JP2002266169A - Heat-resistant inorganic fiber and inorganic fiber product - Google Patents

Heat-resistant inorganic fiber and inorganic fiber product

Info

Publication number
JP2002266169A
JP2002266169A JP2001391271A JP2001391271A JP2002266169A JP 2002266169 A JP2002266169 A JP 2002266169A JP 2001391271 A JP2001391271 A JP 2001391271A JP 2001391271 A JP2001391271 A JP 2001391271A JP 2002266169 A JP2002266169 A JP 2002266169A
Authority
JP
Japan
Prior art keywords
inorganic fiber
heat
weight
resistant inorganic
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001391271A
Other languages
Japanese (ja)
Inventor
Yasuo Misu
安雄 三須
Koji Nemoto
孝司 根本
Shuji Omiya
修史 大宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Toshiba Monofrax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Monofrax Co Ltd filed Critical Toshiba Monofrax Co Ltd
Priority to JP2001391271A priority Critical patent/JP2002266169A/en
Publication of JP2002266169A publication Critical patent/JP2002266169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat resistance of an inorganic fiber. SOLUTION: This heat-resistant inorganic fiber comprises 58-80 wt.% SiO2 , 1-40 wt.% CaO, 0-15 wt.% MgO, 0-3 wt.% Al2 O3 , and 0-11 wt.% ZrO2 , and microcrystal of either one of wollastonite, pseudowollastonite and augite, or 65-86 wt.% SiO2 , 14-35 wt.% MgO, 0-3 wt.% Al2 O3 , and 0-11 wt.% ZrO2 , and macrocrystal of enstatite. In the heat-resistant inorganic fiber, total content of Na and K as impurities is <=500 ppm and size of the microcrystal is <=500 A(angstrom) and the microcrystal is deposited by heat-treating the above compound for 3 to 50 min at 800 deg.C to 1100 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱性無機繊維及
び無機繊維製品に関し、例えば、1200℃以上の耐熱
性を有し、さらに生体に溶解しやすい耐熱性無機繊維お
よびその繊維を使用した無機繊維製品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant inorganic fiber and an inorganic fiber product, for example, a heat-resistant inorganic fiber having a heat resistance of 1200.degree. Related to textile products.

【0002】[0002]

【従来の技術】耐火断熱材として、また摩擦材の充填材
として、広く無機繊維が使用されている。無機繊維は、
そのまま、あるいはブランケット、ブロック、ペーパ
ー、ボード等の無機繊維製品に加工して用いられる。
2. Description of the Related Art Inorganic fibers are widely used as refractory heat insulating materials and as fillers for friction materials. Inorganic fibers are
It is used as it is or after being processed into inorganic fiber products such as blankets, blocks, papers and boards.

【0003】これらの無機繊維は、人の健康の観点か
ら、生体に溶解しやすいことが望ましいとされてきた。
そして生理食塩水に溶解する無機繊維が多数提案されて
いる。例えば、特表平8−506561号には、添加成
分としてAl23、ZrO2、TiO2を含むCaO−M
gO−SiO2繊維の生理食塩水への溶解性および耐熱
性が記載されている。
[0003] From the viewpoint of human health, it has been desirable that these inorganic fibers be easily soluble in living bodies.
Many inorganic fibers that dissolve in physiological saline have been proposed. For example, Japanese Patent Publication No. Hei 8-506561 discloses a CaO-M containing Al 2 O 3 , ZrO 2 , and TiO 2 as additive components.
gO-SiO 2 solubility and heat resistance of the fiber to the saline is described.

【0004】また特表平10−512232号には、シ
リカ、マグネシアを必須成分とし、かつジルコニアを任
意に含むガラス繊維が記載されている。
[0004] JP-T-10-512232 describes a glass fiber containing silica and magnesia as essential components and optionally containing zirconia.

【0005】[0005]

【発明が解決しようとする課題】しかし、これらの無機
繊維は、比較的生体に溶解しやすい繊維としての特性は
有するものの、高温での耐熱性にいまだ問題が残されて
いる。
However, although these inorganic fibers have properties as fibers that are relatively easily dissolved in living bodies, there still remains a problem in heat resistance at high temperatures.

