JP2006282434A - Method for manufacturing perovskite type compound oxide - Google Patents

Method for manufacturing perovskite type compound oxide Download PDF

Info

Publication number
JP2006282434A
JP2006282434A JP2005103225A JP2005103225A JP2006282434A JP 2006282434 A JP2006282434 A JP 2006282434A JP 2005103225 A JP2005103225 A JP 2005103225A JP 2005103225 A JP2005103225 A JP 2005103225A JP 2006282434 A JP2006282434 A JP 2006282434A
Authority
JP
Japan
Prior art keywords
oxide
slurry
combustion gas
pulse combustion
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005103225A
Other languages
Japanese (ja)
Inventor
Mineo Satobi
峯雄 佐飛
Kazuyuki Kato
和幸 加藤
Fumio Yoshida
文男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP2005103225A priority Critical patent/JP2006282434A/en
Publication of JP2006282434A publication Critical patent/JP2006282434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a mixed dry material with little maldistribution and little aggregation by heating a slurry prepared by wet-blending metal oxides which are raw materials of a perovskite type compound oxide in the presence of a solvent such as water and by bringing pulse combustion gas into contact with the slurry. <P>SOLUTION: A method for manufacturing a perovskite type compound oxide having a composition represented by the formula: ABO<SB>3</SB>(where A and B each denote a metal element) is provided which includes a step of drying a slurry or solution of inorganic metal compounds by bringing pulse combustion gas into contact with it. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ペロブスカイト系複合酸化物の製造法で、特にチタン酸ジルコン酸鉛化合物に関するものである。   The present invention relates to a method for producing a perovskite complex oxide, and particularly to a lead zirconate titanate compound.

チタン酸ジルコン酸鉛(以下、PZTと略称する)に代表される複合ペロブスカイト系材料は圧電材料として幅広い電子部品に使用されており、近年特に部品の高性能化、小型化、低コスト化に伴い、原料であるPZT粉末が微細でかつ結晶性の高いことが要求されている。   Composite perovskite materials represented by lead zirconate titanate (hereinafter abbreviated as PZT) are used in a wide range of electronic parts as piezoelectric materials, and in recent years, in particular, with the improvement in performance, size and cost of parts. The PZT powder as a raw material is required to be fine and have high crystallinity.

PZTの製造方法としては、(1)PZTを構成する元素の酸化物または炭酸塩の粉末を別々に秤量し、それらを混合粉砕して高温で仮焼する乾式法、(2)PZTを構成する元素の水溶性化合物を所定の割合で溶解した混合溶液にアルカリを加えて混合水酸化物沈殿を得、この沈殿物を洗浄して不純物を除去した後、乾燥仮焼する方法、(3)PZTを構成する元素のアルコキシド、アセチルアセトネートを混合して得られる複合化合物溶液を加水分解し、生成したゲルを仮焼するゾル−ゲル法、(4)PZTを構成する元素の水溶液化合物を溶解した混合溶液にカルボン酸、例えばシュウ酸を加えて分子化合物を生成させ、その沈殿物を洗浄して不純物を除去した後乾燥させ、これを仮焼する方法、(5)PZTを構成する元素の水溶液化合物に過酸化水素を添加して前駆体水溶液を得、この前駆体水溶液を熱分解する方法、(6)PZTを構成する元素の金属塩とアミノ酸との錯体溶液を調製し、それを加熱して粉末を調製、仮焼する方法などが知られている。しかしながら、従来の粉末製造方法では、仮焼前のPZTを構成する金属元素化合物の混合後の乾燥時に複合体組成酸化物が分離したり、乾燥時の凝集により粒子径がかえって大きくなってしまうという欠点があった。   PZT can be produced by (1) a dry method in which the oxides or carbonates of the elements constituting PZT are separately weighed, mixed and pulverized, and calcined at a high temperature, and (2) PZT is constituted. (3) PZT, wherein alkali is added to a mixed solution in which a water-soluble compound of an element is dissolved in a predetermined ratio to obtain a mixed hydroxide precipitate, the precipitate is washed to remove impurities, and dried and calcined. A sol-gel method of hydrolyzing a composite compound solution obtained by mixing alkoxides of elements constituting acetylacetonate and acetylacetonate, and calcining the generated gel, (4) dissolving an aqueous solution compound of elements constituting PZT A method in which a carboxylic acid, for example, oxalic acid is added to the mixed solution to form a molecular compound, and the precipitate is washed to remove impurities and then dried, and then calcined. (5) An aqueous solution of elements constituting PZT Hydrogen peroxide is added to the compound to obtain a precursor aqueous solution, and this precursor aqueous solution is thermally decomposed. (6) A complex solution of the metal salt of the element constituting PZT and an amino acid is prepared and heated. Thus, a method of preparing and calcining powder is known. However, in the conventional powder manufacturing method, the composite composition oxide is separated at the time of drying after mixing the metal element compounds constituting the PZT before calcination, or the particle size is increased by aggregation at the time of drying. There were drawbacks.

これらの問題点を解決するために、例えば特許文献1および特許文献2では、原料である各酸化物の前駆体である水酸化物、金属錯体を用いてペロブスカイト構造を有する複合酸化物粉末の製造方法が記載されているが、利用可能な金属化合物が限定されているという欠点があった。   In order to solve these problems, for example, in Patent Document 1 and Patent Document 2, production of a composite oxide powder having a perovskite structure using a hydroxide or metal complex as a precursor of each oxide as a raw material Although the method has been described, there has been the disadvantage that the available metal compounds are limited.

特開平8−337423号公報JP-A-8-337423 特開2003−252623号公報JP 2003-252623 A

本発明は、ペロブスカイト系複合酸化物の原料である各金属酸化物を水などの溶媒存在下で湿式混合した後のスラリーを加熱し、パルス燃焼ガスを接触させることにより、偏在が少なく、かつ凝集の少ない混合乾燥物を得ることを目的とする。   In the present invention, each metal oxide that is a raw material of the perovskite complex oxide is wet-mixed in the presence of a solvent such as water, and then the slurry is heated and contacted with a pulse combustion gas, thereby reducing uneven distribution and aggregation. The object is to obtain a mixed dried product with a low content.

