JP2006273222A - Controlling device for adjustable damping force damper - Google Patents

Controlling device for adjustable damping force damper Download PDF

Info

Publication number
JP2006273222A
JP2006273222A JP2005098164A JP2005098164A JP2006273222A JP 2006273222 A JP2006273222 A JP 2006273222A JP 2005098164 A JP2005098164 A JP 2005098164A JP 2005098164 A JP2005098164 A JP 2005098164A JP 2006273222 A JP2006273222 A JP 2006273222A
Authority
JP
Japan
Prior art keywords
damper
damping force
target current
frequency noise
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005098164A
Other languages
Japanese (ja)
Inventor
Masaki Izawa
正樹 伊澤
Takashi Kato
貴史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005098164A priority Critical patent/JP2006273222A/en
Publication of JP2006273222A publication Critical patent/JP2006273222A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)
  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remove effects of a high frequency noise added to the control input for controlling the damping force of a damper of a suspension device by a simplest constitution. <P>SOLUTION: When a target current for adjusting the damping force of the damper of the suspension device is determined based on a damper speed which is obtained by the time-differentiation of a damper displacement, as the high frequency noise is added in a procedure for obtaining the damper rate, the high frequency noise is added to the target current which is determined by using the damper rate as well, and the switching of the damping force of the damper is frequently performed, and causes noises. However, the effects of the high frequency noise are eliminated by filtering the target current by using a filter which makes a frequency in a nonsuspended resonance region of the suspension device pass, and noises can be reduced by preventing the switching of the damping force of the damper from being frequently performed. Also, the effect of a new frequency noise which is added when the target current is obtained from the damper rate can be eliminated as well, and the damping force of the damper can accurately be controlled. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両のサスペンション装置に設けられたダンパーの減衰力を、制御手段により車両の運動状態に応じて可変制御する可変減衰力ダンパーの制御装置に関する。   The present invention relates to a control device for a variable damping force damper that variably controls a damping force of a damper provided in a suspension device of a vehicle according to a motion state of the vehicle by a control means.

サスペンション装置用の可変減衰力ダンパーの粘性流体として、磁界の作用で粘性が変化する磁気粘性流体(MRF: Magneto-Rheological Fluids )を採用し、シリンダに摺動自在に嵌合するピストンに、その流体通路中の磁気粘性流体に磁界を作用させるためのコイルを設けたものが、下記特許文献1により公知である。この可変減衰力ダンパーによれば、コイルに通電して発生した磁界で流体通路中の磁気粘性流体の粘性を変化させることで、ダンパーの減衰力を任意に制御することができる。   As the viscous fluid of the variable damping force damper for the suspension device, a magnetic viscous fluid (MRF: Magneto-Rheological Fluids) whose viscosity is changed by the action of a magnetic field is adopted, and the fluid is applied to the piston that is slidably fitted into the cylinder. Patent Document 1 below discloses a coil provided with a coil for applying a magnetic field to a magnetorheological fluid in a passage. According to this variable damping force damper, the damping force of the damper can be arbitrarily controlled by changing the viscosity of the magnetorheological fluid in the fluid passage by a magnetic field generated by energizing the coil.

またスカイフック制御を行うべく、ダンパー変位およびバネ上加速度センサの出力からバネ下速度を演算し、このバネ下速度にバネ下共振周波数領域の振動のみを通過させるフィルターを作用させた補正バネ下速度を用いてダンパーのバネ下要求減衰力を算出するものが、下記特許文献2により公知である。
特開昭60−113711号公報 特開平8−268025号公報
In order to perform skyhook control, the unsprung speed is calculated from the damper displacement and the output of the sprung acceleration sensor, and the unsprung speed is corrected by applying a filter that passes only vibrations in the unsprung resonance frequency range to the unsprung speed. Japanese Patent Application Laid-Open Publication No. 2004-228561 calculates the unsprung required damping force of a damper using
JP-A-60-113711 JP-A-8-268025

ところで、ダンパー変位センサで検出したダンパー変位を微分フィルターを通過させて時間微分することでダンパー速度を算出し、このダンパー速度を用いてマップ検索によりダンパーに供給する目標電流を算出する場合、バネ下共振周波数領域までの制御を確実に行うべく位相遅れを最小限に抑えた微分フィルターを設計すると、出力されるダンパー速度にある程度の高周波ノイズが乗ることが避けられないため、ダンパーの目標電流にも高周波ノイズが乗ってしまう。従って、この目標電流でダンパーの減衰力を制御すると、高周波ノイズの影響でダンパーの減衰力の切り換えが頻繁に発生して騒音の原因となる問題がある。   By the way, when calculating the damper speed by differentiating the damper displacement detected by the damper displacement sensor through a differential filter with time, and calculating the target current supplied to the damper by map search using this damper speed, Designing a differential filter that minimizes the phase delay to ensure control up to the resonance frequency range inevitably causes some high-frequency noise to be applied to the output damper speed. High frequency noise gets on. Therefore, when the damping force of the damper is controlled with this target current, there is a problem that the damping force of the damper is frequently switched due to the influence of high-frequency noise and causes noise.

