を操作し、操作量を試料の凹凸情報と対応づけてもよい。
図1(a)においてはレ−ザ反射面は直線として図示しているが実際には図1(b)に示すように探針1の上下動に応じてたわみ角変化13は先端で大きく、完全な根元で0(ゼロ)、根元寄りで小さいとなる。レ−ザの反射光の光位置検出器での到達位置はレ−ザ反射面のたわみ角変化に大きく依存する。レ−ザ反射面の根元寄りはたわみ角変化が小さくレ−ザ反射光の到達する位置Cと位置Dの差は小さくなり、レ−ザ反射光の到達位置が光位置検出器から外れにくくなり凹凸の激しい試料でも測定が可能となる。
図2に従来の方式を示す。レ−ザ反射面4は図1(a)と同じく直線で図示しているが変形の詳細は図1(b)と同じで先端21でたわみ角が大きい。レ−ザを先端に照射するとたわみ角変化が大きく、図1(a)と同一の凹凸試料を測定してもレ−ザ5の反射光7の光位置検出器8への到達位置は位置C1と位置D1と開きが大きくなる。さらに凹凸の激しい試料ではレ−ザ反射光が光位置検出器から外れてしまい、従来の方式では測定ができなくなる。
図3は本発明の方式の別の実施例の模式図である。測定される情報として試料9の表面凹凸形状の場合を示す。図1(a)の実施例ではカンチレバ−2はレバ−固定部3に取り付けられているが図3ではカンチレバ−2はレバ−加振手段31に取り付けられいつも振動している。探針1が試料9の凹面にあたるときはレ−ザ反射光7は光位置検出器8の位置Dに到達し、離れて上限になったときはレ−ザ反射光7は位置Cに到達する。位置Dと位置Cの差がカンチレバ−の探針1の振幅量となる。次に試料移動手段10のスキャン動作11により探針1が試料9の凸部に乗り上げるとカンチレバ−の探針1の振幅量が小さくなる。振幅量の大小で試料表面の凹凸形状情報が得られる。また試料の凹凸に応じて振幅量が一定になるように試料移動手段10の上下動作12を制御し、上下動作の操作量で試料の凹凸形状情報としてもよい。本発明の方式ではレ−ザをレ−ザ反射面の根元寄り6に照射し、図1(a)で述べたのと同じくレ−ザ反射面の根元寄りがたわみ角変化の小さいことを利用し、光位置検出器での振幅量を押さえ、凹凸の激しい試料の測定も可能となる。
次に測定される情報として試料表面の弾性分布の場合を図4(a)、図4(b)、図5(c)で説明する。
図4(a)は弾性分布を測定するときの本方式の模式図である。探針1を有するカンチレバ−2はレバ−固定部3に取り付けられている。探針1は試料9表面のかたい部分41に接触している。試料移動手段10の上下動作12により試料9も上下動する。探針1は試料9の上下動とともに上下動する。図4(a)は探針1が試料9のかたい部分41の上に接触していて試料移動手段10の上下動作12の下限42のときも接触している状態を示す。レ−ザ5はレ−ザ反射面4の根元寄り6に照射されていて反射光7は光位置検出器8の位置Fへ到達する。図4(b)は試料移動手段10の上下動作12の上限43のときの状態を示す。試料面がかたければ探針1を持ち上げレ−ザ反射面4は図示のように変形し反射光7は光位置検出器8の位置Eへ到達する。試料移動手段10の上下動作12を周期的に行なえばレ−ザ反射光7の到達位置は位置Eと位置Fの間を繰り返すことになる。位置Eと位置Fの差を検出することで探針1の振幅量となる。試料面がかたければ振幅量は大きくなる。図5(c)は試料移動手段10の上下動作12を繰り返しながらスキャン動作11により試料9を左へと移動させ探針1が試料のやわらかい部分44上にきたときの状態を示す。探針1がやわらかい部分44上で接触していて試料移動手段10の上下動作12を繰り返すと試料面がやわらかくて探針1が潜り込めばレ−ザ反射面4の変形も少なくレ−ザ反射光7の光位置検出器8への到達位置(位置E2と位置F2)の差、つまり振幅量が少なくなる。試料面がやわらかければ振幅量は小さくなる。図5(d)は試料移動手段の上下動作を繰り返しながらスキャン動作で試料を移動させ試料のある断面について振幅量の変化を示したものである。探針がかたい面上にきたとき振幅量は大きくやわらかい面上にきたとき振幅量は小さくなる。試料のある断面の弾性分布となる。