すなわち、本発明は、一般式ABO3(式中、A、Bは金属元素を示す。)で表わされる組成を有するペロブスカイト系複合酸化物の製造方法であって、無機金属化合物のスラリーまたは溶液にパルス燃焼ガスを接触させて乾燥させる工程を含むペロブスカイト系複合酸化物の製造方法に関する。 That is, the present invention relates to a method for producing a perovskite complex oxide having a composition represented by the general formula ABO 3 (wherein A and B represent metal elements), and the method is applied to a slurry or solution of an inorganic metal compound. The present invention relates to a method for producing a perovskite complex oxide including a step of bringing a pulse combustion gas into contact with drying.

主成分がチタン酸ジルコン酸鉛であることが好ましい。   The main component is preferably lead zirconate titanate.

パルス燃焼ガスが、周波数50〜1000Hz、圧力振幅±0.2kg/cm2以上、音圧100〜200dBおよび接触ガス温度100〜1000℃であることが好ましい。 The pulse combustion gas preferably has a frequency of 50 to 1000 Hz, a pressure amplitude of ± 0.2 kg / cm 2 or more, a sound pressure of 100 to 200 dB, and a contact gas temperature of 100 to 1000 ° C.

また、本発明は、前記製造方法により製造されるペロブスカイト系複合酸化物にも関する。   The present invention also relates to a perovskite complex oxide produced by the production method.

ペロブスカイト系複合酸化物の湿式混合スラリーをパルス燃焼ガスに接触させる乾燥により、偏在が少なく、また凝集の少ない混合乾燥物が得られるため、混合乾燥物を従来の製造方法で仮焼、焼成したPZT系材料や、従来の乾燥方式である静置乾燥方式などで調製した混合粉末と比較して、比誘電率などの電気特性がきわめて良好なものとなる。   PZT obtained by calcining and calcining the mixed dried product by a conventional manufacturing method because a mixed dried product with less uneven distribution and less agglomeration can be obtained by drying the wet mixed slurry of perovskite complex oxide in contact with pulse combustion gas. Compared with a mixed powder prepared by a system material or a stationary drying method which is a conventional drying method, electrical characteristics such as a relative dielectric constant are extremely good.

本発明のペロブスカイト系複合酸化物の製造方法は、ペロブスカイト系複合酸化物の原料である金属酸化物などの無機化合物を水などの溶媒存在下で湿式混合したスラリーまたは溶液を加熱し、かつ衝撃波を付与して乾燥するものである。   The method for producing a perovskite composite oxide according to the present invention comprises heating a slurry or solution obtained by wet-mixing an inorganic compound such as a metal oxide, which is a raw material of a perovskite composite oxide, in the presence of a solvent such as water, and applying a shock wave. It is applied and dried.

本発明のペロブスカイト系複合酸化物は、一般式ABO3(式中、A、Bは金属元素を示す。)で表わされる組成を有する。ここで、Aとしては例えば鉛、カドミウム、マグネシウム、カルシウム、ストロンチウム,バリウム、ランタンなどが挙げられる。また、Bとしては例えばチタン、ジルコニウム、マンガンなどが挙げられる。 The perovskite complex oxide of the present invention has a composition represented by the general formula ABO 3 (wherein A and B represent metal elements). Here, examples of A include lead, cadmium, magnesium, calcium, strontium, barium, and lanthanum. Examples of B include titanium, zirconium, and manganese.

湿式混合したスラリー中における各金属酸化物粉末は、それらの一部が水酸化物、塩化物、硝酸塩などの水溶性塩であってもよく、またはその混合物でもよい。   Each metal oxide powder in the wet-mixed slurry may be a water-soluble salt such as hydroxide, chloride, nitrate, or a mixture thereof.

スラリー中のペロブスカイト系複合酸化物を形成するための金属酸化物、水酸化物および水溶性塩混合物を含む粒子の粒子径は、0.01〜50μmが好ましく、0.05〜50μmがより好ましく、0.1〜20μmがさらに好ましく、0.3〜15μmが特に好ましい。粒子径が0.01μm未満であると、パルス燃焼乾燥を実施しても凝集により粒子径が増大する傾向がある。また50μmを超えると、パルス燃焼ガスによる粒子の破砕効果が少なくなり、乾燥後の粒子径が大きくなる傾向がある。   The particle diameter of the particles containing the metal oxide, hydroxide and water-soluble salt mixture for forming the perovskite complex oxide in the slurry is preferably 0.01 to 50 μm, more preferably 0.05 to 50 μm, 0.1-20 micrometers is further more preferable and 0.3-15 micrometers is especially preferable. When the particle size is less than 0.01 μm, the particle size tends to increase due to aggregation even when pulse combustion drying is performed. On the other hand, if it exceeds 50 μm, the particle crushing effect by the pulse combustion gas is reduced, and the particle size after drying tends to increase.

スラリー中のペロブスカイト系複合酸化物を構成する原料酸化物粒子の、中和水和物、中和共沈水和物、加水分解物、水溶性塩、またはそれらの複合物の固形分濃度は、乾燥物換算で、好ましくは5〜60重量%であり、より好ましくは5〜50重量%である。濃度が5重量%未満であると、乾燥後の粒子径が細かくなりすぎ捕集が困難となる傾向がある。また60重量%を超えると、スラリーの輸送などの操作が困難となり、さらに乾燥後の粒子径が大きくなり、かつ粒子径分布がブロードとなる傾向がある。   The solid content concentration of the raw material oxide particles constituting the perovskite complex oxide in the slurry is neutralized hydrate, neutralized coprecipitated hydrate, hydrolyzate, water-soluble salt, or their composites is dried. In terms of physical properties, it is preferably 5 to 60% by weight, more preferably 5 to 50% by weight. When the concentration is less than 5% by weight, the particle diameter after drying tends to be too fine to make collection difficult. On the other hand, if it exceeds 60% by weight, operations such as slurry transportation become difficult, the particle size after drying tends to be large, and the particle size distribution tends to be broad.

