JP2006282404A - Monolithic heat insulating material composition - Google Patents

Monolithic heat insulating material composition Download PDF

Info

Publication number
JP2006282404A
JP2006282404A JP2005100787A JP2005100787A JP2006282404A JP 2006282404 A JP2006282404 A JP 2006282404A JP 2005100787 A JP2005100787 A JP 2005100787A JP 2005100787 A JP2005100787 A JP 2005100787A JP 2006282404 A JP2006282404 A JP 2006282404A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
material composition
fiber
amorphous heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005100787A
Other languages
Japanese (ja)
Other versions
JP4545623B2 (en
Inventor
Shinya Tomosue
信也 友末
Takashi Onoe
崇史 尾上
Hideki Kitahara
英樹 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2005100787A priority Critical patent/JP4545623B2/en
Publication of JP2006282404A publication Critical patent/JP2006282404A/en
Application granted granted Critical
Publication of JP4545623B2 publication Critical patent/JP4545623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monolithic heat insulating material composition which employs a biosoluble inorganic fiber and which is little in shrinkage by heating even after the lapse of storage period after production and exhibits an appropriate strength after being fired. and to provide a method for producing the same. <P>SOLUTION: The monolithic heat insulating material composition contains an inorganic fiber having a dissolution rate in a physiological saline solution at 40°C of ≥1%, a solvent, and a pH adjusting agent, and has a pH of 4-8.5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、熱処理装置、工業窯炉内又は焼却炉内の目地材、特に、耐火タイル、断熱レンガ、鉄皮、モルタル耐火物等の隙間を埋める目地材として使用される不定形断熱材組成物及びその製造方法に関し、より具体的には、生理食塩水溶解率が1%以上の無機繊維(以下、生体溶解性無機繊維とも記載する。)を含む不定形断熱材組成物に関する。   The present invention is, for example, a heat insulating apparatus, a joint material in an industrial furnace or an incinerator, in particular, an insulative heat insulating material used as a joint material for filling a gap between a refractory tile, a heat insulating brick, an iron skin, a mortar refractory, etc. The present invention relates to a composition and a method for producing the composition, and more specifically, relates to an amorphous heat insulating material composition including inorganic fibers having a physiological saline dissolution rate of 1% or more (hereinafter also referred to as biosoluble inorganic fibers).

従来、不定形断熱材組成物は、ガラス繊維、グラスウール、セラミックウール、ロックウール、アルミナ質繊維、ジルコニア質繊維、シリカ・アルミナ質繊維等(以下、従来の不定形断熱材組成物の無機繊維等と記載する。)を、強化繊維として含有していた。不定形断熱材組成物は、鏝塗り、スプレー塗り又は注入施工等により、タイル等の隙間に挿入され、目地を形成する。その際、該不定形断熱材組成物に含有されている従来の不定形断熱材組成物の無機繊維等は粉塵となって空気中に飛散し、作業者が該粉塵を吸入することとなる。この従来の不定形断熱材の無機繊維等は、人に吸入されて肺に侵入すると、食細胞の肺胞マクロファージ(食細胞)が異物を取り囲み、繊毛がある場所(気管や気管支)まで運び痰とともに体外に排出したり、リンパ液・リンパ管を経て肺胞表面から排出したりする。しかし、異物の取り囲みにより肺胞マクロファージが刺激を受けたり、損傷を受けることもあり、それにより蛋白質分解酵素やコラーゲン繊維分解酵素が細胞から出て、これらの酵素の量が多くなると肺胞細胞が炎症を起こしたり、コラーゲン化を呈するようになることがある。こうした炎症を起こした細胞は抵抗力が弱まっており、細胞内の核の中にあるDNAが損傷されやすくなるとともに、細胞の破壊と再製過程とが頻繁になり、異常細胞が出現する機会が多くなり、その結果、DNA細胞の変質や癌細胞が誘発されることが懸念されるため、現在、該従来の不定形断熱材の無機繊維等を使用しない不定形断熱材組成物の開発が望まれていた。   Conventionally, the amorphous heat insulating material composition includes glass fiber, glass wool, ceramic wool, rock wool, alumina fiber, zirconia fiber, silica / alumina fiber, etc. (hereinafter referred to as inorganic fiber of conventional amorphous heat insulating material composition, etc.) And as a reinforcing fiber. The amorphous heat insulating material composition is inserted into a gap such as a tile by glazing, spraying or pouring to form joints. At that time, the inorganic fibers and the like of the conventional amorphous heat insulating material composition contained in the amorphous heat insulating material composition are scattered as dust in the air, and the worker inhales the dust. When inorganic fibers of this conventional amorphous heat insulating material are inhaled by humans and enter the lungs, phagocytic alveolar macrophages (phagocytic cells) surround the foreign body and carry them to the place where cilia are located (trachea and bronchi). At the same time, it drains out of the body, and drains from the alveolar surface via lymph and lymphatic vessels. However, the alveolar macrophages may be stimulated or damaged due to the surrounding foreign material, and as a result, proteolytic enzymes and collagen fiber degrading enzymes are released from the cells, and if the amount of these enzymes increases, the alveolar cells May cause irritation or collagenation. These inflamed cells are less resistant, making it easier to damage the DNA in the cell's nucleus, and the frequent destruction and remanufacturing process, resulting in more opportunities for abnormal cells to appear. As a result, there is a concern that DNA cells may be altered and cancer cells may be induced. Therefore, development of an amorphous heat insulating material composition that does not use inorganic fibers of the conventional amorphous heat insulating material is desired. It was.

生体溶解性無機繊維は、肺に吸入されても体内で溶解され、肺に蓄積することがないため、従来の不定形断熱材組成物の無機繊維等に代わる強化繊維として、該生体溶解性無機繊維を用いることが知られている。しかし、該生体溶解性無機繊維は、水等の溶媒に溶解し易く、不定形断熱材組成物の調製時又は保存時に、一部又はその多くが溶媒中へ溶出するため、不定形断熱材組成物によって形成される目地の強度が低下するという問題があった。   Since the biosoluble inorganic fiber is dissolved in the body even if inhaled into the lung and does not accumulate in the lung, the biosoluble inorganic fiber is used as a reinforcing fiber in place of the inorganic fiber of the conventional amorphous heat insulating material composition. It is known to use fibers. However, the biologically soluble inorganic fiber is easily dissolved in a solvent such as water, and a part or most of it elutes into the solvent during preparation or storage of the amorphous heat insulating material composition. There was a problem that the strength of the joint formed by the object was lowered.

これを解決するものとして、特表2002−524384号公報には、珪酸アルカリ土類金属塩の無機耐火繊維とpHが8未満、特に4〜7のコロイダルシリカを含有する漆喰が開示されている。この漆喰によれば、酸性コロイダルシリカの供給が繊維からのカルシウムイオンの遊離を減少させるため、漆喰中の無機繊維構成成分を固化させることがなく、保存安定性に優れるというものである。
特表2002−524384号公報(請求項1)
As a solution to this problem, Japanese Patent Publication No. 2002-524384 discloses a stucco containing an inorganic refractory fiber of an alkaline earth metal silicate and colloidal silica having a pH of less than 8, particularly 4 to 7. According to this plaster, since the supply of acidic colloidal silica reduces the liberation of calcium ions from the fibers, the inorganic fiber constituents in the plaster are not solidified, and the storage stability is excellent.
JP 2002-524384 A (Claim 1)

しかしながら、特表2002−524384号公報記載の漆喰は、製造後の保存において、カルシウムイオンの遊離は減少されるものの、繊維構成成分の溶解を十分に抑制することができず、製造後、約数週間でpHが上昇し加熱収縮率が高くなったり、断熱材組成物の物性が低下するなどの問題がある。また、酸性コロイダルシリカを使用した場合、施工後の目地の収縮率が大きくなり、目地に隙間が生じ、断熱性、耐火性が悪化するという問題がある。   However, the stucco described in JP-T-2002-524384 does not sufficiently inhibit the dissolution of fiber constituents, although the release of calcium ions is reduced during storage after manufacture, and the divisor after manufacture. There are problems such that the pH increases in a week and the heat shrinkage ratio increases, and the physical properties of the heat insulating material composition decrease. Moreover, when acidic colloidal silica is used, there is a problem that the shrinkage rate of the joint after the construction becomes large, a gap is formed in the joint, and the heat insulation and fire resistance are deteriorated.

従って、本発明の目的は、生体溶解性無機繊維を用いる不定形断熱材組成物であって、製造後の保存期間経過後であっても、加熱収縮が少なく、焼成後、適切な強度を有する不定形断熱材組成物及びその製造方法を提供することにある。   Accordingly, an object of the present invention is an amorphous heat insulating material composition using a biosoluble inorganic fiber, which has little heat shrinkage even after the storage period after production and has an appropriate strength after firing. An object is to provide an amorphous heat insulating material composition and a method for producing the same.