図4(a)、図4(b)、図5(c)に戻って紙面と垂直方向に少しずらして同様に繰り返していけば試料表面の面内の弾性分布となる。
図6(e)および図6(f)はレ−ザ反射面の変形を詳細に図示した模式図である。
図6(e)は従来の方法でレ−ザ5をレ−ザ反射面4の先端21に照射しているときの状態である。試料移動手段10の上下動作12を繰り返しているとレ−ザ反射面4の変形は単純振動モ−ドでなくなる。走査型プロ−ブ顕微鏡で使用されるカンチレバ−2は例えば厚み1um、長さ200umなどのように厚さに対して長さの比率が大きく、変形しやすいばね力の小さいものであり、試料の微小なかたさの違いなどを測定する目的となっている。やわらかいことと長いことによりカンチレバ−の振動形態は単純でなくなり特に先端部21はレ−ザ反射面4が凸面になったり凹面になったりする。レ−ザをレ−ザ反射面の先端に照射する従来の方法では凸面になったときレ−ザ反射光7は光位置検出器8の位置Hに到達し凹面になったとき位置Gに到達する。この場合には探針1がやわらかい面上で振幅量(位置Hと位置Gの差)は大きくなり、かたいと誤検出が頻発する。
図6(f)は本発明の方式でレ−ザ5をレ−ザ反射面4の根元寄り6に照射しているときの状態である。カンチレバ−2はやわらかいことと長いことにより振動形態は単純でなくなるのは前述図6(e)と同様であるが完全な根元では変形無し、たわみ角変化も無し、根元寄り6では必ず凹面となり、たわみ角変化も小さくなる。やわらかい面上でも振幅量は大きくならずかたい面上での振幅量より小さくなり かたい、やわらかいの検出が可能となる。
次に測定される情報として試料表面の粘着力分布の場合を図7(a)、図7(b)、図8(c)、図8(d)で説明する。
図7(a)は粘着力分布を測定するときの本方式の模式図である。探針1を有するカンチレバ−2はレバ−加振手段31に取り付けられている。レバ−加振手段により探針は周期的に上下動している。レ−ザ5はレ−ザ反射面4の根元寄り6に照射する。探針は試料表面にあてたり離したりさせる。探針が試料表面から離れる直前の状態を示している。レ−ザの反射光7は光位置検出器8の位置Fに到達している。探針が試料面から離れる直前の位置Fを粘着小51の面の物性値と対応させる。次に図7(b)にカンチレバ−2を周期的に振動させたまま試料移動手段10のスキャン動作11により探針1が試料9の粘着大52の面にきたとき探針が試料面から離れる直前の状態を示す。レ−ザ反射面4は凸面となりレ−ザ反射光7は位置Fより左へ到達する。位置Fより左であることで粘着大と検出することができる。位置Fより右であれば粘着小の測定済の面よりさらに粘着小と識別できる。
図8(c)、図8(d)に探針1が試料9の表面から離れる直前のカンチレバ−2のレ−ザ反射面4の変形状態を詳細に示している。粘着大52の面で探針1が拘束を受けている。カンチレバ−2はやわらかいことと長いことで探針1が離れる直前のレ−ザ反射面4の変形状態は単純ではない。図8(c)は先端に照射する従来の方法であるがレ−ザの反射光7は位置F(粘着小のとき)より右に到達し粘着大にもかかわらずすでに測定済の粘着小の部分よりさらに粘着小となり正しく判断できなくなる。図8(d)は本発明の方式でレ−ザ5をレ−ザ反射面4の根元寄り6に照射した場合の説明図である。レ−ザ反射面の根元寄りは必ず凸面になり、試料面の粘着が大きいほどより凸になり、レ−ザ反射光7は位置F(粘着小のとき)より必ず左へ到達する。本発明の方式ではレ−ザをレ−ザ反射面の根元寄りに照射することで粘着力の大小が測定できる。スキャン動作を試料全面に行なうことで試料表面の粘着力分布が測定できる。またレバ−加振手段の変わりにレバ−固定部とし、試料移動手段の上下動作で周期的に振動させてもよい。
