JP2007246770A - Hydrogel composition and ground improvement method using the same - Google Patents

Hydrogel composition and ground improvement method using the same Download PDF

Info

Publication number
JP2007246770A
JP2007246770A JP2006073730A JP2006073730A JP2007246770A JP 2007246770 A JP2007246770 A JP 2007246770A JP 2006073730 A JP2006073730 A JP 2006073730A JP 2006073730 A JP2006073730 A JP 2006073730A JP 2007246770 A JP2007246770 A JP 2007246770A
Authority
JP
Japan
Prior art keywords
hydrogel composition
compound
ground
gelation
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006073730A
Other languages
Japanese (ja)
Other versions
JP5068958B2 (en
Inventor
Takayuki Higuchi
隆行 樋口
Keisuke Nakamura
圭介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006073730A priority Critical patent/JP5068958B2/en
Publication of JP2007246770A publication Critical patent/JP2007246770A/en
Application granted granted Critical
Publication of JP5068958B2 publication Critical patent/JP5068958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a hydrogel composition that not only improves ground in the vicinity of underground structure but also shows an alkali region of pH to control bacterial growth of underground and acidification of ground. <P>SOLUTION: The hydrogel composition comprises a polyvinyl alcohol-based polymer, water, an organotitanium compound and a calcium alumino-ferrite compound. The hydrogel composition has a viscosity of ≤10,000 mPa s for ≥10 minutes after mixing the components. The hydrogel composition shows pH<8 before gelation and pH≥9 after gelation. The ground improvement method comprises using the hydrogel composition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主に土木建築分野において使用されるヒドロゲル組成物およびそれを用いた地盤改良方法に関するものである。   The present invention relates to a hydrogel composition mainly used in the field of civil engineering and construction, and a ground improvement method using the same.

近年、地下鉄、トンネル、下水管をはじめとする地下構造物の周辺地盤を、変形追従性のある地盤に改良する方法が提案されている。構造物の自重や地震などの外部応力によって地盤が変形しても構造物の破壊を最小限に留めることや、電車や自動車などの交通振動を抑制することが主な目的である。組成物としては、環境負荷の小さいポリビニルアルコールを主体としたゲル組成物が提案されている(特許文献1、2、3、4)。
特開2002−294014号公報 特開2002−371278号公報 特開2005−162984号公報 特開2005−220738号公報
In recent years, methods have been proposed for improving the surrounding ground of underground structures such as subways, tunnels, and sewage pipes to a ground having deformation followability. The main purpose is to minimize the destruction of the structure even if the ground is deformed due to the structure's own weight or external stress such as an earthquake, and to suppress traffic vibrations of trains and cars. As the composition, a gel composition mainly composed of polyvinyl alcohol having a small environmental load has been proposed (Patent Documents 1, 2, 3, and 4).
JP 2002-294014 A JP 2002-371278 A JP 2005-162984 A JP 2005-220738 A

地盤中には一般細菌や大腸菌などが存在しており、その含有量は水質基準で規定されている。これらの菌にとってポリビニルアルコールなどの炭素成分は栄養源になる可能性がある。また、一般細菌や大腸菌はpHが5〜9の中性領域で繁殖しやすいこと、アルカリ性領域では繁殖し難いことが知られている。従来のヒドロゲル組成物は、ゲル化後のpHが酸性〜中性領域のものが多い。
そこで、本発明は、地下構造物周囲の地盤を改良するだけでなく、地下の細菌増殖や地盤の酸性化を抑制するpHがアルカリ性領域を示すヒドロゲル組成物を提供する。
There are general bacteria and Escherichia coli in the ground, and their contents are regulated by water quality standards. Carbon components such as polyvinyl alcohol can be a nutrient source for these bacteria. Further, it is known that general bacteria and Escherichia coli are easy to reproduce in a neutral region having a pH of 5 to 9, and difficult to reproduce in an alkaline region. Many conventional hydrogel compositions have an acidic to neutral pH after gelation.
Therefore, the present invention provides a hydrogel composition that not only improves the ground around the underground structure, but also exhibits an alkaline region with a pH that suppresses bacterial growth in the underground and acidification of the ground.

すなわち、(1)ポリビニルアルコール系重合体、水、有機チタン化合物、およびカルシウムアルミノフェライト化合物を含有してなるヒドロゲル組成物、(2)各成分を混合した後の粘度が10分以上10000mPa・s以下である(1)のヒドロゲル組成物、(3)ゲル化前のpHが8未満でゲル化後のpHが9以上を示す(1)または(2)のヒドロゲル組成物、(4)(1)〜(3)のいずれかのヒドロゲル組成物を用いた地盤改良方法、である。   That is, (1) a hydrogel composition containing a polyvinyl alcohol polymer, water, an organic titanium compound, and a calcium aluminoferrite compound, (2) a viscosity after mixing each component is 10 minutes or more and 10,000 mPa · s or less (1) hydrogel composition of (1), (3) the hydrogel composition of (1) or (2), wherein the pH before gelation is less than 8 and the pH after gelation is 9 or more, (4) (1) A ground improvement method using the hydrogel composition of any one of (3).

本発明のヒドロゲル組成物を用いて地下構造物周囲の地盤を改良することによって、地盤が変形しても構造物の破壊を最小限にでき、電車や自動車などの交通振動を抑制することができる。しかも、地下の細菌増殖や地盤の酸性化を抑制することができる。   By improving the ground around the underground structure using the hydrogel composition of the present invention, it is possible to minimize the destruction of the structure even if the ground is deformed, and to suppress traffic vibrations such as trains and automobiles. . Moreover, it is possible to suppress underground bacterial growth and ground acidification.