【0006】特表平8−506561号および特表平1
0−512232号に提案された繊維は、共に非晶質で
あり不安定である。高温に加熱されると、結晶を析出し
て収縮する。この理由により、耐熱性は組成によって制
限されていた。
JP-T 8-506561 and JP-T-1
The fibers proposed in 0-512232 are both amorphous and unstable. When heated to high temperatures, crystals precipitate and shrink. For this reason, the heat resistance has been limited by the composition.

【0007】本発明の目的は、無機繊維及び無機繊維製
品の耐熱性を改善することである。
An object of the present invention is to improve the heat resistance of inorganic fibers and inorganic fiber products.

【0008】[0008]

【課題を解決するための手段】本発明は、繊維に微結晶
を含ませることにより、同じ組成の無機繊維であっても
耐熱性を改善したものである。
According to the present invention, the heat resistance of inorganic fibers having the same composition is improved by incorporating fine crystals into the fibers.

【0009】本発明の解決手段を例示すれば、請求項1
〜5に記載の耐熱性無機繊維及びこれらの繊維を使用し
たブランケット、ブロック、ぺーパー、ボード等の無機
繊維製品である。
An example of the solution of the present invention will be described below.
And inorganic fiber products using these fibers, such as blankets, blocks, papers and boards.

【0010】[0010]

【発明の実施の形態】本発明は、シリカを主成分とする
無機繊維において、非晶質繊維に析出する結晶に注目し
て研究した結果、結晶が微結晶であれば繊維の取り扱い
性を維持したまま、高温での寸法安定性に優れ、すなわ
ち耐熱性に優れ、且つ生体に溶解しやすい特性を有する
ことを見いだして完成した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention has been studied by focusing on crystals precipitated on amorphous fibers in inorganic fibers containing silica as a main component. As a result, they completed the process by finding that they have excellent dimensional stability at high temperatures, that is, they have excellent heat resistance and are easily dissolved in living bodies.

【0011】生体溶解性は、シリカガラスにカルシアや
マグネシアなどの網目修飾成分を添加することにより、
シリカガラスの構造が変化し非架橋酸素が増加すること
により増大すると考えられている。
The biosolubility can be improved by adding a network modifying component such as calcia or magnesia to silica glass.
It is believed that the increase is caused by a change in the structure of the silica glass and an increase in non-crosslinking oxygen.

【0012】一方、マグネシア、カルシアなどのアルカ
リ土類金属は、シリカ繊維の耐熱性を低下させやすい。
従って、生体溶解性は、アルカリ土類金属を添加するこ
とによって得ている一方、耐熱性は、シリカガラスで得
ている。
On the other hand, alkaline earth metals such as magnesia and calcia tend to lower the heat resistance of silica fibers.
Therefore, biosolubility is obtained by adding an alkaline earth metal, while heat resistance is obtained by silica glass.

【0013】従って、シリカの含有量は、58重量%以
上が好ましい。特に、シリカ−マグネシア系繊維では、
シリカの含有量は、65%以上が好ましい。これよりも
少ないと、耐熱性が低下する。また、シリカ含有量が、
86%以上になると、製造の際に、原料の溶融が困難と
なり、繊維化しにくくなる。
Therefore, the content of silica is preferably at least 58% by weight. In particular, silica-magnesia fiber,
The content of silica is preferably 65% or more. If it is less than this, the heat resistance decreases. Also, the silica content,
If it is 86% or more, it becomes difficult to melt the raw materials during production, and it is difficult to produce fibers.

【0014】ジルコニアは、結晶の成長を抑制する働き
があり、耐熱性を改善できる。
Zirconia has a function of suppressing crystal growth and can improve heat resistance.

【0015】これらから、本発明の1つの実施形態によ
る耐熱性無機繊維の組成は、SiO 2が58〜80重量
%であり、CaOが1〜40重量%であり、MgOが0
〜15重量%であり、Al23が0〜3重量%であり、
ZrO2が0〜11重量%であり、本発明の他の実施形
態による耐熱性無機繊維の組成は、SiO2が65〜8
6重量%であり、MgOが14〜35重量%であり、A
23が0〜3重量%であり、ZrO2を0〜11重量
%であることが好ましい。
From these, according to one embodiment of the present invention,
The composition of the heat-resistant inorganic fiber is SiO TwoIs 58-80 weight
%, CaO is 1 to 40% by weight, and MgO is 0%.
~ 15% by weight, AlTwoOThreeIs 0 to 3% by weight,
ZrOTwoIs 0 to 11% by weight, which is another embodiment of the present invention.
The composition of the heat-resistant inorganic fiber according to the state is SiO 2TwoIs 65-8
6% by weight, 14-35% by weight of MgO,
lTwoOThreeIs 0 to 3% by weight, and ZrOTwo0 to 11 weight
%.