かかる実情において、本発明者らは、鋭意検討を行った結果、(1)生体溶解性無機繊維は溶液に溶け出すとpHが高くなり、アルカリ性になるため、繊維成分が溶け出し、加熱収縮や強度の低下が起こること、(2)不定形断熱材組成物にpH調整剤を配合させ、製造直後及び保存期間中に亘りpHを4〜8.5に保持すれば、繊維成分の溶解を抑制でき、製造後の保存期間経過後であっても、加熱収縮が少なく、焼成後、適切な強度を有する不定形断熱材が得られることなどを見出し、本発明を完成させるに至った。   Under such circumstances, the present inventors have conducted extensive studies, and as a result, (1) when the biosoluble inorganic fiber is dissolved in the solution, the pH becomes high and becomes alkaline. Decrease in strength, (2) If a pH adjuster is added to the amorphous heat insulating material composition, and the pH is kept at 4 to 8.5 immediately after production and during the storage period, dissolution of the fiber component is suppressed. It was found that, even after the storage period after production, the heat shrinkage is small, and after firing, an amorphous heat insulating material having an appropriate strength can be obtained, and the present invention has been completed.

すなわち、本発明(1)は、生体溶解性無機繊維、溶媒及びpH調整剤を含有する組成物であって、該組成物のpHが4〜8.5である不定形断熱材組成物を提供するものである。   That is, this invention (1) is a composition containing a biosoluble inorganic fiber, a solvent, and a pH adjuster, and provides an amorphous heat insulating material composition having a pH of 4 to 8.5. To do.

また、本発明は、生体溶解性無機繊維、溶媒及びpH調整剤を混合してpHが4〜8.5の組成物を得る不定形断熱材組成物の製造方法を提供するものである。   Moreover, this invention provides the manufacturing method of the amorphous heat insulating material composition which mixes biosoluble inorganic fiber, a solvent, and a pH adjuster, and obtains a composition with pH 4-8.5.

また、本発明は、溶媒と有機繊維を混合する有機繊維混合工程、該有機繊維混合工程の後に、該溶媒及び該有機繊維を含む混合物と、生体溶解性無機繊維及びpH調整剤を混合する無機繊維混合工程を有する不定形断熱材組成物の製造方法を提供するものである。   The present invention also provides an organic fiber mixing step of mixing a solvent and an organic fiber, an inorganic fiber that mixes the solvent and the organic fiber, a biosoluble inorganic fiber, and a pH adjuster after the organic fiber mixing step. The manufacturing method of the amorphous heat insulating material composition which has a fiber mixing process is provided.

本発明によれば、生体溶解性無機繊維を用いる不定形断熱材組成物であって、製造後の保存期間経過後であっても、加熱収縮が少なく、焼成後、適切な強度を有する目地を形成する不定形断熱材組成物及びその製造方法を提供することができる。   According to the present invention, an amorphous heat insulating material composition using biologically soluble inorganic fibers, which has little heat shrinkage even after the storage period after production, and has a suitable strength after firing. An amorphous heat insulating material composition to be formed and a method for producing the same can be provided.

先ず、本発明に係る不定形断熱材組成物について説明する。該不定形断熱材組成物は、生体溶解性無機繊維、溶媒及びpH調整剤を含有する。   First, the amorphous heat insulating material composition according to the present invention will be described. The amorphous heat insulating material composition contains biosoluble inorganic fibers, a solvent, and a pH adjuster.

本発明に係る生体溶解性無機繊維(以下、単に無機繊維とも言う)は、40℃における生理食塩水溶解率が1%以上である。該生理食塩水溶解率が、1%未満だと、肺に吸入されても生体内で溶解され難いので、該無機繊維は肺に蓄積し、各種の呼吸器疾患を発生させる原因となる。該生理食塩水溶解率の測定方法について説明する。先ず、無機繊維を200メッシュ以下に粉砕した試料1g及び生理食塩水150mlを三角フラスコ(300ml)に入れ、40℃のインキュベーターに設置する。次に、該三角フラスコに、毎分120回転で50時間水平振動を加え、その後、ろ過、乾燥して不溶解分を得る。得た該不溶解分の重量を測定し、その値を溶解前の重量から差し引いて、溶解による重量減少率(重量%)を求める。そして、該溶解による重量減少率を、生理食塩水溶解率とする。   The biologically soluble inorganic fiber according to the present invention (hereinafter also simply referred to as inorganic fiber) has a physiological saline dissolution rate at 40 ° C. of 1% or more. If the physiological saline dissolution rate is less than 1%, it is difficult to dissolve in the living body even if inhaled into the lung, so that the inorganic fiber accumulates in the lung and causes various respiratory diseases. A method for measuring the physiological saline dissolution rate will be described. First, 1 g of a sample obtained by pulverizing inorganic fibers to 200 mesh or less and 150 ml of physiological saline are placed in an Erlenmeyer flask (300 ml) and placed in an incubator at 40 ° C. Next, a horizontal vibration is applied to the Erlenmeyer flask at 120 rpm for 50 hours, followed by filtration and drying to obtain an insoluble matter. The weight of the obtained insoluble matter is measured, and the value is subtracted from the weight before dissolution to determine the weight reduction rate (% by weight) due to dissolution. Then, the weight reduction rate due to the dissolution is defined as a physiological saline dissolution rate.

該生体溶解性無機繊維としては、例えば、特開2000−220037号公報、特開2002−68777号公報、特開2003−73926号公報、あるいは特開2003−212596号公報に記載されている無機繊維が挙げられる。具体的には、SiO及びCaOの合計含有量が85質量%以上であり、0.5〜3.0質量%のMgO及び2.0〜8.0質量%のPを含有し、かつドイツ危険物質規制による発癌性指数(KI値)が40以上である無機繊維、SiO、MgO及びTiOを必須成分とする無機繊維、SiO、MgO及び酸化マンガンを必須成分とする無機繊維、SiO 52〜72質量%、Al 3質量%未満、MgO 0〜7質量%、CaO 7.5〜9.5質量%、B 0〜12質量%、BaO 0〜4質量%、SrO 0〜3.5質量%、NaO 10〜20.5質量%、KO 0.5〜4.0質量%及びP 0〜5質量%を含む無機繊維、SiO 75〜80質量%、Al 1.0〜3.0質量%、MgO 16〜20質量%、CaO 3.0〜5.0質量%、KO及び/又はFe 0〜2.0質量%を含む無機繊維である。 Examples of the biosoluble inorganic fiber include inorganic fibers described in JP-A-2000-220037, JP-A-2002-68777, JP-A-2003-73926, or JP-A-2003-212596. Is mentioned. Specifically, the total content of SiO 2 and CaO is 85% by mass or more, containing 0.5 to 3.0% by mass of MgO and 2.0 to 8.0% by mass of P 2 O 5. Inorganic fibers having a carcinogenicity index (KI value) of 40 or more according to German hazardous substance regulations, inorganic fibers containing SiO 2 , MgO and TiO 2 as essential components, inorganic containing SiO 2 , MgO and manganese oxide as essential components fiber, SiO 2 fifty-two to seventy-two wt%, Al less than 2 O 3 3 wt%, MgO 0 to 7 wt%, CaO 7.5 to 9.5 wt%, B 2 O 3 0~12 wt%, BaO 0 to Inorganic fiber containing 4% by mass, SrO 0-3.5% by mass, Na 2 O 10-20.5% by mass, K 2 O 0.5-4.0% by mass and P 2 O 5 0-5% by mass , SiO 2 75-80 mass%, Al 2 O 3 1.0~3.0 mass , MgO 16 to 20 wt%, CaO 3.0 to 5.0 wt%, inorganic fibers containing K 2 O and / or Fe 2 O 3 0 to 2.0 wt%.

また、該生体溶解性無機繊維の平均繊維径は1〜50μm、好ましくは2〜10μm、特に好ましくは2〜5μmである。該平均繊維径が、1μm未満だと目地の強度が低くなり、また、50μmを超えると有機繊維を用いた場合、有機繊維の網目中に取り込まれ難くなる。また、該無機繊維の平均繊維長は1〜200mm、好ましくは2〜50mm、特に好ましくは10〜50mmである。該平均繊維長が、1mm未満だと目地の強度が低くなり、また、200mmを超えると該無機繊維が溶媒に均一に分散し難くなる。   The average fiber diameter of the biosoluble inorganic fiber is 1 to 50 μm, preferably 2 to 10 μm, and particularly preferably 2 to 5 μm. When the average fiber diameter is less than 1 μm, the strength of the joint becomes low. When the average fiber diameter exceeds 50 μm, when the organic fiber is used, it is difficult to be taken into the network of the organic fiber. The average fiber length of the inorganic fibers is 1 to 200 mm, preferably 2 to 50 mm, particularly preferably 10 to 50 mm. When the average fiber length is less than 1 mm, the strength of the joint becomes low, and when it exceeds 200 mm, the inorganic fibers are difficult to uniformly disperse in the solvent.

