JP2006322334A - Direct injection type internal combustion engine and combustion method of the internal combustion engine - Google Patents

Direct injection type internal combustion engine and combustion method of the internal combustion engine Download PDF

Info

Publication number
JP2006322334A
JP2006322334A JP2005143956A JP2005143956A JP2006322334A JP 2006322334 A JP2006322334 A JP 2006322334A JP 2005143956 A JP2005143956 A JP 2005143956A JP 2005143956 A JP2005143956 A JP 2005143956A JP 2006322334 A JP2006322334 A JP 2006322334A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
fuel
cavity
direct injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005143956A
Other languages
Japanese (ja)
Inventor
Toshiya Kono
十史弥 河野
Koji Hiratani
康治 平谷
Masahiro Fukuzumi
雅洋 福住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005143956A priority Critical patent/JP2006322334A/en
Publication of JP2006322334A publication Critical patent/JP2006322334A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direct injection type internal combustion engine or a combustion method of the internal combustion engine capable of developing excellent ignition performance by deviating the concentration of a mixture lump from a cavity on the discharge electrode part of an ignition plug by squish to avoid the excessive concentration of an air/fuel ratio at the discharge electrode part when ignition and burning are started at a rather delay time for promoting warmup to prevent the ignition plug from being fouled, worn, or smoked. <P>SOLUTION: In this direct injection type internal combustion engine having a fuel injection nozzle 8 jetting and feeding a fuel toward the cavity formed in a piston 24 and the spark plug 9, the flow of the mixture lump M formed by a jet fuel into the cavity flowing to the discharge electrode part 9a of the spark plug is deviated by the squish S, and the ignition and combustion are started while avoiding that the mixture concentration near the discharge electrode part is excessively increased. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、火花点火方式の直接噴射式内燃機関またはその燃焼方法の改良に関する。   The present invention relates to an improvement in a spark ignition direct injection internal combustion engine or a combustion method thereof.

排気浄化触媒を備えた内燃機関では、冷機始動後の排気エミッション性能を改善するために、始動後に触媒の温度をいかに速やかに活性温度にまで上昇させるかが課題となっている。この課題に対して、火花点火方式の直接噴射式内燃機関において、筒内への燃料供給を比較的自由に制御できる特徴を利して、二次的な追加燃料の供給またはリタード燃焼により排気を高温化して触媒の活性化を促すようにしたものが提案されている。   In an internal combustion engine equipped with an exhaust purification catalyst, in order to improve exhaust emission performance after cold start, there is a problem of how quickly the temperature of the catalyst is raised to the activation temperature after start. In response to this problem, in a spark ignition type direct injection internal combustion engine, taking advantage of the feature that the fuel supply into the cylinder can be controlled relatively freely, it is possible to supply exhaust by secondary additional fuel supply or retard combustion. There has been proposed one that promotes catalyst activation by increasing the temperature.

例えば、特許文献1には、追加燃料の熱エネルギが膨張仕事として失われないように膨張行程の中期〜後期において燃料の追加供給を行って排気温度を高めるようにしたものが開示されている。
特開2000-145511号公報
For example, Patent Document 1 discloses an apparatus in which additional fuel is supplied in the middle to late stages of the expansion stroke to increase the exhaust temperature so that the thermal energy of the additional fuel is not lost as expansion work.
JP 2000-145511

本出願人の知見によれば、ピストン冠面に設けたキャビティに向けて噴射した燃料により成層混合気を形成するようにした直噴式機関では、キャビティにて反転してきた燃料噴霧ないしは混合気塊が点火栓の放電電極部に集中してリッチ雰囲気下での着火燃焼がなされることがある。この結果、特に触媒の活性を促すべき低温運転状態下では、リッチ雰囲気による点火栓のくすぶりや消耗、さらにスモーク発生という問題が生じやすい。   According to the applicant's knowledge, in a direct injection engine in which a stratified mixture is formed by the fuel injected toward the cavity provided on the piston crown surface, the fuel spray or mixture mass reversed in the cavity is present. There are cases where ignition and combustion under a rich atmosphere are concentrated on the discharge electrode portion of the spark plug. As a result, particularly under low temperature operation conditions that should promote the activity of the catalyst, problems such as smoldering and consumption of spark plugs due to a rich atmosphere and the occurrence of smoke are likely to occur.