【0016】本発明では、無機繊維の組成として耐熱性
を低下させやすいマグネシア、カルシアを使用しても、
500A(オングストローム)以下の微結晶を短時聞で
析出させれば、生体溶解性を維持したまま、耐熱性を向
上できる。
In the present invention, even if magnesia or calcia which easily lowers heat resistance is used as the composition of the inorganic fiber,
If microcrystals of 500 A (angstrom) or less are precipitated in a short time, heat resistance can be improved while maintaining biosolubility.

【0017】結晶サイズが、500A(オングストロー
ム)を越えると、繊維が脆くなって繊維の取り扱い性が
低下する。
If the crystal size exceeds 500 A (angstrom), the fibers become brittle and the handling properties of the fibers deteriorate.

【0018】非晶質繊維から結晶を析出させる条件は、
800℃〜1100℃で3分間から50分間加熱処理す
るのが好ましい。より好ましくは、900℃〜1000
℃で5分間から10分間加熱処理するのがよい。加熱温
度が、800℃より低いと結晶が析出しがたい。110
0℃より高温では、析出する結晶のサイズが過大になり
取り扱い性に劣る。
The conditions for precipitating crystals from the amorphous fibers are as follows:
The heat treatment is preferably performed at 800 ° C. to 1100 ° C. for 3 to 50 minutes. More preferably, 900 ° C to 1000 ° C
The heat treatment is preferably performed at 5 ° C. for 5 to 10 minutes. When the heating temperature is lower than 800 ° C., crystals are difficult to precipitate. 110
If the temperature is higher than 0 ° C., the size of the precipitated crystals becomes excessively large and the handling properties are poor.

【0019】析出する結晶は、組成により異なるが、例
えば、ウオラストナイト(CaO・SiO2)、偽珪灰
石(CaO・SiO2)、オージャイト(ディオプサイ
ド)(CaO・MgO・2SiO2)、エンスタタイト
(MgO・SiO2)などが耐熱性および健康安全性の
点から好ましい。
[0019] The precipitated crystals varies depending on the composition, for example, wollastonite (CaO · SiO 2), false wollastonite (CaO · SiO 2), Ojaito (diopside) (CaO · MgO · 2SiO 2 ), Enstatite (MgO.SiO 2 ) is preferred from the viewpoint of heat resistance and health safety.

【0020】無機繊維には通常Fe、Na、K等の不純
物が0.1〜0.2%程度含有されている。この不純物
は、無機繊維の耐熱性を低下させる。特にNaとKは大
きく耐熱性を低下させる。NaとKの合計の含有量は、
少ないのが好ましく、500ppm以下が好ましい。N
aとKの合計の含有量を500ppm以下に制限するこ
とにより、耐熱性に優れた繊維が得られる。さらに、珪
肺の原因の一つである遊離珪酸であるクリストバライト
を析出しにくくする事が出来る。
The inorganic fibers usually contain about 0.1 to 0.2% of impurities such as Fe, Na and K. These impurities reduce the heat resistance of the inorganic fibers. In particular, Na and K greatly reduce heat resistance. The total content of Na and K is
It is preferably as low as possible, and preferably 500 ppm or less. N
By limiting the total content of a and K to 500 ppm or less, a fiber having excellent heat resistance can be obtained. Further, it is possible to make it difficult to deposit cristobalite, which is free silicic acid, which is one of the causes of silicosis.

【0021】無機繊維製品としては、ブランケット、ブ
ロック、ペーパー、ボードなどに加工した製品がよく知
られている。これらの製品の材料として、本発明の耐熱
性無機繊維を使用することが出来る。
As inorganic fiber products, products processed into blankets, blocks, papers, boards and the like are well known. The heat-resistant inorganic fiber of the present invention can be used as a material for these products.

【0022】[0022]

【実施例】種々の配合原料を溶融し、その細流を空気ジ
ェットで吹き飛ばして、非晶質の繊維を得た。この繊維
をブランケットに形成し、所定の条件で加熱処理して微
結晶を析出させ、その特性を試験した。
EXAMPLES Various blended raw materials were melted, and their rivulets were blown off with an air jet to obtain amorphous fibers. The fiber was formed into a blanket and heat-treated under predetermined conditions to precipitate microcrystals, and the properties were tested.