本発明で使用するポリビニルアルコール系重合体(以下、PVAと略記)は、完全ケン化型PVA、部分ケン化型PVAをはじめとして、水酸基を有し実質的に水溶性を保持しているものであればアクリル酸、クロトン酸、マレイン酸、アクリルアミドなどを付加した各種変性PVAを用いることができる。
本発明に使用するPVAの平均重合度は500〜3000が好ましく、1000〜2000がより好ましい。PVAの鹸化度は80mol%以上のものが好ましく、90mol%以上がより好ましい。PVAの重合度や鹸化度が前記範囲外の場合には、硬化前の流動性、硬化後の強度、弾性、遮水性が損われる場合がある。
The polyvinyl alcohol polymer (hereinafter abbreviated as PVA) used in the present invention has a hydroxyl group and substantially water solubility, including fully saponified PVA and partially saponified PVA. If so, various modified PVAs to which acrylic acid, crotonic acid, maleic acid, acrylamide, etc. are added can be used.
500-3000 are preferable and, as for the average degree of polymerization of PVA used for this invention, 1000-2000 are more preferable. The degree of saponification of PVA is preferably 80 mol% or more, more preferably 90 mol% or more. When the degree of polymerization or saponification of PVA is outside the above range, fluidity before curing, strength after curing, elasticity, and water shielding properties may be impaired.

本発明で使用するPVAは、あらかじめ水溶液として調製しておくことが好ましい。その固形分濃度は用途によって適宜決定されるものであり、特に限定されるものではないが、通常、3〜25質量%程度とすることが好ましい。3質量%未満では硬化体の弾性が不足する場合があり、25質量%を超えると水溶液の粘性が高くなりすぎる場合がある。   The PVA used in the present invention is preferably prepared in advance as an aqueous solution. The solid content concentration is appropriately determined depending on the application and is not particularly limited, but it is usually preferably about 3 to 25% by mass. If it is less than 3% by mass, the cured body may have insufficient elasticity, and if it exceeds 25% by mass, the viscosity of the aqueous solution may become too high.

本発明で使用する有機チタン化合物は、水溶性があり、酸性から中性領域で安定であり、アルカリ性領域で水酸基やカルボキシル基と反応するものであれば利用可能である。なかでもチタンアルコキシドにヒドロキシカルボン酸である乳酸を反応させたチタンラクテートや、チタンアルコキシドにβ-ジケトンであるアセチルアセトンを反応させたチタンアセチルアセトネート、チタンアルコキシドにアルカノールアミンであるトリエタノールアミンを反応させたチタントリエタノールアルミネート、チタンアルコキシドにジカルボン酸であるシュウ酸を反応させたシュウ酸チタンなどを含むものが好ましい。また、特開平2000-159786号公報や特開2004-43353号公報に示されているチタンペルオキシ化合物も利用可能である。チタンの配位子としてクエン酸、リンゴ酸、グリコール酸など種々のタイプが知られており、水に安定に溶けることが明らかとなっている。また、アンモニウム塩やナトリウム塩などの粉体のものも知られている。   The organic titanium compound used in the present invention is water-soluble, can be used as long as it is stable in an acidic to neutral region and reacts with a hydroxyl group or a carboxyl group in an alkaline region. In particular, titanium lactate obtained by reacting titanium alkoxide with lactic acid, a hydroxycarboxylic acid, titanium acetylacetonate obtained by reacting titanium alkoxide with acetylacetone, a β-diketone, and titanium alkoxide reacted with triethanolamine, an alkanolamine. It is preferable to include titanium triethanolaluminate, titanium oxalate obtained by reacting oxalic acid, which is a dicarboxylic acid, with titanium alkoxide. In addition, titanium peroxy compounds disclosed in JP-A Nos. 2000-159786 and 2004-43353 can also be used. Various types of titanium ligands, such as citric acid, malic acid, and glycolic acid, are known and have been shown to be stably soluble in water. In addition, powders such as ammonium salts and sodium salts are also known.

本発明で使用するカルシウムアルミノフェライト化合物は、石灰石、石灰、消石灰などのカルシウム源、ボーキサイトやアルミナなどのアルミニウム源、酸化鉄などのフェライト源を所定の方法で熱処理し粉砕したものである。熱処理温度は、1200〜2000℃が好ましく、1400〜1600℃の範囲がより好ましい。1200℃未満では、所定の化合物が得られない場合があり、2000℃を超えると不経済になる場合がある。焼成中の雰囲気は、酸化雰囲気でも還元雰囲気でも構わない。また、焼成設備はロータリーキルンや電気炉などが使用可能である。原料中には、主成分であるCaO、Al、およびFeの他に、SiO、MgO、TiO、P、NaO、KO、フッ素、塩素、重金属類などの不純物を含む場合があるが、本発明の目的を実質的に阻害しない範囲では特に問題とはならない。 The calcium aluminoferrite compound used in the present invention is obtained by heat-treating a calcium source such as limestone, lime and slaked lime, an aluminum source such as bauxite and alumina, and a ferrite source such as iron oxide by a predetermined method. The heat treatment temperature is preferably 1200 to 2000 ° C, and more preferably 1400 to 1600 ° C. If it is less than 1200 degreeC, a predetermined compound may not be obtained, and if it exceeds 2000 degreeC, it may become uneconomical. The atmosphere during firing may be an oxidizing atmosphere or a reducing atmosphere. Moreover, a rotary kiln, an electric furnace, etc. can be used for baking facilities. In the raw material, in addition to CaO, Al 2 O 3 and Fe 2 O 3 as main components, SiO 2 , MgO, TiO 2 , P 2 O 5 , Na 2 O, K 2 O, fluorine, chlorine, Although impurities such as heavy metals may be included, there is no particular problem as long as the object of the present invention is not substantially impaired.

