JP2006281876A - Variable damping force damper control device - Google Patents

Variable damping force damper control device Download PDF

Info

Publication number
JP2006281876A
JP2006281876A JP2005101580A JP2005101580A JP2006281876A JP 2006281876 A JP2006281876 A JP 2006281876A JP 2005101580 A JP2005101580 A JP 2005101580A JP 2005101580 A JP2005101580 A JP 2005101580A JP 2006281876 A JP2006281876 A JP 2006281876A
Authority
JP
Japan
Prior art keywords
lateral acceleration
damper
damping force
vehicle
yaw rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005101580A
Other languages
Japanese (ja)
Other versions
JP4648055B2 (en
Inventor
Masaki Izawa
正樹 伊澤
Takashi Kato
貴史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005101580A priority Critical patent/JP4648055B2/en
Priority to US11/391,309 priority patent/US8165749B2/en
Publication of JP2006281876A publication Critical patent/JP2006281876A/en
Application granted granted Critical
Publication of JP4648055B2 publication Critical patent/JP4648055B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect lateral acceleration at the position of a suspension device, and to accurately set a target damping force of a damper. <P>SOLUTION: A value obtained by differentiating the lateral acceleration YG passing through a low-pass filter 31 by a differentiator 32, and a value obtained by multiplying a yaw rate γ passing through a low-pass filter 33 and second-order differentiated by a second-order differentiator 34 by a yaw rate gain, are added by an adding machine 36. Thereby, corrected lateral acceleration at the position of suspension devices of four wheels is calculated. The corrected lateral acceleration is multiplied by a lateral acceleration gain 37 corresponding to vehicle speed and a pushing/drawing gain 40 corresponding to an expanding/contracting direction of the damper, thereby deciding the target damping force of the damper. Therefore, the accuracy of the target damping force can be improved, and steering stability especially in a low speed range can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両のサスペンション装置に設けられたダンパーの減衰力を、制御手段により車両の運動状態に応じて可変制御する可変減衰力ダンパーの制御装置に関する。   The present invention relates to a control device for a variable damping force damper that variably controls a damping force of a damper provided in a suspension device of a vehicle according to a motion state of the vehicle by a control means.

サスペンション装置用の可変減衰力ダンパーの粘性流体として、磁界の作用で粘性が変化する磁気粘性流体(MRF: Magneto-Rheological Fluids )を採用し、シリンダに摺動自在に嵌合するピストンに、その流体通路中の磁気粘性流体に磁界を作用させるためのコイルを設けたものが、下記特許文献1により公知である。この可変減衰力ダンパーによれば、コイルに通電して発生した磁界で流体通路中の磁気粘性流体の粘性を変化させることで、ダンパーの減衰力を任意に制御することができる。   As the viscous fluid of the variable damping force damper for the suspension device, a magnetic viscous fluid (MRF: Magneto-Rheological Fluids) whose viscosity is changed by the action of a magnetic field is adopted, and the fluid is applied to the piston that is slidably fitted into the cylinder. Patent Document 1 below discloses a coil provided with a coil for applying a magnetic field to a magnetorheological fluid in a passage. According to this variable damping force damper, the damping force of the damper can be arbitrarily controlled by changing the viscosity of the magnetorheological fluid in the fluid passage by a magnetic field generated by energizing the coil.

また通常時は四輪のサスペンション装置のダンパーをスカイフック制御して乗り心地性能を高め、車体のロールレート、ヨーレートの微分値あるいは横加速度の微分値が閾値を超えた場合に、ダンパーの減衰力を増加させて操縦安定性能を高めるものが、下記特許文献2により公知である。
特開昭60−113711号公報 特開平11−115440号公報
Also, during normal times, the damper of the four-wheel suspension system is skyhook controlled to improve riding comfort performance, and when the body roll rate, yaw rate differential value or lateral acceleration differential value exceeds the threshold, the damper damping force Patent Document 2 below discloses that the steering stability performance is increased by increasing the steering angle.
JP-A-60-113711 Japanese Patent Laid-Open No. 11-115440

ところで、横加速度センサで検出した横加速度に基づいてダンパーの目標減衰力を設定する場合、各サスペンション装置の位置と横加速度センサの位置とが離れていると、横加速度センサが出力する横加速度の値は各サスペンション装置の位置における横加速度と一致しなくなる。例えば、車両の重心位置に横加速度センサを設けた場合、横加速度センサは車両の旋回に伴う横加速度を検出するが、車両の重心位置まわりのヨーイングに伴う横加速度を検出しないので、各サスペンション装置のダンパーの目標減衰力を的確に設定することができなくなって操縦安定性能が低下する可能性がある。   By the way, when the target damping force of the damper is set based on the lateral acceleration detected by the lateral acceleration sensor, if the position of each suspension device is separated from the position of the lateral acceleration sensor, the lateral acceleration output from the lateral acceleration sensor is reduced. The value does not coincide with the lateral acceleration at the position of each suspension device. For example, when a lateral acceleration sensor is provided at the center of gravity position of the vehicle, the lateral acceleration sensor detects lateral acceleration associated with turning of the vehicle, but does not detect lateral acceleration associated with yawing around the center of gravity position of the vehicle. The target damping force of the damper cannot be set accurately, and the steering stability performance may deteriorate.