本発明は、ピストン冠面に形成されたキャビティに向けて燃料を噴射供給する燃料噴射弁と点火栓とを燃焼室に臨むように備えた直接噴射式内燃機関を前提として、次のような構成ないしはその燃焼方法を要旨とするものである。
・機関運転状態を検出する運転状態検出装置と、前記検出運転状態に基づいて前記燃料噴射弁による燃料噴射時期、燃料噴射量、および前記点火栓による点火時期を制御する制御装置とを備え、平面視にて、前記キャビティにて形成される混合気塊の中心に対して前記点火栓の放電電極部を偏在させると共に、前記燃焼室に、ピストン圧縮上死点付近にて前記放電電極部から混合気塊中心方向に向かうスキッシュを生起するスキッシュエリアを設ける。
・前記キャビティへの噴射燃料により形成される混合気塊の、前記点火栓の放電電極部へと向かう流れをスキッシュにより偏向させ、前記放電電極部付近の混合気濃度が過濃となるのを回避した状態で点火燃焼を開始させる。
The present invention is based on a direct injection internal combustion engine provided with a fuel injection valve for supplying fuel to a cavity formed on the piston crown surface and an ignition plug so as to face the combustion chamber. Or the combustion method is the gist.
A driving state detecting device for detecting an engine operating state, and a control device for controlling a fuel injection timing by the fuel injection valve, a fuel injection amount, and an ignition timing by the spark plug based on the detected operating state, Visually, the discharge electrode portion of the spark plug is unevenly distributed with respect to the center of the air-fuel mixture formed in the cavity, and mixed from the discharge electrode portion near the piston compression top dead center in the combustion chamber A squish area that causes squish toward the center of the air mass is provided.
・ A squish deflects the flow of the air-fuel mixture formed by the fuel injected into the cavity toward the discharge electrode portion of the spark plug to avoid over-concentration of the air-fuel mixture in the vicinity of the discharge electrode portion. In this state, ignition combustion is started.

前記本発明による直接噴射式内燃機関または燃焼方法によれば、例えば暖機促進のために比較的遅い時期に点火燃焼を開始させる場合において、キャビティからの混合気塊が点火栓の放電電極部に集中しようとするのをスキッシュにより偏向させ、放電電極部の空燃比過濃化を回避して良好な着火性能を発揮させることができる、したがって点火栓のくすぶりや消耗、スモークの発生を防止することができる。   According to the direct injection internal combustion engine or the combustion method according to the present invention, for example, when ignition combustion is started at a relatively late time for promoting warm-up, the air-fuel mixture from the cavity becomes a discharge electrode portion of the spark plug. It is possible to deflect the concentration to be concentrated by squish and to avoid over-concentration of the air-fuel ratio of the discharge electrode part, so that good ignition performance can be exhibited, thus preventing the smoldering and consumption of spark plugs and the occurrence of smoke Can do.

なお、特開平9-158736号公報には、スキッシュを利用してキャビティ内の混合気性状を制御するようにした技術が開示されている。しかしながら、これはスキッシュにより混合気塊をキャビティ内に保持させ、混合気の飛散を防ぐことにより失火や消炎を回避することを目的としたものであって、点火栓の放電電極部がリッチ雰囲気となることによる問題点を課題としたものではなく、したがってその解決手段を開示したものでもない。   Japanese Patent Laid-Open No. 9-158736 discloses a technique for controlling the air-fuel mixture in the cavity using squish. However, this is aimed at avoiding misfire and extinguishing by holding the air-fuel mixture in the cavity by squish and preventing the air-fuel mixture from scattering, and the discharge electrode part of the spark plug has a rich atmosphere. It is not intended to address the problems caused by this, and thus does not disclose a solution.

以下、本発明の実施形態を図面に基づいて説明する。なお各図において共通する部分には互いに同一の符号を付して示すこととする。図1は本発明が適用可能な内燃機関の概略構成を示している。図中の1は内燃機関本体、2は吸気通路、3はスロットル弁、4は排気通路、5は触媒コンバータ、6は吸気弁、7は排気弁、8は燃料噴射弁、9は点火栓である。10はコントロールユニット、11は吸入空気量センサ、12はアクセル開度センサ、13はクランク角センサ、14は冷却水温センサ、15は排気酸素センサである。17はカム駆動により燃料を燃料噴射弁8に圧送する燃料ポンプであり、16はその燃料圧力を検出する圧力センサである。また、21は燃焼室、24はピストンを示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG. 1 shows a schematic configuration of an internal combustion engine to which the present invention is applicable. In the figure, 1 is an internal combustion engine body, 2 is an intake passage, 3 is a throttle valve, 4 is an exhaust passage, 5 is a catalytic converter, 6 is an intake valve, 7 is an exhaust valve, 8 is a fuel injection valve, and 9 is a spark plug. is there. 10 is a control unit, 11 is an intake air amount sensor, 12 is an accelerator opening sensor, 13 is a crank angle sensor, 14 is a coolant temperature sensor, and 15 is an exhaust oxygen sensor. Reference numeral 17 denotes a fuel pump that pumps fuel to the fuel injection valve 8 by cam driving, and 16 is a pressure sensor that detects the fuel pressure. Reference numeral 21 denotes a combustion chamber, and 24 denotes a piston.

