JP2006283684A - Direct injection type internal combustion engine and combustion method thereof - Google Patents

Direct injection type internal combustion engine and combustion method thereof Download PDF

Info

Publication number
JP2006283684A
JP2006283684A JP2005105791A JP2005105791A JP2006283684A JP 2006283684 A JP2006283684 A JP 2006283684A JP 2005105791 A JP2005105791 A JP 2005105791A JP 2005105791 A JP2005105791 A JP 2005105791A JP 2006283684 A JP2006283684 A JP 2006283684A
Authority
JP
Japan
Prior art keywords
injection
fuel
cavity
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005105791A
Other languages
Japanese (ja)
Other versions
JP4442491B2 (en
Inventor
Toshiya Kono
十史弥 河野
Masahiro Fukuzumi
雅洋 福住
Koji Hiratani
康治 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005105791A priority Critical patent/JP4442491B2/en
Publication of JP2006283684A publication Critical patent/JP2006283684A/en
Application granted granted Critical
Publication of JP4442491B2 publication Critical patent/JP4442491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accelerate warming up by retard combustion without deteriorating combustion stability and exhaust emission performance in a spark ignition type direct injection type internal combustion engine. <P>SOLUTION: Main combustion is performed by igniting first injection fuel injected and supplied toward a first cavity 31 and second injection fuel injected and supplied toward a second cavity 32 is ignited and burned after that. Since sufficient oxygen necessary for combustion remains in the second cavity zone after main combustion, fuel additionally supplied by second injection is easily ignited in high temperature atmosphere accompanying the main combustion and sufficiently burns. Consequently, warming up or activation of the catalyst 5 is accelerated. Since injected fuel is retained in spray lump shape by the cavity, discharge of unburned fuel accompanying adhesion of fuel on a cylinder wall surface or the like does not happen. Since variation of spray lumps of each cycle is small, combustion stability is not deteriorated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、火花点火方式の直接噴射式内燃機関またはその燃焼方法の改良に関する。   The present invention relates to an improvement in a spark ignition direct injection internal combustion engine or a combustion method thereof.

排気浄化触媒を備えた内燃機関では、冷機始動後の排気エミッション性能を改善するために、始動後に触媒の温度をいかに速やかに活性温度にまで上昇させるかが課題となっている。この課題に対して、火花点火方式の直接噴射式内燃機関において、筒内への燃料供給を比較的自由に制御できる特徴を利して、二次的な追加燃料の供給により排気を高温化して触媒の活性化を促すようにしたものが提案されている。   In an internal combustion engine equipped with an exhaust purification catalyst, in order to improve exhaust emission performance after cold start, there is a problem of how quickly the temperature of the catalyst is raised to the activation temperature after start. In response to this problem, in a spark ignition type direct injection internal combustion engine, taking advantage of the feature that the fuel supply into the cylinder can be controlled relatively freely, the temperature of the exhaust is increased by supplying secondary additional fuel. There has been proposed one that promotes activation of the catalyst.

例えば、特許文献1のものでは、主燃焼のための噴射燃料に加えて、膨張行程または排気行程中に追加燃料を噴射供給し、この追加燃料に点火して燃焼させ、または排気管に設けた点火栓により、排気中に混入させた追加燃料に着火して燃焼させるようにしている。また、特許文献2のものでは、追加燃料の熱エネルギが膨張仕事として失われないように膨張行程の中期〜後期において燃料の追加供給を行って排気温度を高めるようにしたものが開示されている。
特開平4-183922号公報 特開2000-145511号公報
For example, in Patent Document 1, in addition to the injected fuel for main combustion, additional fuel is injected and supplied during the expansion stroke or exhaust stroke, and the additional fuel is ignited and burned, or provided in the exhaust pipe. With the spark plug, the additional fuel mixed in the exhaust gas is ignited and burned. Moreover, in the thing of patent document 2, what was made to raise exhaust gas temperature by performing additional supply of fuel in the middle stage-latter stage of an expansion stroke so that the thermal energy of additional fuel may not be lost as expansion work. .
JP 4-183922 A JP 2000-145511

特許文献1のものでは、圧縮行程後期以降の短時間内に2度の点火を行う必要があるため、点火制御が複雑になることに加えて、近接した2度の点火機会に対応しうるだけの高エネルギ型の点火コイルが必要となり、コストおよび耐久性上の懸念が生じる。また、主噴射による燃料は膨張行程および排気行程においてはほとんど完全燃焼しているので、追加燃料を含む排気中に火種となる化学活性種が少なく、このため特に排気管内で再点火させようとすると高いエネルギが必要となり、既存の点火装置では着火に必要な十分なエネルギが得られず、燃焼が成立しない可能性がある。また、特許文献2のものでは、膨張行程中期〜後期にかけて噴射した燃料はピストンが下死点付近にまで下降しているためピストンキャビティ外に溢れてしまい、この結果として噴霧が拡散して火炎伝播のサイクルバラツキが多くなり、エンジンの安定度が悪化する。また、既燃焼領域に燃料を噴射した場合は、残存酸素が少ないため噴射された燃料の酸化反応が進まず未燃燃料として排出されてしまうおそれもある。   With the thing of patent document 1, since it is necessary to perform ignition twice within a short time after the latter stage of the compression stroke, in addition to complication of ignition control, it can only deal with two close ignition opportunities. High energy type ignition coil is required, which raises cost and durability concerns. In addition, since the fuel from the main injection is almost completely burned in the expansion stroke and the exhaust stroke, there are few chemically active species to be fired in the exhaust including the additional fuel. High energy is required, and the existing ignition device cannot obtain sufficient energy necessary for ignition and combustion may not be established. Further, in Patent Document 2, the fuel injected from the middle stage to the latter stage of the expansion stroke overflows to the outside of the piston cavity because the piston descends to the vicinity of the bottom dead center, and as a result, the spray diffuses and propagates the flame. The cycle variation increases, and the stability of the engine deteriorates. In addition, when fuel is injected into the already burned region, there is a possibility that since the remaining oxygen is low, the oxidation reaction of the injected fuel does not proceed and the fuel is discharged as unburned fuel.