次に図9に本発明の別の実施例を示す。レ−ザ発生器61からのレ−ザ5はウインドウ62を透過して真空容器63内へ導入される。真空容器とウインドウは気密性が確保されていて真空容器は真空排気手段64により真空状態が達成される。真空容器内にはカンチレバ−2と試料9と試料を加熱あるいは冷却あるいは室温のまま載せる試料台65が設置されている。試料台は試料台移動手段69によりスキャン動作および上下動作が可能となっている。ウインドウを介し真空容器内に導入されたレ−ザはカンチレバ−2のレ−ザ反射面の根元寄りに照射され、レ−ザの反射光7はウインドウを介し真空容器外に設置された光位置検出器8へ到達する。光位置検出器の位置により試料の凹凸形状情報、試料表面の弾性や粘着性分布などの物性を測定するのは前述のとうりである。
またレ−ザ発生器61はレ−ザ移動手段66に取り付けられている。レ−ザ移動手段はウインドウに対して平行移動(紙面に対し左右方向および垂直方向)の動作が可能で、ウインドウに対して垂直に導入することも投入角度を変えることも可能となっている。一方、光位置検出器8は光位置検出器移動手段67に取り付けられている。光位置検出器移動手段は紙面に対して左右方向および垂直方向の動作が可能となっている。レ−ザ発生器も光位置検出器もどちらも真空容器外に設置されているためカンチレバ−のレ−ザ反射面のレ−ザの照射位置、照射角度を真空に排気したままの状態で調整することもできる。レ−ザの照射されている位置は図示されていない顕微鏡あるいはCCDカメラで見ることができる。
さらに試料の加熱あるいは冷却を行なうとカンチレバ−も熱の影響を受ける。カンチレバ−は素材に窒化珪素あるいはシリコンが使われていてカンチレバ−のレ−ザ反射面はレ−ザの反射を効率よくする目的でアルミ、金などのコ−テイングがされている。カンチレバ−は熱の影響を受けるとカンチレバ−の母材(素材)とコ−テイング材との熱膨張係数の違いで反りが発生する。カンチレバ−に反りが発生するとレ−ザ反射面のたわみ角が変化しレ−ザ反射光の光位置検出器への到達位置がずれてしまうことになる。高温の加熱あるいは低温の冷却ではレ−ザ反射光の到達位置が光位置検出器の外へはずれてしまい、測定に入れなくなる。本発明の方式ではレ−ザと光位置検出器を真空容器外に設置することでカンチレバ−が熱の影響で反りが発生しても加熱中、冷却中の状態のままレ−ザの照射位置、照射角度を自由に調整できるので容易に測定できる。
また測定は真空中だけではなく、真空排気手段により真空にした後真空容器にガス導入68して大気圧下で測定してもよい。さらにガス置換する際に湿度を含ませたガスを導入して測定してもよい。また真空排気せず真空容器内へガスあるいは湿度を含めたガスを常時流し続けて1気圧状態で測定してもよい。
またレ−ザの照射位置は試料に応じて変更してもよい。試料移動手段あるいは試料台移動手段の上下動作の操作量の最大は上限がある。一方、レ−ザ照射面の完全な根元はたわみ角が0であるが根元寄りをさらに根元寄りにしてやれば光位置検出器への到達位置の差(振幅量)はより小さくすることができる。例えば試料の凹凸がさらに大きくなればレ−ザ照射位置をより根元に近づければよい。物理特性においても信号量に応じてレ−ザ照射位置を変更することで調整が可能となる。
本実施の形態には、例えば以下のような技術的思想も当然に流れている。
技術的思想(1)
先端に微小な探針を有するカンチレバーとカンチレバ−のレ−ザ反射面に照射するレ−ザとレ−ザの反射光の位置を検出する光位置検出器と試料を移動させる試料移動手段からなり探針の変位を光位置検出器の信号を測定することで試料表面の凹凸情報および物理特性を測定する走査型プローブ顕微鏡において、レ−ザをカンチレバ−のレ−ザ反射面の根元寄り(レバ−長手方向において先端、中間、根元としたとき中間と根元の間)に照射することを特徴とする走査型プローブ顕微鏡。
技術的思想(2)
カンチレバ−を固定する手段を有し探針の変位から試料の表面凹凸情報を測定するようにした、技術的思想1記載の走査型プローブ顕微鏡。
技術的思想(3)
カンチレバ−を固定する手段を有し探針の変位が一定になるように試料移動手段の上下動作の操作量から試料の表面凹凸情報を測定するようにした、技術的思想(1)記載の走査型プローブ顕微鏡。
技術的思想(4)