コントロールユニット10は、本発明における制御装置に相当するもので、CPUおよびその周辺装置からなるマイクロコンピュータにより構成されており、前記運転状態検出装置としての各種センサ11〜16からの入力に基づいて内燃機関の運転状態を判断し、燃料の噴射時期、噴射量、点火時期がそれぞれ所定の目標値に一致するように燃料ポンプ17、燃料噴射ノズル8および点火栓9の作動を制御する。   The control unit 10 corresponds to a control device according to the present invention, and is constituted by a microcomputer including a CPU and its peripheral devices. The control unit 10 is an internal combustion engine based on inputs from various sensors 11 to 16 as the operating state detection device. The operation state of the engine is judged, and the operation of the fuel pump 17, the fuel injection nozzle 8 and the spark plug 9 is controlled so that the fuel injection timing, the injection amount, and the ignition timing respectively match predetermined target values.

この内燃機関は吸気弁6と排気弁7をそれぞれ2個ずつ備えた4弁形式であり、燃料噴射弁8と点火栓9はそれぞれ前記4弁に包囲された燃焼室中央付近に配設してある。燃料噴射弁8は、その燃料噴霧の中心がシリンダ軸線対して略平行となるように取り付けてある。   This internal combustion engine is a four-valve type provided with two intake valves 6 and two exhaust valves 7, and a fuel injection valve 8 and a spark plug 9 are respectively disposed near the center of the combustion chamber surrounded by the four valves. is there. The fuel injection valve 8 is attached so that the center of the fuel spray is substantially parallel to the cylinder axis.

前記燃料噴射弁8と対向するように、図2−1または図2−2に示したように、ピストン24の冠面には円形凹形状のキャビティ31を形成してある。前記キャビティ31の中心と燃料噴射弁8による燃料噴霧の中心(Cm)とは互いに略一致するように位置設定してあり、これにより燃料噴射弁8からの燃料噴霧がほぼキャビティ31の底面中央部に衝突するようにしている。また、燃料噴射弁8はそのノズル部を頂点とする仮想的な円錐面に沿って燃料を噴射するマルチホールノズルまたはアウトワード型ノズルを適用してある。このような噴霧特性を有する燃料噴射弁は、圧縮行程後半以降における筒内圧力上昇時においても噴霧塊の窄まりまたは形状変化が小さいという利点がある。   As shown in FIG. 2-1 or FIG. 2-2, a circular concave cavity 31 is formed on the crown surface of the piston 24 so as to face the fuel injection valve 8. The center of the cavity 31 and the center (Cm) of the fuel spray by the fuel injection valve 8 are set so as to substantially coincide with each other, so that the fuel spray from the fuel injection valve 8 is substantially at the center of the bottom surface of the cavity 31. To collide with. The fuel injection valve 8 is a multi-hole nozzle or an outward type nozzle that injects fuel along a virtual conical surface with the nozzle portion at the top. The fuel injection valve having such spray characteristics has an advantage that the stagnation or shape change of the spray mass is small even when the cylinder pressure rises in the latter half of the compression stroke.

前記キャビティ31と点火栓9は、キャビティ31の中心Cmと、点火栓の放電電極部9aの中心Cgとが互いに偏って位置するように位置設定してある。この場合、キャビティ31はその側壁部31aを底面に対して略鉛直に立ち上げた直円筒面状に形成してあり、該側壁部31によって画成されるキャビティ領域の縁部ないしはそれよりも外側に放電電極部中心Cgが位置するようにしてある。これにより、燃焼室をシリンダ中心線方向から見たときに、前記キャビティ31にて形成される混合気塊Mの中心(Cm)に対して前記点火栓の放電電極部9aが偏在するようにしている。   The cavity 31 and the spark plug 9 are positioned so that the center Cm of the cavity 31 and the center Cg of the discharge electrode portion 9a of the spark plug are offset from each other. In this case, the cavity 31 is formed in the shape of a right cylindrical surface with its side wall portion 31a rising substantially perpendicular to the bottom surface, and the edge of the cavity region defined by the side wall portion 31 or the outside thereof. The discharge electrode portion center Cg is positioned at the center. Thus, when the combustion chamber is viewed from the cylinder center line direction, the discharge electrode portion 9a of the spark plug is unevenly distributed with respect to the center (Cm) of the air-fuel mixture M formed in the cavity 31. Yes.

また、前記燃焼室21には、図2−2に示したように、ピストン圧縮上死点付近にて前記放電電極部9aから混合気塊Mの中心方向に向かうスキッシュSを生起するスキッシュエリアAsを設けてある。前記スキッシュSは、後述するようにリッチな混合気塊Mが点火栓の放電電極部9aに接近しないように偏向させるためのものであるので、より好ましくは、図示したように側面から見てスキッシュSが放電電極部9aを指向するように前記スキッシュエリアAsを形成するようにする。   In the combustion chamber 21, as shown in FIG. 2B, a squish area As that generates a squish S from the discharge electrode portion 9a toward the center of the air-fuel mixture M near the piston compression top dead center. Is provided. The squish S is for deflecting the air-fuel mixture M so that it does not approach the discharge electrode portion 9a of the spark plug, as will be described later. More preferably, the squish S is seen from the side as shown in the figure. The squish area As is formed so that S is directed to the discharge electrode portion 9a.