【0023】ブランケットに使用した繊維の組成、加熱
処理条件、加熱収縮率、生理食塩水への溶解性などを表
1に示す。
Table 1 shows the fiber composition, heat treatment conditions, heat shrinkage, and solubility in physiological saline used for the blanket.

【0024】[0024]

【表1】 表1の析出結晶は、X線解析により鉱物名を同定した。
又、結晶サイズは、X線回折チャートから半値幅を測定
して求めた。
[Table 1] The precipitated crystals in Table 1 were identified by mineral name by X-ray analysis.
The crystal size was determined by measuring the half width from an X-ray diffraction chart.

【0025】取り扱い性は、加熱処理後の厚さ25mm
のブランケットを直径15cmの棒に巻き取り、巻き取
りできるものを良(ただし表1の実施例6は巻取が可能
であるが困難である)とし、巻き取り出来ないものを悪
として区別した。
The handleability is 25 mm in thickness after heat treatment.
Was rolled up into a rod having a diameter of 15 cm, and those that could be wound up were classified as good (however, Example 6 in Table 1 could be rolled up but difficult), and those that could not be rolled up were classified as bad.

【0026】クリストバライトの析出は、繊維を110
0℃で24時間加熱し、その後粉末にして、X線回折チ
ャートを取り、そのピーク高さを測定した。実施例1〜
6および比較例1〜3に、一番高いピーク高さを10と
して示す。
The precipitation of cristobalite causes the fibers to reach 110
The mixture was heated at 0 ° C. for 24 hours, then made into a powder, an X-ray diffraction chart was taken, and the peak height was measured. Example 1
6 and Comparative Examples 1 to 3 show that the highest peak height is 10.

【0027】生理食塩水溶解性は、200メッシュの篩
を通過するまで粉砕した繊維1gを秤量し、300ml
の三角フラスコに入れ、生理食塩水150mlを加え、
ホットプレート付スターラーに設置し、40℃で48時
間、回転数200rpmで撹拌する。撹拌後、フラスコ
中の繊維を秤量し、処理前後の重量変化から溶解率を求
めた。溶解率の大きいほど生体に溶解し易い。
The solubility in physiological saline was determined by weighing 1 g of ground fiber until it passed through a 200-mesh sieve, and measuring 300 ml.
Into an Erlenmeyer flask, add 150 ml of physiological saline,
Place on a stirrer with a hot plate and stir at 40 ° C. for 48 hours at 200 rpm. After stirring, the fibers in the flask were weighed, and the dissolution rate was determined from the change in weight before and after the treatment. The higher the dissolution rate, the easier it is to dissolve in the living body.

【0028】実施例2と比較例3を比較すると、組成が
同じであり、実施例2が加熱処理しているのに対して、
比較例3は加熱処理がされていない。この結果、組成が
同じでも、微結晶の析出により耐熱性が改善されること
が明らかである。
A comparison between Example 2 and Comparative Example 3 shows that the compositions are the same.
In Comparative Example 3, no heat treatment was performed. As a result, it is clear that even if the composition is the same, the heat resistance is improved by the precipitation of microcrystals.

【0029】[0029]

【発明の効果】本発明の耐熱性無機繊維は、耐熱性およ
び生体溶解性を兼ね備えている。従って、生体に害の少
ない耐火断熱材として、従来のアルミナシリカ繊維と同
様に使用できる。また、クリストバライトが析出しにく
いので、健康に対して、より安全に使用できる。
The heat-resistant inorganic fiber of the present invention has both heat resistance and biosolubility. Therefore, it can be used as a fire-resistant heat insulating material with little harm to the living body, similarly to the conventional alumina silica fiber. Also, since cristobalite does not easily precipitate, it can be used more safely for health.