カルシウムアルミノフェライト化合物の粉末度は、特に限定されるものではないが、ブレーン比表面積で1500〜8000cm/gが好ましく、3000〜6000cm/gがより好ましい。1500cm/g未満の粗粒では充分な強度が得られない場合があり、8000cm/gを超える微粉末では反応性が高くなるため充分な可使時間を確保できない場合がある。 Fineness of calcium alumino ferrite compound is not particularly limited, but is preferably 1500~8000cm 2 / g in Blaine specific surface area, 3000~6000cm 2 / g is more preferable. If the coarse particles are less than 1500 cm 2 / g, sufficient strength may not be obtained, and if the fine powder exceeds 8000 cm 2 / g, the reactivity may be high and sufficient pot life may not be ensured.

カルシウムアルミノフェライト化合物のガラス化率は、特に限定されるものではなく、結晶質でも非晶質でも本発明には使用可能である。結晶質のカルシウムアルミノフェライト化合物としては、4CaO・Al・Feや6CaO・2Al・Feなどの化合物がよく知られている。これらのうち2種以上を併用することも可能である。
本発明では、次に示すX線回折リートベルト法によってガラス化率の測定を行った。粉砕した試料に酸化アルミニウムや酸化マグネシウムなどの内部標準物質を所定量添加し、めのう乳鉢で充分混合したのち、粉末X線回折測定を実施する。測定結果を定量ソフトで解析し、ガラス化率を求める。定量ソフトには、Sietronics社の「SIROQUANT」を用いた。
The vitrification rate of the calcium aluminoferrite compound is not particularly limited, and it can be used in the present invention whether crystalline or amorphous. Calcium aluminosilicate ferrite compound of crystalline compounds, such as 4CaO · Al 2 O 3 · Fe 2 O 3 and 6CaO · 2Al 2 O 3 · Fe 2 O 3 are well known. Two or more of these can be used in combination.
In the present invention, the vitrification rate was measured by the following X-ray diffraction Rietveld method. A predetermined amount of an internal standard substance such as aluminum oxide or magnesium oxide is added to the pulverized sample, and after sufficient mixing in an agate mortar, powder X-ray diffraction measurement is performed. Analyze the measurement results with quantitative software to determine the vitrification rate. “SIROQUANT” manufactured by Sitronics was used as the quantitative software.

本発明における各成分である、PVA、水、有機チタン化合物、およびカルシウムアルミノフェライト化合物の配合割合は、用途によって異なるため特に限定されるものではないが、PVA、水、有機チタン化合物、およびカルシウムアルミノフェライト化合物の合計100質量部中、PVAは3〜12質量部が好ましく、5〜10質量部がより好ましい。水は45〜75質量部が好ましく、50〜70質量部がより好ましい。有機チタン化合物は1〜18質量部が好ましく、5〜10質量部がより好ましい。同様に、カルシウムアルミノフェライト化合物は、5〜45質量部が好ましく、10〜40質量部がより好ましい。これら範囲外ではヒドロゲル組成物のゲル化前の粘性が高くなったり、ゲル化後のpHが酸性領域になったり、ゲル化に要する時間が長くなったり、ヒドロゲル組成物の弾力性が低くなる場合がある。なお、本発明でいうゲル化とは、混合した組成物を流し込んだ容器を傾けても液面が変化しなくなることを言う。   The blending ratio of PVA, water, organic titanium compound, and calcium aluminoferrite compound, which are each component in the present invention, is not particularly limited because it varies depending on the application, but PVA, water, organic titanium compound, and calcium alumino compound are not limited. In the total 100 parts by mass of the ferrite compound, PVA is preferably 3 to 12 parts by mass, and more preferably 5 to 10 parts by mass. The amount of water is preferably 45 to 75 parts by mass, and more preferably 50 to 70 parts by mass. The organic titanium compound is preferably 1 to 18 parts by mass, and more preferably 5 to 10 parts by mass. Similarly, 5-45 mass parts is preferable and, as for a calcium alumino ferrite compound, 10-40 mass parts is more preferable. Outside these ranges, when the viscosity of the hydrogel composition before gelation becomes high, the pH after gelation becomes an acidic region, the time required for gelation becomes long, or the elasticity of the hydrogel composition becomes low There is. The gelation as used in the present invention means that the liquid level does not change even if the container into which the mixed composition is poured is tilted.