次に、前記構成下での燃焼方式の実施形態につき説明する。一般に直接噴射式内燃機関では、圧縮行程中に燃料を噴射供給して混合気を成層化し、希薄空燃比による運転を行わせる成層燃焼運転のモードと、吸気行程中に燃料を噴射供給して理論空燃比近傍の比較的濃い予混合気による運転を行わせる均質燃焼運転のモードとを運転状態に応じて切り換えるようにしている。本実施形態による運転モードは、基本的に圧縮行程またはそれ以降に燃料噴射を行う成層燃焼運転であり、特に排気浄化触媒5が活性化する前の冷機状態において、排気温度を高めるために比較的遅い時期に点火燃焼を開始させる。なお冷機状態か否かの判定は、前記図1の構成においてはコントロールユニット10が冷却水温センサ14からの信号に基づいて判断し、実際の冷却水温が所定の基準温度より低温であるときには冷機状態と判定して前記燃焼制御を適用する。   Next, an embodiment of a combustion system under the above configuration will be described. In general, in a direct injection internal combustion engine, fuel is injected and supplied during the compression stroke to stratify the mixture, and a stratified combustion operation mode in which operation is performed at a lean air-fuel ratio, and fuel is injected and supplied during the intake stroke. The mode of the homogeneous combustion operation in which the operation with the relatively rich premixed gas near the air-fuel ratio is performed is switched according to the operation state. The operation mode according to the present embodiment is basically a stratified combustion operation in which fuel injection is performed at or after the compression stroke, and in order to increase the exhaust temperature, particularly in the cold state before the exhaust purification catalyst 5 is activated. Ignition combustion is started at a later time. In the configuration shown in FIG. 1, the control unit 10 makes a determination based on a signal from the cooling water temperature sensor 14, and when the actual cooling water temperature is lower than a predetermined reference temperature, the cooling unit state is determined. And the combustion control is applied.

図3は前記制御による基本的なタイミングチャートである。図中のPfはコントローラ10から燃料噴射装置に出力される噴射パルス信号、Piは同じく点火装置への点火パルス信号に基づき点火コイルから点火栓9に供給される点火二次電流、Aは点火栓放電電極部9a近傍の空燃比、Baは前記空燃比域内の着火可能空燃比幅を、それぞれ表している。噴射パルス信号Pfは、そのパルスの立ち上りにより燃料噴射弁8のノズルが開いて燃料噴射が開始され、立ち下がりによりノズルが閉じて燃料噴射が終了し、この間のパルス幅に応じた量の燃料が燃焼室内へと噴射される。前記噴射パルスPfの出力時期すなわち燃料噴射時期は、この場合圧縮行程後半またはそれ以降であり、点火時期は前記燃料噴射直後の圧縮上死点付近またはそれ以降のタイミングとしてある。このような燃料噴射および点火のタイミングにより燃焼を開始させると、燃焼期間が遅い時期に発生するリタード燃焼となるので、燃焼エネルギの多くを排気に供給してその温度を上昇させ、触媒の温度を速やかに上昇させることができる。   FIG. 3 is a basic timing chart based on the control. In the drawing, Pf is an injection pulse signal output from the controller 10 to the fuel injection device, Pi is an ignition secondary current supplied from the ignition coil to the ignition plug 9 based on the ignition pulse signal to the ignition device, and A is an ignition plug. An air fuel ratio in the vicinity of the discharge electrode portion 9a, Ba represents an ignitable air fuel ratio width in the air fuel ratio range. The injection pulse signal Pf indicates that the rising edge of the pulse opens the nozzle of the fuel injection valve 8 to start fuel injection, and the falling edge closes the nozzle to end fuel injection. It is injected into the combustion chamber. In this case, the output timing of the injection pulse Pf, that is, the fuel injection timing is in the latter half of the compression stroke or later, and the ignition timing is in the vicinity of or after the compression top dead center immediately after the fuel injection. When combustion is started at the timing of such fuel injection and ignition, retard combustion occurs at a time when the combustion period is late, so much of the combustion energy is supplied to the exhaust gas to increase its temperature, and the temperature of the catalyst is increased. It can be raised quickly.