本発明は、ピストン冠面に形成されたキャビティに向けて燃料を噴射供給する燃料噴射弁と点火栓とを燃焼室に臨むように備えた直接噴射式内燃機関を前提として、次のような構成ないしはその燃焼方法を要旨とするものである。
・機関運転状態を検出する運転状態検出装置と、前記検出運転状態に基づいて前記燃料噴射弁による燃料噴射時期、燃料噴射量、および前記点火栓による点火時期を制御する制御装置とを備え、前記キャビティを複数のキャビティ領域から形成するとともに、前記制御装置を、冷機状態下では、前記燃料噴射弁により点火前の第1噴射と点火後の第2噴射とを行わせるように構成するとともに、前記燃料噴射弁を、第1噴射と第2噴射の燃料噴霧が異なるキャビティ領域を指向するように構成する。
・冷機状態下にて、前記燃料噴射弁により点火前に複数のキャビティ領域のうちの第1のキャビティ領域に向けて第1の噴射を行い、該第1の噴射による噴射燃料に点火したのち、第2のキャビティ領域に向けて第2の噴射を行って該第2の噴射による噴射燃料を比較的酸素濃度の高い燃焼室域にて燃焼させる。
The present invention is based on a direct injection internal combustion engine provided with a fuel injection valve for supplying fuel to a cavity formed on the piston crown surface and an ignition plug so as to face the combustion chamber. Or the combustion method is the gist.
An operation state detection device that detects an engine operation state, and a control device that controls a fuel injection timing by the fuel injection valve, a fuel injection amount, and an ignition timing by the spark plug based on the detected operation state, A cavity is formed from a plurality of cavity regions, and the control device is configured to cause the fuel injection valve to perform a first injection before ignition and a second injection after ignition in a cold state, and The fuel injection valve is configured so that the fuel sprays of the first injection and the second injection are directed to different cavity regions.
In a cold state, after performing the first injection toward the first cavity region of the plurality of cavity regions before ignition by the fuel injection valve, and igniting the injected fuel by the first injection, A second injection is performed toward the second cavity region, and the fuel injected by the second injection is combusted in a combustion chamber region having a relatively high oxygen concentration.

前記本発明による直接噴射式内燃機関または燃焼方法によれば、第1のキャビティ領域に向けて噴射供給した第1噴射の燃料に点火して主燃焼を行わせ、その後に第2のキャビティ領域に向けて噴射供給した第2噴射の燃料を着火燃焼させる。第2のキャビティ領域は主燃焼が行われる第1のキャビティ領域とは異なるため、燃焼に必要な酸素が十分に残っており、このため第2噴射により追加的に供給した燃料には主燃焼に伴う高温雰囲気中で容易に着火し、十分に燃焼が行われる。これにより、高温の排気が排出されるので、機関の暖機ないしは排気通路に設けられる触媒コンバータの昇温を速やかに完了させることができる。   According to the direct injection internal combustion engine or the combustion method according to the present invention, the fuel of the first injection injected and supplied toward the first cavity region is ignited to cause main combustion, and then the second cavity region. The fuel of the second injection injected and supplied toward is ignited and burned. Since the second cavity region is different from the first cavity region where the main combustion is performed, oxygen necessary for the combustion is sufficiently left. Therefore, the fuel additionally supplied by the second injection is not subjected to the main combustion. It is easily ignited in a high-temperature atmosphere that accompanies it, and combustion is sufficiently performed. As a result, the high-temperature exhaust gas is discharged, so that the engine warm-up or the temperature increase of the catalytic converter provided in the exhaust passage can be completed quickly.

一方、第2噴射の燃料は第2のキャビティ領域によってその噴霧塊の形状がある程度保持され、あるいは噴霧塊の拡散が抑えられるので、シリンダ壁面等への燃料の付着に伴う未燃燃料の排出がない。また、前記同様の理由によりサイクル毎の噴霧塊のばらつきが少なくなるので、第2噴射により燃焼安定度が損なわれることもない。   On the other hand, the shape of the spray lump is held to some extent by the second cavity region, or the diffusion of the spray lump is suppressed, so that the unburned fuel is discharged due to the fuel adhering to the cylinder wall surface or the like. Absent. Moreover, since the dispersion | variation in the spray lump for every cycle decreases for the same reason as described above, the combustion stability is not impaired by the second injection.

以下、本発明の実施形態を図面に基づいて説明する。なお各図において共通する部分には互いに同一の符号を付して示すこととする。図1は本発明が適用可能な内燃機関の概略構成を示している。図中の1は内燃機関本体、2は吸気通路、3はスロットル弁、4は排気通路、5は触媒コンバータ、6は吸気弁、7は排気弁、8は燃料噴射弁、9は点火栓である。10はコントロールユニット、11は吸入空気量センサ、12はアクセル開度センサ、13はクランク角センサ、14は冷却水温センサ、15は排気酸素センサである。17はカム駆動により燃料を燃料噴射弁8に圧送する燃料ポンプであり、16はその燃料圧力を検出する圧力センサである。また、21は燃焼室、24はピストンを示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG. 1 shows a schematic configuration of an internal combustion engine to which the present invention is applicable. In the figure, 1 is an internal combustion engine body, 2 is an intake passage, 3 is a throttle valve, 4 is an exhaust passage, 5 is a catalytic converter, 6 is an intake valve, 7 is an exhaust valve, 8 is a fuel injection valve, and 9 is a spark plug. is there. 10 is a control unit, 11 is an intake air amount sensor, 12 is an accelerator opening sensor, 13 is a crank angle sensor, 14 is a coolant temperature sensor, and 15 is an exhaust oxygen sensor. Reference numeral 17 denotes a fuel pump that pumps fuel to the fuel injection valve 8 by cam driving, and 16 is a pressure sensor that detects the fuel pressure. Reference numeral 21 denotes a combustion chamber, and 24 denotes a piston.