本発明は前述の事情に鑑みてなされたもので、サスペンション装置の位置における横加速度を的確に検出してダンパーの目標減衰力を精度良く設定できるようにすることを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to accurately detect the lateral acceleration at the position of the suspension device and set the target damping force of the damper with high accuracy.

上記目的を達成するために、請求項1に記載された発明によれば、車両のサスペンション装置に設けられたダンパーの減衰力を、車体の所定位置に設けた横加速度センサで検出した横加速度に基づいて決定する可変減衰力ダンパーの制御装置において、ヨーレートを検出するヨーレートセンサを備え、横加速度センサで検出した横加速度とヨーレートセンサで検出したヨーレートとに基づいてサスペンション装置の位置での横加速度を算出し、この横加速度に基づいてダンパーの減衰力を決定することを特徴とする可変減衰力ダンパーの制御装置が提案される。   In order to achieve the above object, according to the first aspect of the present invention, the damping force of the damper provided in the vehicle suspension device is applied to the lateral acceleration detected by the lateral acceleration sensor provided at a predetermined position of the vehicle body. A control device for a variable damping force damper that is determined based on a yaw rate sensor that detects a yaw rate, and determines a lateral acceleration at the position of the suspension device based on the lateral acceleration detected by the lateral acceleration sensor and the yaw rate detected by the yaw rate sensor. A control device for a variable damping force damper is proposed, which calculates and determines the damping force of the damper based on the lateral acceleration.

また請求項2に記載された発明によれば、請求項1の構成に加えて、サスペンション装置の位置での横加速度の時間微分値に基づいてダンパーの減衰力を決定することを特徴とする可変減衰力ダンパーの制御装置が提案される。   According to the invention described in claim 2, in addition to the structure of claim 1, the damping force of the damper is determined based on the time differential value of the lateral acceleration at the position of the suspension device. A control device for damping force damper is proposed.

上記構成によれば、車両の旋回に伴う横加速度だけでなく車両のヨーイングに伴う横加速度も考慮してサスペンション装置の位置での横加速度を算出するので、この横加速度に基づいてダンパーに発生させるべき減衰力を的確に決定することが可能になり、特に低速域における操縦安定性能を高めることができる。   According to the above configuration, since the lateral acceleration at the position of the suspension device is calculated in consideration of not only the lateral acceleration accompanying the turning of the vehicle but also the lateral acceleration accompanying the yawing of the vehicle, the damper is generated based on this lateral acceleration. The power damping force can be accurately determined, and the steering stability performance can be improved particularly in the low speed range.

請求項2の構成によれば、横加速度の時間微分値の位相は横加速度により発生する車両のローリングの位相よりも進んでいるので、横加速度の時間微分値に基づいてダンパーの減衰力を決定することで、車両のローリングを応答性良く抑制することができる。   According to the configuration of the second aspect, since the phase of the temporal differential value of the lateral acceleration is ahead of the rolling phase of the vehicle generated by the lateral acceleration, the damping force of the damper is determined based on the time differential value of the lateral acceleration. By doing so, rolling of the vehicle can be suppressed with good responsiveness.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図8は本発明の一実施例を示すもので、図1は車両のサスペンション装置の正面図、図2は可変減衰力ダンパーの拡大断面図、図3はダンパーの減衰力制御のフローチャート、図4はダンパー速度および目標減衰力から目標電流を検索するマップ、図5はダンパーの目標減衰力の算出回路のブロック図、図6は横加速度およびヨーレートから補正済み横加速度微分値を算出する原理の説明図、図7は車速から横加速度ゲインを検索するマップ、図8は横加速度微分値とフロント側およびリヤ側の補正済み横加速度微分値とを示すグラフである。   1 to 8 show an embodiment of the present invention. FIG. 1 is a front view of a vehicle suspension device, FIG. 2 is an enlarged sectional view of a variable damping force damper, and FIG. 3 is a flowchart of damping force control of the damper. 4 is a map for retrieving a target current from the damper speed and the target damping force, FIG. 5 is a block diagram of a circuit for calculating the target damping force of the damper, and FIG. 6 calculates a corrected lateral acceleration differential value from the lateral acceleration and the yaw rate. FIG. 7 is a map for searching the lateral acceleration gain from the vehicle speed, and FIG. 8 is a graph showing the lateral acceleration differential value and the corrected lateral acceleration differential values on the front and rear sides.