次に、前記制御下での混合気形成および燃焼作用の詳細について説明する。前述したように、圧縮行程後半のタイミングで燃料噴射弁8から噴射供給された燃料は、キャビティ31の略中央部に衝突したのち周囲の側壁部31aに沿って上方へと向かい、その間に周囲の空気と混合しながら、円形のキャビティ領域内にて略環状の混合気塊Mを形成する。この混合気塊Mはそれ自体の上昇とピストン24の移動に伴い、一部が点火栓9の放電電極部9aに向かってゆく。一方、ピストン24が上死点付近に達すると、スキッシュエリアAsの領域にあるガスが圧縮されて放電電極部9aに向かってスキッシュSとして噴出する。このスキッシュSの流れにより、放電電極部9aへと向かっていた混合気塊Mがスキッシュ下流方向へと押し流される。特に、この実施形態では、放電電極部9aをキャビティ31ないし混合気塊Mの縁部に位置させてあることから、前記スキッシュSの作用により、放電電極部9aの付近の混合気濃度が過剰にリッチになる不都合を確実に避けられる。これにより、図4に示したように、点火時期付近にて放電電極部9aの周囲の混合気濃度を適度な着火可能混合気濃度とすることができるのであり、したがってこのタイミングで点火栓9により着火燃焼を開始させることにより、良好な着火性を発揮させ、点火栓9のくすぶりや消耗、スモークの発生を防止することができる。   Next, the details of the mixture formation and the combustion action under the control will be described. As described above, the fuel injected and supplied from the fuel injection valve 8 at the timing of the latter half of the compression stroke collides with the substantially central portion of the cavity 31 and then moves upward along the peripheral side wall portion 31a. While mixing with air, a substantially annular air-fuel mass M is formed in the circular cavity region. A part of the air-fuel mixture M moves toward the discharge electrode portion 9 a of the spark plug 9 as the air-fuel mixture M rises and the piston 24 moves. On the other hand, when the piston 24 reaches the vicinity of the top dead center, the gas in the squish area As is compressed and ejected as the squish S toward the discharge electrode portion 9a. By the flow of the squish S, the air-fuel mixture mass M that has been directed to the discharge electrode portion 9a is pushed away in the squish downstream direction. In particular, in this embodiment, since the discharge electrode portion 9a is positioned at the edge of the cavity 31 or the air mass M, the mixture concentration in the vicinity of the discharge electrode portion 9a is excessive due to the action of the squish S. You can definitely avoid the inconvenience of being rich. As a result, as shown in FIG. 4, the mixture concentration around the discharge electrode portion 9a can be set to an appropriate ignitable mixture concentration in the vicinity of the ignition timing. By starting the ignition combustion, good ignitability can be exhibited, and the smoldering and consumption of the spark plug 9 and the occurrence of smoke can be prevented.

加えて、この実施形態では、キャビティ31を円形形状とし、かつその中心と燃料噴霧中心とを一致させてあるので、噴射供給した燃料は燃焼室内に円筒状ないし環状に等方性をもって拡散する。このため、混合気に過度に濃厚または希薄な領域を生じることがなく、混合気濃度の偏りに原因する燃焼不良またはスモークの発生をより確実に抑制することができる。   In addition, in this embodiment, since the cavity 31 has a circular shape and the center thereof coincides with the center of the fuel spray, the injected fuel is diffused in an isotropic manner in a cylindrical or annular shape in the combustion chamber. For this reason, an excessively rich or lean region is not generated in the air-fuel mixture, and it is possible to more reliably suppress the occurrence of defective combustion or smoke caused by the uneven air-fuel mixture concentration.

図4−1および図4−2に本発明の第2の実施形態を示す。これは、前記スキッシュSと略同一方向への吸気流動を生起する手段を設けたものである。前記吸気流動としては、例えば図示したような縦方向の吸気流動すなわちタンブルTであり、これは、図示しないがタンブルポートと称される方向性を有する吸入ポート形状または吸入ポートをバルブにより部分的に閉鎖することで実現される。   FIGS. 4A and 4B show a second embodiment of the present invention. This is provided with means for generating an intake flow in substantially the same direction as the squish S. The intake flow is, for example, a vertical intake flow, that is, a tumble T as shown in the drawing. This is a suction port shape or a suction port having a directivity called a tumble port (not shown), but is partially formed by a valve. Realized by closing.