カンチレバ−を振動させる加振手段を有しカンチレバ−を振動させ振幅量が一定になるように試料移動手段の上下動作の操作量から試料の表面凹凸情報を測定するようにした、技術的思想(1)記載の走査型プローブ顕微鏡。
技術的思想(5)
カンチレバ−と試料との距離を相対的に振動させる加振手段を有し探針の振幅量の違いから試料表面のかたい、やわらかいの分布を測定するようにした、技術的思想(1)記載の走査型プローブ顕微鏡。
技術的思想(6)
カンチレバ−と試料との距離を相対的に振動させる加振手段を有し探針が試料表面から離れる直前のカンチレバ−のたわみ角変化から試料表面の粘着性の分布を測定するようにした、技術的思想(1)記載の走査型プローブ顕微鏡。
技術的思想(7)
真空容器と排気の手段を有し真空環境で測定できるようにした、技術的思想(1)記載の走査型プローブ顕微鏡。
技術的思想(8)
真空容器と排気の手段を有し一度真空にしてから真空容器をガス置換してガス雰囲気中で測定できるようにした、技術的思想(1)記載の走査型プローブ顕微鏡。
技術的思想(9)
ガス置換する際ガスに湿度を含ませるようにした、技術的思想(8)記載の走査型プローブ顕微鏡。
技術的思想(10)
レ−ザ発生器と光位置検出器を真空容器外に設置し、真空容器外に設置されたレ−ザ発生器からのレ−ザをウインドウを介し真空容器内に導入し、真空内に設置されたカンチレバ−に照射し、反射光をウインドウを介し真空容器外に設置された光位置検出器で検出することで真空環境で測定できるようにした、技術的思想(1)記載の走査型プローブ顕微鏡。
技術的思想(11)
レ−ザ発生器と光位置検出器を真空容器外に設置し、試料を載せるあるいは加熱あるいは冷却する試料台を真空容器内に有し真空中、加熱中、冷却中でもその場でレ−ザ反射面への照射位置、照射角度を真空容器外に設置されたレ−ザ発生器と光位置検出器により変更するようにした走査型プロ−ブ顕微鏡。
技術的思想(12)
試料の表面凹凸および物性に応じてレ−ザ照射位置を変更して測定するようにした、技術的思想(1)記載の走査型プロ−ブ顕微鏡
(a)は、走査型プロ−ブ顕微鏡で表面凹凸分布を測定するときの本発明の模式図、(b)は、カンチレバ−のレ−ザ反射面の基本的な変形の詳細図である。 走査型プロ−ブ顕微鏡で表面凹凸分布を測定するときの従来の模式図である。 走査型プロ−ブ顕微鏡で表面凹凸分布を測定する際カンチレバ−側を振動させるときの本発明の模式図である。 (a)、(b)は走査型プロ−ブ顕微鏡で弾性分布を測定するときの本発明の模式図である。 (c)は走査型プロ−ブ顕微鏡で弾性分布を測定するときの本発明の模式図、(d)は走査型プロ−ブ顕微鏡で弾性分布を測定するときの探針の振幅量とかたいやわらかいの関係を示す説明図である。 (e)は走査型プロ−ブ顕微鏡で弾性分布を測定する際カンチレバ−の変形を詳細に盛り込んだときの従来の模式図、(f)は走査型プロ−ブ顕微鏡で弾性分布を測定する際カンチレバ−の変形を詳細に盛り込んだときの本発明の模式図である。 (a)、(b)は走査型プロ−ブ顕微鏡で粘着力分布を測定するときの本発明の模式図である。 (c)は走査型プロ−ブ顕微鏡で粘着力分布を測定する際カンチレバ−の変形を詳細に盛り込んだときの従来の模式図、(d)は走査型プロ−ブ顕微鏡で粘着力分布を測定する際カンチレバ−の変形を詳細に盛り込んだときの本発明の模式図である。 走査型プロ−ブ顕微鏡で表面凹凸情報、弾性あるいは粘着性などの物性情報を測定するときの本発明の模式図である。
符号の説明
1 探針
2 カンチレバ−
3 レバ−固定部
4 レ−ザ反射面
5 レ−ザ
6 根元寄り
7 反射光
8 光位置検出器
9 試料
10 試料移動手段
11 スキャン動作
12 上下動作
13 たわみ角
21 先端
31 レバ−加振手段
41 かたい
42 上下動作の下限
43 上下動作の上限
44 やわらかい
51 粘着小
52 粘着大
61 レ−ザ発生器
62 ウインドウ
63 真空容器
64 真空排気手段
65 試料台
66 レ−ザ移動手段
67 光位置検出器移動手段
68 ガス導入
69 試料台移動手段