図1に示すように、四輪の自動車の車輪Wを懸架するサスペンション装置Sは、車体11にナックル12を上下動自在に支持するサスペンションアーム13と、サスペンションアーム13および車体11を接続する可変減衰力のダンパー14と、サスペンションアーム13および車体11を接続するコイルバネ15とを備える。ダンパー14の減衰力を制御する電子制御ユニットUには、バネ上加速度を検出するバネ上加速度センサSaからの信号と、ダンパー14の変位(ストローク)を検出するダンパー変位センサSbからの信号と、車両の横加速度を検出する横加速度センサScからの信号と、車両のヨーレートを検出するヨーレートセンサSdからの信号と、車速を検出する車速センサSeからの信号とが入力される。   As shown in FIG. 1, a suspension device S that suspends a wheel W of a four-wheeled vehicle has a suspension arm 13 that supports a knuckle 12 in a vertically movable manner on a vehicle body 11, and a variable damping that connects the suspension arm 13 and the vehicle body 11. A force damper 14 and a coil spring 15 connecting the suspension arm 13 and the vehicle body 11 are provided. The electronic control unit U that controls the damping force of the damper 14 includes a signal from the sprung acceleration sensor Sa that detects the sprung acceleration, a signal from the damper displacement sensor Sb that detects the displacement (stroke) of the damper 14, and A signal from the lateral acceleration sensor Sc that detects the lateral acceleration of the vehicle, a signal from the yaw rate sensor Sd that detects the yaw rate of the vehicle, and a signal from the vehicle speed sensor Se that detects the vehicle speed are input.

尚、車両のヨーイングの中心は車両の重心位置であると仮定しており、車両の重心位置から前輪のサスペンション装置S,Sまでの距離はLfであり、後輪のサスペンション装置S,Sまでの距離はLrである(図6参照)。   It is assumed that the center of yawing of the vehicle is the position of the center of gravity of the vehicle, the distance from the position of the center of gravity of the vehicle to the front wheel suspension devices S, S is Lf, and the distance from the rear wheel suspension devices S, S to The distance is Lr (see FIG. 6).

図2に示すように、ダンパー14は、下端がサスペンションアーム13に接続されたシリンダ21と、シリンダ21に摺動自在に嵌合するピストン22と、ピストン22から上方に延びてシリンダ21の上壁を液密に貫通し、上端を車体に接続されたピストンロッド23と、シリンダの下部に摺動自在に嵌合するフリーピストン24とを備えており、シリンダ21の内部にピストン22により仕切られた上側の第1流体室25および下側の第2流体室26が区画されるとともに、フリーピストン24の下部に圧縮ガスが封入されたガス室27が区画される。   As shown in FIG. 2, the damper 14 includes a cylinder 21 whose lower end is connected to the suspension arm 13, a piston 22 that is slidably fitted into the cylinder 21, and an upper wall of the cylinder 21 that extends upward from the piston 22. And a free piston 24 that is slidably fitted to the lower part of the cylinder, and is partitioned by the piston 22 inside the cylinder 21. An upper first fluid chamber 25 and a lower second fluid chamber 26 are partitioned, and a gas chamber 27 in which a compressed gas is sealed in a lower portion of the free piston 24 is partitioned.

ピストン22にはその上下面を連通させるように複数の流体通路22a…が形成されており、これらの流体通路22a…によって第1、第2流体室25,26が相互に連通する。第1、第2流体室25,26および流体通路22a…に封入される磁気粘性流体は、オイルのような粘性流体に鉄粉のような磁性体微粒子を分散させたもので、磁界を加えると磁力線に沿って磁性体微粒子が整列することで粘性流体が流れ難くなり、見かけの粘性が増加する性質を有している。ピストン22の内部にコイル28が設けられており、電子制御ユニットUによりコイル28への通電が制御される。コイル28に通電されると矢印で示すように磁束が発生し、流体通路22a…を通過する磁束により磁気粘性流体の粘性が変化する。   A plurality of fluid passages 22a are formed in the piston 22 so that the upper and lower surfaces thereof communicate with each other, and the first and second fluid chambers 25 and 26 communicate with each other through these fluid passages 22a. The magnetorheological fluid sealed in the first and second fluid chambers 25 and 26 and the fluid passages 22a is a dispersion of magnetic fine particles such as iron powder in a viscous fluid such as oil. By aligning the magnetic fine particles along the magnetic field lines, it is difficult for the viscous fluid to flow, and the apparent viscosity increases. A coil 28 is provided inside the piston 22, and energization of the coil 28 is controlled by the electronic control unit U. When the coil 28 is energized, a magnetic flux is generated as indicated by an arrow, and the viscosity of the magnetorheological fluid changes due to the magnetic flux passing through the fluid passages 22a.

ダンパー14が収縮してシリンダ21に対してピストン22が下動すると、第1流体室25の容積が増加して第2流体室26の容積が減少するため、第2流体室26の磁気粘性流体がピストン22の流体通路22a…を通過して第1流体室25に流入し、逆にダンパー14が伸長してシリンダ21に対してピストン22が上動すると、第2流体室26の容積が増加して第1流体室25の容積が減少するため、第1流体室25の磁気粘性流体がピストン22の流体通路22a…を通過して第2流体室26に流入し、その際に流体通路22a…を通過する磁気粘性流体の粘性抵抗によりダンパー14が減衰力を発生する。   When the damper 14 contracts and the piston 22 moves downward with respect to the cylinder 21, the volume of the first fluid chamber 25 increases and the volume of the second fluid chamber 26 decreases. Passes through the fluid passage 22a of the piston 22 and flows into the first fluid chamber 25. Conversely, when the damper 14 extends and the piston 22 moves upward relative to the cylinder 21, the volume of the second fluid chamber 26 increases. Since the volume of the first fluid chamber 25 decreases, the magnetorheological fluid in the first fluid chamber 25 passes through the fluid passage 22a ... of the piston 22 and flows into the second fluid chamber 26, and at that time, the fluid passage 22a The damper 14 generates a damping force due to the viscous resistance of the magnetorheological fluid passing through.