本発明に係る溶媒としては、特に制限されないが、水及び極性有機溶媒が挙げられ、該極性有機溶媒としては、エタノール、プロパノール等の1価のアルコール類、エチレングリコール等の2価のアルコール類が挙げられる。これらのうち、水が、作業環境の悪化がなく、環境への負荷がない点で好ましい。また、該水としては特に制限されず、蒸留水、イオン交換水、水道水、工業用水等が挙げられる。   Although it does not restrict | limit especially as a solvent based on this invention, Water and a polar organic solvent are mentioned, As this polar organic solvent, monovalent alcohols, such as ethanol and propanol, Divalent alcohols, such as ethylene glycol, are mentioned. Can be mentioned. Among these, water is preferable in that there is no deterioration of the working environment and there is no burden on the environment. Moreover, it does not restrict | limit especially as this water, Distilled water, ion-exchange water, tap water, industrial water etc. are mentioned.

該溶媒の含有量は、該本発明に係る不定形断熱材組成物中の固形物100質量部に対して、5〜80質量部、好ましくは10〜80質量部、特に好ましくは10〜50質量部である。該含有量が、5質量部未満だと不定形断熱材組成物の流動性が低くなるので施工性が悪くなり、また、目地の機械的強度、特に曲げ強度が低下する。また、該含有量が、80質量部を超えると不定形断熱材組成物のちょう度が高くなるので施工時に該組成物がたれ、また、乾燥による目地の収縮が大きくなる。   The content of the solvent is 5 to 80 parts by mass, preferably 10 to 80 parts by mass, and particularly preferably 10 to 50 parts by mass with respect to 100 parts by mass of the solid in the amorphous heat insulating material composition according to the present invention. Part. When the content is less than 5 parts by mass, the fluidity of the amorphous heat insulating material composition is lowered, so that the workability is deteriorated, and the mechanical strength of joints, particularly the bending strength is lowered. Moreover, since the consistency of an amorphous heat insulating material composition will become high when this content exceeds 80 mass parts, this composition will be dripped at the time of construction, and the shrinkage | contraction of the joint by drying will become large.

本発明に係るpH調整剤としては、特に制限されないが、例えば緩衝溶液又は酸が挙げられ、このうち、緩衝溶液が、製造後数ヶ月に亘って不定形断熱材組成物のpHを4〜8.5に安定して維持でき、また刺激臭を放つことがない点で好ましい。緩衝溶液は一般には、外部変化に対して溶液がその影響を和らげようとする作用を奏する溶液を言う。この緩衝作用は、普通溶液の水素イオン濃度の変化に対して言われるものであり、具体的には溶液がある程度の酸又は塩基の添加や消失にも関わらず、ほぼ一定の水素イオン濃度を維持する作用を言う。本発明で用いる緩衝溶液としては、pH4標準溶液であるフタール酸塩標準溶液(セーレンセン緩衝液)、pH7標準溶液である中性リン酸塩標準溶液が挙げられ、このうち、フタール酸塩標準溶液が焼成により消失し、断熱材の物性に悪影響を与えない点で好ましい。   Although it does not restrict | limit especially as a pH adjuster which concerns on this invention, For example, a buffer solution or an acid is mentioned, Among these, a buffer solution makes pH of an amorphous heat insulating material composition 4-8 over several months after manufacture. .5 is preferable in that it can be stably maintained and does not give off an irritating odor. A buffer solution generally refers to a solution that acts to mitigate the effect of external changes. This buffering action is usually said to the change in the hydrogen ion concentration of the solution. Specifically, the solution maintains an almost constant hydrogen ion concentration despite the addition or disappearance of some acid or base. Says the action. Examples of the buffer solution used in the present invention include a phthalate standard solution (Selensen buffer solution) which is a pH 4 standard solution and a neutral phosphate standard solution which is a pH 7 standard solution. It is preferable in that it disappears by firing and does not adversely affect the physical properties of the heat insulating material.

該緩衝溶液の含有量は、不定形断熱材組成物のpHを4〜8.5にする量であれば、特に制限されないが、具体的には、前記無機繊維100質量部に対して、10〜1000質量部、好ましくは50〜500質量部である。該緩衝溶液の含有量が少な過ぎると、不定形断熱材組成物の製造後の例えば90日間の保存期間中、所定のpH値を維持できず、繊維成分の溶解を抑制することができなくなる。また、該緩衝溶液の含有量が多すぎても無駄となるばかりか、カリウム等の塩が入りとなり好ましくない。   The content of the buffer solution is not particularly limited as long as the pH of the amorphous heat insulating material composition is adjusted to 4 to 8.5, but specifically, it is 10 to 100 parts by mass of the inorganic fiber. -1000 mass parts, Preferably it is 50-500 mass parts. When the content of the buffer solution is too small, a predetermined pH value cannot be maintained, for example, during a storage period of 90 days after the production of the amorphous heat insulating material composition, and dissolution of the fiber component cannot be suppressed. Further, if the content of the buffer solution is too large, not only is it wasted, but salts such as potassium are contained, which is not preferable.

酸としては、酢酸、蟻酸等が挙げられ、このうち、酢酸が、pH低下効果が高く且つ手頃に入手できる点で好ましい。酸の含有量は、不定形断熱材組成物のpHを4〜8.5にする量であれば、特に制限されないが、具体的には、酢酸溶液99%であれば、前記無機繊維100質量部に対して、1〜7質量部、好ましくは2〜4質量部である。該酢酸溶液の含有量が少な過ぎると、不定形断熱材組成物の製造後の例えば90日間の保存期間中、pHを8.5以下に維持できず、繊維成分の溶解を抑制することができなくなる。また、該酢酸溶液の含有量が多すぎても無駄となるばかりか、異臭を放つため好ましくない。   Examples of the acid include acetic acid, formic acid and the like. Among these, acetic acid is preferable because it has a high pH lowering effect and is readily available. The acid content is not particularly limited as long as the pH of the amorphous heat insulating material composition is 4 to 8.5, but specifically, if the acetic acid solution is 99%, the inorganic fiber is 100 masses. 1 to 7 parts by mass, preferably 2 to 4 parts by mass with respect to parts. If the content of the acetic acid solution is too small, the pH cannot be maintained at 8.5 or lower during the storage period of, for example, 90 days after the production of the amorphous heat insulating material composition, and dissolution of the fiber component can be suppressed. Disappear. Further, if the content of the acetic acid solution is too much, it is not preferable because it is not only wasteful but also gives off a strange odor.

本発明の不定形断熱材組成物は、更に有機繊維を含むと、該有機繊維が生体溶解性無機繊維の保護膜として作用する点で好ましい。有機繊維としては、特に制限されず、天然繊維又は疎水処理された合成繊維のいずれであってもよく、該天然繊維としては、パルプ、綿、麻等が挙げられ、該合成繊維としては、ビニロン、レーヨン、ポリプロピレン、ポリエチレン等が挙げられる。これらのうち、パルプが、前記無機繊維を取り込み易い点で好ましい。なお、パルプとは、機械的又は化学的処理により、植物体の繊維を分離したものを指す。有機繊維及び無機繊維共に、ある程度の疎水性を持たせることが、有機繊維及び無機繊維を水中に投入した際、急激に沈むことなく、ある程度の時間浮遊することになり、互いのあるいは他の混合材料との混合性がよくなる点で好ましい。疎水処理とは、繊維の疎水性を向上させる処理のことを指し、該疎水処理の方法としては、例えば、該繊維の周りを疎水性の薬剤でコーティングする方法が挙げられる。   When the amorphous heat insulating material composition of the present invention further contains an organic fiber, it is preferable in that the organic fiber acts as a protective film for the biosoluble inorganic fiber. The organic fiber is not particularly limited, and may be any of natural fiber or hydrophobic treated synthetic fiber. Examples of the natural fiber include pulp, cotton, hemp and the like. , Rayon, polypropylene, polyethylene and the like. Of these, pulp is preferable because it easily incorporates the inorganic fibers. In addition, a pulp refers to what isolate | separated the fiber of the plant body by the mechanical or chemical process. Both organic and inorganic fibers have a certain degree of hydrophobicity, and when organic and inorganic fibers are put into water, they will float for a certain period of time without drowning rapidly. It is preferable in terms of improving the mixing property with the material. The hydrophobic treatment refers to a treatment for improving the hydrophobicity of the fiber. Examples of the hydrophobic treatment method include a method of coating the periphery of the fiber with a hydrophobic drug.