コントロールユニット10は、本発明における制御装置に相当するもので、CPUおよびその周辺装置からなるマイクロコンピュータにより構成されており、前記運転状態検出装置としての各種センサ11〜16からの入力に基づいて内燃機関の運転状態を判断し、燃料の噴射時期、噴射量、点火時期がそれぞれ所定の目標値に一致するように燃料ポンプ17、燃料噴射ノズル8および点火栓9の作動を制御する。   The control unit 10 corresponds to a control device according to the present invention, and is constituted by a microcomputer including a CPU and its peripheral devices. The control unit 10 is an internal combustion engine based on inputs from various sensors 11 to 16 as the operating state detection device. The operation state of the engine is judged, and the operation of the fuel pump 17, the fuel injection nozzle 8 and the spark plug 9 is controlled so that the fuel injection timing, the injection amount, and the ignition timing respectively match predetermined target values.

この内燃機関は吸気弁6と排気弁7をそれぞれ2個ずつ備えた4弁形式であり、燃料噴射弁8と点火栓9はそれぞれ前記4弁に包囲された燃焼室中央付近に配設してある。燃料噴射弁8は、その燃料噴霧の中心がシリンダ軸線対して略平行となるように取り付けてある。   This internal combustion engine is a four-valve type provided with two intake valves 6 and two exhaust valves 7, and a fuel injection valve 8 and a spark plug 9 are respectively disposed near the center of the combustion chamber surrounded by the four valves. is there. The fuel injection valve 8 is attached so that the center of the fuel spray is substantially parallel to the cylinder axis.

前記燃料噴射弁8と対向するように、図2−1または図2−2に示したように、ピストン24の冠面には比較的小径の円形凹形状の第1キャビティ31と、これを包囲するように比較的大径の環状をした第2キャビティ32とを形成してある。なお、前記第1キャビティ31、第2キャビティ32の直上方の燃焼室空間領域をそれぞれ第1のキャビティ領域、第2のキャビティ領域と称する。   As shown in FIG. 2-1 or FIG. 2-2, a first cavity 31 having a relatively small diameter and a circular concave shape is surrounded on the crown surface of the piston 24 so as to face the fuel injection valve 8. In this way, a second cavity 32 having an annular shape with a relatively large diameter is formed. The combustion chamber space region immediately above the first cavity 31 and the second cavity 32 is referred to as a first cavity region and a second cavity region, respectively.

前記第1キャビティ31および第2キャビティ32の中心と燃料噴射弁8の中心とはそれぞれほぼシリンダ軸線と一致するように位置設定してあり、これにより燃料噴射弁8からの燃料噴霧がほぼキャビティ31の中心部に衝突するようにしている。一方、点火栓9については、その放電電極部9aが、燃料噴射弁8からの燃料噴霧に近接して位置するスプレーガイド配置としてある。   The centers of the first and second cavities 31 and 32 and the center of the fuel injection valve 8 are set so as to substantially coincide with the cylinder axis, whereby the fuel spray from the fuel injection valve 8 is approximately cavities 31. Colliding with the center of the. On the other hand, the spark plug 9 has a spray guide arrangement in which the discharge electrode portion 9 a is positioned close to the fuel spray from the fuel injection valve 8.

前記燃料噴射弁8は、その燃料噴霧をシリンダ軸線に対して傾斜させることで、ピストン24の位置に応じて燃料噴霧が前記第1キャビティ31または第2キャビティ32の領域間で移行するように図る。そのためにこの実施形態では、燃料噴射弁8としてそのノズル部を頂点とする仮想的な円錐面に沿って燃料を噴射するマルチホールノズルまたはアウトワード型ノズルを適用する。これにより燃料噴霧はシリンダ軸線に対して傾斜した態様となるので、図3の(a)に示したようにピストン24が上死点に付近に位置するときには小径の第1のキャビティ31にのみ燃料を供給し、ピストン24が下降するほど相対的に燃料噴霧の径が拡大することから、図3の(b)に示したように噴射燃料の大部分を比較的大径の第2のキャビティ32にのみ供給することが可能となる。なおホールノズルまたはアウトワード型ノズルによる燃料噴霧は、圧縮行程後半における筒内圧力上昇時においても噴霧塊の窄まりまたは形状変化が小さいという利点もある。   The fuel injection valve 8 inclines the fuel spray with respect to the cylinder axis so that the fuel spray moves between the first cavity 31 and the second cavity 32 according to the position of the piston 24. . Therefore, in this embodiment, a multi-hole nozzle or an outward type nozzle that injects fuel along a virtual conical surface having the nozzle portion at the top is applied as the fuel injection valve 8. As a result, the fuel spray is inclined with respect to the cylinder axis. Therefore, as shown in FIG. 3A, when the piston 24 is located near the top dead center, the fuel is sprayed only in the first cavity 31 having a small diameter. As the piston 24 descends, the diameter of the fuel spray is relatively increased. Therefore, as shown in FIG. 3B, most of the injected fuel is second cavity 32 having a relatively large diameter. It becomes possible to supply only to. In addition, the fuel spraying by the hole nozzle or the outward type nozzle has an advantage that even when the in-cylinder pressure rises in the latter half of the compression stroke, the squeezing or shape change of the spray mass is small.

次に、前記構成下での燃焼方式の実施形態につき説明する。一般に直接噴射式内燃機関では、圧縮行程中に燃料を噴射供給して混合気を成層化し、希薄空燃比による運転を行わせる成層燃焼運転のモードと、吸気行程中に燃料を噴射供給して理論空燃比近傍の比較的濃い予混合気による運転を行わせる均質燃焼運転のモードとを運転状態に応じて切り換えるようにしている。本発明による運転モードは、基本的に圧縮行程以降に燃料噴射を行う成層燃焼運転であり、特に排気浄化触媒が活性化する前の冷機状態において、点火時期を挟んで2度の燃料噴射を行うことを特徴としている。なお冷機状態か否かの判定は、前記図1の構成においてはコントロールユニット10が冷却水温センサ14からの信号に基づいて判断し、実際の冷却水温が所定の基準温度より低温であるときには冷機状態と判定して本発明に係る燃焼制御を適用する。   Next, an embodiment of a combustion system under the above configuration will be described. In general, in a direct injection internal combustion engine, fuel is injected and supplied during the compression stroke to stratify the mixture, and a stratified combustion operation mode in which operation is performed at a lean air-fuel ratio, and fuel is injected and supplied during the intake stroke. The mode of the homogeneous combustion operation in which the operation with the relatively rich premixed gas near the air-fuel ratio is performed is switched according to the operation state. The operation mode according to the present invention is basically a stratified combustion operation in which fuel injection is performed after the compression stroke, and in particular in the cold state before the exhaust purification catalyst is activated, fuel injection is performed twice with the ignition timing interposed therebetween. It is characterized by that. In the configuration shown in FIG. 1, the control unit 10 makes a determination based on a signal from the cooling water temperature sensor 14, and when the actual cooling water temperature is lower than a predetermined reference temperature, the cooling unit state is determined. And the combustion control according to the present invention is applied.