ペロブスカイト系複合酸化物の原料金属化合物において、例えば酸化鉛、酸化ジルコニウム、酸化チタン粒子の複合物の混合方法としては、ビーズミルやボールミルなどに所定量の酸化ジルコニウム、酸化鉛、酸化チタンを量り取り、水などの溶媒を加え所定時間攪拌混合し、所定の粒子径になるまで分散混合することが好ましい。   In the raw metal compound of the perovskite-based composite oxide, for example, as a method of mixing the composite of lead oxide, zirconium oxide, titanium oxide particles, a predetermined amount of zirconium oxide, lead oxide, titanium oxide is weighed into a bead mill or a ball mill, It is preferable to add a solvent such as water, stir and mix for a predetermined time, and disperse and mix until a predetermined particle size is obtained.

スラリー調製時に使用される溶媒としては、水、アルコール、水/アルコール混合溶液、メチルエチルケトン/水混合液、トルエンなどを挙げることができる。これらの中でも、経済性、安全性の点から、水または水/アルコール混合溶液が好ましい。   Examples of the solvent used in preparing the slurry include water, alcohol, water / alcohol mixed solution, methyl ethyl ketone / water mixed solution, and toluene. Among these, water or a water / alcohol mixed solution is preferable from the viewpoint of economy and safety.

また、ペロブスカイト系複合酸化物の原料金属化合物は、スラリー状にして用いるほかに、溶液として用いることもできる。溶液に使用される溶媒としては、微粒子スラリーを製造する際の溶媒を用いることができる。   The raw metal compound for the perovskite complex oxide can be used as a solution in addition to being used in the form of a slurry. As a solvent used for the solution, a solvent for producing a fine particle slurry can be used.

原料金属化合物溶液において使用される無機金属化合物は、水酸化物、塩化物、炭酸塩、硫酸塩、硝酸塩、アルコキシド化合物などが挙げられる。なかでも、経済性、安全性の観点から、水に可溶な無機金属塩が好ましい。水に可溶な無機金属塩としては、塩化物、硫酸塩、硝酸塩が挙げられる。無機金属塩の水溶液として具体的には、塩化ジルコニウム水溶液、硫酸ジルコニル水溶液、硝酸ジルコニル水溶液、四塩化チタン水溶液、三塩化チタン水溶液、塩化鉛水溶液、硝酸鉛水溶液などが挙げられる。   Examples of the inorganic metal compound used in the raw metal compound solution include hydroxides, chlorides, carbonates, sulfates, nitrates, and alkoxide compounds. Among these, water-soluble inorganic metal salts are preferable from the viewpoints of economy and safety. Examples of water-soluble inorganic metal salts include chlorides, sulfates, and nitrates. Specific examples of the aqueous solution of the inorganic metal salt include zirconium chloride aqueous solution, zirconyl sulfate aqueous solution, zirconyl nitrate aqueous solution, titanium tetrachloride aqueous solution, titanium trichloride aqueous solution, lead chloride aqueous solution, lead nitrate aqueous solution and the like.

本発明のペロブスカイト系複合酸化物の製造方法において、原料粉末の乾燥方法としては、パルス衝撃波燃焼ガスの接触による乾燥方法が用いられる。衝撃波とは圧縮性流体中において圧力、密度、温度などが急激に上昇下降を繰り返す状態をいい、超音波、爆発に伴う圧縮液、物体の高速移動、などを用いることができる。なかでも超音波振動は経済性、安全性の点で好ましい。原料液体の加熱手段は特に限定されない。抵抗発熱体を用いる電気加熱、可燃ガスの燃焼によるガス加熱、自ジャケットなどを介した間接加熱などの手段をとることができる。   In the method for producing a perovskite complex oxide of the present invention, a drying method by contact with a pulse shock wave combustion gas is used as a drying method of the raw material powder. A shock wave refers to a state in which pressure, density, temperature, etc. repeats abrupt rise and fall in a compressive fluid, and ultrasonic waves, compressed liquid accompanying explosion, high-speed movement of an object, etc. can be used. Among these, ultrasonic vibration is preferable from the viewpoints of economy and safety. The heating means for the raw material liquid is not particularly limited. Means such as electric heating using a resistance heating element, gas heating by combustion of a combustible gas, and indirect heating via a self-jacket can be taken.

前記衝撃波の付与および加熱の手段として、パルス燃焼ガスへの接触は単一の手段で衝撃波の付与および加熱との両者を同時に達成できるので特に好ましい。パルス燃焼ガスを発生するパルス燃焼システムとしては、たとえば、特開平8−40720号公報に記載された乾燥装置が挙げられる。このシステムは、パルス燃焼器、乾燥室、サイクロン、バグフィルターを備えている。   As the means for applying and heating the shock wave, the contact with the pulse combustion gas is particularly preferable because both the application of the shock wave and the heating can be achieved simultaneously by a single means. Examples of the pulse combustion system that generates the pulse combustion gas include a drying apparatus described in Japanese Patent Application Laid-Open No. 8-40720. The system includes a pulse combustor, a drying chamber, a cyclone, and a bag filter.