本発明のヒドロゲル組成物の混合方法は、特に限定されるものではないが、PVA水溶液に有機チタン化合物を加え攪拌し、最後にカルシウムアルミノフェライト化合物を加えて本発明の組成物とする方法、PVA水溶液にカルシウムアルミノフェライトを加えて攪拌し、最後に有機チタン化合物を加えて本発明の組成物とする方法などがある。
本発明のゲル化前のヒドロゲル組成物は、カルシウムアルミノフェライト化合物の水和反応に伴って酸性領域からアルカリ性領域へと変化する。有機チタン化合物は、カルシウムアルミノフェライト化合物の水和遅延剤として働き、混合からしばらくの間pH8未満に保つことができる。ヒドロゲル組成物は、その粘度および作業の安全性の観点から、酸性〜中性領域、具体的にはpHで3〜8程度であることが好ましい。pHが8以上では皮膚に付着した際アルカリ薬傷を起す場合がある。カルシウムアルミノフェライト化合物の代わりに普通セメントを使用した場合は、pHは混合直後に9を超えてしまう。
The method of mixing the hydrogel composition of the present invention is not particularly limited, but the method of adding the organic titanium compound to the PVA aqueous solution and stirring, and finally adding the calcium aluminoferrite compound to obtain the composition of the present invention, PVA There is a method in which calcium aluminoferrite is added to an aqueous solution and stirred, and finally an organic titanium compound is added to obtain the composition of the present invention.
The hydrogel composition before gelation of the present invention changes from an acidic region to an alkaline region with the hydration reaction of the calcium aluminoferrite compound. The organotitanium compound acts as a hydration retarder for the calcium aluminoferrite compound and can be kept below pH 8 for a while after mixing. The hydrogel composition is preferably in the acidic to neutral region, specifically, about 3 to 8 in terms of pH and work safety. When the pH is 8 or more, alkaline chemical damage may occur when it adheres to the skin. If ordinary cement is used instead of the calcium aluminoferrite compound, the pH will exceed 9 immediately after mixing.

本発明のゲル化前のヒドロゲル組成物の粘度は、10000mPa・s以下であり、好ましくは5000mPa・s以下であることが好ましい。ゲル化前のヒドロゲル組成物の粘度が10000mPa・sを超えると、地盤への注入や土砂との混合が難しくなる場合がある。
ヒドロゲル組成物の粘度測定方法は種々あるが、本発明では、東機産業社製、TV−10型粘度計を用いた。ローターはH6を使用し、ローター回転速度は20rpmで評価した。混合した組成物500mlを容量500mlのビーカーに入れ、ロータが浸漬マーク(ローター軸が細くなっている部分)まで浸漬するように高さを調整した。環境温度は20℃とし、測定粘度の単位はmPa・sで表示した。また、ヒドロゲル組成物の粘度が10000mPa・sから50000mPa・sに変化する時間は短いことが好ましい。長すぎると地下水によってヒドロゲル組成物が拡散され地盤を改良できない場合がある。
The viscosity of the hydrogel composition before gelation of the present invention is 10000 mPa · s or less, preferably 5000 mPa · s or less. If the viscosity of the hydrogel composition before gelation exceeds 10,000 mPa · s, it may be difficult to inject into the ground or mix with earth and sand.
There are various methods for measuring the viscosity of the hydrogel composition. In the present invention, a TV-10 viscometer manufactured by Toki Sangyo Co., Ltd. was used. The rotor used was H6, and the rotor rotation speed was evaluated at 20 rpm. 500 ml of the mixed composition was put into a beaker having a capacity of 500 ml, and the height was adjusted so that the rotor was immersed up to the immersion mark (portion where the rotor shaft was narrowed). The environmental temperature was 20 ° C., and the unit of measured viscosity was expressed in mPa · s. Moreover, it is preferable that the time for the viscosity of the hydrogel composition to change from 10,000 mPa · s to 50000 mPa · s is short. If it is too long, the hydrogel composition may be diffused by the groundwater and the ground may not be improved.

本発明のヒドロゲル組成物では、水酸基やカルボキシル基の架橋剤として従来から使用されているものを、本発明の効果を損なわない範囲で併用することができる。従来の架橋剤としては、脂肪族アルデヒド類、芳香族アルデヒド類、トリメチロールメラミンなどのメチロール基を有する化合物、ホウ砂やホウ酸などのホウ素化合物、Zr、Alなどが有機物質と結合した金属アルコキシド類、イソシアネート基を有する化合物などが挙げられる。   In the hydrogel composition of this invention, what is conventionally used as a crosslinking agent of a hydroxyl group or a carboxyl group can be used together in the range which does not impair the effect of this invention. Conventional cross-linking agents include aliphatic aldehydes, aromatic aldehydes, compounds having a methylol group such as trimethylol melamine, boron compounds such as borax and boric acid, metal alkoxides in which Zr, Al, etc. are bonded to an organic substance. And compounds having an isocyanate group.

本発明では、ヒドロゲル組成物のゲル化速度を制御する目的で、クエン酸、酢酸、グルコン酸、シュウ酸、ギ酸、乳酸などの有機酸を用いることもできる。   In the present invention, organic acids such as citric acid, acetic acid, gluconic acid, oxalic acid, formic acid and lactic acid can also be used for the purpose of controlling the gelation rate of the hydrogel composition.

本発明のヒドロゲル組成物では、硬化体の強度や弾性率、密度をコントロールする目的でフィラーを用いることができる。フィラーは、特に限定されることはなく、無機系や有機系のものが使用可能である。無機系としては、珪石、石灰石などの骨材、ベントナイトなどの粘土鉱物、ゼオライトなどのイオン交換体、カルシウムアルミネート化合物などが挙げられ、有機系材料としては、ビニロン繊維、アクリル繊維、炭素繊維などの繊維状物質、イオン交換樹脂、吸水性ポリマーなどが挙げられる。これらを本発明の目的を阻害しない範囲で使用することができる。   In the hydrogel composition of the present invention, a filler can be used for the purpose of controlling the strength, elastic modulus and density of the cured product. The filler is not particularly limited, and an inorganic or organic filler can be used. Examples of inorganic materials include aggregates such as silica and limestone, clay minerals such as bentonite, ion exchangers such as zeolite, calcium aluminate compounds, and organic materials such as vinylon fiber, acrylic fiber, and carbon fiber. Fibrous materials, ion exchange resins, water-absorbing polymers, and the like. These can be used as long as the object of the present invention is not impaired.