該有機繊維は、前記無機繊維が存在すると、該有機繊維の網目中に該無機繊維を取り込む。このことにより、該有機繊維は、該無機繊維の周りを覆い、該無機繊維が溶媒と接触することを防ぐ、保護層として働く。すなわち、溶媒と接触している表面近くの該有機繊維の網目が、溶媒を取り込むことにより、該有機繊維は、該有機繊維の網目の内部に取り込まれている該無機繊維に、溶媒が直接接触することを防ぐ。よって、該無機繊維が溶媒中に溶出すること及び結晶中に溶媒を取り込むことを防ぐことができるため、例えば施行後の目地の収縮率が大きくなることを防止する。また、該無機繊維同士が有機繊維を介して固定されるので、該有機繊維は、該無機繊維の補強材として機能する。   When the inorganic fiber is present, the organic fiber takes the inorganic fiber into the network of the organic fiber. Thereby, the organic fiber covers the periphery of the inorganic fiber and serves as a protective layer that prevents the inorganic fiber from coming into contact with the solvent. That is, the organic fiber network near the surface that is in contact with the solvent takes in the solvent, so that the organic fiber is in direct contact with the inorganic fibers that are taken into the organic fiber network. To prevent. Therefore, since it can prevent that this inorganic fiber elutes in a solvent and takes in a solvent in a crystal | crystallization, it prevents that the shrinkage rate of the joint after implementation becomes large, for example. Moreover, since the inorganic fibers are fixed to each other via the organic fibers, the organic fibers function as a reinforcing material for the inorganic fibers.

また、該有機繊維としては、特に制限されないが、ろ水度が200〜500mlのものが好ましい。該ろ水度とは、JIS P 8121−1995に規定されている「パルプのろ水度試験方法」で求められる値であり、保水性の指標である。該ろ水度が低い繊維程、保水性が高い。該ろ水度が、200〜500mlの有機繊維は、前記無機繊維との親和性が高いので、該無機繊維を取り込み易く、また、適切な保水性を有しているので、該無機繊維が溶媒と直接接触することを防ぐ効果が高い。該ろ水度が、200ml未満だと該有機繊維が水分を吸収し過ぎるため、無機繊維を取り込み難くなり、また、500mlを超えると該無機繊維との親和性が低いため、該無機繊維を取り込み難くなる。   The organic fiber is not particularly limited, but preferably has a freeness of 200 to 500 ml. The freeness is a value obtained by the “pulp freeness test method” defined in JIS P 8121-1995, and is an index of water retention. The lower the freeness, the higher the water retention. The organic fibers having a freeness of 200 to 500 ml have a high affinity with the inorganic fibers, so that the inorganic fibers can be easily taken in and have appropriate water retention. Highly effective in preventing direct contact. If the freeness is less than 200 ml, the organic fibers absorb too much moisture, making it difficult to incorporate inorganic fibers. If the freeness exceeds 500 ml, the affinity with the inorganic fibers is low, so the inorganic fibers are incorporated. It becomes difficult.

また、該有機繊維の平均繊維径は、1〜30μm、好ましくは2〜10μm、特に好ましくは2〜5μmである。該平均繊維径が、1μm未満だと目地の強度が低くなり、また、30μmを超えると前記無機繊維を取り込み難くなる。そして、該有機繊維の平均繊維径は、前記無機繊維の平均繊維径以下とすることが、該有機繊維が該無機繊維を取り込み易くなる点で好ましい。また、該有機繊維の平均繊維長は、0.5〜20mm、好ましくは1〜10mm、特に好ましくは2〜5mmである。該平均繊維長が、0.5mm未満だと目地の強度が低くなり、また、20mmを超えると該有機繊維が溶媒に均一に分散し難くなる。   The average fiber diameter of the organic fiber is 1 to 30 μm, preferably 2 to 10 μm, and particularly preferably 2 to 5 μm. When the average fiber diameter is less than 1 μm, the strength of the joint becomes low, and when it exceeds 30 μm, it becomes difficult to incorporate the inorganic fibers. And it is preferable that the average fiber diameter of this organic fiber shall be below the average fiber diameter of the said inorganic fiber at the point which this organic fiber takes in this inorganic fiber easily. The average fiber length of the organic fiber is 0.5 to 20 mm, preferably 1 to 10 mm, particularly preferably 2 to 5 mm. When the average fiber length is less than 0.5 mm, the strength of the joint becomes low, and when it exceeds 20 mm, the organic fiber is difficult to be uniformly dispersed in the solvent.

該有機繊維の含有量は、前記無機繊維100質量部に対して、5〜50質量部、好ましくは10〜30質量部、特に好ましくは15〜25質量部である。該有機繊維の含有量が、5質量部未満だと前記無機繊維の溶出を抑制する効果が小さくなり、また、50質量部を超えると目地の強度が低くなる。   Content of this organic fiber is 5-50 mass parts with respect to 100 mass parts of said inorganic fibers, Preferably it is 10-30 mass parts, Most preferably, it is 15-25 mass parts. When the content of the organic fiber is less than 5 parts by mass, the effect of suppressing the elution of the inorganic fiber is reduced, and when it exceeds 50 parts by mass, the strength of the joint is reduced.

本発明に係る不定形断熱材組成物は、更に耐熱性粉末を含むことにより、耐火性が高くなる。該耐熱性粉末としては、例えば、シリカ、アルミナ、窒化ケイ素、炭化ケイ素等のセラミックス粉末、マグネシウム等の金属粉末、カーボンブラック等の炭素粉末、テフロン(登録商標)樹脂、耐熱塩化ビニル樹脂等の耐熱樹脂粉末等が挙げられ、これらのうち、好ましくはシリカ、アルミナ、窒化ケイ素、炭酸ケイ素等のセラミックス粉末、カーボンブラック等の炭素粉末であり、特に好ましくはシリカ、アルミナ、窒化ケイ素、炭酸ケイ素等のセラミックス粉末である。また、該耐熱性粉末は、該耐熱性粉末をコロイド状にして、溶媒に分散させてから、加えることもできる。該耐熱性粉末をコロイド状にして、溶媒に分散させたものとしては、例えば、コロイダルシリカが挙げられる。コロイダルシリカは、pHが7以上のものが好ましい。酸性コロイダルシリカを配合した不定形断熱材組成物はゲル化を生じ、ポンプ輸送し難い等の問題がある点で好ましくない。   The amorphous heat insulating material composition according to the present invention further includes a heat-resistant powder, thereby increasing the fire resistance. Examples of the heat-resistant powder include ceramic powder such as silica, alumina, silicon nitride and silicon carbide, metal powder such as magnesium, carbon powder such as carbon black, Teflon (registered trademark) resin, heat-resistant vinyl chloride resin and the like. Resin powders and the like are mentioned. Among these, ceramic powders such as silica, alumina, silicon nitride, and silicon carbonate, and carbon powders such as carbon black are preferable, and silica, alumina, silicon nitride, silicon carbonate, and the like are particularly preferable. Ceramic powder. The heat-resistant powder can be added after the heat-resistant powder is colloidally dispersed in a solvent. Examples of the colloidal heat-resistant powder dispersed in a solvent include colloidal silica. The colloidal silica preferably has a pH of 7 or more. The amorphous heat insulating material composition blended with acidic colloidal silica is not preferable because it causes gelation and is difficult to pump.

該耐熱性粉末の平均粒子径は、0.1〜100μm、好ましくは0.2〜50μm、特に好ましくは0.2〜10μmである。該平均粒子径が、0.1μm未満だと、該耐熱性粉末が前記無機繊維又は前記無機繊維と前記有機繊維の隙間から抜け易く、該耐熱性粉末が分離し易くなる。また、該平均粒子径が、100μmを超えると、前記無機繊維又は前記有機繊維中に取り込まれ難く、該耐熱性粉末が均一に分散し難くなる。   The average particle diameter of the heat resistant powder is 0.1 to 100 μm, preferably 0.2 to 50 μm, and particularly preferably 0.2 to 10 μm. When the average particle diameter is less than 0.1 μm, the heat-resistant powder is easily removed from the gap between the inorganic fiber or the inorganic fiber and the organic fiber, and the heat-resistant powder is easily separated. On the other hand, when the average particle diameter exceeds 100 μm, it is difficult to be taken into the inorganic fiber or the organic fiber, and the heat-resistant powder is difficult to uniformly disperse.

該耐熱性粉末の含有量は、前記無機繊維100質量部に対して、10〜300質量部、好ましくは20〜200質量部、特に好ましくは40〜150質量部である。該含有量が、10質量部未満だと耐火性が低くなり、また、300質量部を超えると被付着物に対する目地の付着力が低くなる。   Content of this heat resistant powder is 10-300 mass parts with respect to 100 mass parts of said inorganic fibers, Preferably it is 20-200 mass parts, Most preferably, it is 40-150 mass parts. If the content is less than 10 parts by mass, the fire resistance will be low, and if it exceeds 300 parts by mass, the adhesion of the joints to the adherend will be low.