パルス燃焼ガスとは、通常毎秒50〜1000回のサイクルで脈動する燃焼ガスである。この燃焼ガスはパルス燃焼器により発生する。その燃焼ガス雰囲気中に送られる原料液体は、熱風乾燥効果ならびに音圧や圧力を含む脈動作用による物理的衝撃特性によって、微細でしかも粒度分布がシャープな液滴に分割されて瞬時に乾燥される。また瞬時に乾燥されるために、通常溶媒の蒸発によって濃縮される工程の存在で、乾燥した粉末の凝集が著しいが、この装置で乾燥された粉末の凝集性は抑制される。その他の機構については明確ではないが、通常のノズル先端や回転円盤から噴射される原料液体の液柱あるいは液柱が分裂した後の液滴の表面に衝撃波が作用し、液柱や液滴の表面に発生した無数の波同士の衝突により液柱が均などな大きさの液滴に分裂する、あるいは液滴が均一な大きさの液滴に再分裂するために、単にノズルや回転円盤などの噴霧手段のみを用いる場合には得られない微細で粒子径分布がシャープな液滴が生成するものと推察される。   A pulse combustion gas is a combustion gas which normally pulsates at a cycle of 50 to 1000 times per second. This combustion gas is generated by a pulse combustor. The raw material liquid sent to the combustion gas atmosphere is instantly dried by being divided into fine droplets with a sharp particle size distribution by hot air drying effect and physical impact characteristics due to pulse action including sound pressure and pressure. . In addition, since it is dried instantaneously, the presence of a process usually concentrated by evaporation of the solvent causes significant aggregation of the dried powder, but the aggregation of the powder dried by this apparatus is suppressed. The other mechanisms are not clear, but a shock wave acts on the liquid column of the raw material liquid sprayed from a normal nozzle tip or rotating disk or the surface of the liquid droplet after the liquid column is split, In order for the liquid column to break up into equally sized droplets due to collisions between countless waves generated on the surface, or to re-divide the droplets into uniformly sized droplets, simply a nozzle, rotating disk, etc. It is presumed that fine droplets having a sharp particle size distribution that cannot be obtained when only the spray means are used are generated.

同時に、瞬間乾燥により溶媒の表面張力による粒子の凝集が抑制されるものと推察している。こうして得られたペロブスカイト系複合酸化物の原料は、物質の種類によっては一部変成作用を受けるものの、通常は成分の化学変化などを生じず、多成分系の場合でも原料液体の段階での化学組成の均質性が保たれるので、パルス燃焼システムは衝撃波の付与および加熱の手段として効果的である。   At the same time, it is presumed that the aggregation of particles due to the surface tension of the solvent is suppressed by instantaneous drying. The perovskite complex oxide raw material obtained in this way is subject to partial metamorphism depending on the type of substance, but usually does not cause chemical changes in the components. Since the homogeneity of the composition is maintained, the pulse combustion system is effective as a means for applying shock waves and heating.

パルス燃焼ガスの周波数は、好ましくは50〜1000Hz、より好ましくは100〜900Hz、さらに好ましくは125〜550Hzである。周波数が50Hz未満であると、低周波による振動障害を生じる恐れがある。また周波数が1000Hzを超えると、充分な乾燥効果を得る事ができない傾向がある。   The frequency of the pulse combustion gas is preferably 50 to 1000 Hz, more preferably 100 to 900 Hz, and still more preferably 125 to 550 Hz. If the frequency is less than 50 Hz, vibration disturbance due to low frequency may occur. Moreover, when the frequency exceeds 1000 Hz, there is a tendency that a sufficient drying effect cannot be obtained.

パルス燃焼ガスの圧力振幅は、好ましくは±0.2kg/cm2以上、より好ましくは±0.4kg/cm2以上、さらに好ましくは±0.6kg/cm2以上である。圧力振幅が±0.2kg/cm2未満であると、微細な液滴への分割が充分でなく、生成する粒子の分散効果が充分に得られない傾向にある。 Pressure amplitude of the pulse combustion gas is preferably ± 0.2 kg / cm 2 or more, more preferably ± 0.4 kg / cm 2 or more, more preferably ± 0.6 kg / cm 2 or more. When the pressure amplitude is less than ± 0.2 kg / cm 2 , the fine droplets are not sufficiently divided, and the effect of dispersing the generated particles tends to be insufficient.

パルス燃焼ガスの音圧は、好ましくは100〜200dB、より好ましくは120〜160dB、さらに好ましくは140〜150dBである。音圧が100dB未満であると、分散した粒子近傍での音波による空気の繰り返し減圧作用による充分な撹拌作用や乾燥作用が得られない傾向がある。また、音圧が200dBを超えると、防音対策に多大の費用を要する傾向がある。   The sound pressure of the pulse combustion gas is preferably 100 to 200 dB, more preferably 120 to 160 dB, and still more preferably 140 to 150 dB. When the sound pressure is less than 100 dB, there is a tendency that sufficient stirring action and drying action due to repeated pressure reduction action of air by sound waves in the vicinity of dispersed particles cannot be obtained. Moreover, if the sound pressure exceeds 200 dB, there is a tendency to require a large amount of cost for soundproofing measures.

パルス燃焼ガスの接触ガス温度は、好ましくは100〜1000℃、より好ましくは130〜700℃、さらに好ましくは150〜500℃である。接触ガス温度が100℃未満であると、粒子が充分に乾燥されない傾向がある。また接触ガス温度が1000℃を超えると、粒子が熱による編成を受けやすい傾向がある。   The contact gas temperature of pulse combustion gas becomes like this. Preferably it is 100-1000 degreeC, More preferably, it is 130-700 degreeC, More preferably, it is 150-500 degreeC. When the contact gas temperature is less than 100 ° C., the particles tend not to be sufficiently dried. When the contact gas temperature exceeds 1000 ° C., the particles tend to be easily knitted by heat.

パルス燃焼システムの装置材料としてはステンレスが経済性、保守性の面から好適に使用されるが、原料液体またはスラリーの乾燥に伴って腐食性のガスが発生する場合には、テフロン(登録商標)などの樹脂や、耐食性のあるセラミックスで乾燥室内面を被覆することも可能である。樹脂で被覆する場合には乾燥室温度をテフロン(登録商標)などの樹脂の耐熱温度以下に保つように、パルス燃焼ガスの流量と温度、原料液体、スラリーの流量と溶媒などの揮発成分の濃度を設定することが可能である。   Stainless steel is preferably used as the device material for the pulse combustion system from the viewpoints of economy and maintainability, but when corrosive gas is generated as the raw material liquid or slurry is dried, Teflon (registered trademark) is used. It is also possible to coat the inside of the drying chamber with a resin such as the above or a ceramic having corrosion resistance. When coating with resin, the flow rate and temperature of the pulse combustion gas, the raw material liquid, the flow rate of the slurry, and the concentration of volatile components such as solvent, so that the drying chamber temperature is kept below the heat resistant temperature of the resin such as Teflon Can be set.