図4は前記制御による基本的なタイミングチャートである。図中のPfはコントローラ10から燃料噴射装置に出力される噴射パルス信号、Piは同じく点火装置に出力される点火パルス信号、D1またはD2はそれぞれ第1キャビティ領域と第2キャビティ領域の残存酸素量を表している。噴射パルス信号Pfは、そのパルスの立ち上りにより燃料噴射弁8のノズルが開いて燃料噴射が開始され、立ち下がりによりノズルが閉じて燃料噴射が終了し、この間のパルス幅に応じた量の燃料が燃焼室内へと噴射される。また、点火パルス信号Piは、そのパルスの発生に伴い点火栓9に放電電流が供給される。   FIG. 4 is a basic timing chart based on the control. In the figure, Pf is an injection pulse signal output from the controller 10 to the fuel injection device, Pi is an ignition pulse signal also output to the ignition device, and D1 or D2 is the amount of residual oxygen in the first cavity region and the second cavity region, respectively. Represents. The injection pulse signal Pf indicates that the rising edge of the pulse opens the nozzle of the fuel injection valve 8 to start fuel injection, and the falling edge closes the nozzle to end fuel injection. It is injected into the combustion chamber. The ignition pulse signal Pi is supplied with a discharge current to the spark plug 9 as the pulse is generated.

本発明では、図示したように点火の前に第1噴射F1を、点火の後に第2噴射F2をそれぞれ実施する。また、ピストン位置との関係では、この実施形態では図3に示したように、第1噴射はピストン24が上死点付近に位置する圧縮行程末期として第1キャビティ31に向けて燃料を噴射し、第2噴射はピストン24が上死点から離れた膨張行程の中期以降として第2キャビティ32に燃料を噴射する。こうすることにより、第1噴射の燃料はほぼ第1キャビティ領域でのみ燃焼するので(残存酸素量D1)、第2噴射までの間に第2キャビティ領域に残存酸素が確保され(残存酸素量D2)、第2噴射の燃料はこの残存酸素を有する第2キャビティ領域にて着火燃焼する。このようにして、膨張行程中期以降にまで燃焼期間が延長、または遅らされる結果、燃焼エネルギの多くを排気に供給してその温度を上昇させ、触媒の温度を速やかに上昇させることが可能となる。   In the present invention, as shown, the first injection F1 is performed before ignition and the second injection F2 is performed after ignition. In this embodiment, as shown in FIG. 3, the first injection injects fuel toward the first cavity 31 at the end of the compression stroke in which the piston 24 is located near the top dead center. In the second injection, the fuel is injected into the second cavity 32 after the middle stage of the expansion stroke in which the piston 24 is away from the top dead center. By doing so, the fuel of the first injection burns almost only in the first cavity region (residual oxygen amount D1), so that residual oxygen is secured in the second cavity region until the second injection (residual oxygen amount D2). ), The fuel of the second injection is ignited and combusted in the second cavity region having the residual oxygen. In this way, as a result of extending or delaying the combustion period until the middle of the expansion stroke, it is possible to increase the temperature by supplying much of the combustion energy to the exhaust, and to quickly increase the temperature of the catalyst It becomes.

より詳細には、圧縮上死点付近では筒内のガス流動が少なく背圧が高いことから、この時期に第1噴射を行うことにより、ガス流動による外乱の影響を軽減でき、噴霧のペネトレーションも下がるので、小径の第1キャビティ31内に確実に燃料を供給して燃焼安定性を向上させることができる。また、第1噴射から点火時期までの間隔が、圧縮行程前半〜中期の比較的早期に噴射する場合に比較して短くなるので、それだけ混合気塊の拡散および混合比の偏りを少なくできることも安定燃焼に貢献する。一方、第2噴射を膨張行程にて比較的大径の第2キャビティ32に燃料が導入されるように行うことにより、第2噴射の燃料の拡散も抑えて、未燃燃料の排出を防止し、安定燃焼を維持させることができる。そして、この結果として燃焼期間の大幅なリタードが可能となることから、排気温度を効果的に上昇させて触媒の活性化を早期に達成することができるのである。   More specifically, since there is little gas flow in the cylinder near the compression top dead center and the back pressure is high, the influence of disturbance due to gas flow can be reduced by performing the first injection at this time, and the spray penetration is also reduced. Therefore, the fuel can be reliably supplied into the small-diameter first cavity 31 to improve the combustion stability. In addition, since the interval from the first injection to the ignition timing is shorter than the case where the injection is performed relatively early in the first half to the middle of the compression stroke, it is also possible to reduce the diffusion of the air-fuel mixture and the deviation of the mixing ratio. Contributes to combustion. On the other hand, by performing the second injection so that the fuel is introduced into the second cavity 32 having a relatively large diameter during the expansion stroke, the diffusion of the fuel in the second injection is also suppressed, and the discharge of unburned fuel is prevented. , Stable combustion can be maintained. As a result, the combustion period can be significantly retarded, so that the exhaust gas temperature can be effectively increased to activate the catalyst at an early stage.

またこの場合、円形ないし環状のキャビティ31,32を同心円状に形成したことから、いずれかのキャビティに噴射供給した燃料は燃焼室内に円筒状ないし環状に等方性をもって拡散する。このため、混合気に過度に濃厚または希薄な領域を生じることがなく、混合気濃度の偏りに原因する燃焼不良またはスモークの発生などがない。   Further, in this case, since the circular or annular cavities 31 and 32 are formed concentrically, the fuel injected and supplied to any of the cavities diffuses in a cylindrical or annular manner in an isotropic manner in the combustion chamber. For this reason, a region that is excessively rich or lean is not generated in the air-fuel mixture, and there is no combustion failure or smoke due to a deviation in the air-fuel mixture concentration.