このとき、コイル28に通電して磁界を発生させると、ピストン22の流体通路22a…に存在する磁気粘性流体の見かけの粘性が増加して該流体通路22aを通過し難くなるため、ダンパー14の減衰力が増加する。この減衰力の増加量は、コイル28に供給する電流の大きさにより任意に制御することができる。   At this time, if the coil 28 is energized to generate a magnetic field, the apparent viscosity of the magnetorheological fluid existing in the fluid passage 22a of the piston 22 increases and it becomes difficult to pass through the fluid passage 22a. Damping force increases. The amount of increase in the damping force can be arbitrarily controlled by the magnitude of the current supplied to the coil 28.

尚、ダンパー14に衝撃的な圧縮荷重が加わって第2流体室26の容積が減少するとき、ガス室27を縮小させながらフリーピストン24が下降することで衝撃を吸収する。またダンパー14に衝撃的な引張荷重が加わって第2流体室26の容積が増加するとき、ガス室27を拡張させながらフリーピストン24が上昇することで衝撃を吸収する。更に、ピストン22が下降してシリンダ21内に収納されるピストンロッド23の容積が増加したとき、その容積の増加分を吸収するようにフリーピストン24が下降する。   When a shocking compressive load is applied to the damper 14 to reduce the volume of the second fluid chamber 26, the free piston 24 descends while the gas chamber 27 is contracted to absorb the impact. Further, when a shocking tensile load is applied to the damper 14 to increase the volume of the second fluid chamber 26, the impact is absorbed by the free piston 24 rising while the gas chamber 27 is expanded. Further, when the piston 22 descends and the volume of the piston rod 23 accommodated in the cylinder 21 increases, the free piston 24 descends so as to absorb the increase in the volume.

しかして、電子制御ユニットUは、バネ上加速度センサSaで検出したバネ上加速度、ダンパー変位センサSbで検出したダンパー変位、横加速度センサScで検出した横加速度、ヨーレートセンサSdで検出したヨーレートおよび車速センサSeで検出した車速に基づいて、各車輪W…の合計4個のダンパー14…の減衰力を個別に制御することで、路面の凹凸を乗り越える際の車両の動揺を抑えて乗り心地を高めるスカイフック制御のような乗り心地制御と、車両の旋回時のローリングや車両の急加速時や急減速時のピッチングを抑える操縦安定制御とを、車両の運転状態に応じて選択的に実行する。   Thus, the electronic control unit U detects the sprung acceleration detected by the sprung acceleration sensor Sa, the damper displacement detected by the damper displacement sensor Sb, the lateral acceleration detected by the lateral acceleration sensor Sc, the yaw rate detected by the yaw rate sensor Sd, and the vehicle speed. Based on the vehicle speed detected by the sensor Se, the damping force of a total of four dampers 14 of each wheel W is individually controlled, thereby suppressing the vehicle shake when overcoming road irregularities and improving the ride comfort. Ride comfort control such as skyhook control and steering stability control that suppresses rolling during turning of the vehicle and pitching during sudden acceleration and deceleration of the vehicle are selectively executed according to the driving state of the vehicle.

図3には、車両の旋回時にダンパー14…の減衰力を高めてローリングを抑制する操縦安定制御の作用を説明するフローチャートが示される。   FIG. 3 is a flowchart for explaining the operation of the steering stability control that suppresses rolling by increasing the damping force of the dampers 14 when the vehicle turns.

先ずステップS1で横加速度センサScにより検出した横加速度YGと、ヨーレートセンサSdにより検出したヨーレートγと、車速センサSeにより検出した車速Vとに基づいてダンパー14に発生させるべき目標減衰力Ftを算出する。この目標減衰力Ftの算出の詳細は、後から説明する。続くステップS2でダンパー変位センサSbにより検出したダンパー変位を時間微分してダンパー速度Vpを算出する。続くステップS3で前記目標減衰力Ftおよび前記ダンパー速度Vpを図4のマップに適用して目標電流Itを検索する。そしてステップS4で前記目標電流Itをダンパー14のコイルに供給して前記目標減衰力Ftを発生させることで、車両のローリングを抑制して操縦安定性能を向上させる。   First, a target damping force Ft to be generated by the damper 14 is calculated based on the lateral acceleration YG detected by the lateral acceleration sensor Sc in step S1, the yaw rate γ detected by the yaw rate sensor Sd, and the vehicle speed V detected by the vehicle speed sensor Se. To do. Details of the calculation of the target damping force Ft will be described later. In the subsequent step S2, the damper speed Vp is calculated by differentiating the damper displacement detected by the damper displacement sensor Sb with respect to time. In the following step S3, the target current It is searched by applying the target damping force Ft and the damper speed Vp to the map of FIG. In step S4, the target current It is supplied to the coil of the damper 14 to generate the target damping force Ft, thereby suppressing rolling of the vehicle and improving the steering stability performance.