【0030】耐火断熱材の用途以外にも、例えば、摩擦
材として、健康被害の少ない無機繊維として使用でき
る。
In addition to the use as a fire-resistant heat insulating material, it can be used, for example, as a friction material and as an inorganic fiber with little health damage.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大宮 修史 東京都中央区日本橋久松町4番4号 糸重 ビル 東芝モノフラックス株式会社内 Fターム(参考) 4L037 AT05 CS20 FA05 PA31 PF07 UA06 UA20  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Osamu Omiya 4-4 Nihonbashi Hisamatsucho, Chuo-ku, Tokyo Itoishi Building Toshiba Monoflux Corporation F-term (reference) 4L037 AT05 CS20 FA05 PA31 PF07 UA06 UA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 SiO2が58〜80重量%であり、C
aOが1〜40重量%であり、MgOが0〜15重量%
であり、Al23が0〜3重量%であり、ZrO2が0
〜11重量%であり、ウオラストナイト、偽珪灰石、オ
ージャイトのいずれかの微結晶を含むことを特徴とする
耐熱性無機繊維。
1. The method according to claim 1, wherein the content of SiO 2 is from 58 to 80% by weight,
aO is 1 to 40% by weight, and MgO is 0 to 15% by weight.
By and are Al 2 O 3 0 to 3 wt%, ZrO 2 0
A heat-resistant inorganic fiber, which is about 11% by weight and contains microcrystals of wollastonite, pseudowollastonite, and augite.
【請求項2】 SiO2が65〜86重量%であり、M
gOが14〜35重量%であり、Al23が0〜3重量
%であり、ZrO2を0〜11重量%であ り、エンス
タタイトの微結晶を含むことを特徴とする耐熱性無機繊
維。
2. The composition according to claim 1, wherein the content of SiO 2 is 65 to 86% by weight.
gO is 14-35 wt%, Al 2 O 3 is 0 to 3 wt%, the ZrO 2 Ri 0-11 wt% der, heat-resistant inorganic, characterized in that it comprises crystallites of enstatite fiber.
【請求項3】 不純物としてNaとKの合計が500p
pm以下であることを特徴とする請求項1又は2に記載
の耐熱性無機繊維。
3. The total of Na and K as impurities is 500 p.
3. The heat-resistant inorganic fiber according to claim 1, wherein the heat-resistant inorganic fiber is at most pm.
【請求項4】 微結晶のサイズが500A(オングスト
ローム)以下であることを特徴とする請求項1乃至3の
いずれか1項に記載の耐熱性無機繊維。
4. The heat-resistant inorganic fiber according to claim 1, wherein the size of the microcrystal is 500 A (angstrom) or less.
【請求項5】 800℃〜1100℃で3分間乃至50
分間熱処理をして微結晶を析出させたことを特徴とする
請求項1乃至4のいずれか1項に記載の耐熱性無機繊
維。
5. A temperature of 800 ° C. to 1100 ° C. for 3 minutes to 50 ° C.
The heat-resistant inorganic fiber according to any one of claims 1 to 4, wherein heat treatment is performed for a minute to precipitate microcrystals.
【請求項6】 請求項1乃至5のいずれか1項に記載の
無機繊維からなることを特徴とする無機繊維製品。
6. An inorganic fiber product comprising the inorganic fiber according to any one of claims 1 to 5.
JP2001391271A 2000-12-27 2001-12-25 Heat-resistant inorganic fiber and inorganic fiber product Pending JP2002266169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001391271A JP2002266169A (en) 2000-12-27 2001-12-25 Heat-resistant inorganic fiber and inorganic fiber product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000398239 2000-12-27
JP2000-398239 2000-12-27
JP2001391271A JP2002266169A (en) 2000-12-27 2001-12-25 Heat-resistant inorganic fiber and inorganic fiber product

Publications (1)

Publication Number Publication Date
JP2002266169A true JP2002266169A (en) 2002-09-18

Family

ID=26606872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001391271A Pending JP2002266169A (en) 2000-12-27 2001-12-25 Heat-resistant inorganic fiber and inorganic fiber product

Country Status (1)