なお、前記効果を得るにあたっては、第1噴射および点火の時期は上死点前に限定されるものではなく、点火時期に先行して比較的早期に第1噴射すなわち主燃焼の噴射燃料を小径の第1のキャビティ31に向けて行うことにより、コンパクトでキャビティ内およびその上方の燃焼室空間内にて安定して長時間留まる拡散しにくい成層混合気を形成することができ、したがってこの混合気に点火することによって安定した主燃焼が可能である。また、その後の比較的後期に第2噴射を径の大きい第2キャビティ32に向けて行うことで、大径の環状の混合気塊が形成され、燃焼室中央付近に位置する点火栓の放電電極部9aが濃混合気に晒されるようなことがないので、リッチ雰囲気下で着火した場合に起こりがちな点火栓のくすぶりを回避できる。また、この噴霧塊は第2のキャビティ32の内側領域に収まるので、シリンダ壁面への燃料の付着に伴う未燃燃料の排出および燃焼安定度の低下を防止することができる。   In order to obtain the effect, the timing of the first injection and ignition is not limited to before the top dead center, but the first injection, that is, the main combustion injection fuel is reduced in diameter to a relatively early stage prior to the ignition timing. By performing the process toward the first cavity 31, it is possible to form a stratified air-fuel mixture that is compact and that remains stable in the cavity and the combustion chamber space above it and that does not diffuse easily. By igniting, stable main combustion is possible. Further, by performing the second injection toward the second cavity 32 having a large diameter at a relatively later stage thereafter, a large-diameter annular mixture is formed, and the discharge electrode of the spark plug located near the center of the combustion chamber Since the portion 9a is not exposed to the rich air-fuel mixture, the smoldering of the spark plug that tends to occur when ignited in a rich atmosphere can be avoided. Moreover, since this spray lump is contained in the inner region of the second cavity 32, it is possible to prevent discharge of unburned fuel and a decrease in combustion stability due to fuel adhering to the cylinder wall surface.

前記実施形態では、第1噴射を小径の第1キャビティ31に、第2噴射を大径の第2キャビティ32にそれぞれ行うようにしているが、これとは異なり、図5に示したように、第1噴射を大径の第2キャビティ32に、第2噴射を小径の第1キャビティ31にそれぞれ行うようにしてもよい。すなわち、第1噴射は、図5の(a)に示したようにピストンが圧縮行程中の比較的上死点から遠い位置にあるときに外側の第2キャビティ32に向けて行い、第2噴射は、図5の(b)に示したようにピストンが膨張行程中の比較的上死点に近い位置にあるときに内側の第1キャビティ31に向けて行う。   In the above-described embodiment, the first injection is performed on the first cavity 31 having a small diameter and the second injection is performed on the second cavity 32 having a large diameter. Unlike this, as shown in FIG. The first injection may be performed on the second cavity 32 having a large diameter, and the second injection may be performed on the first cavity 31 having a small diameter. That is, as shown in FIG. 5A, the first injection is performed toward the outer second cavity 32 when the piston is relatively far from the top dead center during the compression stroke. Is performed toward the first inner cavity 31 when the piston is located at a position relatively close to the top dead center during the expansion stroke, as shown in FIG.

通常、第1噴射をピストンが比較的上死点から遠い位置にある圧縮行程中期にて第2キャビティ32に向けて行うことにより、安定燃焼が可能である。また、この場合に第2噴射を小径の第1キャビティ31に確実に燃料が導入される時期、たとえばピストンが比較的上死点に近い膨張行程の初期に行うことにより、混合気塊を拡散させずに未燃燃料の排出を防止し、第2噴射の実施に伴う燃焼安定度の低下を回避することができる。   Usually, stable combustion is possible by performing the first injection toward the second cavity 32 in the middle of the compression stroke where the piston is relatively far from the top dead center. Also, in this case, the second injection is performed at a time when the fuel is surely introduced into the first cavity 31 having a small diameter, for example, at the beginning of the expansion stroke where the piston is relatively close to the top dead center, thereby diffusing the air-fuel mixture. Therefore, it is possible to prevent unburned fuel from being discharged, and to avoid a decrease in combustion stability associated with the execution of the second injection.

なお、機関の回転数または負荷がある程度高い状態で小径の第1キャビティ31に燃料を噴射供給すると、点火栓の放電電極部9aの付近に濃混合気塊が集中して過剰リッチ燃焼となり、点火栓のくすぶりが生じたり燃焼安定度が損なわれたりする場合がある。このような条件下では、第1噴射を大径の第2キャビティ32に対して行うことで放電電極部9a付近を比較的リーンの雰囲気として前記問題を回避することができる。この場合は、第2噴射を小径の第1キャビティ31に向けて行うことで、残存酸素を有効利用して排気温度を効果的に高めることができる。   If fuel is injected and supplied to the small-diameter first cavity 31 while the engine speed or load is high to some extent, the rich air-fuel mixture concentrates in the vicinity of the discharge electrode portion 9a of the spark plug, resulting in excessive rich combustion. Plug smoldering or combustion stability may be impaired. Under such conditions, the first injection is performed on the second cavity 32 having a large diameter, so that the above-described problem can be avoided by setting the vicinity of the discharge electrode portion 9a as a relatively lean atmosphere. In this case, by performing the second injection toward the first cavity 31 having a small diameter, it is possible to effectively increase the exhaust temperature by effectively using the residual oxygen.

前記実施形態において、第1噴射の燃料噴射量と第2噴射の燃料噴射量の合計がシリンダ吸入空気量に対して理論空燃比(およそ14.5〜15)を構成するように燃料噴射量を設定することで、投入熱量を最大として触媒の活性化を最小の時間で達成することができる。   In the embodiment, the fuel injection amount is set so that the sum of the fuel injection amount of the first injection and the fuel injection amount of the second injection constitutes the theoretical air-fuel ratio (approximately 14.5 to 15) with respect to the cylinder intake air amount. By setting, the input heat amount can be maximized and the activation of the catalyst can be achieved in the minimum time.