Claims (2)

  1. レ−ザ発生器と光位置検出器を真空容器外に設置し、試料を載せるあるいは加熱あるいは冷却する試料台を真空容器内に有し真空中、加熱中、冷却中でもその場でレ−ザ反射面への照射位置、照射角度を真空容器外に設置されたレ−ザ発生器と光位置検出器により変更するようにした走査型プロ−ブ顕微鏡。
  2. 試料の表面凹凸および物性に応じてレ−ザ照射位置を変更して測定するようにした、請求項1記載の走査型プロ−ブ顕微鏡。
JP2006148810A 2006-05-29 2006-05-29 走査型プローブ顕微鏡 Pending JP2006284598A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148810A JP2006284598A (ja) 2006-05-29 2006-05-29 走査型プローブ顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148810A JP2006284598A (ja) 2006-05-29 2006-05-29 走査型プローブ顕微鏡

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21159099A Division JP3939050B2 (ja) 1999-07-27 1999-07-27 走査型プローブ顕微鏡

Publications (1)

Publication Number Publication Date
JP2006284598A true JP2006284598A (ja) 2006-10-19

Family

ID=37406638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148810A Pending JP2006284598A (ja) 2006-05-29 2006-05-29 走査型プローブ顕微鏡

Country Status (1)

Country Link
JP (1) JP2006284598A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472165C2 (ru) * 2008-10-27 2013-01-10 ЗАО "Нанотехнология МДТ" Сканирующий зондовый микроскоп для биологических применений
JP5546651B1 (ja) * 2013-01-28 2014-07-09 株式会社エリオニクス 表面力測定方法および表面力測定装置
CN106443075A (zh) * 2016-12-09 2017-02-22 南京大学 一种用于原子力显微镜的温控样品台和温控系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472165C2 (ru) * 2008-10-27 2013-01-10 ЗАО "Нанотехнология МДТ" Сканирующий зондовый микроскоп для биологических применений
JP5546651B1 (ja) * 2013-01-28 2014-07-09 株式会社エリオニクス 表面力測定方法および表面力測定装置
WO2014115634A1 (ja) * 2013-01-28 2014-07-31 株式会社エリオニクス 表面力測定方法および表面力測定装置
JP2014145605A (ja) * 2013-01-28 2014-08-14 Elionix Kk 表面力測定方法および表面力測定装置
US9410984B2 (en) 2013-01-28 2016-08-09 Elionix Inc. Surface force measuring method and surface force measuring apparatus
CN106443075A (zh) * 2016-12-09 2017-02-22 南京大学 一种用于原子力显微镜的温控样品台和温控系统

Similar Documents

Publication Publication Date Title
JP5461917B2 (ja) 軟化点測定装置および熱伝導測定装置
JP4557773B2 (ja) プローブ顕微鏡及び物性測定方法
Martínez et al. High throughput optical readout of dense arrays of nanomechanical systems for sensing applications
Helm et al. Read-out of micromechanical cantilever sensors by phase shifting interferometry
JP2006284598A (ja) 走査型プローブ顕微鏡
TW202236006A (zh) 表面拓樸測量設備及方法
JP3939050B2 (ja) 走査型プローブ顕微鏡
TW201625954A (zh) 掃描探針顯微鏡
Pasquariello et al. Mesa‐Spacers: Enabling Nondestructive Measurement of Surface Energy in Room Temperature Wafer Bonding
US20210003608A1 (en) Method and system for at least subsurface characterization of a sample
US20070158554A1 (en) Probe for probe microscope using transparent substrate, method of producing the same, and probe microscope device
JP4930940B2 (ja) 薄膜のヤング率相当の機械特性の測定方法とそれに用いる装置
Leisen et al. Mechanical characterization between room temperature and 1000° C of SiC free-standing thin films by a novel high-temperature micro-tensile setup
JP3939128B2 (ja) 走査型プローブ顕微鏡
US9176012B2 (en) Methods and systems for improved membrane based calorimeters
JP5455781B2 (ja) 温度測定用プローブ、温度測定装置および温度測定方法
KR100912220B1 (ko) 코팅 스트레스 측정장치
JP2004028793A (ja) 薄膜の物性値測定装置
JP3877919B2 (ja) 走査型プローブ顕微鏡
JP4471295B2 (ja) 原子間力顕微鏡プローブ
JP3872352B2 (ja) 走査型プローブ顕微鏡
Bashash et al. Mass detection of elastically distributed ultrathin layers using piezoresponse force microscopy
JP2007017388A (ja) 走査形プローブ顕微鏡
JP3939148B2 (ja) 走査型プローブ顕微鏡
Dohn et al. The influence of refractive index change and initial bending of cantilevers on the optical lever readout method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20090120

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630