また、本発明に係る不定形断熱材組成物は、前記生体溶解性無機繊維、pH調整剤、有機繊維及び耐熱性粉末以外に、結合材、増粘材、分散剤、防腐剤等の添加物を含むことができる。   In addition, the amorphous heat insulating material composition according to the present invention includes additives such as a binder, a thickener, a dispersant, and a preservative in addition to the biosoluble inorganic fiber, the pH adjuster, the organic fiber, and the heat resistant powder. Can be included.

該結合材としては、不定形断熱材組成物の結合材として一般的に用いられているものであれば、特に制限されないが、例えば、コロイダルシリカ、アルミナ粉末を水に溶かしたアルミナゾル、リン酸アルミニウム水溶液等が挙げられる。このうち、コロイダルシリカ、アルミナ粉末等が、安価である点で好ましい。該結合材の含有量は、特に制限されないが、前記無機繊維100質量部に対して50〜200質量部が好ましい。   The binder is not particularly limited as long as it is generally used as a binder for an amorphous heat insulating material composition. For example, colloidal silica, alumina sol obtained by dissolving alumina powder in water, aluminum phosphate An aqueous solution etc. are mentioned. Of these, colloidal silica, alumina powder, and the like are preferable in that they are inexpensive. The content of the binder is not particularly limited, but is preferably 50 to 200 parts by mass with respect to 100 parts by mass of the inorganic fiber.

該増粘材としては、特に制限されず、公知のものが使用できる。具体的には、ヒドロキシエチルセルロース、アクリル酸ナトリウム重合物、ポリエーテルポリオール、アクリル系重合高分子ポリエステルアミン等が挙げられる。該増粘材の含有量は、特に制限されないが、前記無機繊維100質量部に対して2〜15質量部が好ましい。   The thickening material is not particularly limited, and known materials can be used. Specific examples include hydroxyethyl cellulose, sodium acrylate polymer, polyether polyol, and acrylic polymerized polymer polyesteramine. Although content in particular of this thickener is not restrict | limited, 2-15 mass parts is preferable with respect to 100 mass parts of said inorganic fibers.

該分散剤としては、特に制限されず、公知のものが使用できる。具体的には、カルボン酸類、多価アルコール、アミン類等が挙げられ、該分散剤の含有量は、特に制限されないが、前記無機繊維100質量部に対して1〜5質量部が好ましい。   The dispersant is not particularly limited, and known ones can be used. Specific examples include carboxylic acids, polyhydric alcohols, amines, and the like. The content of the dispersant is not particularly limited, but is preferably 1 to 5 parts by mass with respect to 100 parts by mass of the inorganic fibers.

該防腐剤としては、特に制限されないが、例えば、窒素原子又は硫黄原子を有する無機化合物又は有機化合物等が挙げられ、該防腐剤の含有量は、特に制限されないが、前記無機繊維100質量部に対して1〜5質量部が好ましい。   The preservative is not particularly limited, and examples thereof include an inorganic compound or an organic compound having a nitrogen atom or a sulfur atom, and the content of the preservative is not particularly limited. 1-5 mass parts is preferable with respect to it.

本発明に係る不定形断熱材組成物は、製造直後及び製造後の少なくとも1ヶ月保存において、該組成物のpHが共に4〜8、好ましくは4〜6である。少なくとも1ヶ月の保存条件としては、室温暗所下、密閉容器内の保存方法である。なお、当該不定形断熱材組成物は、更に同様の保存条件下の3ヶ月保存においてもpHが4〜8.5、好ましくは4〜7のものが好ましい。このような不定形断熱材組成物であれば、長期間の保存においても、生体溶解性無機繊維の構成成分が溶解することがなく、製造直後と同様の優れた特性を示す。従来の不定形断熱材組成物はpH調整剤が配合されておらず、例え製造直後のpHが8以内のものがあったとしても、保存期間中、反応性の高い生体溶解性無機繊維は徐々に溶液内に溶解して、不定形断熱材組成物によって形成される目地の強度が低下してしまう。本発明に係る不定形断熱材組成物は、製造直後の保存期間中において、pH調整剤を追加してpH調整してもよい。本発明に係る不定形断熱材組成物において、pHが4未満であれば、ハンドリング上の問題があると共に、金属を腐食する等の点で好ましくなく、また、pHが8.5を超えるものは生体溶解性無機繊維の溶出が起こり易くなる。   The amorphous heat insulating material composition according to the present invention has a pH of 4 to 8, preferably 4 to 6, both immediately after production and after storage for at least one month. The storage condition for at least one month is a storage method in a closed container at room temperature in a dark place. The amorphous heat insulating material composition preferably has a pH of 4 to 8.5, preferably 4 to 7 even when stored for 3 months under the same storage conditions. With such an amorphous heat insulating material composition, the constituent components of the biosoluble inorganic fiber are not dissolved even during long-term storage, and the same excellent characteristics as those immediately after production are exhibited. A conventional amorphous heat insulating material composition does not contain a pH adjuster, and even if there is a pH within 8 immediately after production, highly reactive biosoluble inorganic fibers are gradually added during the storage period. It dissolves in the solution and the strength of the joint formed by the amorphous heat insulating material composition is lowered. The amorphous heat insulating material composition according to the present invention may be adjusted in pH by adding a pH adjuster during the storage period immediately after production. In the amorphous heat insulating material composition according to the present invention, if the pH is less than 4, there is a problem in handling, and it is not preferable in terms of corroding the metal, and the pH exceeds 8.5. Elution of biosoluble inorganic fibers is likely to occur.

また、不定形断熱材組成物に有機繊維を含む場合、該有機繊維が、該生体溶解性無機繊維の保護層として働き、また、該無機繊維の補強材として働くため、該無機繊維が、溶媒へ溶出すること、又は混練り時に断裂することにより、該不定形断熱材組成物により形成される断熱材の性能が低下するのを更に防ぐことができる。また、有機繊維を配合した不定形断熱材組成物は、長期間保存後も、更に断熱材の性能が低下し難くなる。   Further, when the amorphous heat insulating material composition contains organic fibers, the organic fibers serve as a protective layer for the biosoluble inorganic fibers and also serve as a reinforcing material for the inorganic fibers. It is possible to further prevent the performance of the heat insulating material formed by the amorphous heat insulating material composition from being deteriorated by elution into the water or tearing during kneading. Moreover, the amorphous heat insulating material composition in which the organic fiber is blended is less likely to further deteriorate the performance of the heat insulating material even after long-term storage.

次に、本発明に係る不定形断熱材組成物の製造方法を説明する。該製造方法において、各原料の混合順序としては、特に制限されないが、生体溶解性無機繊維、溶媒及びpH調整剤を混合してpHが4〜8.5の組成物を得る方法(同時混合方法)が好適である。具体的には、生体溶解性無機繊維、溶媒及びpH調整剤をニーダで混合する公知の方法が適用できる。混合する温度としては、特に制限されないが、好ましくは5〜40℃であり、混合する時間は、特に制限されないが、好ましくは0.1〜1.0時間である。   Next, the manufacturing method of the amorphous heat insulating material composition which concerns on this invention is demonstrated. In the production method, the mixing order of the respective raw materials is not particularly limited, but a method of obtaining a composition having a pH of 4 to 8.5 by mixing biosoluble inorganic fibers, a solvent and a pH adjuster (simultaneous mixing method). ) Is preferred. Specifically, a known method of mixing biosoluble inorganic fibers, a solvent, and a pH adjuster with a kneader can be applied. Although it does not restrict | limit especially as a temperature to mix, Preferably it is 5-40 degreeC, The time to mix is although it does not restrict | limit in particular, Preferably it is 0.1 to 1.0 hour.

また、有機繊維を含む場合、溶媒と有機繊維を混合する有機繊維混合工程と、該有機繊維混合工程の後に、該溶媒及び該有機繊維を含む混合物と、生体溶解性無機繊維とpH調整剤を混合する無機繊維混合工程を有する方法が好ましい。   When organic fibers are included, an organic fiber mixing step of mixing a solvent and organic fibers, a mixture containing the solvent and the organic fibers, a biosoluble inorganic fiber, and a pH adjuster after the organic fiber mixing step. A method having an inorganic fiber mixing step of mixing is preferable.