ただし、第2噴射により燃焼期間のリタード化を実施すると、排気温度が過大となって触媒の耐久性を損なうおそれを生じる。これに対しては、第2噴射の噴射量を第1噴射よりも小さくすることで触媒の過熱を防止しつつ活性化までの時間を短縮することが可能となる。また、暖機完了後または暖機途中の過程にあっても、負荷の増大により燃料噴射量が増大した場合にも、第2噴射により燃焼期間をリタードした効果として排気温度が過上昇するおそれを生じる。これに対しては、負荷の増大に応じて第2噴射の噴射量を減少させ、または、所定の基準負荷以上の高負荷時には第2の噴射を停止するように構成することで対処することができる。すなわち、第2噴射の噴射量の低減または噴射の停止により燃焼期間のリタードを抑えて排気温度が過度に上昇する不都合を回避し、触媒の保護を図りつつその活性化を促進することができる。   However, if the retarding of the combustion period is performed by the second injection, the exhaust temperature becomes excessive and the durability of the catalyst may be impaired. On the other hand, by making the injection amount of the second injection smaller than that of the first injection, it is possible to shorten the time until activation while preventing overheating of the catalyst. In addition, even when the warm-up is completed or during the warm-up process, even if the fuel injection amount increases due to an increase in the load, the exhaust temperature may be excessively increased as an effect of retarding the combustion period by the second injection. Arise. This can be dealt with by reducing the injection amount of the second injection as the load increases, or by stopping the second injection when the load is higher than a predetermined reference load. it can. That is, it is possible to avoid the disadvantage that the exhaust temperature rises excessively by suppressing the retard of the combustion period by reducing the injection amount of the second injection or stopping the injection, and promote the activation while protecting the catalyst.

前記実施形態において、暖機完了後(触媒活性後)は、基本的には小径の第1キャビティ31への燃料噴射のみを行うことで、点火栓の放電電極部9a付近にコンパクトな成層混合気塊を形成してリーン運転を行わせるとよい。これにより均質運転をする場合に比較して大幅に燃費を低減することができる。なお、成層燃焼運転域内でも比較的負荷または回転数が高い領域では第1噴射を大径の第2キャビティ32に対して行うようにしても前記と同様の効果が期待できる。図6は前記運転領域を示したもので、図中のAが小径の第1キャビティ31に燃料噴射を行う運転域、図中のBが大径の第2キャビティ32に燃料噴射を行う運転域を示している。B領域よりも高速または高負荷の領域は前述した均質燃焼運転域である。   In the above-described embodiment, after the warm-up is completed (after the catalyst is activated), basically, fuel injection into the first cavity 31 having a small diameter is performed, so that a compact stratified mixture is formed in the vicinity of the discharge electrode portion 9a of the spark plug. A lump may be formed to perform lean operation. As a result, the fuel consumption can be greatly reduced as compared with the case of performing a homogeneous operation. Even in the region where the load or the rotational speed is relatively high even in the stratified combustion operation region, the same effect as described above can be expected even if the first injection is performed on the second cavity 32 having a large diameter. FIG. 6 shows the operation region, where A in the drawing is an operation region in which fuel is injected into the first cavity 31 having a small diameter, and B in the drawing is an operation region in which fuel is injected into the second cavity 32 having a large diameter. Is shown. The region of higher speed or higher load than the region B is the above-described homogeneous combustion operation region.

前記実施形態においては、燃料噴射弁8をマルチホールノズルまたはアウトワード型ノズルとすることで、気筒あたり単一のノズルにて第1、第2の2つのキャビティ領域間で噴射燃料を移行可能としたが、これに限らず、キャビティ領域毎に燃料噴射弁を設けた構成、すなわちキャビティの第1領域に向けて燃料を噴射する第1の燃料噴射弁と、第2領域に向けて燃料を噴射する第2の燃料噴射弁とを設けるようにしてもよい。   In the above-described embodiment, the fuel injection valve 8 is a multi-hole nozzle or an outward type nozzle, so that the injected fuel can be transferred between the first and second cavity regions with a single nozzle per cylinder. However, the present invention is not limited to this, and a configuration in which a fuel injection valve is provided for each cavity region, that is, a first fuel injection valve that injects fuel toward the first region of the cavity and a fuel that is injected toward the second region. A second fuel injection valve may be provided.

また、キャビティは前記のような同心円状のものに限らず、例えば図7−1または図7−2に示したように、第1領域を形成する第1の円形キャビティ33と、第2領域を形成する第2の円形キャビティ34とをピストン径方向に直列に配置した構成としてもよい。この構成においては、前記のように各キャビティ領域に対応した2個の燃料噴射弁を設けるか、もしくは単一の燃料噴射弁を、その燃料噴霧がピストン位置に応じて前記各領域間で移行するように、シリンダ軸線に対して傾斜した燃料噴霧を形成するように設定するものとすることで、前記実施形態と同様の作用効果を実現することができる。   The cavities are not limited to the concentric circles as described above. For example, as shown in FIG. 7-1 or FIG. 7-2, the first circular cavity 33 forming the first region and the second region The second circular cavity 34 to be formed may be arranged in series in the piston radial direction. In this configuration, two fuel injection valves corresponding to each cavity region are provided as described above, or a single fuel injection valve is moved between the respective regions depending on the piston position. As described above, by setting the fuel spray so as to be inclined with respect to the cylinder axis, it is possible to realize the same effect as that of the above-described embodiment.

本発明を適用した直接噴射式内燃機関の実施形態の全体構成図。1 is an overall configuration diagram of an embodiment of a direct injection internal combustion engine to which the present invention is applied. 本発明のピストンに係る第1の実施形態の平面図。The top view of 1st Embodiment which concerns on the piston of this invention. 本発明のピストンに係る第1の実施形態の要部縦断面図。The principal part longitudinal cross-sectional view of 1st Embodiment which concerns on the piston of this invention. 本発明の燃焼方法に係る第1の実施形態の説明図。Explanatory drawing of 1st Embodiment which concerns on the combustion method of this invention. 前記燃焼方法に係る第1の実施形態のタイミングチャート。The timing chart of 1st Embodiment which concerns on the said combustion method. 本発明の燃焼方法に係る第2の実施形態の説明図。Explanatory drawing of 2nd Embodiment which concerns on the combustion method of this invention. 本発明の実施形態に係る成層燃焼領域の説明図。Explanatory drawing of the stratified combustion area | region which concerns on embodiment of this invention. 本発明のピストンに係る第2の実施形態の平面図。The top view of 2nd Embodiment which concerns on the piston of this invention. 本発明のピストンに係る第2の実施形態の要部縦断面図。The principal part longitudinal cross-sectional view of 2nd Embodiment which concerns on the piston of this invention.