燃焼室21の略中央部には、2個の吸気弁6または排気弁7と並列に燃料噴射弁8および点火栓9を配置し、それぞれを結ぶ線分に対して直交する方向に設けた2個のスキッシュエリアAs1とAs2とによりスキッシュを生起する。ただしこの場合、図4−2に示したように、前記タンブルTを、点火栓の放電電極部9aの付近を吸気側から排気側へと向かって流れるように形成することから、この方向と合わせてスキッシュの主流Sが生じるように、吸気弁側のスキッシュエリアAs1を排気弁側のスキッシュエリアAs2よりも大きくしてある。したがって、この実施形態によれば、燃焼室21内に生起したスキッシュSとタンブルTとの相乗的作用により、キャビティ31からの燃料リッチな混合気塊をより確実に放電電極部9aから遠ざけることができる。なお、このような作用を促す吸気流動としては、前記のようなタンブルTのみならず、スワールを適用することもできる。   A fuel injection valve 8 and a spark plug 9 are arranged in parallel with the two intake valves 6 or the exhaust valve 7 in a substantially central portion of the combustion chamber 21, and are provided in a direction orthogonal to a line segment connecting them. A squish is generated by the squish areas As1 and As2. However, in this case, as shown in FIG. 4B, the tumble T is formed so as to flow in the vicinity of the discharge electrode portion 9a of the spark plug from the intake side to the exhaust side. Thus, the squish area As1 on the intake valve side is made larger than the squish area As2 on the exhaust valve side so that the main flow S of squish occurs. Therefore, according to this embodiment, the synergistic action of the squish S and the tumble T generated in the combustion chamber 21 enables the fuel-rich air-fuel mixture mass from the cavity 31 to be more reliably moved away from the discharge electrode portion 9a. it can. In addition, as the intake air flow that promotes such an action, not only the tumble T as described above but also a swirl can be applied.

図5に本発明の第3の実施形態を示す。これはキャビティ31に関する他の実施形態である。この実施形態では、キャビティ側壁部31aの少なくとも一部を、キャビティ底部側を基点として内側方向に傾斜したリエントラント部31bを有するものとして、かつ該リエントラント部31bの略上方に前記点火栓の放電電極部9aを位置させてある。この実施形態によれば、キャビティ31に噴射供給された燃料による混合気塊Mの一部は、キャビティ31から燃焼室上方へと向かって上昇してゆくときに、前記リエントラント部31bにより点火栓の放電電極部9aから離れる方向(図で左方)に付勢される。したがって、スキッシュSの作用とあわせて、燃料リッチな混合気塊Mが放電電極部9aに達する不都合をより確実に回避することができる。
FIG. 5 shows a third embodiment of the present invention. This is another embodiment for the cavity 31. In this embodiment, at least a part of the cavity side wall 31a has a reentrant portion 31b inclined inward from the bottom of the cavity, and the discharge electrode portion of the spark plug is substantially above the reentrant portion 31b. 9a is located. According to this embodiment, when a part of the air-fuel mixture mass M by the fuel injected and supplied to the cavity 31 rises upward from the cavity 31 toward the upper side of the combustion chamber, the reentrant portion 31b causes the spark plug to It is biased in a direction away from the discharge electrode portion 9a (leftward in the figure). Therefore, in combination with the action of the squish S, it is possible to more reliably avoid the inconvenience that the fuel-rich mixture M reaches the discharge electrode portion 9a.

本発明を適用した直接噴射式内燃機関の実施形態の全体構成図。1 is an overall configuration diagram of an embodiment of a direct injection internal combustion engine to which the present invention is applied. 本発明の第1の実施形態に係る燃焼室の概略縦断面図。1 is a schematic longitudinal sectional view of a combustion chamber according to a first embodiment of the present invention. 本発明の第1の実施形態に係る燃焼室の概略底面図。1 is a schematic bottom view of a combustion chamber according to a first embodiment of the present invention. 前記実施形態による燃料噴射時期、点火時期、混合気濃度の関係を示すタイミングチャート。2 is a timing chart showing the relationship between fuel injection timing, ignition timing, and air-fuel mixture concentration according to the embodiment. 本発明の第2の実施形態に係る燃焼室の概略底面図。The schematic bottom view of the combustion chamber which concerns on the 2nd Embodiment of this invention. 図4−1のA矢示方向から見た燃焼室の概略縦断面図。The schematic longitudinal cross-sectional view of the combustion chamber seen from A arrow direction of FIGS. 本発明の第3の実施形態に係る燃焼室の概略縦断面図。The schematic longitudinal cross-sectional view of the combustion chamber which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 直接噴射式内燃機関の本体
2 吸気通路
3 スロットルバルブ
4 排気通路
5 触媒コンバータ
6 吸気弁
7 排気弁
8 燃料噴射弁
9 点火栓
9a 点火栓の放電電極部
10 コントロールユニット
21 燃焼室
24 ピストン
31 キャビティ
As、As1、As2 スキッシュエリア
S スキッシュ
T タンブル(吸気流動)
DESCRIPTION OF SYMBOLS 1 Main body of direct injection type internal combustion engine 2 Intake passage 3 Throttle valve 4 Exhaust passage 5 Catalytic converter 6 Intake valve 7 Exhaust valve 8 Fuel injection valve 9 Spark plug 9a Discharge electrode part of spark plug 10 Control unit 21 Combustion chamber 24 Piston 31 Cavity As, As1, As2 Squish area S Squish T Tumble (intake flow)

Claims (12)