Country Link
JP (1) JP2002266169A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515307A (en) * 2002-01-10 2005-05-26 ユニフラックス コーポレイション High temperature resistant glassy inorganic fiber
EP1546514A2 (en) 2002-09-30 2005-06-29 Unifrax Corporation Exhaust gas treatment device and method for making the same
JP2006089881A (en) * 2004-09-24 2006-04-06 Saint-Gobain Tm Kk Inorganic fiber and method for producing the same
JP2006152468A (en) * 2004-11-26 2006-06-15 Saint-Gobain Tm Kk Inorganic fiber and method for producing the same
JP2006282404A (en) * 2005-03-31 2006-10-19 Nichias Corp Monolithic heat insulating material composition
JP2006306713A (en) * 2005-03-31 2006-11-09 Nichias Corp Indeterminate heat insulating material composition
JP2007197264A (en) * 2006-01-27 2007-08-09 Nichias Corp Inorganic fiber molding
JP2007269604A (en) * 2006-03-31 2007-10-18 Nichias Corp Disk roll and base material for disk roll
JP4862099B1 (en) * 2010-12-28 2012-01-25 ニチアス株式会社 Biosoluble inorganic fiber
JP2012102450A (en) * 2010-10-14 2012-05-31 Nichias Corp Inorganic fiber molded article, method for producing the same, and heating equipment
JP4971518B1 (en) * 2011-09-28 2012-07-11 ニチアス株式会社 Inorganic fiber block
JP4977253B1 (en) * 2011-03-30 2012-07-18 ニチアス株式会社 INORGANIC FIBER PAPER, PROCESS FOR PRODUCING THE SAME AND EQUIPMENT
JP5022512B1 (en) * 2011-12-01 2012-09-12 ニチアス株式会社 Amorphous composition
JP5022513B1 (en) * 2011-12-01 2012-09-12 ニチアス株式会社 Amorphous composition
JP2013071454A (en) * 2012-04-05 2013-04-22 Nichias Corp Inorganic fiber block
JP2013520580A (en) * 2010-02-24 2013-06-06 ケーシーシー コーポレーション Composition for producing ceramic fiber and biosoluble ceramic fiber for high temperature insulation produced therefrom
US8940134B2 (en) 2011-04-05 2015-01-27 Nichias Corporation Paper comprising heat treated bio-soluble inorganic fibers, and method and equipment for making same
US9120703B2 (en) 2010-11-11 2015-09-01 Unifrax I Llc Mounting mat and exhaust gas treatment device
JP2015206145A (en) * 2014-04-23 2015-11-19 ニチアス株式会社 Biosoluble inorganic fiber
JP2022069422A (en) * 2020-10-23 2022-05-11 サーマル・セラミックス・ユーケイ・リミテッド Heat insulator

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072542A (en) * 2002-01-10 2012-04-12 Unifrax I Llc High temperature resistance glassy inorganic fiber
JP2005515307A (en) * 2002-01-10 2005-05-26 ユニフラックス コーポレイション High temperature resistant glassy inorganic fiber
EP1546514A2 (en) 2002-09-30 2005-06-29 Unifrax Corporation Exhaust gas treatment device and method for making the same
JP2006089881A (en) * 2004-09-24 2006-04-06 Saint-Gobain Tm Kk Inorganic fiber and method for producing the same
JP2006152468A (en) * 2004-11-26 2006-06-15 Saint-Gobain Tm Kk Inorganic fiber and method for producing the same
JP4545623B2 (en) * 2005-03-31 2010-09-15 ニチアス株式会社 Amorphous insulation composition
JP4658845B2 (en) * 2005-03-31 2011-03-23 ニチアス株式会社 Amorphous insulation composition
JP2006306713A (en) * 2005-03-31 2006-11-09 Nichias Corp Indeterminate heat insulating material composition
JP2006282404A (en) * 2005-03-31 2006-10-19 Nichias Corp Monolithic heat insulating material composition
JP4716883B2 (en) * 2006-01-27 2011-07-06 ニチアス株式会社 Inorganic fiber molded body
JP2007197264A (en) * 2006-01-27 2007-08-09 Nichias Corp Inorganic fiber molding
JP2007269604A (en) * 2006-03-31 2007-10-18 Nichias Corp Disk roll and base material for disk roll
JP4731381B2 (en) * 2006-03-31 2011-07-20 ニチアス株式会社 Disc roll and base material for disc roll
JP2013520580A (en) * 2010-02-24 2013-06-06 ケーシーシー コーポレーション Composition for producing ceramic fiber and biosoluble ceramic fiber for high temperature insulation produced therefrom
JP2012102450A (en) * 2010-10-14 2012-05-31 Nichias Corp Inorganic fiber molded article, method for producing the same, and heating equipment
US9120703B2 (en) 2010-11-11 2015-09-01 Unifrax I Llc Mounting mat and exhaust gas treatment device
JP4862099B1 (en) * 2010-12-28 2012-01-25 ニチアス株式会社 Biosoluble inorganic fiber
AU2011353458B2 (en) * 2010-12-28 2015-04-02 Nichias Corporation Bio-soluble inorganic fiber
WO2012090455A1 (en) * 2010-12-28 2012-07-05 ニチアス株式会社 Bio-soluble inorganic fiber
AU2012235474B2 (en) * 2011-03-30 2015-02-12 Nichias Corporation Inorganic fibrous paper, and method and equipment for manufacturing same
JP4977253B1 (en) * 2011-03-30 2012-07-18 ニチアス株式会社 INORGANIC FIBER PAPER, PROCESS FOR PRODUCING THE SAME AND EQUIPMENT
WO2012132327A1 (en) * 2011-03-30 2012-10-04 ニチアス株式会社 Inorganic fibrous paper, and method and equipment for manufacturing same
EP2634308A4 (en) * 2011-03-30 2014-03-05 Nichias Corp Inorganic fibrous paper, and method and equipment for manufacturing same
EP2634308A1 (en) 2011-03-30 2013-09-04 Nichias Corporation Inorganic fibrous paper, and method and equipment for manufacturing same
CN103339323A (en) * 2011-03-30 2013-10-02 霓佳斯株式会社 Inorganic fibrous paper, and method and equipment for manufacturing same
US8940134B2 (en) 2011-04-05 2015-01-27 Nichias Corporation Paper comprising heat treated bio-soluble inorganic fibers, and method and equipment for making same
JP4971518B1 (en) * 2011-09-28 2012-07-11 ニチアス株式会社 Inorganic fiber block
JP5022513B1 (en) * 2011-12-01 2012-09-12 ニチアス株式会社 Amorphous composition
JP5022512B1 (en) * 2011-12-01 2012-09-12 ニチアス株式会社 Amorphous composition
JP2013071454A (en) * 2012-04-05 2013-04-22 Nichias Corp Inorganic fiber block
JP2015206145A (en) * 2014-04-23 2015-11-19 ニチアス株式会社 Biosoluble inorganic fiber
JP2022069422A (en) * 2020-10-23 2022-05-11 サーマル・セラミックス・ユーケイ・リミテッド Heat insulator
JP2022069421A (en) * 2020-10-23 2022-05-11 サーマル・セラミックス・ユーケイ・リミテッド Heat insulator
JP7097498B2 (en) 2020-10-23 2022-07-07 サーマル・セラミックス・ユーケイ・リミテッド Insulation
US11554991B2 (en) 2020-10-23 2023-01-17 Thermal Ceramics Uk Limited Thermal insulation
JP7277541B2 (en) 2020-10-23 2023-05-19 サーマル・セラミックス・ユーケイ・リミテッド insulation
US11702372B2 (en) 2020-10-23 2023-07-18 Thermal Ceramics Uk Limited Thermal insulation

Similar Documents

Publication Publication Date Title
JP2002266169A (en) Heat-resistant inorganic fiber and inorganic fiber product
JP3126737B2 (en) Inorganic fiber
JP3786424B2 (en) Artificial glass fiber
JP3676818B2 (en) High temperature resistant glass fiber
AU2005300386B2 (en) Modification of alkaline earth silicate fibres
JP3961564B2 (en) Fire resistant fiber
US7704902B2 (en) Glass fibre compositions
US3503765A (en) High temperature alumina-silica fibers and method of manufacture
JP4829116B2 (en) Mineral wool composition
KR101223675B1 (en) Saline soluble ceramic fiber composition
US20090156386A1 (en) Modification of alkaline earth silicate fibres
KR100676167B1 (en) A biodegradable ceramic fiber composition for a heat insulating material
JPS5891043A (en) Alkali metal-calcium-fluorine silicate glass ceramic products and manufacture
JPS63112439A (en) Glass ceramic product
CA2790090C (en) A composition for preparing ceramic fiber and a biosoluble ceramic fiber prepared therefrom for heat insulating material at high temperature
JPH08511760A (en) Inorganic fiber composition
JP4007482B2 (en) Inorganic fiber
JP3938671B2 (en) Inorganic fiber soluble in physiological saline
JP2000507199A (en) Artificial mineral wool composition
JP3126385B2 (en) Inorganic fiber dissolved in physiological saline
JP4019111B2 (en) Inorganic fiber soluble in physiological saline and method for producing the same
EP0675858B1 (en) Thermostable and biologically soluble mineral fibre compositions
JP2001180977A (en) Inorganic fiber
JPS62503027A (en) Low shrinkage kaolin fireproof fiber and its manufacturing method
EP2213634A1 (en) Inorganic fibre compositions

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328