該有機繊維混合工程で混合する該溶媒の量は、本発明に係る製造方法で製造される不定形断熱材組成物に必要な溶媒の量の全部であっても又は一部であってもよいが、該有機繊維混合工程で混合する溶媒の量を、該不定形断熱材組成物に必要な溶媒の量の30〜50質量%とすることが、該不定形断熱材組成物中の固形物が、均一に分散し易い点で好ましい。なお、該有機繊維混合工程で混合する溶媒が、該不定形断熱材組成物に必要な溶媒の量の一部である場合、残部は後の工程で、1回又は2回以上に分けて混合することができる。   The amount of the solvent to be mixed in the organic fiber mixing step may be the whole or a part of the amount of the solvent necessary for the amorphous heat insulating material composition produced by the production method according to the present invention. However, the amount of the solvent mixed in the organic fiber mixing step is 30 to 50% by mass of the amount of the solvent necessary for the amorphous heat insulating material composition, so that the solid matter in the amorphous heat insulating material composition However, it is preferable in that it can be easily dispersed uniformly. In addition, when the solvent mixed in the organic fiber mixing step is a part of the amount of the solvent necessary for the amorphous heat insulating material composition, the remainder is mixed once or twice or more in the subsequent step. can do.

該有機繊維混合工程で混合する該有機繊維の種類、ろ水度、平均繊維径及び平均繊維長は、本発明に係る不定形断熱材組成物の説明で記載した前記有機繊維と同様であるが、開繊されている有機繊維であることが、該溶媒中に分散し易く且つ該無機繊維を取り込み易い点で好ましい。   The type, freeness, average fiber diameter, and average fiber length of the organic fiber mixed in the organic fiber mixing step are the same as those of the organic fiber described in the description of the amorphous heat insulating material composition according to the present invention. The organic fiber that has been opened is preferable in that it can be easily dispersed in the solvent and can easily incorporate the inorganic fiber.

該有機繊維の開繊は、例えば、パルパーと呼ばれる装置を用いて行うことができる。該パルパーは、紙の製造において、有機繊維シートを砕いてほぐれた有機繊維を開繊するために、一般的に使用される装置である。そして、該パルパー等で該有機繊維を開繊処理すると、該有機繊維の主鎖の表面の一部が短く裂けるため、該有機繊維は、繊維の主鎖から分岐した短い側鎖を多数持つ形状となる。このとき、該主鎖から裂けて生じる該側鎖(枝毛)は、細かく波打った形状となる(フィビリル化)。このように、該開裁されている有機繊維は、細かく波打った形状の側鎖を持つことにより、該有機繊維の網目の内部に、前記無機繊維を取り込み易いので、後述する無機繊維混合工程で、該無機繊維を混合した時に、速やかに該無機繊維を取り込み、また、該側鎖が溶媒を取り込み易いので、溶媒に分散し易く、溶媒に混合した時に、溶媒全体に均一に広がる。従って、該開裁されている有機繊維は、後述する無機繊維混合工程で、該無機繊維を混合した時に、該無機繊維が溶媒と接触するのを少なくすることができる。有機繊維が開繊していることの確認は、例えば、前記ろ水度を測定することにより行なうことができ、該開繊している有機繊維は、該ろ水度が、200ml以上である。   The opening of the organic fiber can be performed using, for example, an apparatus called a pulper. The pulper is a device that is commonly used in the manufacture of paper to open organic fibers that have been crushed and loosened in an organic fiber sheet. And, when the organic fiber is opened by the pulper or the like, a part of the surface of the main chain of the organic fiber is torn short, so that the organic fiber has a shape having many short side chains branched from the main chain of the fiber. It becomes. At this time, the side chain (branch) generated by tearing from the main chain is finely wavy (fibrillation). In this way, the cut organic fiber has a side chain with a finely undulating shape, so that the inorganic fiber can be easily taken into the network of the organic fiber. Thus, when the inorganic fibers are mixed, the inorganic fibers are quickly taken up, and the side chains are easy to take up the solvent, so that they are easily dispersed in the solvent, and when mixed with the solvent, they spread uniformly throughout the solvent. Therefore, the cut organic fibers can reduce the contact of the inorganic fibers with the solvent when the inorganic fibers are mixed in the inorganic fiber mixing step described later. Confirmation that the organic fibers are opened can be performed, for example, by measuring the freeness, and the open organic fibers have a freeness of 200 ml or more.

そして、該溶媒と該有機繊維を、常套手段、例えば、ニーダを用いて混合する。混合する温度及び時間は、同時混合方法に記載したものと同様の条件で行うことができる。   Then, the solvent and the organic fiber are mixed using a conventional means such as a kneader. The mixing temperature and time can be performed under the same conditions as described in the simultaneous mixing method.

該無機繊維混合工程おいて、該無機繊維の生理食塩水溶解率、種類、平均繊維径及び平均繊維長、並びにpH調整剤は、本発明に係る不定形断熱材組成物の説明で記載した前記無機繊維及びpH調整剤と同様であり、混合手段、混合する温度及び時間は、前記同時混合方法と同様である。   In the inorganic fiber mixing step, the physiological fiber dissolution rate, type, average fiber diameter and average fiber length, and pH adjuster of the inorganic fiber are described in the description of the amorphous heat insulating material composition according to the present invention. It is the same as that of an inorganic fiber and a pH adjuster, and the mixing means, the temperature and time to mix are the same as the said simultaneous mixing method.

また、前記有機繊維混合工程後であって前記無機繊維混合工程の前の溶媒及び有機繊維を含む混合物に、あるいは該無機繊維混合工程の後の溶媒、有機繊維及び無機繊維を含む混合物に、耐熱性粉末、結合材、増粘材、分散剤又は防腐剤等の添加物を混合することができる。また、該耐熱性粉末は、予め該溶媒に分散させた分散体とし、該分散体を該混合物に混合することが、耐熱性粉末を不定形断熱材組成物に均一に分散できる点で好ましい。   Also, after the organic fiber mixing step and before the inorganic fiber mixing step, the mixture containing the solvent and the organic fiber, or after the inorganic fiber mixing step, the mixture containing the solvent, the organic fiber and the inorganic fiber, Additives such as a conductive powder, a binder, a thickener, a dispersant, or a preservative can be mixed. Moreover, it is preferable that the heat-resistant powder is a dispersion previously dispersed in the solvent, and the dispersion is mixed with the mixture from the viewpoint that the heat-resistant powder can be uniformly dispersed in the amorphous heat insulating material composition.

なお、本発明に係る不定形断熱材組成物の製造方法において、前記無機繊維、、溶媒、pH調整剤、有機繊維、耐熱性粉末、結合材、増粘材、分散剤及び防腐剤の混合量は、本発明に係る不定形断熱材組成物の説明で記載した各成分の含有量と同量である。   In the method for producing an amorphous heat insulating material composition according to the present invention, the amount of the inorganic fiber, solvent, pH adjuster, organic fiber, heat resistant powder, binder, thickener, dispersant and preservative Is the same amount as the content of each component described in the description of the amorphous heat insulating material composition according to the present invention.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

<不定形断熱材組成物の製造>
300Lの容器を用意し、該容器に生体溶解性無機繊維、アルミナ粉末、30%コロイダルシリカ懸濁液、増粘剤、防腐剤、パルプ、無機バインダー、分散剤及びpH調整剤を表1に示す配合割合で加えた。その後、30分攪拌して、不定形断熱材組成物2kgを得た。攪拌中、混合物の温度は、10〜30℃であった。
<Manufacture of amorphous heat insulating material composition>
A 300 L container is prepared, and the biosoluble inorganic fiber, alumina powder, 30% colloidal silica suspension, thickener, preservative, pulp, inorganic binder, dispersant and pH adjuster are shown in Table 1. It was added at a blending ratio. Then, it stirred for 30 minutes and obtained 2 kg of amorphous heat insulating material compositions. During stirring, the temperature of the mixture was 10-30 ° C.

得られた不定形断熱材組成物の物性測定、並びに該不定形断熱材組成物により形成される断熱材の物性測定及び性能評価を、下記のようにして行った。その結果を表1に示す。   The physical property measurement of the obtained amorphous heat insulating material composition and the physical property measurement and performance evaluation of the heat insulating material formed by the amorphous heat insulating material composition were performed as follows. The results are shown in Table 1.

<不定形断熱材組成物の物性測定>
(1)ちょう度
JIS K 2220に準じ、ちょう度計を用いて行う。金属カップには、内径100mm、内高50mmのものを、円錐には、円錐Aを使用する。
(2)pH
不定形断熱材組成物にpH試験紙を浸して測定した。
<Measurement of physical properties of amorphous heat insulating material composition>
(1) Consistency According to JIS K 2220, use a consistency meter. A metal cup having an inner diameter of 100 mm and an inner height of 50 mm is used, and a cone A is used for the cone.
(2) pH
Measurement was performed by immersing a pH test paper in the amorphous heat insulating material composition.