本発明におけるヒドロゲル組成物の混合装置としては、既存のいかなる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、ナウターミキサなどが挙げられる。   As the mixing device for the hydrogel composition in the present invention, any existing device can be used, and examples thereof include a tilting cylinder mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a nauter mixer.

本発明のヒドロゲル組成物を使用して地盤改良する方法としては、特に限定されるものではないが、例えば、トンネルおよび下水管などの地下構造物周囲の空洞や土壌中に注入する場合、空洞や漏水が見られるコンクリート壁にドリルで穴を開け、注入プラグをセットした後、本発明のヒドロゲル組成物を各種ポンプを用いて注入し、空洞部を充填しコンクリート背面に遮水層を形成する。また、地上から空洞部や構造物周囲に注入管を挿入して、各種注入ポンプを用いて注入することも可能である。   The method for improving the ground using the hydrogel composition of the present invention is not particularly limited. For example, in the case of injection into cavities around underground structures such as tunnels and sewer pipes, After drilling a hole in a concrete wall where water leakage is observed and setting an injection plug, the hydrogel composition of the present invention is injected using various pumps to fill the cavity and form a water shielding layer on the back of the concrete. Moreover, it is also possible to inject using various injection pumps by inserting an injection tube from the ground around the cavity or around the structure.

以下、実施例で詳細に説明する。   Examples will be described in detail below.

「実施例1」
重合度1700、鹸化度98.7mol%のPVAと水道水を用いて、固形分濃度が約10質量%となるように配合し、80℃に加温してPVA水溶液を調製した。このPVA水溶液を用いて、表1に示す割合となるように有機チタン化合物(ア)を混合し、さらにカルシウムアルミノフェライト化合物(a)、(b)、(c)を配合して混合し、混合終了時のヒドロゲル組成物の粘度とpHと、ヒドロゲル組成物の粘度が、10000mPa・s以下である時間と、ヒドロゲル組成物の粘度が10000mPa・sから50000mPa・sに変化する時間と、1日後のヒドロゲル組成物のpHと弾力性を評価した。結果を表1に示す。
"Example 1"
Using PVA having a polymerization degree of 1700 and a saponification degree of 98.7 mol% and tap water, the solid content concentration was blended to be about 10% by mass and heated to 80 ° C. to prepare an aqueous PVA solution. Using this PVA aqueous solution, the organic titanium compound (a) is mixed so as to have the ratio shown in Table 1, and the calcium aluminoferrite compounds (a), (b), (c) are further mixed and mixed. The viscosity and pH of the hydrogel composition at the end, the time when the viscosity of the hydrogel composition is 10000 mPa · s or less, the time when the viscosity of the hydrogel composition changes from 10000 mPa · s to 50000 mPa · s, and after 1 day The pH and elasticity of the hydrogel composition was evaluated. The results are shown in Table 1.

「使用材料」
PVA:電気化学工業社製、K17、重合度1700、鹸化度98.7mol%
有機チタン化合物(ア):乳酸チタン40質量%水溶液、松本製薬工業社製、商品名「TC−315」、チタン濃度8.2質量%、pH1.5
有機チタン化合物(イ):松本製薬工業社製、商品名「TC−400」、ジイソプロポキシチタンビス(トリエタノールアミネート)、チタン濃度8.3質量%、pH9.5の3倍希釈品
カルシウムアルミノフェライト化合物(a):4CaO・Al・Fe、CaO46.1質量%、Al21.0質量%、Fe32.9質量%、ガラス化率0%、ブレーン比表面積6000cm/g、密度3.50g/cm、試薬1級炭酸カルシウム、酸化アルミニウム、酸化鉄を所定割合で混合粉砕し、1350℃、3hr焼成したものをディスクミルで粉砕した。
カルシウムアルミノフェライト化合物(b): 6CaO・2Al・Fe、CaO48.1質量%、Al29.1質量%、Fe22.8質量%、ガラス化率0%、ブレーン比表面積6000cm/g、密度3.49g/cm、合成条件は(a)と同じ。
カルシウムアルミノフェライト化合物(c):6CaO・2Al・Fe、CaO48.1質量%、Al29.1質量%、Fe22.8質量%、ガラス化率0%、ブレーン比表面積3000cm/g、密度3.49g/cm、合成条件は(a)と同じ。
水:水道水
普通セメント:市販の普通ポルトランドセメント
"Materials used"
PVA: manufactured by Denki Kagaku Kogyo Co., Ltd., K17, polymerization degree 1700, saponification degree 98.7 mol%
Organic titanium compound (A): Titanium lactate 40 mass% aqueous solution, manufactured by Matsumoto Pharmaceutical Co., Ltd., trade name “TC-315”, titanium concentration 8.2 mass%, pH 1.5
Organic titanium compound (I): Matsumoto Pharmaceutical Co., Ltd., trade name “TC-400”, diisopropoxytitanium bis (triethanolamate), titanium concentration 8.3% by mass, pH 9.5, 3-fold diluted product calcium alumino ferrite compound (a): 4CaO · Al 2 O 3 · Fe 2 O 3, CaO46.1 wt%, Al 2 O 3 21.0 wt%, Fe 2 O 3 32.9 mass%, vitrification ratio of 0%, A brane specific surface area of 6000 cm 2 / g, a density of 3.50 g / cm 3 , reagent primary calcium carbonate, aluminum oxide, and iron oxide were mixed and pulverized in a predetermined ratio, and baked at 1350 ° C. for 3 hours, and pulverized with a disk mill.
Calcium aluminoferrite compound (b): 6CaO · 2Al 2 O 3 · Fe 2 O 3 , CaO 48.1 mass%, Al 2 O 3 29.1 mass%, Fe 2 O 3 22.8 mass%, vitrification rate 0 %, Blaine specific surface area of 6000 cm 2 / g, density of 3.49 g / cm 3 , and synthesis conditions are the same as (a).
Calcium aluminosilicate ferrite compound (c): 6CaO · 2Al 2 O 3 · Fe 2 O 3, CaO48.1 wt%, Al 2 O 3 29.1 wt%, Fe 2 O 3 22.8 mass%, vitrification ratio 0 %, Blaine specific surface area of 3000 cm 2 / g, density of 3.49 g / cm 3 , and synthesis conditions are the same as (a).
Water: Tap water Ordinary cement: Commercial ordinary Portland cement