図4は目標減衰力Ftおよびダンパー速度Vpから目標電流Itを検索するマップであって、ダンパー速度Vpが一定の場合には目標減衰力Ftが増加するほど目標電流Itが増加し、また目標減衰力Ftが一定の場合にはダンパー速度Vpが増加するほど目標電流Itが減少する。例えば、目標減衰力FtがFt1の場合、ダンパー速度VpがVptであれば目標電流はIt5であるが、ダンパー速度VpがVpt1に増加すると目標電流はIt4に減少し、ダンパー速度VpがVpt2に減少すると目標電流はIt6に増加する。   FIG. 4 is a map for retrieving the target current It from the target damping force Ft and the damper speed Vp. When the damper speed Vp is constant, the target current It increases as the target damping force Ft increases. When the force Ft is constant, the target current It decreases as the damper speed Vp increases. For example, when the target damping force Ft is Ft1 and the damper speed Vp is Vpt, the target current is It5, but when the damper speed Vp increases to Vpt1, the target current decreases to It4 and the damper speed Vp decreases to Vpt2. Then, the target current increases to It6.

次に、前記ステップS1で横加速度YG、ヨーレートγおよび車速Vからダンパー14の目標減衰力Ftを算出する過程を説明する。   Next, the process of calculating the target damping force Ft of the damper 14 from the lateral acceleration YG, the yaw rate γ, and the vehicle speed V in step S1 will be described.

図5に示すように、電子制御ユニットUは、ローパスフィルタ31、微分器32、ローパスフィルタ33、2階微分器34、ヨーレートゲイン35、加算器36、横加速度ゲイン37、車速マップ38、符号判定器39および押引きゲイン40を備える。   As shown in FIG. 5, the electronic control unit U includes a low-pass filter 31, a differentiator 32, a low-pass filter 33, a second-order differentiator 34, a yaw rate gain 35, an adder 36, a lateral acceleration gain 37, a vehicle speed map 38, a sign determination. And a push / pull gain 40.

横加速度センサScで検出した横加速度YGはローパスフィルタ31を通過し、その際に操舵によらない通常走行中の横加速度が遮断される。ローパスフィルタ31を通過した横加速度YGは微分器32により時間微分され、横加速度微分値dYG/dtが算出される。尚、横加速度YGの微分器32には前輪WFL,WFR用と後輪WRL,WRR用とがあり、横加速度微分値も前輪WFL,WFR用の値(dYG/dt)F と後輪WRL,WRR用の値(dYG/dt)R とが算出される。 The lateral acceleration YG detected by the lateral acceleration sensor Sc passes through the low-pass filter 31, and at that time, the lateral acceleration during normal traveling that does not depend on steering is blocked. The lateral acceleration YG that has passed through the low-pass filter 31 is time-differentiated by a differentiator 32 to calculate a lateral acceleration differential value dYG / dt. The differentiator 32 of the lateral acceleration YG includes a front wheel WFL, WFR and a rear wheel WRL, WRR. The lateral acceleration differential value is also a value (dYG / dt) F for the front wheels WFL, WFR and a rear wheel WRL, A value for WRR (dYG / dt) R is calculated.

一方、ヨーレートセンサSdで検出したヨーレートγはローパスフィルタ33を通過し、その際に操舵によらない通常走行中のヨーレートが遮断される。ローパスフィルタ33を通過したヨーレートγは2階微分器34により2階時間微分され、ヨーレート2階微分値d2 γ/dt2 が算出される。続いて、ヨーレート2階微分値d2 γ/dt2 にヨーレートゲイン35、つまり車両の重心位置から前輪WFL,WFRのサスペンション装置S,Sまでの距離はLf、あるいは後輪WRL,WRRのサスペンション装置S,Sまでの距離はLrを乗算することで、車両のヨーイングに伴う前輪WFL,WFRの位置での横加速度微分値の補正値d2 γ/dt2 ×Lfと、車両のヨーイングに伴う後輪WRL,WRRの位置での横加速度微分値の補正値d2 γ/dt2 ×Lrとを算出する。 On the other hand, the yaw rate γ detected by the yaw rate sensor Sd passes through the low-pass filter 33, and at that time, the yaw rate during the normal traveling that does not depend on the steering is cut off. The yaw rate γ that has passed through the low-pass filter 33 is subjected to second-order time differentiation by the second-order differentiator 34 to calculate the yaw rate second-order differential value d 2 γ / dt 2 . Subsequently, the yaw rate second-order differential value d 2 γ / dt 2 and the yaw rate gain 35, that is, the distance from the center of gravity position of the vehicle to the suspension devices S, S of the front wheels WFL, WFR is Lf, or the suspension devices of the rear wheels WRL, WRR. The distance to S and S is multiplied by Lr, so that the correction value d 2 γ / dt 2 × Lf of the lateral acceleration differential value at the position of the front wheels WFL and WFR accompanying the yawing of the vehicle, and the rear following the yawing of the vehicle A correction value d 2 γ / dt 2 × Lr of the lateral acceleration differential value at the position of the wheels WRL and WRR is calculated.