<断熱材の物性測定及び性能評価>
(断熱材の形成)
不定形断熱材組成物を、JIS R 2553に準じ、長さ160×幅40×高さ40mmに成形し、100℃で、24時間加熱乾燥して、断熱材を得る。
<Measurement of physical properties and evaluation of thermal insulation>
(Formation of insulation)
The amorphous heat insulating material composition is formed into a length of 160 × width of 40 × height of 40 mm in accordance with JIS R 2553 and heat-dried at 100 ° C. for 24 hours to obtain a heat insulating material.

(断熱材の物性測定)
(1)密度
JIS A 1116に準じ、寸法体積及び質量を測定して算出する
(断熱材の性能評価)
(1)加熱収縮率
上記100℃で加熱乾燥して得られる断熱材を、電気炉中1100℃で24時間加熱し、加熱後の断熱材の長さを測定する。加熱収縮率は、加熱前の断熱材の長さをXmm、加熱後の長さをYmmとし、次式により求める。
加熱収縮率(%)={(X−Y)/X}×100
(Measurement of physical properties of insulation)
(1) Density Calculated by measuring dimensional volume and mass according to JIS A 1116 (performance evaluation of heat insulating material)
(1) Heat shrinkage The heat insulating material obtained by heating and drying at 100 ° C. is heated in an electric furnace at 1100 ° C. for 24 hours, and the length of the heat insulating material after heating is measured. The heat shrinkage rate is obtained by the following equation, where the length of the heat insulating material before heating is X mm and the length after heating is Y mm.
Heat shrinkage rate (%) = {(XY) / X} × 100

(2)1100℃加熱後の曲げ強度
上記100℃で加熱乾燥して得られる断熱材を1100℃で24時間加熱し、加熱後の断熱材の曲げ強度を求める。該曲げ強度は、JIS R 2553に準じ、3点曲げ強度試験機(テンシロン)を用いて、荷重速度49.03〜68.05N/秒の均一速度で荷重を加え、破断荷重を測定し、次式により算出する。
曲げ強度(MPa)={3×最大荷重(N)×支持ロールの中心距離(mm)}/{2×断熱材の幅(mm)×(断熱材の厚さ(mm))
(2) Bending strength after heating at 1100 ° C. The heat insulating material obtained by heating and drying at 100 ° C. is heated at 1100 ° C. for 24 hours to determine the bending strength of the heat insulating material after heating. The bending strength is measured according to JIS R 2553 by applying a load at a uniform speed of 49.03 to 68.05 N / sec using a three-point bending strength tester (Tensilon) and measuring the breaking load. Calculate by the formula.
Bending strength (MPa) = {3 × maximum load (N) × center distance of support roll (mm)} / {2 × heat insulation width (mm) × (heat insulation thickness (mm)) 2 }

<不定形断熱材組成物の長期保存試験>
100Lの容器を4つ用意し、該容器のそれぞれに、不定形断熱材組成物A 100gを入れ、該容器の蓋を閉め、更にシールテープで密閉した。不定形断熱材組成物Aを入れた容器を、25±4℃の暗室で、それぞれ、7日、30日、60日及び90日保存した。所定の保存期間経過後、不定形断熱材組成物を容器から取り出し、不定形断熱材組成物のちょう度及びpH、並びに該不定形断熱材組成物を100℃で加熱乾燥して得られる断熱材の密度、加熱収縮率及び1100℃加熱後の曲げ強度を、上記と同様の方法で求めた。なお、断熱材の加熱収縮率及び1100℃加熱後の曲げ強度については7日保存後の測定は省略した。その結果を表2に示す。
<Long-term storage test of amorphous heat insulating material composition>
Four 100 L containers were prepared, 100 g of amorphous heat insulating material composition A was put in each of the containers, the lid of the container was closed, and the container was further sealed with a sealing tape. The container containing the amorphous heat insulating material composition A was stored in a dark room at 25 ± 4 ° C. for 7 days, 30 days, 60 days, and 90 days, respectively. After elapse of a predetermined storage period, the amorphous heat insulating material composition is taken out of the container, the consistency and pH of the amorphous heat insulating material composition, and the heat insulating material obtained by heating and drying the amorphous heat insulating material composition at 100 ° C. The density, the heat shrinkage rate, and the bending strength after heating at 1100 ° C. were determined by the same method as described above. In addition, about the heat shrinkage rate of a heat insulating material and the bending strength after 1100 degreeC heating, the measurement after a 7-day preservation | save was abbreviate | omitted. The results are shown in Table 2.

実施例2〜実施例6及び比較例1〜3
<不定形断熱材組成物の製造>
各添加物の配合割合を表1に示す配合量とする以外は、実施例1と同様の方法で行い、不定形断熱材組成物2kgを得た。その結果を表1及び表2示す。
Examples 2 to 6 and Comparative Examples 1 to 3
<Manufacture of amorphous heat insulating material composition>
Except that the blending ratio of each additive was the blending amount shown in Table 1, it was carried out in the same manner as in Example 1 to obtain 2 kg of an amorphous heat insulating material composition. The results are shown in Tables 1 and 2.

Figure 2006282404
Figure 2006282404

なお、不定形断熱材組成物の製造に用いた各原料は下記とおりである。
・生体溶解性無機繊維;組成;SiO78質量%、CaO0.15質量%、MgO19質量%、平均繊維径4.5μm、平均繊維長5.0mm、40℃における生理食塩水溶解率5.9%
・アルミナ粉末(耐熱性粉末);「A−32」(日本軽金属社製)、平均子粒径1μm
・コロイダルシリカA;「スノーテック30」(日産化学工業社製)、固形分(耐熱性粉末)が30%の懸濁液、固形分の平均粒子径15μm、pH8.0
・コロイダルシリカB; 「スノーテック0」(日産化学工業社製)、固形分(耐熱性粉末)が30%の懸濁液、固形分の平均粒子径15μm、pH4.0
・増粘剤;ヒドロキシエチルセルロース、「ヘックユニセルQP52000H」(ダウケミカル社製)
・硫黄含有防腐剤;「デルトップ512」(武田薬品工業社製)
・パルプ;「HARMAC R」(ハーマック社製);平均繊維径5.5μm、平均繊維長2.4mm
・無機バインダー;「TAカオリン」(山陽クレー工業社製)
・分散剤;「プライマル850FF」(ローム・アンド・ハース社製)
・ フタール酸塩標準液(pH4標準溶液)
・ 中性リン酸塩標準液(pH7標準溶液)
・ ホウ酸塩標準溶液(pH9標準溶液)
・ 酢酸溶液;酢酸99%溶液
In addition, each raw material used for manufacture of an amorphous heat insulating material composition is as follows.
Biosoluble inorganic fiber; composition: SiO 2 78 mass%, CaO 0.15 mass%, MgO 19 mass%, average fiber diameter 4.5 μm, average fiber length 5.0 mm, physiological saline dissolution rate at 40 ° C. 5.9 %
Alumina powder (heat resistant powder); “A-32” (manufactured by Nippon Light Metal Co., Ltd.), average particle size 1 μm
Colloidal silica A: “Snowtech 30” (manufactured by Nissan Chemical Industries, Ltd.), 30% solid content (heat resistant powder) suspension, average particle size of solid content 15 μm, pH 8.0
Colloidal silica B; “Snow Tech 0” (manufactured by Nissan Chemical Industries, Ltd.), 30% solids (heat resistant powder) suspension, average particle size of solids 15 μm, pH 4.0
・ Thickener: Hydroxyethyl cellulose, “Heck Unicel QP52000H” (manufactured by Dow Chemical Company)
・ Sulfur-containing preservative: “Dell Top 512” (manufactured by Takeda Pharmaceutical Company Limited)
・ Pulp; “HARMAC R” (manufactured by Hermac Co.); average fiber diameter 5.5 μm, average fiber length 2.4 mm
・ Inorganic binder; “TA Kaolin” (manufactured by Sanyo Clay Industry Co., Ltd.)
・ Dispersant; “Primal 850FF” (Rohm and Haas)
・ Phthalate standard solution (pH 4 standard solution)
・ Neutral phosphate standard solution (pH7 standard solution)
・ Borate standard solution (pH 9 standard solution)
Acetic acid solution; 99% acetic acid solution

Figure 2006282404
Figure 2006282404

表2中、比較例1及び2の保存期間30日以降及び比較例3の保存期間7日以降は、固形分と水が分離したり、熱収縮率も高く、品質は大きく低下するため、断熱材組成物の物性や評価を行わなかった。   In Table 2, after the storage period 30 days of Comparative Examples 1 and 2 and after the storage period 7 days of Comparative Example 3, the solid content and water are separated, the heat shrinkage rate is high, and the quality is greatly reduced. The physical properties and evaluation of the material composition were not performed.

本発明によれば、生体溶解性無機繊維を用いる不定形断熱材組成物であって、収縮が少なく、適切な強度を有する目地を形成する不定形断熱材組成物及びその製造方法を提供することができる。従って、作業者の作業環境を改善することができる。   According to the present invention, there is provided an amorphous heat insulating material composition using biosoluble inorganic fibers, which has a small shrinkage and forms joints having appropriate strength, and a method for producing the same. Can do. Therefore, the work environment of the worker can be improved.