「測定方法」
ヒドロゲル組成物の粘度:粘度計は東機産業社製、TV−10型粘度計を用いた。混合したヒドロゲル組成物500mlを、内径85mm、容量500mlのビーカーに移し、20℃環境下で測定を行った。ローターはH6、ローターの回転速度は20rpmとした。この条件で、0〜50000mPa・sの範囲の粘度を測定。
組成物pH:ヒドロゲル組成物100mlにpH電極を差しこみ、混合終了時と1日後に測定を行った。ヒドロゲル組成物がゲル化している場合は、ヒドロゲル組成物に穴を開け電極を差し込んだ。
弾力性:混合した組成物を5×5×5cmの型枠に流し込み、材齢1日で脱型し、市販の耐圧試験機を用いて上部から1cm載荷した後除荷した。除荷後の供試体の高さ(xcm)を測定して復元率を測定した。復元率は[1−(5−x)]×100(%)で算出し、弾力性の指標とした。
カビの繁殖状態:ヒドロゲル組成物100mlをビニール袋に入れ、20℃湿度80%室内に密封状態で放置した。1ヶ月後にヒドロゲル周囲のカビの発生状況を目視で評価した。
"Measuring method"
Viscosity of hydrogel composition: As a viscometer, a TV-10 viscometer manufactured by Toki Sangyo Co., Ltd. was used. 500 ml of the mixed hydrogel composition was transferred to a beaker having an inner diameter of 85 mm and a capacity of 500 ml, and the measurement was performed in a 20 ° C. environment. The rotor was H6, and the rotation speed of the rotor was 20 rpm. Under this condition, the viscosity in the range of 0 to 50000 mPa · s is measured.
Composition pH: A pH electrode was inserted into 100 ml of the hydrogel composition, and measurement was performed at the end of mixing and after 1 day. When the hydrogel composition was gelled, holes were made in the hydrogel composition and electrodes were inserted.
Elasticity: The mixed composition was poured into a 5 × 5 × 5 cm mold, demolded at a material age of 1 day, loaded with 1 cm from the top using a commercially available pressure tester, and then unloaded. The restoration rate was measured by measuring the height (xcm) of the specimen after unloading. The restoration rate was calculated by [1- (5-x)] × 100 (%) and used as an elasticity index.
Mold propagation state: 100 ml of the hydrogel composition was placed in a plastic bag and left in a sealed state in a room at 20 ° C. and 80% humidity. One month later, the occurrence of mold around the hydrogel was visually evaluated.

Figure 2007246770
Figure 2007246770

表1に示すように、本発明のヒドロゲル組成物は、混合直後から一定期間の粘度が低く、注入や土砂と混合する時間を確保できる。ゲル化前のpHは弱酸性領域であり安全である。一定時間が経過し粘性が高くなり始めてからゲル化するまでの時間は比較的短く地下水などに流され難いと考えられる。また、ゲル化後はアルカリ性に変化し弾力性を発現するとともに、カビも繁殖し難いことが分かる。   As shown in Table 1, the hydrogel composition of the present invention has a low viscosity for a certain period from immediately after mixing, and can ensure time for pouring and mixing with earth and sand. The pH before gelation is a weakly acidic region and is safe. It is considered that the time from when viscosity begins to increase after a certain period of time to gelation is relatively short, and it is difficult to be washed away into groundwater. Moreover, it turns out that it changes into alkalinity after gelation, and elasticity is expressed, and it is understood that mold | fungi are also hard to reproduce.

「実施例2」
PVA、水、有機チタン化合物、およびカルシウムアルミノフェライト化合物の配合割合を、それぞれ7.2質量部、64.3質量部、9.5質量部、19.0質量部に固定し、PVAの重合度とケン化度を変えたこと以外は実施例1と同様に行った。結果を表2に示す。
"Example 2"
The blending ratio of PVA, water, organic titanium compound, and calcium aluminoferrite compound was fixed at 7.2 parts by mass, 64.3 parts by mass, 9.5 parts by mass, and 19.0 parts by mass, respectively, and the polymerization degree of PVA The procedure was the same as in Example 1 except that the degree of saponification was changed. The results are shown in Table 2.

Figure 2007246770
Figure 2007246770

表2に示すように、本発明のヒドロゲル組成物は、特定のPVAを用いることにより混合直後から一定期間の粘度が低く、注入や土砂と混合する時間を確保できる。また、ゲル化前のpHも弱酸性領域であり安全である。また、ゲル化後はアルカリ性に変化し弾力性を発現するとともに、カビも繁殖し難いことが分かる。   As shown in Table 2, the hydrogel composition of the present invention has a low viscosity for a certain period from immediately after mixing by using a specific PVA, and can secure time for pouring and mixing with earth and sand. Moreover, the pH before gelation is also a weakly acidic region and is safe. Moreover, it turns out that it changes into alkalinity after gelation, and elasticity is expressed, and it is understood that mold | fungi are also hard to reproduce.

「実施例3」
PVA、水、有機チタン化合物、およびカルシウムアルミノフェライト化合物を表3に示すように配合してPVA水溶液の濃度だけを変えたこと以外は実施例1と同様に行った。結果を表3に示す。
"Example 3"
PVA, water, an organic titanium compound, and a calcium aluminoferrite compound were blended as shown in Table 3, and the same procedure as in Example 1 was performed except that only the concentration of the PVA aqueous solution was changed. The results are shown in Table 3.

Figure 2007246770
Figure 2007246770

表3に示すように、本発明のヒドロゲル組成物は、PVA濃度を調整することにより混合直後から一定期間の粘度を低くでき、注入や土砂との混合する時間を確保できる。ゲル化前のpHも弱酸性領域であり安全である。また、ゲル化後はアルカリ性に変化し弾力性を発現するとともに、カビも繁殖し難いことが分かる。   As shown in Table 3, the hydrogel composition of the present invention can lower the viscosity for a certain period from immediately after mixing by adjusting the PVA concentration, and can secure the time for pouring and mixing with earth and sand. The pH before gelation is also a weakly acidic region and is safe. Moreover, it turns out that it changes into alkalinity after gelation, and elasticity is expressed, and it is understood that mold | fungi are also hard to reproduce.

本発明のヒドロゲル組成物を用いて地下構造物周囲の地盤を改良することによって、地盤が変形しても構造物の破壊を最小限にでき、電車や自動車などの交通振動を抑制することができる。しかも、地下の細菌増殖や地盤の酸性化を抑制することができる。したがって、土木、建築の分野などで幅広く適用することが出来る。   By improving the ground around the underground structure using the hydrogel composition of the present invention, it is possible to minimize the destruction of the structure even if the ground is deformed, and to suppress traffic vibrations such as trains and automobiles. . Moreover, it is possible to suppress underground bacterial growth and ground acidification. Therefore, it can be widely applied in the fields of civil engineering and architecture.

Claims (4)

ポリビニルアルコール系重合体、水、有機チタン化合物、およびカルシウムアルミノフェライト化合物を含有してなるヒドロゲル組成物。 A hydrogel composition comprising a polyvinyl alcohol polymer, water, an organic titanium compound, and a calcium aluminoferrite compound. 各成分を混合した後の粘度が10分以上10000mPa・s以下である請求項1記載のヒドロゲル組成物。 The hydrogel composition according to claim 1, wherein the viscosity after mixing each component is 10 minutes or more and 10,000 mPa · s or less. ゲル化前のpHが8未満でゲル化後のpHが9以上を示す請求項1または2記載のヒドロゲル組成物。 The hydrogel composition according to claim 1 or 2, wherein the pH before gelation is less than 8 and the pH after gelation is 9 or more. 請求項1〜3のいずれか1項に記載のヒドロゲル組成物を用いた地盤改良方法。 The ground improvement method using the hydrogel composition of any one of Claims 1-3.
JP2006073730A 2006-03-17 2006-03-17 Hydrogel composition and ground improvement method using the same Active JP5068958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006073730A JP5068958B2 (en) 2006-03-17 2006-03-17 Hydrogel composition and ground improvement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073730A JP5068958B2 (en) 2006-03-17 2006-03-17 Hydrogel composition and ground improvement method using the same

Publications (2)

Publication Number Publication Date
JP2007246770A true JP2007246770A (en) 2007-09-27
JP5068958B2 JP5068958B2 (en) 2012-11-07

Family

ID=38591405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073730A Active JP5068958B2 (en) 2006-03-17 2006-03-17 Hydrogel composition and ground improvement method using the same

Country Status (1)