符号の説明Explanation of symbols

1 直接噴射式内燃機関の本体
2 吸気通路
3 スロットルバルブ
4 排気通路
5 触媒コンバータ
6 吸気弁
7 排気弁
8 燃料噴射弁
9 点火栓
9a 点火栓の放電電極部
10 コントロールユニット
21 燃焼室
24 ピストン
31、33 第1のキャビティ
32、34 第2のキャビティ
DESCRIPTION OF SYMBOLS 1 Main body of direct injection type internal combustion engine 2 Intake passage 3 Throttle valve 4 Exhaust passage 5 Catalytic converter 6 Intake valve 7 Exhaust valve 8 Fuel injection valve 9 Spark plug 9a Discharge electrode part of spark plug 10 Control unit 21 Combustion chamber 24 Piston 31, 33 First cavity 32, 34 Second cavity

Claims (14)

ピストン冠面に形成されたキャビティに向けて燃料を噴射供給する燃料噴射弁と点火栓とを燃焼室に臨むように備え、機関運転状態を検出する運転状態検出装置と、前記検出運転状態に基づいて前記燃料噴射弁による燃料噴射時期、燃料噴射量、および前記点火栓による点火時期を制御する制御装置とを備えた直接噴射式内燃機関において、
前記キャビティを複数のキャビティ領域から形成するとともに、
前記制御装置を、冷機状態下では、前記燃料噴射弁により点火前の第1噴射と点火後の第2噴射とを行わせるように構成するとともに、
前記燃料噴射弁を、第1噴射と第2噴射の燃料噴霧が異なるキャビティ領域を指向するように構成したことを特徴とする直接噴射式内燃機関。
A fuel injection valve for injecting fuel toward a cavity formed on the piston crown surface and an ignition plug are provided so as to face the combustion chamber, and an operating state detecting device for detecting an engine operating state, based on the detected operating state In a direct injection internal combustion engine comprising a control device for controlling the fuel injection timing by the fuel injection valve, the fuel injection amount, and the ignition timing by the spark plug,
Forming the cavity from a plurality of cavity regions;
The control device is configured to cause the fuel injection valve to perform a first injection before ignition and a second injection after ignition under a cold condition,
The direct injection type internal combustion engine, wherein the fuel injection valve is configured to direct the fuel sprays of the first injection and the second injection to different cavity regions.
前記キャビティを、第1領域を形成する内側の第1キャビティと、該第1キャビティを包囲するように第2領域を形成する環状の第2キャビティとから構成するとともに、
前記燃料噴射弁を、その燃料噴霧がピストン位置に応じて前記各領域間で移行するように、シリンダ軸線に対して傾斜した燃料噴霧を形成するように設定した請求項1に記載の直接噴射式内燃機関。
The cavity includes an inner first cavity that forms the first region, and an annular second cavity that forms the second region so as to surround the first cavity;
2. The direct injection type according to claim 1, wherein the fuel injection valve is set to form a fuel spray inclined with respect to a cylinder axis such that the fuel spray moves between the regions in accordance with a piston position. Internal combustion engine.
前記制御装置を、前記第1噴射は、内側の第1キャビティに向けて行い、前記第2噴射は、外側の第2キャビティに向けて行うように構成した請求項2に記載の直接噴射式内燃機関。   3. The direct injection internal combustion engine according to claim 2, wherein the control device is configured so that the first injection is performed toward an inner first cavity and the second injection is performed toward an outer second cavity. organ. 前記制御装置を、前記第1噴射は、ピストンが圧縮行程中の比較的上死点に近い位置にあるときに内側の第1キャビティに向けて行い、前記第2噴射は、ピストンが膨張行程中の比較的上死点から遠い位置にあるときに外側の第2キャビティに向けて行うように構成した請求項2に記載の直接噴射式内燃機関。   The controller performs the first injection toward the first inner cavity when the piston is relatively close to the top dead center during the compression stroke, and the second injection is performed during the expansion stroke of the piston. The direct injection internal combustion engine according to claim 2, wherein the direct injection internal combustion engine is configured to be directed toward the outer second cavity when being relatively far from the top dead center. 前記制御装置を、前記第1噴射は、外側の第2キャビティに向けて行い、前記第2噴射は、内側の第1キャビティに向けて行うように構成した請求項2に記載の直接噴射式内燃機関。   3. The direct injection internal combustion engine according to claim 2, wherein the control device is configured such that the first injection is performed toward an outer second cavity, and the second injection is performed toward an inner first cavity. organ. 前記制御装置を、前記第1噴射は、ピストンが圧縮行程中の比較的上死点から遠い位置にあるときに外側の第2キャビティに向けて行い、前記第2噴射は、ピストンが膨張行程中の比較的上死点に近い位置にあるときに内側の第1キャビティに向けて行うように構成した請求項2に記載の直接噴射式内燃機関。   The controller performs the first injection toward the second outer cavity when the piston is relatively far from the top dead center during the compression stroke, and the second injection is performed during the expansion stroke of the piston. The direct injection internal combustion engine according to claim 2, wherein the direct injection internal combustion engine is configured to be directed toward the first inner cavity when the position is relatively close to the top dead center. 前記制御装置を、暖機完了後は、前記内側の第1キャビティに向けて第1噴射のみを行うように構成した請求項2に記載の直接噴射式内燃機関。   3. The direct injection internal combustion engine according to claim 2, wherein the control device is configured to perform only the first injection toward the inner first cavity after the warm-up is completed. 前記制御装置を、負荷の増大に応じて前記第2噴射の噴射量を減少させるように構成した請求項1に記載の直接噴射式内燃機関。   2. The direct injection internal combustion engine according to claim 1, wherein the control device is configured to decrease an injection amount of the second injection in accordance with an increase in load. 前記制御装置を、所定の基準負荷以上の高負荷時には前記第2の噴射を停止するように構成した請求項1に記載の直接噴射式内燃機関。   2. The direct injection internal combustion engine according to claim 1, wherein the control device is configured to stop the second injection when the load is higher than a predetermined reference load. 前記制御装置は、前記第1噴射の燃料噴射量と第2噴射の燃料噴射量の合計がシリンダ吸入空気量に対して理論空燃比を構成するように燃料噴射量を設定する請求項1に記載の直接噴射式内燃機関。   2. The control device according to claim 1, wherein the control device sets the fuel injection amount so that a sum of a fuel injection amount of the first injection and a fuel injection amount of the second injection constitutes a theoretical air-fuel ratio with respect to a cylinder intake air amount. Direct injection internal combustion engine. 前記制御装置は、第2噴射の噴射量を第1噴射の噴射量よりも小に設定する請求項1に記載の直接噴射式内燃機関。   The direct injection type internal combustion engine according to claim 1, wherein the control device sets the injection amount of the second injection to be smaller than the injection amount of the first injection. 前記燃料噴射弁は、キャビティの第1領域に向けて燃料を噴射する第1の燃料噴射弁と、第2領域に向けて燃料を噴射する第2の燃料噴射弁とからなる請求項1に記載の直接噴射式内燃機関。   The said fuel injection valve consists of a 1st fuel injection valve which injects a fuel toward the 1st area | region of a cavity, and a 2nd fuel injection valve which injects a fuel toward a 2nd area | region. Direct injection internal combustion engine. 前記キャビティを、第1領域を形成する第1キャビティと、第2領域を形成する第2キャビティとをピストン径方向に直列に配置した請求項1に記載の直接噴射式内燃機関。   2. The direct injection internal combustion engine according to claim 1, wherein a first cavity that forms a first region and a second cavity that forms a second region are arranged in series in the piston radial direction. ピストン冠面に形成された複数のキャビティ領域からなるキャビティに向けて燃料を噴射供給する燃料噴射弁と点火栓とを燃焼室に臨むように備えた直接噴射式内燃機関の燃焼方法であって、
冷機状態下にて、
前記燃料噴射弁により点火前に第1のキャビティ領域に向けて第1の噴射を行い、
該第1の噴射による噴射燃料に点火したのち、
第2のキャビティ領域に向けて第2の噴射を行って該第2の噴射による噴射燃料を比較的酸素濃度の高い燃焼室域にて燃焼させるようにしたことを特徴とする直接噴射式内燃機関の燃焼方法。
A combustion method for a direct injection internal combustion engine comprising a fuel injection valve for injecting fuel toward a cavity composed of a plurality of cavity regions formed on a piston crown surface and an ignition plug so as to face the combustion chamber,
Under cold conditions
Performing a first injection toward the first cavity region before ignition by the fuel injection valve;
After igniting the injected fuel from the first injection,
A direct injection internal combustion engine characterized in that the second injection is performed toward the second cavity region, and the fuel injected by the second injection is burned in a combustion chamber region having a relatively high oxygen concentration. Combustion method.
JP2005105791A 2005-04-01 2005-04-01 Direct injection internal combustion engine and combustion method thereof Expired - Fee Related JP4442491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105791A JP4442491B2 (en) 2005-04-01 2005-04-01 Direct injection internal combustion engine and combustion method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105791A JP4442491B2 (en) 2005-04-01 2005-04-01 Direct injection internal combustion engine and combustion method thereof