前記原料液体またはスラリーを加熱し、かつ衝撃波を付与することで得られるペロブスカイト系複合酸化物の均一混合微粒子を、仮焼、粉砕および必要に応じて造粒することで、ペロブスカイト系複合酸化物を製造することができる。例えば、前述のPZT原料粉末粒子を仮焼、粉砕および造粒することで圧電材料として使用されているPZT粉末を製造することができる。仮焼装置としては、昇温速度、温度および特に非酸化物や金属系の無機原料粉末を目的とする場合には焼成雰囲気を制御することができる電気炉、真空焼成炉、ガス炉および電磁誘導加熱炉などが挙げられるが、これらに限定されるものではない。   Perovskite composite oxide is obtained by calcining, pulverizing, and granulating as necessary, by uniformly firing fine particles of perovskite composite oxide obtained by heating the raw material liquid or slurry and applying a shock wave. Can be manufactured. For example, PZT powder used as a piezoelectric material can be manufactured by calcining, pulverizing and granulating the PZT raw material powder particles described above. As a calcining device, an electric furnace, a vacuum firing furnace, a gas furnace, and an electromagnetic induction capable of controlling a firing temperature in the case of aiming at a heating rate, temperature, and particularly a non-oxide or metal-based inorganic raw material powder Although a heating furnace etc. are mentioned, it is not limited to these.

仮焼温度としては、化学反応や固溶など、目的とする化合物への変換が達成される温度とすることが必要であり、さらには生成する粒子の粒子径、凝集の度合いなどが好ましい範囲となるように適宜選択される。例えば、酸化ジルコニウム、酸化チタン、酸化鉛混合粉末からPZT微粒子粉末を得る場合には、好ましくは600〜1000℃より好ましくは700〜900℃である。600℃未満であると、酸化ジルコニウムと酸化鉛の固溶が充分でなくなる傾向がある。また1000℃を超えると、生成した粒子が粒成長しすぎて仮焼後の粉砕に時間がかかったり、粉砕時に汚染物質の混入の恐れがある。   The calcining temperature needs to be a temperature at which conversion to the target compound, such as a chemical reaction or solid solution, is achieved, and further, the particle diameter of the generated particles, the degree of aggregation, and the like are in a preferable range. It chooses suitably so that it may become. For example, when PZT fine particle powder is obtained from zirconium oxide, titanium oxide, and lead oxide mixed powder, the temperature is preferably 600 to 1000 ° C, more preferably 700 to 900 ° C. If it is lower than 600 ° C., the solid solution of zirconium oxide and lead oxide tends to be insufficient. On the other hand, when the temperature exceeds 1000 ° C., the generated particles grow too much, and it takes time for pulverization after calcination, and there is a risk of contamination being mixed during pulverization.

ペロブスカイト系複合酸化物は、酸化物イオンおよび酸化物イオンと同程度の大きさの陽イオンとが集まって立方最密充填構造となるように配列し、さらに小さな方の陽イオンが、酸化物イオンの形成する八面体型構造空孔の中に入った基本構造を有する化合物である。結晶構造を同定する方法としては、X線回折による方法が一般的に用いられている。   Perovskite complex oxides are arranged so that oxide ions and cations of the same size as the oxide ions gather to form a cubic close-packed structure, and the smaller cation is the oxide ion. Is a compound having a basic structure in an octahedral structure vacancy formed by As a method for identifying a crystal structure, a method by X-ray diffraction is generally used.

本発明のペロブスカイト系複合酸化物は、超音波発振素子、イヤホーン、ピックアップ、高周波フィルター、圧電着火素子、圧力センサー等に使われる電子部品、燃料電池および触媒材料などの用途に用いられる。   The perovskite complex oxide of the present invention is used for applications such as ultrasonic components, earphones, pickups, high-frequency filters, piezoelectric ignition devices, pressure sensors, electronic components, fuel cells and catalyst materials.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

実施例1
酸化鉛、酸化ジルコニウム、酸化チタン、酸化マンガンの各粉末をPb/Zr/Ti/Mn=1.0/0.46/0.47/0.07(モル比)になるように秤量し、乾燥固形分濃度が45%になるよう水を加え遊星ポットミルにて粉砕混合しスラリーを調製した。
Example 1
Each powder of lead oxide, zirconium oxide, titanium oxide and manganese oxide is weighed so that Pb / Zr / Ti / Mn = 1.0 / 0.46 / 0.47 / 0.07 (molar ratio) and dried. Water was added so that the solid content concentration was 45%, and the mixture was pulverized and mixed in a planetary pot mill to prepare a slurry.

調製したスラリーを乾燥入り口温度170〜190℃、出口温度70℃になるような条件でパルス燃焼乾燥した。パルス燃焼乾燥装置としては、パルテック社製ハイパルコン(登録商標)2.5型を使用した。パルス燃焼装置により発生するパルス燃焼ガスは、周波数550Hz、圧力振幅±0.8kg/cm2、音圧145dB、接触ガス温度240℃とした。乾燥物をるつぼに入れ、850℃にて2時間仮焼した。 The prepared slurry was subjected to pulse combustion drying under conditions such that the drying inlet temperature was 170 to 190 ° C and the outlet temperature was 70 ° C. As the pulse combustion drying device, High Palcon (registered trademark) 2.5 type manufactured by Partec Co., Ltd. was used. The pulse combustion gas generated by the pulse combustion apparatus had a frequency of 550 Hz, a pressure amplitude of ± 0.8 kg / cm 2 , a sound pressure of 145 dB, and a contact gas temperature of 240 ° C. The dried product was put in a crucible and calcined at 850 ° C. for 2 hours.