ピストン冠面に形成されたキャビティに向けて燃料を噴射供給する燃料噴射弁と点火栓とを燃焼室に臨むように備え、機関運転状態を検出する運転状態検出装置と、前記検出運転状態に基づいて前記燃料噴射弁による燃料噴射時期、燃料噴射量および前記点火栓による点火時期を制御する制御装置とを備えた直接噴射式内燃機関において、
シリンダ中心線方向から見て、前記キャビティにて形成される混合気塊の中心に対して前記点火栓の放電電極部を偏在させると共に、
前記燃焼室に、ピストン圧縮上死点付近にて前記放電電極部から混合気塊中心方向に向かうスキッシュを生起するスキッシュエリアを設けたこと
を特徴とする直接噴射式内燃機関。
A fuel injection valve for injecting fuel toward a cavity formed on the piston crown surface and an ignition plug are provided so as to face the combustion chamber, and an operation state detection device for detecting an engine operation state, and based on the detected operation state In a direct injection internal combustion engine comprising a control device for controlling the fuel injection timing by the fuel injection valve, the fuel injection amount, and the ignition timing by the spark plug,
As seen from the cylinder centerline direction, the discharge electrode portion of the spark plug is unevenly distributed with respect to the center of the air-fuel mixture formed in the cavity,
A direct injection internal combustion engine characterized in that a squish area is provided in the combustion chamber in the vicinity of a piston compression top dead center to generate a squish from the discharge electrode portion toward the center of the air-fuel mixture.
前記キャビティおよび点火栓を、シリンダ中心線方向から見て、前記キャビティの側壁部によって画成されるキャビティ領域の縁部付近ないしは該縁部よりも前記スキッシュの上流側に、前記点火栓の放電電極部が位置するように各々配置した請求項1に記載の直接噴射式内燃機関。   When the cavity and the spark plug are viewed from the cylinder center line direction, the discharge electrode of the spark plug is near the edge of the cavity region defined by the side wall of the cavity or upstream of the squish from the edge. The direct injection internal combustion engine according to claim 1, wherein the direct injection internal combustion engine is disposed so that the portions are located. 前記キャビティの側壁部は、キャビティ底部側を基点として内側方向に傾斜したリエントラント部を有し、かつ該リエントラント部の略上方に前記点火栓の放電電極部を位置させた請求項1に記載の直接噴射式内燃機関。   2. The direct side according to claim 1, wherein the side wall portion of the cavity has a reentrant portion inclined inward from the bottom side of the cavity, and the discharge electrode portion of the spark plug is positioned substantially above the reentrant portion. Injection-type internal combustion engine. 前記キャビティは、円形凹形状を有する請求項1に記載の直接噴射式内燃機関。   The direct injection internal combustion engine according to claim 1, wherein the cavity has a circular concave shape. 前記燃料噴射弁は、その燃料噴霧の中心がシリンダ中心線に対して略平行となるように設けてある請求項1に記載の直接噴射式内燃機関   2. The direct injection internal combustion engine according to claim 1, wherein the fuel injection valve is provided such that the center of fuel spray is substantially parallel to a cylinder center line. 前記燃料噴射弁は、シリンダ中心線方向から見て、前記キャビティの中心と略一致する位置に設けてある請求項1に記載の直接噴射式内燃機関   2. The direct injection internal combustion engine according to claim 1, wherein the fuel injection valve is provided at a position substantially coincident with a center of the cavity when viewed from a cylinder center line direction. 前記制御装置は、所定の運転状態にて、燃料噴射時期を圧縮行程またはそれ以降に、かつ点火時期を圧縮上死点付近またはそれ以降に設定する請求項1に記載の直接噴射式内燃機関。   2. The direct injection internal combustion engine according to claim 1, wherein the control device sets a fuel injection timing at or after a compression stroke and an ignition timing at or near a compression top dead center in a predetermined operation state. 前記所定の運転状態は、低温運転時である請求項7に記載の直接噴射式内燃機関。   The direct injection internal combustion engine according to claim 7, wherein the predetermined operating state is a low temperature operation. 前記点火時期を、燃料噴射の終了時期付近に設定した請求項1に記載の直接噴射式内燃機関   2. The direct injection internal combustion engine according to claim 1, wherein the ignition timing is set near the end timing of fuel injection. 前記スキッシュエリアを、側方から見て、スキッシュが点火栓電極部に向かうように形成した請求項1に記載の直接噴射式内燃機関。   2. The direct injection internal combustion engine according to claim 1, wherein the squish area is formed so that the squish faces the spark plug electrode portion when viewed from the side. 前記スキッシュと略同一方向への吸気流動を生起する手段を有する請求項1に記載の直接噴射式内燃機関。   The direct injection internal combustion engine according to claim 1, further comprising means for generating an intake air flow in substantially the same direction as the squish. ピストン冠面に形成したキャビティに向けて燃料を噴射供給する燃料噴射弁と点火栓とを燃焼室に臨むように備えた直接噴射式内燃機関の燃焼方法であって、
前記キャビティへの噴射燃料により形成される混合気塊の、前記点火栓の放電電極部へと向かう流れをスキッシュにより偏向させ、前記放電電極部付近の混合気濃度が過濃となるのを回避した状態で点火燃焼を開始させること
を特徴とする直接噴射式内燃機関の燃焼方法。
A combustion method for a direct injection internal combustion engine comprising a fuel injection valve for injecting fuel toward a cavity formed on a piston crown and an ignition plug so as to face a combustion chamber,
The flow of the air-fuel mixture formed by the fuel injected into the cavity toward the discharge electrode portion of the spark plug is deflected by squish to avoid excessive concentration of the air-fuel mixture in the vicinity of the discharge electrode portion. A combustion method for a direct injection internal combustion engine, characterized by starting ignition combustion in a state.
JP2005143956A 2005-05-17 2005-05-17 Direct injection type internal combustion engine and combustion method of the internal combustion engine Withdrawn JP2006322334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143956A JP2006322334A (en) 2005-05-17 2005-05-17 Direct injection type internal combustion engine and combustion method of the internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143956A JP2006322334A (en) 2005-05-17 2005-05-17 Direct injection type internal combustion engine and combustion method of the internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006322334A true JP2006322334A (en) 2006-11-30