Publications (2)

Publication Number Publication Date
JP2006283684A true JP2006283684A (en) 2006-10-19
JP4442491B2 JP4442491B2 (en) 2010-03-31

Family

ID=37405866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105791A Expired - Fee Related JP4442491B2 (en) 2005-04-01 2005-04-01 Direct injection internal combustion engine and combustion method thereof

Country Status (1)

Country Link
JP (1) JP4442491B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106444A (en) * 2009-11-12 2011-06-02 Hyundai Motor Co Ltd Compression ignition gasoline engine
CN103590889A (en) * 2013-10-30 2014-02-19 清华大学 Combustion system and combustion method for two-stage pre-mixing compression ignition of gasoline direct injection engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106444A (en) * 2009-11-12 2011-06-02 Hyundai Motor Co Ltd Compression ignition gasoline engine
CN103590889A (en) * 2013-10-30 2014-02-19 清华大学 Combustion system and combustion method for two-stage pre-mixing compression ignition of gasoline direct injection engine

Also Published As

Publication number Publication date
JP4442491B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
JP6323683B2 (en) Engine control device
JP4424147B2 (en) Exhaust gas purification device for internal combustion engine
JP6323684B2 (en) Engine control device
US9932916B2 (en) Combustion control apparatus for internal combustion engine
JP4736518B2 (en) In-cylinder direct injection internal combustion engine control device
EP2075449A2 (en) Fuel Pressure Controlling Device of Engine
JP6252647B1 (en) Control device for premixed compression ignition engine
JP2009185688A (en) Direct-injection spark-ignition internal combustion engine
JP2006322334A (en) Direct injection type internal combustion engine and combustion method of the internal combustion engine
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP4442491B2 (en) Direct injection internal combustion engine and combustion method thereof
JP5249978B2 (en) Fuel injection control device for vehicle internal combustion engine
JP2006112329A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JP2006250050A (en) Controller of cylinder direct injection type spark ignition internal combustion engine
JP2007321696A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4428275B2 (en) Direct injection internal combustion engine and method of forming mixture
JP4609227B2 (en) Internal combustion engine
JP2007270670A (en) Premixed compressed self-ignition type gasoline internal combustion engine
JP4604829B2 (en) In-cylinder injection internal combustion engine
JP2016135991A (en) Fuel injection control device of direct-injection engine
JP6102958B2 (en) Fuel injection control device for direct injection engine
JP2007009864A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2007032378A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2022051346A (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080227

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130122

LAPS Cancellation because of no payment of annual fees