そしてフロント側の横加速度微分値(dYG/dt)F とフロント側の横加速度微分値の補正値d2 γ/dt2 ×Lfとを加算器36で加算することで、フロント側の補正済み横加速度微分値を、
(dYG/dt)F +d2 γ/dt2 ×Lf として算出し、リヤ側の横加速度微分値(dYG/dt)R とリヤ側の横加速度微分値の補正値d2 γ/dt2 ×Lrとを加算器36で加算することで、リヤ側の補正済み横加速度微分値を、
(dYG/dt)R +d2 γ/dt2 ×Lr として算出する。
Then, the front side lateral acceleration differential value (dYG / dt) F and the front side lateral acceleration differential value correction value d 2 γ / dt 2 × Lf are added by the adder 36, thereby correcting the front side corrected lateral force. The acceleration differential value
Calculated as (dYG / dt) F + d 2 γ / dt 2 × Lf, and the corrected lateral acceleration differential value (dYG / dt) R and the corrected lateral acceleration differential value d 2 γ / dt 2 × Lr And the adder 36 add the corrected lateral acceleration differential value on the rear side,
(DYG / dt) R + d 2 γ / dt 2 × Lr

図7は、車速センサSeで検出した車速Vをパラメータとする横加速度ゲインの車速マップ38であって、この車速マップ38から検索したフロント側およびリヤ側のゲインを前記フロント側の補正済み横加速度微分値および前記リヤ側の補正済み横加速度微分値に乗算する。更に、前記加算器36の出力の符号を符号判定器39で判定し、車両に作用する横加速度で収縮側となるダンパー14と伸長側となるダンパー14とによって異なる押引きゲイン40を更に乗算したものを、フロント側およびリヤ側の目標減衰力Ftとして出力する。   FIG. 7 shows a vehicle speed map 38 of the lateral acceleration gain using the vehicle speed V detected by the vehicle speed sensor Se as a parameter. The front side and rear side gains retrieved from the vehicle speed map 38 are corrected to the front side corrected lateral acceleration. Multiply the differential value and the corrected lateral acceleration differential value on the rear side. Further, the sign of the output of the adder 36 is determined by a sign determination unit 39, and a different push / pull gain 40 is further multiplied depending on the damper 14 on the contraction side and the damper 14 on the expansion side by the lateral acceleration acting on the vehicle. Is output as the target damping force Ft on the front and rear sides.

図8には、車両の重心位置での横加速度微分値dYG/dtが実線で、前輪WFL,WFRの位置での補正済み横加速度微分値(dYG/dt)F +d2 γ/dt2 ×Lfが破線で、後輪WRL,WRRの位置での補正済み横加速度微分値(dYG/dt)R +d2 γ/dt2 ×Lrが鎖線で示される。 In FIG. 8, the lateral acceleration differential value dYG / dt at the center of gravity of the vehicle is a solid line, and the corrected lateral acceleration differential value (dYG / dt) F + d 2 γ / dt 2 × Lf at the positions of the front wheels WFL and WFR. Is a broken line, and a corrected lateral acceleration differential value (dYG / dt) R + d 2 γ / dt 2 × Lr at the positions of the rear wheels WRL and WRR is indicated by a chain line.

以上のように、車両の旋回により発生する横加速度だけでなく、それに車両のヨーイングにより発生する横加速度を加算して補正した横加速度を用いてダンパー14の目標減衰力を設定するので、前輪WFL,WFRの位置あるいは後輪WRL,WRRの位置における横加速度を正確に反映したダンパー14の目標減衰力を設定することが可能になり、特に低速域での目標減衰力の立ち上がりを早めて車両の操縦安定性能を高めることができる。しかも車両の横加速度をそのまま使用するのではなく、そに横加速度よりも位相が進んだ横加速度の時間微分値を用いて目標減衰力を設定するので、特に操舵初期におけるダンパー14の減衰力の制御応答性を更に高めることができる。   As described above, the target damping force of the damper 14 is set using not only the lateral acceleration generated by turning of the vehicle but also the lateral acceleration corrected by adding the lateral acceleration generated by yawing of the vehicle to the front wheel WFL. , WFR position, or the target damping force of the damper 14 that accurately reflects the lateral acceleration at the rear wheel WRL, WRR position can be set. Steering stability can be improved. In addition, the lateral acceleration of the vehicle is not used as it is, but the target damping force is set using the time differential value of the lateral acceleration whose phase is advanced from that of the lateral acceleration. Control responsiveness can be further improved.

尚、上述した操縦安定制御が行われていないときの乗り心地制御は周知のスカイフック制御であり、バネ上速度(上向きを正)とダンパー速度(伸長方向を正)とが同方向であるとき、ダンパー14…は減衰力を増加させる方向に制御され、バネ上速度とダンパー速度とが逆方向であるとき、ダンパー14…は減衰力を減少させる方向に制御される。バネ上速度はバネ上加速度センサSaで検出したバネ上加速度を積分して得ることができ、ダンパー速度はダンパー変位センサSbで検出したダンパー変位を微分して得ることができる。   The ride comfort control when the above-described steering stability control is not performed is the well-known skyhook control, and when the sprung speed (upward is positive) and the damper speed (extension direction is positive) are the same direction. The dampers 14 are controlled to increase the damping force. When the sprung speed and the damper speed are opposite directions, the dampers 14 are controlled to decrease the damping force. The sprung speed can be obtained by integrating the sprung acceleration detected by the sprung acceleration sensor Sa, and the damper speed can be obtained by differentiating the damper displacement detected by the damper displacement sensor Sb.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、実施例では車両の横加速度の時間微分値に基づいて目標減衰力を設定しているが、車両の横加速度に基づいて目標減衰力を設定しても良い。   For example, in the embodiment, the target damping force is set based on the time differential value of the lateral acceleration of the vehicle, but the target damping force may be set based on the lateral acceleration of the vehicle.