仮焼後の粉末をライカイ機にて約45分間粉砕し、粉砕後の粉末を一軸プレス機で0.7トン/cm2の圧力をかけ成形した。成形体を1230℃で2時間かけ焼結し、17×4.4×1.2mmの大きさに加工しサンプル片を得た。 The calcined powder was pulverized for about 45 minutes with a Leica machine, and the pulverized powder was molded by applying a pressure of 0.7 ton / cm 2 with a uniaxial press. The molded body was sintered at 1230 ° C. for 2 hours and processed into a size of 17 × 4.4 × 1.2 mm to obtain a sample piece.

得られたサンプル片に電極を取り付け、分極処理を行い、次の方法により圧電特性を評価した。   Electrodes were attached to the obtained sample pieces, subjected to polarization treatment, and piezoelectric characteristics were evaluated by the following methods.

・測定方法
仮焼後の粉末をライカイ機にて45分粉砕し、粉砕後の粉末を一軸プレス機で0.7トン/cm2の圧力にて成形した。成形体を1230℃で2時間焼成し、17×4.4×1.2mmの大きさに加工しサンプル片を得た。得られたサンプル片に電極を取り付け分極処理を行ない、インピーダンスアナライザー(HP製、型番:4194A)で、1kHzにおける比誘電率および誘電損失(tanδ)を測定した。また、周波数特性を測定し、共振・反共振法により、圧電特性(電気機械結合定数K31、圧電定数d31)を求めた(共振・反共振法:インピーダンスがある周波数で最小となる共振周波数と逆に最大となる反共振周波数の値を用いて、上記圧電特性を求める方法)。
Measurement Method The calcined powder was pulverized for 45 minutes with a lycra machine, and the pulverized powder was molded with a uniaxial press at a pressure of 0.7 ton / cm 2 . The compact was fired at 1230 ° C. for 2 hours and processed to a size of 17 × 4.4 × 1.2 mm to obtain a sample piece. An electrode was attached to the obtained sample piece for polarization treatment, and the relative dielectric constant and dielectric loss (tan δ) at 1 kHz were measured with an impedance analyzer (HP, model number: 4194A). Further, the frequency characteristics were measured, and the piezoelectric characteristics (electromechanical coupling constant K31, piezoelectric constant d31) were obtained by the resonance / antiresonance method (resonance / antiresonance method: opposite to the resonance frequency at which the impedance is minimized at a certain frequency). The above-mentioned piezoelectric characteristics are obtained using the maximum anti-resonance frequency value).

一般にコンデンサーの静電容量(C(PF))は式(1)で表わされる。
C=εr・S/(36π・t) (1)
S:電極面積(mm)
t:誘電体厚み(mm)
εr:比誘電率
In general, the capacitance (C (PF)) of a capacitor is expressed by equation (1).
C = ε r · S / (36π · t) (1)
S: Electrode area (mm)
t: Dielectric thickness (mm)
ε r : relative permittivity

また、今回作製した組成は、ハイパワー圧電セラミック用材料に用いられる組成で、この材料に蓄積される機械的エネルギー密度は下記式(2)で表わされる。
U=8/π211 E×Qm 231 2/E2 (2)
E:駆動電界(V/m)
m:機械的品質係数(共振点での振動の鋭さ)
31:圧電定数(電解に対する素子の歪量)(pC/N)
11:弾性コンプライアンス(材料のやわらかさ)(m2/N)
Moreover, the composition produced this time is a composition used for the material for high-power piezoelectric ceramics, and the mechanical energy density accumulated in this material is represented by the following formula (2).
U = 8 / π 2 S 11 E × Q m 2 d 31 2 / E 2 (2)
E: Drive electric field (V / m)
Q m : Mechanical quality factor (sharpness of vibration at resonance point)
d 31 : Piezoelectric constant (amount of strain of the element with respect to electrolysis) (pC / N)
S 11 : Elastic compliance (softness of material) (m 2 / N)

また、d31は下記式(3)で表わせる。
31=k31√(ε33 T・S11 E) (3)
31:電気機械結合係数(%)
ε33 T:素子の比誘電率
D 31 can be expressed by the following formula (3).
d 31 = k 31 √ (ε 33 T · S 11 E ) (3)
k 31 : electromechanical coupling coefficient (%)
ε 33 T : Relative permittivity of the element

比較例1
実施例1と同様の組成である金属酸化物粉末の粉砕混合スラリーを調製し、スラリーをほうろう製のバットに流し入れ、120℃の高温乾燥機に入れ水分を蒸発させた。
Comparative Example 1
A pulverized and mixed slurry of metal oxide powder having the same composition as in Example 1 was prepared, and the slurry was poured into an enamel bat and put in a high-temperature dryer at 120 ° C. to evaporate water.

それ以降の工程は、実施例1と同様の方法でサンプル片を作製し、前記方法にしたがって圧電特性を評価した。   In the subsequent steps, sample pieces were produced by the same method as in Example 1, and the piezoelectric characteristics were evaluated according to the method.

実施例2
炭酸鉛、炭酸ジルコニウム、酸化チタン、酸化マンガンの各粉末をPb/Zr/Ti/Mn=1.0/0.46/0.45/0.09(モル比)になるように秤量し、以下実施例1と同様の操作を行ないサンプル片を作製し、前記方法にしたがって圧電特性を評価した。
Example 2
Each powder of lead carbonate, zirconium carbonate, titanium oxide, and manganese oxide was weighed so that Pb / Zr / Ti / Mn = 1.0 / 0.46 / 0.45 / 0.09 (molar ratio). The same operation as in Example 1 was performed to prepare a sample piece, and the piezoelectric characteristics were evaluated according to the above method.

比較例2
実施例2と同様の組成である金属酸化物粉末の粉砕混合スラリーを調製し、比較例1と同様の方法でサンプル片を作製し、前記方法にしたがって圧電特性を評価した。
Comparative Example 2
A pulverized and mixed slurry of metal oxide powder having the same composition as in Example 2 was prepared, a sample piece was prepared by the same method as in Comparative Example 1, and the piezoelectric characteristics were evaluated according to the above method.

実施例3
塩化鉛、オキシ塩化ジルコニウム、四塩化チタン、塩化マンガンの各粉末をPb/Zr/Ti/Mn=1.0/0.46/0.45/0.09(モル比)になるように秤量し、以下実施例1と同様の操作を行ないサンプル片を作製し、前記方法にしたがって圧電特性を評価した。
Example 3
Weigh each powder of lead chloride, zirconium oxychloride, titanium tetrachloride, and manganese chloride so that Pb / Zr / Ti / Mn = 1.0 / 0.46 / 0.45 / 0.09 (molar ratio). Thereafter, the same operation as in Example 1 was performed to prepare a sample piece, and the piezoelectric characteristics were evaluated according to the above method.

比較例3
実施例3と同様の組成である金属酸化物粉末の粉砕混合スラリーを調製し、比較例1と同様の方法でサンプル片を作製し、前記方法にしたがって圧電特性を評価した。
Comparative Example 3
A pulverized and mixed slurry of metal oxide powder having the same composition as in Example 3 was prepared, a sample piece was prepared by the same method as in Comparative Example 1, and the piezoelectric characteristics were evaluated according to the above method.

各実施例および比較例の圧電特性は表1のとおりであった。   The piezoelectric characteristics of each example and comparative example are shown in Table 1.

Figure 2006282434
Figure 2006282434

実施例4
酸化鉛、酸化ジルコニウム、酸化チタン、酸化マンガンの各粉末をPb/Zr/Ti/Mn=1.0/0.46/0.45/0.09(モル比)になるように秤量し、乾燥固形分濃度が45%になるよう水を加え遊星ポットミルにて粉砕混合しスラリーを調製した。
Example 4
Each powder of lead oxide, zirconium oxide, titanium oxide and manganese oxide is weighed so that Pb / Zr / Ti / Mn = 1.0 / 0.46 / 0.45 / 0.09 (molar ratio) and dried. Water was added so that the solid content concentration was 45%, and the mixture was pulverized and mixed in a planetary pot mill to prepare a slurry.

調製したスラリーを実施例1と同様の方法でパルス燃焼乾燥した。乾燥した粉末を直径30mmのコイン型に成型し、850℃×2時間仮焼した。仮焼後の直径を測定したところ、24.6mmであった。また、得られた成形体の密度は4.62g/cm3であった。 The prepared slurry was subjected to pulse combustion drying in the same manner as in Example 1. The dried powder was molded into a coin mold having a diameter of 30 mm and calcined at 850 ° C. for 2 hours. When the diameter after calcination was measured, it was 24.6 mm. Further, the density of the obtained molded body was 4.62 g / cm 3 .

比較例4
実施例1と同様の組成である金属酸化物粉末の粉砕混合スラリーを調製し、スラリーを比較例1と同様の方法で仮焼した。乾燥物を乳鉢で粉砕し、粉末を直径30mmのコイン型に成型し、850℃×2時間仮焼した。仮焼後の直径を測定したところ、32.0mmであった。また、得られた成形体の密度は2.49g/cm3であった。
Comparative Example 4
A pulverized and mixed slurry of metal oxide powder having the same composition as in Example 1 was prepared, and the slurry was calcined in the same manner as in Comparative Example 1. The dried product was pulverized in a mortar, and the powder was formed into a coin shape having a diameter of 30 mm and calcined at 850 ° C. for 2 hours. It was 32.0 mm when the diameter after calcination was measured. Further, the density of the obtained molded body was 2.49 g / cm 3 .

一般的に仮焼後の密度が高いほど各混合組成物の反応が進んでいるものと考えられるため、金属酸化物粉末の粉砕混合スラリーをパルス燃焼ガスにより接触乾燥させると、明らかに原料無機化合物どうしの反応が促進され、易焼結性粉末を調製できたことがわかる。これは、パルス燃焼ガスにより接触乾燥させた場合、従来の静置乾燥法と比較して各原料無機化合物粒子の凝集が少なく、粒子の分散状態が均一に保たれるため反応性が大きく改善されたためと考えられる。   In general, the higher the density after calcination, the more the reaction of each mixed composition proceeds. Therefore, when the pulverized mixed slurry of metal oxide powder is contact-dried with pulse combustion gas, it is clear that the raw inorganic compound It can be seen that the reaction between each other was promoted and an easily sinterable powder could be prepared. This is because, when contact-dried with a pulse combustion gas, the reactivity of the raw material inorganic compound particles is reduced compared to the conventional stationary drying method, and the dispersion state of the particles is kept uniform. It is thought that it was because of.

本発明の活用例によると、酸化物圧電材料、特に圧電セラミックスに好適に使用されるPZT系複合酸化物粉末を提供することができる。   According to the utilization example of the present invention, it is possible to provide a PZT-based composite oxide powder that is suitably used for an oxide piezoelectric material, particularly a piezoelectric ceramic.

Claims (4)

一般式ABO3(式中、A、Bは金属元素を示す。)で表わされる組成を有するペロブスカイト系複合酸化物の製造方法であって、無機金属化合物のスラリーまたは溶液にパルス燃焼ガスを接触させて乾燥させる工程を含むペロブスカイト系複合酸化物の製造方法。 A method for producing a perovskite composite oxide having a composition represented by the general formula ABO 3 (wherein A and B represent metal elements), wherein a pulse combustion gas is brought into contact with a slurry or solution of an inorganic metal compound. The manufacturing method of the perovskite type complex oxide including the process made to dry. 主成分がチタン酸ジルコン酸鉛である請求項1記載のペロブスカイト系複合酸化物の製造方法。 The method for producing a perovskite complex oxide according to claim 1, wherein the main component is lead zirconate titanate. パルス燃焼ガスが、周波数50〜1000Hz、圧力振幅±0.2kg/cm2以上、音圧100〜200dBおよび接触ガス温度100〜1000℃である請求項1または2記載のペロブスカイト系複合酸化物の製造方法。 The perovskite complex oxide according to claim 1 or 2, wherein the pulse combustion gas has a frequency of 50 to 1000 Hz, a pressure amplitude of ± 0.2 kg / cm 2 or more, a sound pressure of 100 to 200 dB, and a contact gas temperature of 100 to 1000 ° C. Method. 請求項1、2または3記載の製造方法により製造されるペロブスカイト系複合酸化物。 A perovskite complex oxide produced by the production method according to claim 1, 2 or 3.
JP2005103225A 2005-03-31 2005-03-31 Method for manufacturing perovskite type compound oxide Pending JP2006282434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103225A JP2006282434A (en) 2005-03-31 2005-03-31 Method for manufacturing perovskite type compound oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103225A JP2006282434A (en) 2005-03-31 2005-03-31 Method for manufacturing perovskite type compound oxide

Publications (1)

Publication Number Publication Date
JP2006282434A true JP2006282434A (en) 2006-10-19

Family

ID=37404735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103225A Pending JP2006282434A (en) 2005-03-31 2005-03-31 Method for manufacturing perovskite type compound oxide

Country Status (1)

Country Link
JP (1) JP2006282434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303111A (en) * 2007-06-07 2008-12-18 Dai Ichi Kogyo Seiyaku Co Ltd Metal oxide particulate powder, method for producing metal oxide particulate, and production system therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840720A (en) * 1994-08-03 1996-02-13 Ofic Co Production of fine particle of alkali metal compound having low bulk density
JPH08337423A (en) * 1995-06-07 1996-12-24 Tokin Corp Production of oxide piezoelectric material
JP2003252623A (en) * 2001-12-28 2003-09-10 Murata Mfg Co Ltd Method of manufacturing composite oxide powder and composite oxide powder
WO2004041427A1 (en) * 2002-11-08 2004-05-21 Dai-Ichi Kogyo Seiyaku Co., Ltd. Inorganic fine particles, inorganic raw material powder, and method for production thereof
JP2004269331A (en) * 2003-03-11 2004-09-30 Dai Ichi Kogyo Seiyaku Co Ltd Easily sintering tetragonal zirconia powder and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840720A (en) * 1994-08-03 1996-02-13 Ofic Co Production of fine particle of alkali metal compound having low bulk density
JPH08337423A (en) * 1995-06-07 1996-12-24 Tokin Corp Production of oxide piezoelectric material
JP2003252623A (en) * 2001-12-28 2003-09-10 Murata Mfg Co Ltd Method of manufacturing composite oxide powder and composite oxide powder
WO2004041427A1 (en) * 2002-11-08 2004-05-21 Dai-Ichi Kogyo Seiyaku Co., Ltd. Inorganic fine particles, inorganic raw material powder, and method for production thereof
JP2004269331A (en) * 2003-03-11 2004-09-30 Dai Ichi Kogyo Seiyaku Co Ltd Easily sintering tetragonal zirconia powder and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303111A (en) * 2007-06-07 2008-12-18 Dai Ichi Kogyo Seiyaku Co Ltd Metal oxide particulate powder, method for producing metal oxide particulate, and production system therefor

Similar Documents

Publication Publication Date Title
KR100434883B1 (en) A method for the manufacturing of Barium-Titanate based Powder
KR100890585B1 (en) Inorganic fine particles, inorganic raw material powder, and method for production thereof
Gu et al. Single‐Calcination Synthesis of Pyrochlore‐Free 0.9 Pb (Mg1/3Nb2/3) O3–0.1 PbTiO3 and Pb (Mg1/3Nb2/3) O3 Ceramics Using a Coating Method
US20060078492A1 (en) Perovskite titanium-containing composite oxide particle, production process and uses thereof
JP5398126B2 (en) Metal oxide fine particle powder, metal oxide fine particle production method and production system
CN103796956B (en) The manufacture method of barium titanium oxalate and the manufacture method of barium titanate
JP3135036B2 (en) Method for producing composite oxide ceramics
JP2011116645A (en) Calcium titanate and method for producing the same
Badapanda et al. Structure and dielectric properties of bismuth sodium titanate ceramic prepared by auto-combustion technique
JPH0214823A (en) Production of submicron powder of zirconium oxide stabilized by yttrium oxide
JP2006282434A (en) Method for manufacturing perovskite type compound oxide
JP2007106635A (en) Method for manufacturing zirconia-based oxide powder
JPH0832559B2 (en) Method for producing inorganic fine powder of perovskite type compound
JP3932351B2 (en) Multi-component piezoelectric material manufacturing method
JP2004323344A (en) Titanate calcium and its manufacturing method
WO1999064366A2 (en) Method for producing sintered electroceramic materials from hydroxide and oxalate precursors
Junmin et al. Synthesizing 0.9 PZN–0.1 BT by mechanically activating mixed oxides
Kong et al. Ceramic powder synthesis
JPS6270204A (en) Production of fine powder
JPH0328109A (en) Production of compound oxide powder
Shut et al. Effect of ultrasonic processing on the synthesis of barium titanyl oxalate and the characteristics of the BaTiO 3 powder prepared from it
JP3616363B2 (en) Method for producing metal titanate compound having specific shape
JP3309467B2 (en) Method for producing lead-containing composite oxide powder
JP4229405B2 (en) Method for producing lead-containing composite oxide
JP3981717B2 (en) Method for producing tungsten bronze type piezoelectric material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Effective date: 20090703

Free format text: JAPANESE INTERMEDIATE CODE: A971007

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301