Claims (10)

生体溶解性無機繊維、溶媒及びpH調整剤を含有する組成物であって、該組成物のpHが4〜8.5であることを特徴とする不定形断熱材組成物。   An amorphous heat insulating material composition comprising a biosoluble inorganic fiber, a solvent and a pH adjuster, wherein the composition has a pH of 4 to 8.5. 前記生体溶解性無機繊維は、40℃における生理食塩水溶解率が1%以上の無機繊維であることを特徴とする請求項1記載の不定形断熱材組成物。   The amorphous heat insulating composition according to claim 1, wherein the biosoluble inorganic fiber is an inorganic fiber having a physiological saline dissolution rate at 40 ° C of 1% or more. pH調整剤が、緩衝溶液又は酸であることを特徴とする請求項1又は2記載の不定形断熱材組成物。   The amorphous heat insulating material composition according to claim 1 or 2, wherein the pH adjuster is a buffer solution or an acid. 更に、有機繊維を含有することを特徴とする請求項1〜3のいずれか1項に記載の不定形断熱材組成物。   Furthermore, organic fiber is contained, The amorphous heat insulating material composition of any one of Claims 1-3 characterized by the above-mentioned. 室温下、製造後の少なくとも1ヶ月保存において、該組成物のpHが4〜8.5であることを特徴とする請求項1〜4のいずれか1項記載の不定形断熱材組成物。   The amorphous heat insulating composition according to any one of claims 1 to 4, wherein the composition has a pH of 4 to 8.5 when stored at room temperature for at least one month after production. 前記不定形断熱材組成物中の固形物100質量部に対して、前記溶剤を5〜80質量部含むことを特徴とする請求項1〜5のいずれか1項記載の不定形断熱材組成物。   The amorphous heat insulating composition according to any one of claims 1 to 5, wherein the solvent is included in an amount of 5 to 80 parts by mass with respect to 100 parts by mass of the solid in the amorphous heat insulating material composition. . 前記溶媒が、水であることを特徴とする請求項1〜6のいずれか1項記載の不定形断熱材組成物。   The amorphous heat insulating material composition according to claim 1, wherein the solvent is water. 生体溶解性無機繊維、溶媒及びpH調整剤を混合してpHが4〜8.5の組成物を得ることを特徴とする不定形断熱材組成物の製造方法。   A method for producing an amorphous heat insulating material composition comprising mixing a biosoluble inorganic fiber, a solvent, and a pH adjuster to obtain a composition having a pH of 4 to 8.5. 溶媒と有機繊維を混合する有機繊維混合工程、該有機繊維混合工程の後に、該溶媒及び該有機繊維を含む混合物と、生体溶解性無機繊維及びpH調整剤を混合する無機繊維混合工程を有することを特徴とする不定形断熱材組成物の製造方法。   An organic fiber mixing step of mixing a solvent and an organic fiber, and an inorganic fiber mixing step of mixing the solvent and the organic fiber, a biosoluble inorganic fiber, and a pH adjuster after the organic fiber mixing step. The manufacturing method of the amorphous heat insulating material composition characterized by these. 前記生体溶解性無機繊維は、40℃における生理食塩水溶解率が1%以上の無機繊維であることを特徴とする請求項8又は9記載の不定形断熱材組成物の製造方法。   The method for producing an amorphous heat insulating material composition according to claim 8 or 9, wherein the biologically soluble inorganic fiber is an inorganic fiber having a physiological saline solubility at 40 ° C of 1% or more.
JP2005100787A 2005-03-31 2005-03-31 Amorphous insulation composition Active JP4545623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100787A JP4545623B2 (en) 2005-03-31 2005-03-31 Amorphous insulation composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100787A JP4545623B2 (en) 2005-03-31 2005-03-31 Amorphous insulation composition

Publications (2)

Publication Number Publication Date
JP2006282404A true JP2006282404A (en) 2006-10-19
JP4545623B2 JP4545623B2 (en) 2010-09-15

Family

ID=37404706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100787A Active JP4545623B2 (en) 2005-03-31 2005-03-31 Amorphous insulation composition

Country Status (1)

Country Link
JP (1) JP4545623B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162852A (en) * 2006-12-28 2008-07-17 Nichias Corp Inorganic fibrous molded body, inorganic fibrous fired body, amorphous inorganic fibrous composition and amorphous fibrous fired body
WO2013080455A1 (en) 2011-12-01 2013-06-06 ニチアス株式会社 Monolithic composition
US9434656B2 (en) 2011-03-30 2016-09-06 Nichias Corporation Wet blanket

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277579A (en) * 1987-05-08 1988-11-15 Taiko Rozai Kk Castable refractory material
JPH01252591A (en) * 1988-04-01 1989-10-09 Toppan Printing Co Ltd Production of cellular body
JPH11171657A (en) * 1997-12-12 1999-06-29 Hazuru Dolomite Kogyo Kk Castable refractory
JP2001122670A (en) * 1999-10-21 2001-05-08 Kurosaki Harima Corp Anhydrous inorganic fiber-containing adiabatic refractory
JP2002266169A (en) * 2000-12-27 2002-09-18 Toshiba Monofrax Co Ltd Heat-resistant inorganic fiber and inorganic fiber product
JP2005029419A (en) * 2003-07-11 2005-02-03 Kurosaki Harima Corp Method for spraying heat insulation refractory and spray heat insulation refractory used therein

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277579A (en) * 1987-05-08 1988-11-15 Taiko Rozai Kk Castable refractory material
JPH01252591A (en) * 1988-04-01 1989-10-09 Toppan Printing Co Ltd Production of cellular body
JPH11171657A (en) * 1997-12-12 1999-06-29 Hazuru Dolomite Kogyo Kk Castable refractory
JP2001122670A (en) * 1999-10-21 2001-05-08 Kurosaki Harima Corp Anhydrous inorganic fiber-containing adiabatic refractory
JP2002266169A (en) * 2000-12-27 2002-09-18 Toshiba Monofrax Co Ltd Heat-resistant inorganic fiber and inorganic fiber product
JP2005029419A (en) * 2003-07-11 2005-02-03 Kurosaki Harima Corp Method for spraying heat insulation refractory and spray heat insulation refractory used therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162852A (en) * 2006-12-28 2008-07-17 Nichias Corp Inorganic fibrous molded body, inorganic fibrous fired body, amorphous inorganic fibrous composition and amorphous fibrous fired body
US9434656B2 (en) 2011-03-30 2016-09-06 Nichias Corporation Wet blanket
WO2013080455A1 (en) 2011-12-01 2013-06-06 ニチアス株式会社 Monolithic composition

Also Published As

Publication number Publication date
JP4545623B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4761567B2 (en) Inorganic fiber molded body
JP4658845B2 (en) Amorphous insulation composition
JP5022512B1 (en) Amorphous composition
JP4716883B2 (en) Inorganic fiber molded body
JPWO2010095757A1 (en) Carbonaceous refractory and method for producing the same, and blast furnace bottom or side wall
CN110446571B (en) Coating composition for use in the foundry industry comprising an organic ester compound and particulate amorphous silica
EP2224895A2 (en) Aluminous cement-based composition for application in endodontics and cementitious product obtained thereof
JP4545623B2 (en) Amorphous insulation composition
UA125088C2 (en) Use of a size composition containing an acid in the foundry industry
CN102216001B (en) Porous magnesia clinker, manufacturing method and use thereof as flux for treating steelmaking slag
Yasaei et al. Characteristics improvement of calcium hydroxide dental cement by hydroxyapatite nanoparticles. Part 1: formulation and microstructure
US5602063A (en) Lightweight sprayable tundish lining composition
JP4426358B2 (en) Amorphous insulation composition
JPH11504896A (en) Control of expansion in concrete by alkali-silica reaction
BG107403A (en) Colloidal silicate dispersion, method for its preparation and its use
ES2885102T3 (en) Refractory lining material containing low biopersistence fibers and its manufacturing process
JP2007246770A (en) Hydrogel composition and ground improvement method using the same
JP4744066B2 (en) Indefinite refractory
JP5022513B1 (en) Amorphous composition
JP6027084B2 (en) Solidification material and solidification method of ultrafine powder-containing material
JP2008100873A (en) Construction method for inhibiting scattering of asbestos
JP2019137561A (en) Monolithic refractory composition
JP3619715B2 (en) Mortar reinforcement for high temperature furnace brick repair, high temperature furnace brick repair material, and high temperature furnace brick repair method
JP3436941B2 (en) Ring lining material for dental casting
JPH0712986B2 (en) Asbestos treatment agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4545623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250