また実施例ではダンパー14…の減衰力を磁気粘性流体を用いて可変制御しているが、減衰力を可変制御する手法は任意である。   In the embodiment, the damping force of the dampers 14 is variably controlled using a magnetorheological fluid, but any method for variably controlling the damping force is arbitrary.

車両のサスペンション装置の正面図Front view of vehicle suspension system 可変減衰力ダンパーの拡大断面図Expanded sectional view of variable damping force damper ダンパーの減衰力制御のフローチャートFlow chart of damper damping force control ダンパー速度および目標減衰力から目標電流を検索するマップMap to search for target current from damper speed and target damping force ダンパーの目標減衰力の算出回路のブロック図Block diagram of the circuit for calculating the target damping force of the damper 横加速度およびヨーレートから補正済み横加速度微分値を算出する原理の説明図Explanatory drawing of the principle of calculating corrected lateral acceleration differential value from lateral acceleration and yaw rate 車速から横加速度ゲインを検索するマップMap to search lateral acceleration gain from vehicle speed 横加速度微分値とフロント側およびリヤ側の補正済み横加速度微分値とを示すグラフA graph showing the lateral acceleration differential value and the corrected lateral acceleration differential values on the front and rear sides

符号の説明Explanation of symbols

14 ダンパー
S サスペンション装置
Sc 横加速度センサ
Sd ヨーレートセンサ
YG 横加速度
γ ヨーレート
14 Damper S Suspension device Sc Lateral acceleration sensor Sd Yaw rate sensor YG Lateral acceleration γ Yaw rate

Claims (2)

車両のサスペンション装置(S)に設けられたダンパー(14)の減衰力を、車体の所定位置に設けた横加速度センサ(Sc)で検出した横加速度(YG)に基づいて決定する可変減衰力ダンパーの制御装置において、
ヨーレート(γ)を検出するヨーレートセンサ(Sd)を備え、横加速度センサ(Sc)で検出した横加速度(YG)とヨーレートセンサ(Sd)で検出したヨーレート(γ)とに基づいてサスペンション装置(S)の位置での横加速度を算出し、この横加速度に基づいてダンパー(14)の減衰力を決定することを特徴とする可変減衰力ダンパーの制御装置。
A variable damping force damper that determines a damping force of a damper (14) provided in a suspension device (S) of a vehicle based on a lateral acceleration (YG) detected by a lateral acceleration sensor (Sc) provided at a predetermined position of the vehicle body In the control device of
A yaw rate sensor (Sd) for detecting the yaw rate (γ) is provided, and the suspension device (S) is based on the lateral acceleration (YG) detected by the lateral acceleration sensor (Sc) and the yaw rate (γ) detected by the yaw rate sensor (Sd). ), And the damping force of the damper (14) is determined based on the lateral acceleration.
サスペンション装置(S)の位置での横加速度の時間微分値に基づいてダンパー(14)の減衰力を決定することを特徴とする、請求項1に記載の可変減衰力ダンパーの制御装置。
The control device for a variable damping force damper according to claim 1, wherein the damping force of the damper (14) is determined based on a time differential value of the lateral acceleration at the position of the suspension device (S).
JP2005101580A 2005-03-31 2005-03-31 Control device for variable damping force damper in vehicle Expired - Fee Related JP4648055B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005101580A JP4648055B2 (en) 2005-03-31 2005-03-31 Control device for variable damping force damper in vehicle
US11/391,309 US8165749B2 (en) 2005-03-31 2006-03-29 Control system for adjustable damping force damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101580A JP4648055B2 (en) 2005-03-31 2005-03-31 Control device for variable damping force damper in vehicle

Publications (2)

Publication Number Publication Date
JP2006281876A true JP2006281876A (en) 2006-10-19
JP4648055B2 JP4648055B2 (en) 2011-03-09

Family

ID=37404246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101580A Expired - Fee Related JP4648055B2 (en) 2005-03-31 2005-03-31 Control device for variable damping force damper in vehicle

Country Status (1)