Family

ID=37542208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143956A Withdrawn JP2006322334A (en) 2005-05-17 2005-05-17 Direct injection type internal combustion engine and combustion method of the internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006322334A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047631A (en) * 2012-08-29 2014-03-17 Mazda Motor Corp Electric spark ignition direct-injection engine
WO2018221639A1 (en) * 2017-06-02 2018-12-06 マツダ株式会社 Combustion chamber structure for engines
JP2019078209A (en) * 2017-10-24 2019-05-23 マツダ株式会社 Combustion chamber structure for engine
US11041457B2 (en) 2017-06-02 2021-06-22 Mazda Motor Corporation Combustion chamber structure for engines
US11118499B2 (en) 2017-06-02 2021-09-14 Mazda Motor Corporation Combustion chamber structure for engines
US11149682B2 (en) 2017-06-02 2021-10-19 Mazda Motor Corporation Combustion chamber structure for engines

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047631A (en) * 2012-08-29 2014-03-17 Mazda Motor Corp Electric spark ignition direct-injection engine
WO2018221639A1 (en) * 2017-06-02 2018-12-06 マツダ株式会社 Combustion chamber structure for engines
CN110709593A (en) * 2017-06-02 2020-01-17 马自达汽车株式会社 Combustion chamber structure of engine
US11041457B2 (en) 2017-06-02 2021-06-22 Mazda Motor Corporation Combustion chamber structure for engines
US11073102B2 (en) 2017-06-02 2021-07-27 Mazda Motor Corporation Combustion chamber structure for engines
US11118499B2 (en) 2017-06-02 2021-09-14 Mazda Motor Corporation Combustion chamber structure for engines
US11149682B2 (en) 2017-06-02 2021-10-19 Mazda Motor Corporation Combustion chamber structure for engines
JP2019078209A (en) * 2017-10-24 2019-05-23 マツダ株式会社 Combustion chamber structure for engine

Similar Documents

Publication Publication Date Title
JP4609357B2 (en) Sub-chamber internal combustion engine
KR100576245B1 (en) Cylinder injection type engine
JP6784214B2 (en) Internal combustion engine control device
KR20030022040A (en) Controller for spark ignition type direct injection engine
US10436134B2 (en) Control device for internal combustion engine
JP4541846B2 (en) In-cylinder injection engine
JP6252647B1 (en) Control device for premixed compression ignition engine
US20050161021A1 (en) Direct fuel injection/spark ignition engine control device
WO2006072983A1 (en) Cylinder injection spark ignition type internal combustion engine
JP2006322334A (en) Direct injection type internal combustion engine and combustion method of the internal combustion engine
JP2009024682A (en) Control device for spray guide type cylinder injection internal combustion engine
JP2008157197A (en) Cylinder injection type spark ignition internal combustion engine
JP2006257921A (en) Control device and control method of cylinder direct injection type spark ignition internal combustion engine
JP2006258053A (en) Direct injection type internal combustion engine and combustion method for the same
JP3953346B2 (en) Sub-chamber lean combustion gas engine
JP2020037895A (en) Premixed compression ignition engine
JP4428275B2 (en) Direct injection internal combustion engine and method of forming mixture
JP2008025399A (en) Controller of cylinder direct injection spark-ignition internal combustion engine
JP4803050B2 (en) Fuel injection device for in-cylinder injection engine
JP4609227B2 (en) Internal combustion engine
JP4442491B2 (en) Direct injection internal combustion engine and combustion method thereof
JP4046055B2 (en) In-cylinder internal combustion engine
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2018178719A (en) Cylinder stop controller for auxiliary chamber engine
JP2010037958A (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090911