Country Link
JP (1) JP5068958B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149026A (en) * 2008-12-24 2010-07-08 Research Institute Of Innovative Technology For The Earth Polymeric membrane and utilization of the same
JP2010260968A (en) * 2009-05-08 2010-11-18 Denki Kagaku Kogyo Kk Elasticity composition formation material and elasticity composition
CN103772534A (en) * 2014-01-16 2014-05-07 兰州大学 Polymer material capable of stabilizing sand and soil and suppressing dust
JP2018204243A (en) * 2017-06-01 2018-12-27 国立大学法人宇都宮大学 Soil improvement paving method using hydrogel
WO2020153382A1 (en) 2019-01-22 2020-07-30 株式会社クラレ Composition for forming hydrogel, hydrogel, and method for producing composition for forming hydrogel
JP2020152869A (en) * 2019-03-22 2020-09-24 株式会社クラレ Polyvinyl alcohol-based gel molded product and method of producing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283455A (en) * 2000-03-30 2001-10-12 Sumitomo Osaka Cement Co Ltd Optical pickup base consisting of hydraulic composition molding and method for manufacturing the molding
JP2002294014A (en) * 2001-04-02 2002-10-09 Kuraray Co Ltd Composition for polyvinyl alcohol-based gel formation
JP2002371278A (en) * 2001-06-15 2002-12-26 Kuraray Co Ltd Polymer material for improving ground or earth and sand, and improved ground or improved earth and sand obtained by using the same
JP2004002100A (en) * 2002-05-31 2004-01-08 Sumitomo Osaka Cement Co Ltd Resin-containing hydraulic composition
JP2004168807A (en) * 2002-11-18 2004-06-17 Denki Kagaku Kogyo Kk Harmful heavy metal scavenger
JP2004330044A (en) * 2003-05-06 2004-11-25 Denki Kagaku Kogyo Kk Harmful substance sorbent material, and environmental clarification method using the same
JP2005281344A (en) * 2004-03-26 2005-10-13 Denki Kagaku Kogyo Kk Soil treatment material, neutral soil-hardening agent having injurious substance-reducing effect and method for treating soil using the same
JP2006022145A (en) * 2004-07-06 2006-01-26 Kuraray Co Ltd Polyvinyl alcohol-based hydrogel-forming composition and hydrogel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283455A (en) * 2000-03-30 2001-10-12 Sumitomo Osaka Cement Co Ltd Optical pickup base consisting of hydraulic composition molding and method for manufacturing the molding
JP2002294014A (en) * 2001-04-02 2002-10-09 Kuraray Co Ltd Composition for polyvinyl alcohol-based gel formation
JP2002371278A (en) * 2001-06-15 2002-12-26 Kuraray Co Ltd Polymer material for improving ground or earth and sand, and improved ground or improved earth and sand obtained by using the same
JP2004002100A (en) * 2002-05-31 2004-01-08 Sumitomo Osaka Cement Co Ltd Resin-containing hydraulic composition
JP2004168807A (en) * 2002-11-18 2004-06-17 Denki Kagaku Kogyo Kk Harmful heavy metal scavenger
JP2004330044A (en) * 2003-05-06 2004-11-25 Denki Kagaku Kogyo Kk Harmful substance sorbent material, and environmental clarification method using the same
JP2005281344A (en) * 2004-03-26 2005-10-13 Denki Kagaku Kogyo Kk Soil treatment material, neutral soil-hardening agent having injurious substance-reducing effect and method for treating soil using the same
JP2006022145A (en) * 2004-07-06 2006-01-26 Kuraray Co Ltd Polyvinyl alcohol-based hydrogel-forming composition and hydrogel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149026A (en) * 2008-12-24 2010-07-08 Research Institute Of Innovative Technology For The Earth Polymeric membrane and utilization of the same
JP2010260968A (en) * 2009-05-08 2010-11-18 Denki Kagaku Kogyo Kk Elasticity composition formation material and elasticity composition
CN103772534A (en) * 2014-01-16 2014-05-07 兰州大学 Polymer material capable of stabilizing sand and soil and suppressing dust
JP2018204243A (en) * 2017-06-01 2018-12-27 国立大学法人宇都宮大学 Soil improvement paving method using hydrogel
WO2020153382A1 (en) 2019-01-22 2020-07-30 株式会社クラレ Composition for forming hydrogel, hydrogel, and method for producing composition for forming hydrogel
JP2020152869A (en) * 2019-03-22 2020-09-24 株式会社クラレ Polyvinyl alcohol-based gel molded product and method of producing the same

Also Published As

Publication number Publication date
JP5068958B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5219999B2 (en) Cement-based composition for embedding boron-containing aqueous solution, embedding method, and cement grout composition
JP5068958B2 (en) Hydrogel composition and ground improvement method using the same
JP2002521308A5 (en)
JP2009537433A5 (en)
JP4554462B2 (en) Elastic composition and repair method using the same
JP5545698B2 (en) Composition and injection method
CN102775972A (en) Liquid high-temperature resistant declining agent for well cementation and preparation method thereof
JP5052861B2 (en) Elastic composition and repair method using the same
JP7155972B2 (en) Hardening material, hardening material liquid, soil stabilization chemical, method for producing the chemical, and ground stabilization method
JP5138189B2 (en) Viscous cement composition and preparation method thereof
JP2003119464A (en) Slug-based grouting material
JP5143782B2 (en) Elastic composition-forming material and elastic composition
JP5277570B2 (en) Slag injection material and its injection method
JP2010215865A (en) Injection material and injection method
JP5468209B2 (en) Composition and injection method
JP5143434B2 (en) Hydrogel-forming material, hydrogel composition, and ground reinforcement method
JP4080416B2 (en) Ground injection agent and ground injection method
JP6437269B2 (en) Elastic body composition
JP5153987B2 (en) Preparation method of suspension type ground improvement material
JP4090982B2 (en) Ground injection agent and ground injection method
JP2021195385A (en) Liquid chemical for stabilizing soil, production method of liquid chemical, and ground stabilization method
JP5196990B2 (en) Chemical solution for soil stabilization
JP5121491B2 (en) Composition, underwater non-separable hydrogel composition, and ground strengthening method using the same
KR102619095B1 (en) Eco-friendly Grout revealing early high-strength
JP3186829B2 (en) Materials for civil engineering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5068958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250