Country Link
JP (1) JP4648055B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137446A (en) * 2006-11-30 2008-06-19 Toyota Motor Corp Roll rigidity controller of vehicle
JP2008189025A (en) * 2007-02-01 2008-08-21 Honda Motor Co Ltd Damping force variable damper attached vehicle
EP2022655A1 (en) * 2007-08-08 2009-02-11 Honda Motor Co., Ltd Control apparatus of a variable damping force damper
JP2009234320A (en) * 2008-03-26 2009-10-15 Honda Motor Co Ltd Control method and control device for damping force variable damper
JP2011126300A (en) * 2009-12-15 2011-06-30 Honda Motor Co Ltd Active noise control device and vehicle
US8086371B2 (en) 2008-03-26 2011-12-27 Honda Motor Co., Ltd. Control device for a wheel suspension system
JP2017030577A (en) * 2015-07-31 2017-02-09 Kyb株式会社 Buffer control device and suspension device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237014A (en) * 1988-07-28 1990-02-07 Nissan Motor Co Ltd Active suspension
JPH0624225A (en) * 1991-12-13 1994-02-01 Unisia Jecs Corp Car suspension device
JPH06115337A (en) * 1992-08-18 1994-04-26 Nippondenso Co Ltd Controller for damping force variable shock absorber
JPH07232531A (en) * 1994-02-24 1995-09-05 Unisia Jecs Corp Vehicle suspension device
JPH09207534A (en) * 1996-01-31 1997-08-12 Nissan Motor Co Ltd Active type suspension
JPH1095213A (en) * 1996-09-24 1998-04-14 Unisia Jecs Corp Automobile suspension
JP2765311B2 (en) * 1991-11-06 1998-06-11 日産自動車株式会社 Active suspension
JPH11105526A (en) * 1997-09-30 1999-04-20 Tokico Ltd Suspension control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237014A (en) * 1988-07-28 1990-02-07 Nissan Motor Co Ltd Active suspension
JP2765311B2 (en) * 1991-11-06 1998-06-11 日産自動車株式会社 Active suspension
JPH0624225A (en) * 1991-12-13 1994-02-01 Unisia Jecs Corp Car suspension device
JPH06115337A (en) * 1992-08-18 1994-04-26 Nippondenso Co Ltd Controller for damping force variable shock absorber
JPH07232531A (en) * 1994-02-24 1995-09-05 Unisia Jecs Corp Vehicle suspension device
JPH09207534A (en) * 1996-01-31 1997-08-12 Nissan Motor Co Ltd Active type suspension
JPH1095213A (en) * 1996-09-24 1998-04-14 Unisia Jecs Corp Automobile suspension
JPH11105526A (en) * 1997-09-30 1999-04-20 Tokico Ltd Suspension control device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137446A (en) * 2006-11-30 2008-06-19 Toyota Motor Corp Roll rigidity controller of vehicle
JP4670800B2 (en) * 2006-11-30 2011-04-13 トヨタ自動車株式会社 Roll stiffness control device for vehicle
US8170749B2 (en) 2006-11-30 2012-05-01 Toyota Jidosha Kabushiki Kaisha Roll rigidity controller of vehicle
JP2008189025A (en) * 2007-02-01 2008-08-21 Honda Motor Co Ltd Damping force variable damper attached vehicle
EP2022655A1 (en) * 2007-08-08 2009-02-11 Honda Motor Co., Ltd Control apparatus of a variable damping force damper
US8078360B2 (en) 2007-08-08 2011-12-13 Honda Motor Co., Ltd. Control apparatus of a variable damping force damper
JP2009234320A (en) * 2008-03-26 2009-10-15 Honda Motor Co Ltd Control method and control device for damping force variable damper
US8086371B2 (en) 2008-03-26 2011-12-27 Honda Motor Co., Ltd. Control device for a wheel suspension system
JP2011126300A (en) * 2009-12-15 2011-06-30 Honda Motor Co Ltd Active noise control device and vehicle
JP2017030577A (en) * 2015-07-31 2017-02-09 Kyb株式会社 Buffer control device and suspension device
US10618367B2 (en) 2015-07-31 2020-04-14 Kyb Corporation Damper control device and suspension apparatus

Also Published As

Publication number Publication date
JP4648055B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4546307B2 (en) Control device for variable damping force damper
US8165749B2 (en) Control system for adjustable damping force damper
JP6052405B2 (en) Vehicle suspension system
JP4972440B2 (en) Control device for damping force variable damper
US7593797B2 (en) Control system for adjustable damping force damper
JP4648055B2 (en) Control device for variable damping force damper in vehicle
JP2006069527A (en) Control device of suspension
JP4648125B2 (en) Control device for variable damping force damper
JP5021348B2 (en) Control device for damping force variable damper
JP2006273222A (en) Controlling device for adjustable damping force damper
JP5038955B2 (en) Control device for variable damping force damper
JP4546323B2 (en) Variable damping force damper
JP5702200B2 (en) Shock absorber controller
JP5162283B2 (en) Control device and control method for damping force variable damper
JP4690759B2 (en) Control device for variable damping force damper
JP4421985B2 (en) Road surface condition judgment method
JP4486979B2 (en) Control device for damping force variable damper
JP2006273225A (en) Controlling device for adjustable damping force damper
JP4435303B2 (en) Control device for damping force variable damper
WO2020129202A1 (en) Control device, suspension system
JP2007153186A (en) Control system for variable damping force damper
JP2006281875A (en) Variable damping force damper control device
JP4664759B2 (en) Stroke sensor abnormality determination device
JP2006088739A (en) Damper with variable damping force
JP2008230285A (en) Control device of damper with variable damping force

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4648055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees