JP4546323B2 - Variable damping force damper - Google Patents

Variable damping force damper Download PDF

Info

Publication number
JP4546323B2
JP4546323B2 JP2005143536A JP2005143536A JP4546323B2 JP 4546323 B2 JP4546323 B2 JP 4546323B2 JP 2005143536 A JP2005143536 A JP 2005143536A JP 2005143536 A JP2005143536 A JP 2005143536A JP 4546323 B2 JP4546323 B2 JP 4546323B2
Authority
JP
Japan
Prior art keywords
vehicle
damper
damping force
acceleration
longitudinal acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005143536A
Other languages
Japanese (ja)
Other versions
JP2006321258A (en
Inventor
正樹 伊澤
貴史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005143536A priority Critical patent/JP4546323B2/en
Publication of JP2006321258A publication Critical patent/JP2006321258A/en
Application granted granted Critical
Publication of JP4546323B2 publication Critical patent/JP4546323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、車両のサスペンション装置に設けられたダンパーの減衰力を、制御手段により車両の運動状態に応じて可変制御する可変減衰力ダンパーに関する。   The present invention relates to a variable damping force damper that variably controls a damping force of a damper provided in a suspension device of a vehicle according to a motion state of the vehicle by a control means.

サスペンション装置用の可変減衰力ダンパーの粘性流体として、磁界の作用で粘性が変化する磁気粘性流体(MRF: Magneto-Rheological Fluids )を採用し、シリンダに摺動自在に嵌合するピストンに、その流体通路中の磁気粘性流体に磁界を作用させるためのコイルを設けたものが、下記特許文献1により公知である。この可変減衰力ダンパーによれば、コイルに通電して発生した磁界で流体通路中の磁気粘性流体の粘性を変化させることで、ダンパーの減衰力を任意に制御することができる。   As the viscous fluid of the variable damping force damper for the suspension device, a magnetic viscous fluid (MRF: Magneto-Rheological Fluids) whose viscosity is changed by the action of a magnetic field is adopted, and the fluid is applied to the piston that is slidably fitted into the cylinder. Patent Document 1 below discloses a coil provided with a coil for applying a magnetic field to a magnetorheological fluid in a passage. According to this variable damping force damper, the damping force of the damper can be arbitrarily controlled by changing the viscosity of the magnetorheological fluid in the fluid passage by a magnetic field generated by energizing the coil.

また車両が減速して停止するときに車輪は制動により停止しようとするが車体は慣性で前進し続けようとするため、車体の前部が下がって車体の後部が上がる姿勢変化(ノーズダイブ)が発生し、逆に車両が加速するときには車体が慣性で後方に取り残されようとするため、車体の後部が下がって車体の前部が上がる姿勢変化(ノーズリフト)が発生する。このような車両の前後加速度に伴うピッチ方向の姿勢変化を抑制して操縦安定性能を高めるべく、ローパスフィルターをかけた前後加速度とローパスフィルターをかけない前後加速度とを用いて可変減衰力ダンパーに発生させる減衰力の制御量を決定するものが、下記特許文献2により公知である。
特開昭60−113711号公報 特開平9−309314号公報
Also, when the vehicle decelerates and stops, the wheels try to stop by braking, but the vehicle body keeps moving forward due to inertia, so there is a posture change (nose dive) where the front part of the vehicle body goes down and the rear part of the vehicle body goes up On the contrary, when the vehicle accelerates, the vehicle body tends to be left behind due to inertia, so that a posture change (nose lift) occurs in which the rear portion of the vehicle body is lowered and the front portion of the vehicle body is raised. In order to suppress the change in the attitude in the pitch direction due to the longitudinal acceleration of the vehicle and improve the steering stability performance, it is generated in the variable damping force damper using the longitudinal acceleration with low-pass filter and the longitudinal acceleration without low-pass filter. A method for determining the control amount of the damping force to be performed is known from Patent Document 2 below.
JP-A-60-113711 JP 9-309314 A

ところで、車両の前後加速度に基づいて可変減衰力ダンパーの減衰力を制御すると応答遅れが発生する可能性があるため、前後加速度よりもピッチングの位相変化が早く現れる前後加速度の微分値を用いて可変減衰力ダンパーの減衰力を制御することが考えられる。このようにすると、急加速時や急減速時の初期に減衰力を急激に立ち上げるとともに、可変減衰力ダンパーのストロークによらない安定した減衰力を得ることができる。   By the way, if the damping force of the variable damping force damper is controlled based on the longitudinal acceleration of the vehicle, a response delay may occur. Therefore, it is variable using the differential value of the longitudinal acceleration in which the pitching phase change appears earlier than the longitudinal acceleration It is conceivable to control the damping force of the damping force damper. In this way, it is possible to suddenly raise the damping force at the initial stage of sudden acceleration or sudden deceleration and to obtain a stable damping force that does not depend on the stroke of the variable damping force damper.

しかしながら、一般に車両が急制動して発生する減速度の大きさは車両が急加速して発生する加速度の大きさよりも大きく、かつ減速度が発生する時間は加速度が発生する時間よりも短いため、減速時と加速時とで前後加速度の微分フィルターに同じ特性のものを使用すると、車両のピッチ姿勢の変化を効果的に抑制する最適の制御時間および制御量が得られない可能性がある。   However, in general, the magnitude of deceleration generated by sudden braking of the vehicle is larger than the magnitude of acceleration generated by sudden acceleration of the vehicle, and the time when deceleration occurs is shorter than the time when acceleration occurs. If the same differential filter is used for the longitudinal acceleration during deceleration and acceleration, there is a possibility that the optimal control time and control amount that effectively suppress the change in the pitch attitude of the vehicle may not be obtained.

本発明は前述の事情に鑑みてなされたもので、車両の減速時および加速時の両方で車両のピッチ姿勢の変化を効果的に抑制して操縦安定性能を高めることを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to effectively suppress a change in the pitch posture of the vehicle both when the vehicle is decelerating and when accelerating, thereby improving the steering stability performance.

上記目的を達成するために、請求項1に記載された発明によれば、車両のサスペンション装置に設けられたダンパーの減衰力を、制御手段により車両の運動状態に応じて可変制御する可変減衰力ダンパーであって、前記制御手段は、前後加速度センサで検出した車両の前後加速度を微分フィルターで微分処理した前後加速度の微分値に基づいてダンパーの減衰力を制御する可変減衰力ダンパーにおいて、車両の減速時のゲインが加速時のゲインよりも大きくなるように、前記微分フィルターの特性を車両の加速時と減速時とで持ち替えることを特徴とする可変減衰力ダンパーが提案される。 In order to achieve the above object, according to the first aspect of the present invention, a variable damping force that variably controls the damping force of a damper provided in the suspension device of the vehicle according to the motion state of the vehicle by the control means. The damper is a variable damping force damper that controls the damping force of the damper based on a differential value of the longitudinal acceleration obtained by differentiating the longitudinal acceleration of the vehicle detected by the longitudinal acceleration sensor with a differential filter . A variable damping force damper is proposed in which the characteristic of the differential filter is changed between when the vehicle is accelerated and when the vehicle is decelerated so that the gain during deceleration is greater than the gain during acceleration .

また、請求項2に記載された発明によれば、請求項1の構成に加えて、前記微分フィルターの特性は、周波数が0.1Hz以上の領域で減速時のゲインが加速時のゲインよりも大きくなるように設定されることを特徴とする可変減衰力ダンパーが提案される。According to the invention described in claim 2, in addition to the configuration of claim 1, the characteristic of the differential filter is that the gain at the time of deceleration is higher than the gain at the time of acceleration in a region where the frequency is 0.1 Hz or more. A variable damping force damper characterized by being set to be large is proposed.

尚、実施例の電子制御ユニットUは本発明の制御手段に対応し、加速時用微分フィルター32および減速時用微分フィルター33は本発明の微分フィルターに対応する。   The electronic control unit U of the embodiment corresponds to the control means of the present invention, and the acceleration differential filter 32 and the deceleration differential filter 33 correspond to the differential filter of the present invention.

請求項1の構成によれば、車両のサスペンション装置に設けられたダンパーの減衰力を車両の運動状態に応じて可変制御する制御手段が、車両の前後加速度の微分値に基づいてダンパーの減衰力を制御するので、車両の前後加速度そのものに基づいてダンパーの減衰力を制御する場合に比べて、制御の遅れを防止して応答性を高めることができる。しかも車両の前後加速度を微分処理する微分フィルターの特性を、車両の減速時のゲインが加速時のゲインよりも大きくなるように、車両の加速時と減速時とで持ち替えるので、比較的に小さい加速度が長い時間発生する加速時と、比較的に大きい減速度が短い時間発生する減速時とでダンパーの制御時間や制御量を異ならせることで、加速時および減速時の両方において車両のピッチングを効果的に抑制することができる。 According to the configuration of the first aspect, the control means for variably controlling the damping force of the damper provided in the vehicle suspension device according to the motion state of the vehicle is based on the differential value of the longitudinal acceleration of the vehicle. Therefore, compared with the case where the damping force of the damper is controlled based on the longitudinal acceleration itself of the vehicle, the control delay can be prevented and the responsiveness can be improved. In addition, the characteristic of the differential filter that differentiates the longitudinal acceleration of the vehicle is changed between when the vehicle is accelerated and when the vehicle is decelerated so that the gain when the vehicle is decelerated is larger than the gain when the vehicle is accelerated. By varying the damper control time and control amount during acceleration when the acceleration occurs for a long time and deceleration when the relatively large deceleration occurs for a short time, the vehicle pitching is effective both during acceleration and deceleration. Can be suppressed.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図7は本発明の一実施例を示すもので、図1は車両のサスペンション装置の正面図、図2は可変減衰力ダンパーの拡大断面図、図3はダンパーによるピッチ制御の制御則のブロック図、図4はローパスフィルターの特性を示すグラフ、図5は微分フィルターの特性を示すグラフ、図6はダンパーの目標電流算出ルーチンのフローチャート、図7はダンパー速度および目標減衰力から目標電流を検索するマップである。   1 to 7 show an embodiment of the present invention. FIG. 1 is a front view of a vehicle suspension device, FIG. 2 is an enlarged sectional view of a variable damping force damper, and FIG. 3 is a control law of pitch control by the damper. FIG. 4 is a graph showing the characteristics of the low-pass filter, FIG. 5 is a graph showing the characteristics of the differential filter, FIG. 6 is a flowchart of a target current calculation routine of the damper, and FIG. It is a map to search for.

図1に示すように、四輪の自動車の車輪Wを懸架するサスペンション装置Sは、車体11にナックル12を上下動自在に支持するサスペンションアーム13と、サスペンションアーム13および車体11を接続する可変減衰力のダンパー14と、サスペンションアーム13および車体11を接続するコイルバネ15とを備える。ダンパー14の減衰力を制御する電子制御ユニットUには、バネ上加速度を検出するバネ上加速度センサSaからの信号と、ダンパー14の変位(ストローク)を検出するダンパー変位センサSbからの信号と、車両の操舵角を検出する操舵角センサScからの信号と、車両の横加速度を検出する横加速度センサSdからの信号と、車両の前後加速度を検出する前後加速度センサSeからの信号と、車速を検出する車速センサSfからの信号とが入力される。   As shown in FIG. 1, a suspension device S that suspends a wheel W of a four-wheeled vehicle has a suspension arm 13 that supports a knuckle 12 in a vertically movable manner on a vehicle body 11, and a variable damping that connects the suspension arm 13 and the vehicle body 11. A force damper 14 and a coil spring 15 connecting the suspension arm 13 and the vehicle body 11 are provided. The electronic control unit U that controls the damping force of the damper 14 includes a signal from the sprung acceleration sensor Sa that detects the sprung acceleration, a signal from the damper displacement sensor Sb that detects the displacement (stroke) of the damper 14, and A signal from the steering angle sensor Sc that detects the steering angle of the vehicle, a signal from the lateral acceleration sensor Sd that detects the lateral acceleration of the vehicle, a signal from the longitudinal acceleration sensor Se that detects the longitudinal acceleration of the vehicle, and the vehicle speed A signal from the vehicle speed sensor Sf to be detected is input.

図2に示すように、ダンパー14は、下端がサスペンションアーム13に接続されたシリンダ21と、シリンダ21に摺動自在に嵌合するピストン22と、ピストン22から上方に延びてシリンダ21の上壁を液密に貫通し、上端を車体に接続されたピストンロッド23と、シリンダの下部に摺動自在に嵌合するフリーピストン24とを備えており、シリンダ21の内部にピストン22により仕切られた上側の第1流体室25および下側の第2流体室26が区画されるとともに、フリーピストン24の下部に圧縮ガスが封入されたガス室27が区画される。   As shown in FIG. 2, the damper 14 includes a cylinder 21 whose lower end is connected to the suspension arm 13, a piston 22 that is slidably fitted into the cylinder 21, and an upper wall of the cylinder 21 that extends upward from the piston 22. And a free piston 24 that is slidably fitted to the lower part of the cylinder, and is partitioned by the piston 22 inside the cylinder 21. An upper first fluid chamber 25 and a lower second fluid chamber 26 are partitioned, and a gas chamber 27 in which a compressed gas is sealed in a lower portion of the free piston 24 is partitioned.

ピストン22にはその上下面を連通させるように複数の流体通路22a…が形成されており、これらの流体通路22a…によって第1、第2流体室25,26が相互に連通する。第1、第2流体室25,26および流体通路22a…に封入される磁気粘性流体は、オイルのような粘性流体に鉄粉のような磁性体微粒子を分散させたもので、磁界を加えると磁力線に沿って磁性体微粒子が整列することで粘性流体が流れ難くなり、見かけの粘性が増加する性質を有している。ピストン22の内部にコイル28が設けられており、電子制御ユニットUによりコイル28への通電が制御される。コイル28に通電されると矢印で示すように磁束が発生し、流体通路22a…を通過する磁束により磁気粘性流体の粘性が変化する。   A plurality of fluid passages 22a are formed in the piston 22 so that the upper and lower surfaces thereof communicate with each other, and the first and second fluid chambers 25 and 26 communicate with each other through these fluid passages 22a. The magnetorheological fluid sealed in the first and second fluid chambers 25 and 26 and the fluid passages 22a is a dispersion of magnetic fine particles such as iron powder in a viscous fluid such as oil. By aligning the magnetic fine particles along the magnetic field lines, it is difficult for the viscous fluid to flow, and the apparent viscosity increases. A coil 28 is provided inside the piston 22, and energization of the coil 28 is controlled by the electronic control unit U. When the coil 28 is energized, a magnetic flux is generated as indicated by an arrow, and the viscosity of the magnetorheological fluid changes due to the magnetic flux passing through the fluid passages 22a.

ダンパー14が収縮してシリンダ21に対してピストン22が下動すると、第1流体室25の容積が増加して第2流体室26の容積が減少するため、第2流体室26の磁気粘性流体がピストン22の流体通路22a…を通過して第1流体室25に流入し、逆にダンパー14が伸長してシリンダ21に対してピストン22が上動すると、第2流体室26の容積が増加して第1流体室25の容積が減少するため、第1流体室25の磁気粘性流体がピストン22の流体通路22a…を通過して第2流体室26に流入し、その際に流体通路22a…を通過する磁気粘性流体の粘性抵抗によりダンパー14が減衰力を発生する。   When the damper 14 contracts and the piston 22 moves downward with respect to the cylinder 21, the volume of the first fluid chamber 25 increases and the volume of the second fluid chamber 26 decreases. Passes through the fluid passage 22a of the piston 22 and flows into the first fluid chamber 25. Conversely, when the damper 14 extends and the piston 22 moves upward relative to the cylinder 21, the volume of the second fluid chamber 26 increases. Since the volume of the first fluid chamber 25 decreases, the magnetorheological fluid in the first fluid chamber 25 passes through the fluid passage 22a ... of the piston 22 and flows into the second fluid chamber 26, and at that time, the fluid passage 22a The damper 14 generates a damping force due to the viscous resistance of the magnetorheological fluid passing through.

このとき、コイル28に通電して磁界を発生させると、ピストン22の流体通路22a…に存在する磁気粘性流体の見かけの粘性が増加して該流体通路22aを通過し難くなるため、ダンパー14の減衰力が増加する。この減衰力の増加量は、コイル28に供給する電流の大きさにより任意に制御することができる。   At this time, if the coil 28 is energized to generate a magnetic field, the apparent viscosity of the magnetorheological fluid existing in the fluid passage 22a of the piston 22 increases and it becomes difficult to pass through the fluid passage 22a. Damping force increases. The increase amount of the damping force can be arbitrarily controlled by the magnitude of the current supplied to the coil 28.

尚、ダンパー14に衝撃的な圧縮荷重が加わって第2流体室26の容積が減少するとき、ガス室27を縮小させながらフリーピストン24が下降することで衝撃を吸収する。またダンパー14に衝撃的な引張荷重が加わって第2流体室26の容積が増加するとき、ガス室27を拡張させながらフリーピストン24が上昇することで衝撃を吸収する。更に、ピストン22が下降してシリンダ21内に収納されるピストンロッド23の容積が増加したとき、その容積の増加分を吸収するようにフリーピストン24が下降する。   When a shocking compressive load is applied to the damper 14 to reduce the volume of the second fluid chamber 26, the free piston 24 descends while the gas chamber 27 is contracted to absorb the impact. Further, when a shocking tensile load is applied to the damper 14 to increase the volume of the second fluid chamber 26, the impact is absorbed by the free piston 24 rising while the gas chamber 27 is expanded. Further, when the piston 22 descends and the volume of the piston rod 23 accommodated in the cylinder 21 increases, the free piston 24 descends so as to absorb the increase in the volume.

しかして、電子制御ユニットUは、バネ上加速度センサSaで検出したバネ上加速度、ダンパー変位センサSbで検出したダンパー変位、操舵角センサScで検出した操舵角、横加速度センサSdで検出した横加速度、前後加速度センサSeで検出した前後加速度および車速センサSfで検出した車速とに基づいて、各車輪W…の合計4個のダンパー14…の減衰力を個別に制御することで、路面の凹凸を乗り越える際の車両の動揺を抑えて乗り心地を高めるスカイフック制御のような乗り心地制御と、車両の旋回時のローリングや車両の急加速時や急減速時のピッチングを抑える操縦安定制御とを、車両の運転状態に応じて選択的に実行する。   Thus, the electronic control unit U detects the sprung acceleration detected by the sprung acceleration sensor Sa, the damper displacement detected by the damper displacement sensor Sb, the steering angle detected by the steering angle sensor Sc, and the lateral acceleration detected by the lateral acceleration sensor Sd. Based on the longitudinal acceleration detected by the longitudinal acceleration sensor Se and the vehicle speed detected by the vehicle speed sensor Sf, the damping force of each of the four dampers 14 of each wheel W is individually controlled, so that the unevenness of the road surface is reduced. Ride comfort control such as skyhook control that suppresses vehicle shake when overcoming and enhances ride comfort, and steering stability control that suppresses rolling during turning of the vehicle and pitching during sudden acceleration and deceleration of the vehicle, It is selectively executed according to the driving state of the vehicle.

図3に示すように、前後加速度センサSeで検出した車両の前後加速度XGは、図4に示す特性のローパスフィルター31を通過し、アクセルペダルの踏み込みやブレーキペダルの踏み込みによらない通常走行中の高周波数の前後加速度が遮断される。ローパスフィルター31を通過した前後加速度XGは加速時用微分フィルター32あるいは減速時用微分フィルター33を通過して時間微分さる。図5は加速時用微分フィルター32および減速時用微分フィルター33の特性を示すもので、周波数が0.1Hz以上の領域で減速時のゲインが加速時のゲインよりも大きくなるように設定されている。加速時用微分フィルター32および減速時用微分フィルター33の使い分けは、前後加速度センサSeで検出した車両の前後加速度XGが正(加速)のときは加速時用微分フィルター32を用い、負(減速)のときは減速時用微分フィルター32を用いれば良い。 As shown in FIG. 3, the longitudinal acceleration XG of the vehicle detected by the longitudinal acceleration sensor Se passes through the low-pass filter 31 having the characteristics shown in FIG. 4, and the vehicle is traveling normally without being depressed by the accelerator pedal or the brake pedal. High frequency longitudinal acceleration is blocked. Longitudinal passed through the low pass filter 31 acceleration XG is Ru are passed to the time derivative of the acceleration-time derivative filter 32 or decelerated during a derivative filter 33. FIG. 5 shows the characteristics of the acceleration differential filter 32 and the deceleration differential filter 33. In the frequency range of 0.1 Hz or more, the gain during deceleration is set to be larger than the gain during acceleration. Yes. The differential filter 32 for acceleration and the differential filter 33 for deceleration are selectively used when the vehicle longitudinal acceleration XG detected by the longitudinal acceleration sensor Se is positive (acceleration), and the acceleration differential filter 32 is used and is negative (deceleration). In this case, the differential filter 32 for deceleration may be used.

加速時用微分フィルター32あるいは減速時用微分フィルター33が出力した前後加速度微分値dXG/dtには、車速センサSfで検出した車速Vに基づいてマップ34により検索したゲインが乗算され、ダンパー14の目標減衰力Ftが算出される。   The longitudinal acceleration differential value dXG / dt output from the acceleration differential filter 32 or the deceleration differential filter 33 is multiplied by the gain searched by the map 34 based on the vehicle speed V detected by the vehicle speed sensor Sf. A target damping force Ft is calculated.

図6には、車両の加減速時にダンパー14…の減衰力を高めてピッチングを抑制する操縦安定制御の作用を説明するフローチャートが示される。   FIG. 6 shows a flowchart for explaining the operation of the steering stability control that suppresses pitching by increasing the damping force of the dampers 14 at the time of acceleration / deceleration of the vehicle.

先ずステップS1で前後加速度センサSeにより検出した前後加速度XGを時間微分して前後加速度微分値dXG/dtを算出し、この前後加速度微分値dXG/dtに車速Vに応じて設定したゲインGainを乗算してダンパー14に発生させるべき目標減衰力Ftを算出する。続くステップS2でダンパー変位センサSbにより検出したダンパー変位を時間微分してダンパー速度Vpを算出する。続くステップS3で前記目標減衰力Ftおよび前記ダンパー速度Vpを図7のマップに適用して目標電流Itを検索する。そしてステップS4で前記目標電流Itをダンパー14のコイルに供給して前記目標減衰力Ftを発生させることで、車両のピッチングを抑制して操縦安定性能を向上させる。   First, the longitudinal acceleration XG detected by the longitudinal acceleration sensor Se in step S1 is time-differentiated to calculate a longitudinal acceleration differential value dXG / dt, and the longitudinal acceleration differential value dXG / dt is multiplied by a gain Gain set according to the vehicle speed V. Thus, the target damping force Ft to be generated by the damper 14 is calculated. In the subsequent step S2, the damper speed Vp is calculated by differentiating the damper displacement detected by the damper displacement sensor Sb with respect to time. In the following step S3, the target current It is searched by applying the target damping force Ft and the damper speed Vp to the map of FIG. In step S4, the target current It is supplied to the coil of the damper 14 to generate the target damping force Ft, thereby suppressing the pitching of the vehicle and improving the steering stability performance.

図7は目標減衰力Ftおよびダンパー速度Vpから目標電流Itを検索するマップであって、ダンパー速度Vpが一定の場合には目標減衰力Ftが増加するほど目標電流Itが増加し、また目標減衰力Ftが一定の場合にはダンパー速度Vpが増加するほど目標電流Itが減少する。例えば、目標減衰力FtがFt1の場合、ダンパー速度VpがVptであれば目標電流はIt5であるが、ダンパー速度VpがVpt1に増加すると目標電流はIt4に減少し、ダンパー速度VpがVpt2に減少すると目標電流はIt6に増加する。   FIG. 7 is a map for searching the target current It from the target damping force Ft and the damper speed Vp. When the damper speed Vp is constant, the target current It increases as the target damping force Ft increases. When the force Ft is constant, the target current It decreases as the damper speed Vp increases. For example, when the target damping force Ft is Ft1 and the damper speed Vp is Vpt, the target current is It5. However, when the damper speed Vp increases to Vpt1, the target current decreases to It4 and the damper speed Vp decreases to Vpt2. Then, the target current increases to It6.

しかして、車両の加速時および減速時の前後加速度XGが検出されると、加速に伴うノーズリフトや減速に伴うノーズダイブを抑制すべく、前後加速度XGの微分値dXG/dtに基づいてダンパー14の減衰力を設定するので、車両の前後加速度XGそのものに基づいてダンパー14の減衰力を設定する場合に比べて、制御の遅れを防止して応答性を高めることができる。また車両の前後加速度XGを微分処理する微分フィルターの特性を、車両の減速時のゲインが加速時のゲインよりも大きくなるように、加速時用微分フィルター32と減速時用微分フィルター33と持ち替えるので、比較的に小さい加速度が長い時間発生する加速時と、比較的に大きい減速度が短い時間発生する減速時とでダンパー14の制御時間や制御量を異ならせ、加速時および減速時の両方において車両のピッチングを効果的に抑制して操縦安定性能を高めることができる。 Thus, when the longitudinal acceleration XG at the time of acceleration and deceleration of the vehicle is detected, the damper 14 is controlled based on the differential value dXG / dt of the longitudinal acceleration XG in order to suppress the nose lift accompanying the acceleration and the nose dive accompanying the deceleration. Therefore, compared to the case where the damping force of the damper 14 is set based on the longitudinal acceleration XG itself of the vehicle, the control delay can be prevented and the responsiveness can be improved. The characteristics of the differential filter for differentiating the longitudinal acceleration XG of the vehicle, as the gain during deceleration of the vehicle becomes larger than the gain in acceleration, Mochikaeru between acceleration for differentiating filter 32 and the deceleration-time derivative filter 33 Therefore, the control time and the control amount of the damper 14 are made different between acceleration when a relatively small acceleration occurs for a long time and deceleration when a relatively large deceleration occurs for a short time, and both during acceleration and deceleration. Therefore, it is possible to effectively suppress the pitching of the vehicle and improve the steering stability performance.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、実施例では車両の加速および減速を前後加速度センサSeが出力する前後加速度XGの符号により判断しているが、時定数が大きい加速時用微分フィルター22の出力の符号により判断しても良い。   For example, in the embodiment, the acceleration and deceleration of the vehicle are determined by the sign of the longitudinal acceleration XG output by the longitudinal acceleration sensor Se, but may be determined by the sign of the output of the acceleration differential filter 22 having a large time constant. .

車両のサスペンション装置の正面図Front view of vehicle suspension system 可変減衰力ダンパーの拡大断面図Expanded sectional view of variable damping force damper ダンパーによるピッチ制御の制御則のブロック図Block diagram of control law of pitch control by damper ローパスフィルターの特性を示すグラフGraph showing characteristics of low-pass filter 微分フィルターの特性を示すグラフGraph showing characteristics of differential filter ダンパーの目標電流算出ルーチンのフローチャートDamper target current calculation routine flowchart ダンパー速度および目標減衰力から目標電流を検索するマップMap to search for target current from damper speed and target damping force

14 ダンパー
32 加速時用微分フィルター(フィルター)
33 減速時用微分フィルター(フィルター)
dXG/dt 前後加速度の微分値
S サスペンション装置
Se 前後加速度センサ
U 電子制御ユニット(制御手段)
XG 車両の前後加速度
14 Damper 32 Acceleration differential filter (filter)
33 Differential filter for deceleration (filter)
dXG / dt Longitudinal acceleration differential value S Suspension device Se Longitudinal acceleration sensor U Electronic control unit (control means)
XG Vehicle longitudinal acceleration

Claims (2)

車両のサスペンション装置(S)に設けられたダンパー(14)の減衰力を、制御手段(U)により車両の運動状態に応じて可変制御する可変減衰力ダンパーであって、
前記制御手段(U)は、前後加速度センサ(Se)で検出した車両の前後加速度(XG)を微分フィルター(32,33)で微分処理した前後加速度の微分値(dXG/dt)に基づいてダンパー(14)の減衰力を制御する可変減衰力ダンパーにおいて、
車両の減速時のゲインが加速時のゲインよりも大きくなるように、前記微分フィルター(32,33)の特性を車両の加速時と減速時とで持ち替えることを特徴とする可変減衰力ダンパー。
A variable damping force damper that variably controls the damping force of the damper (14) provided in the suspension device (S) of the vehicle according to the motion state of the vehicle by the control means (U),
The control means (U) is a damper based on the differential value (dXG / dt) of the longitudinal acceleration obtained by differentiating the longitudinal acceleration (XG) of the vehicle detected by the longitudinal acceleration sensor (Se) with the differential filter (32, 33). In the variable damping force damper that controls the damping force of (14),
A variable damping force damper characterized in that the characteristic of the differential filter (32, 33) is changed between when the vehicle is accelerated and when the vehicle is decelerated so that the gain when the vehicle is decelerated is larger than the gain when the vehicle is accelerated.
前記微分フィルター(32,33)の特性は、周波数が0.1Hz以上の領域で減速時のゲインが加速時のゲインよりも大きくなるように設定されることを特徴とする請求項1に記載の可変減衰力ダンパー。The characteristic of the differential filter (32, 33) is set so that the gain at the time of deceleration becomes larger than the gain at the time of acceleration in a region where the frequency is 0.1 Hz or more. Variable damping force damper.
JP2005143536A 2005-05-17 2005-05-17 Variable damping force damper Active JP4546323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143536A JP4546323B2 (en) 2005-05-17 2005-05-17 Variable damping force damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143536A JP4546323B2 (en) 2005-05-17 2005-05-17 Variable damping force damper

Publications (2)

Publication Number Publication Date
JP2006321258A JP2006321258A (en) 2006-11-30
JP4546323B2 true JP4546323B2 (en) 2010-09-15

Family

ID=37541256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143536A Active JP4546323B2 (en) 2005-05-17 2005-05-17 Variable damping force damper

Country Status (1)

Country Link
JP (1) JP4546323B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4879115B2 (en) * 2007-08-07 2012-02-22 本田技研工業株式会社 Control device for variable damping force damper
JP4567034B2 (en) * 2007-08-08 2010-10-20 本田技研工業株式会社 Control device for damping force variable damper
JP4874192B2 (en) * 2007-08-10 2012-02-15 株式会社デンソー Vehicle control apparatus and control system
JP6254323B1 (en) 2017-07-05 2017-12-27 株式会社ショーワ Suspension device and recording medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031807U (en) * 1989-05-29 1991-01-10
JPH0360809B2 (en) * 1986-09-02 1991-09-17 Idemitsu Petrochemical Co
JPH04126621A (en) * 1990-09-18 1992-04-27 Mitsubishi Motors Corp Active suspension device for vehicle
JPH04362411A (en) * 1991-06-10 1992-12-15 Toyota Central Res & Dev Lab Inc Active suspension control device for automobile
JPH06115335A (en) * 1992-10-07 1994-04-26 Toyota Motor Corp Vehicle body posture controller for vehicle
JPH08282237A (en) * 1995-04-20 1996-10-29 Nissan Motor Co Ltd Active type suspension device
JP2001047831A (en) * 1999-08-03 2001-02-20 Nissan Motor Co Ltd Suspension control device
JP2001047832A (en) * 1999-08-05 2001-02-20 Toyota Motor Corp Damping coefficient control device of vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360809B2 (en) * 1986-09-02 1991-09-17 Idemitsu Petrochemical Co
JPH031807U (en) * 1989-05-29 1991-01-10
JPH04126621A (en) * 1990-09-18 1992-04-27 Mitsubishi Motors Corp Active suspension device for vehicle
JPH04362411A (en) * 1991-06-10 1992-12-15 Toyota Central Res & Dev Lab Inc Active suspension control device for automobile
JPH06115335A (en) * 1992-10-07 1994-04-26 Toyota Motor Corp Vehicle body posture controller for vehicle
JPH08282237A (en) * 1995-04-20 1996-10-29 Nissan Motor Co Ltd Active type suspension device
JP2001047831A (en) * 1999-08-03 2001-02-20 Nissan Motor Co Ltd Suspension control device
JP2001047832A (en) * 1999-08-05 2001-02-20 Toyota Motor Corp Damping coefficient control device of vehicle

Also Published As

Publication number Publication date
JP2006321258A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4546307B2 (en) Control device for variable damping force damper
US8165749B2 (en) Control system for adjustable damping force damper
US7593797B2 (en) Control system for adjustable damping force damper
JP5934470B2 (en) Suspension device
JP4972440B2 (en) Control device for damping force variable damper
US7340334B2 (en) Control device of variable damping force damper
KR100841814B1 (en) Semi-Active Shock Absorber Control System
JP4648055B2 (en) Control device for variable damping force damper in vehicle
JP2007040497A (en) Controller of variable damping force damper
JP4546323B2 (en) Variable damping force damper
JP4427555B2 (en) Control device for damping force variable damper
JP5021348B2 (en) Control device for damping force variable damper
JP2006273222A (en) Controlling device for adjustable damping force damper
JP5001585B2 (en) Control device for variable damping force damper
JP4690759B2 (en) Control device for variable damping force damper
JP4421985B2 (en) Road surface condition judgment method
JP6132859B2 (en) Suspension device
JP4371962B2 (en) Variable damping force damper
JP2006273225A (en) Controlling device for adjustable damping force damper
JP2006076319A (en) Variable attenuating force damper
JP3095398B2 (en) Vehicle suspension device
JP2006088739A (en) Damper with variable damping force
JP2006076318A (en) Variable attenuating force damper
JP2006321260A (en) Adjustable damper
JP2006281875A (en) Variable damping force damper control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4546323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250