そこで高周波ノイズが乗ったダンパー速度にローパスフィルターを作用させて高周波ノイズを除去した後に、そのダンパー速度から目標電流をマップ検索することが考えられるが、このようにするとマップ検索の際に新たに非線型性の高周波ノイズが乗ってしまうために、やはり目標電流の精度が低下してしまう問題がある。   Therefore, it is conceivable to perform a map search for the target current based on the damper speed after removing the high-frequency noise by applying a low-pass filter to the damper speed on which the high-frequency noise is mounted. Since linear high frequency noise is carried, there is a problem that the accuracy of the target current is lowered.

本発明は前述の事情に鑑みてなされたもので、サスペンション装置のダンパーの減衰力を制御する制御量に乗る高周波ノイズの影響を、最も簡単な構成で除去することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to eliminate the influence of high-frequency noise on a control amount for controlling the damping force of a damper of a suspension device with the simplest configuration.

上記目的を達成するために、請求項1に記載された発明によれば、車両のサスペンション装置に設けられたダンパーの減衰力を調整する制御量を、ダンパー変位を時間微分して求めたダンパー速度に基づいて決定する可変減衰力ダンパーの制御装置であって、前記制御量を、サスペンション装置のバネ下共振領域の周波数を通過させるフィルターを用いて濾波することを特徴とする可変減衰力ダンパーの制御装置が提案される。   In order to achieve the above object, according to the first aspect of the present invention, the damper speed obtained by differentiating the damper displacement with respect to the control amount for adjusting the damping force of the damper provided in the suspension device of the vehicle. A control apparatus for a variable damping force damper, wherein the control amount is filtered using a filter that passes the frequency of the unsprung resonance region of the suspension device. A device is proposed.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記フィルターは、15Hz以下の周波数を通過させるローパスフィルターであることを特徴とする可変減衰力ダンパーの制御装置が提案される。   According to a second aspect of the invention, in addition to the configuration of the first aspect, the filter is a low-pass filter that allows a frequency of 15 Hz or less to pass therethrough. Proposed.

尚、実施例の目標電流Itは本発明の制御量に対応する。   The target current It of the embodiment corresponds to the control amount of the present invention.

上記構成によれば、車両のサスペンション装置に設けたダンパーの減衰力を調整する制御量を、ダンパー変位を時間微分して求めたダンパー速度に基づいて決定すると、ダンパー速度を求める過程で高周波ノイズが乗ることが避けられないため、このダンパー速度を用いて決定した前記制御量にも高周波ノイズが乗ってしまい、ダンパーの減衰力の切り換えが頻繁に行われて騒音の原因となる。しかしながら、サスペンション装置のバネ下共振領域の周波数、具体的には15Hz以下の周波数を通過させるフィルターを用いて前記制御量を濾波することで高周波ノイズの影響を除去し、ダンパーの減衰力の切り換えが頻繁に行われるのを防止して騒音を低減することができる。しかもダンパー速度から制御量を求める際に乗った新たな高周波ノイズの影響も除去し、ダンパーの減衰力を精度良く制御することができる。   According to the above configuration, when the control amount for adjusting the damping force of the damper provided in the vehicle suspension device is determined based on the damper speed obtained by differentiating the damper displacement with respect to time, high-frequency noise is generated in the process of determining the damper speed. Since riding is inevitable, high-frequency noise also rides on the control amount determined using this damper speed, and the damping force of the damper is frequently switched, causing noise. However, the influence of high frequency noise is removed by filtering the control amount using a filter that passes the frequency of the unsprung resonance region of the suspension device, specifically, a frequency of 15 Hz or less, and the damping force of the damper can be switched. It is possible to prevent frequent occurrence and reduce noise. In addition, the influence of new high-frequency noise on the occasion of obtaining the control amount from the damper speed can be removed, and the damping force of the damper can be controlled with high accuracy.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図6は本発明の一実施例を示すもので、図1は車両のサスペンション装置の正面図、図2は可変減衰力ダンパーの拡大断面図、図3はダンパーの減衰力制御のフローチャート、図4はダンパー速度および目標減衰力から目標電流を検索するマップ、図5はローパスフィルターの濾波特性を示すグラフ、図6は目標電流の濾波前および濾波後の波形を示すグラフである。   1 to 6 show an embodiment of the present invention. FIG. 1 is a front view of a vehicle suspension device, FIG. 2 is an enlarged sectional view of a variable damping force damper, and FIG. 3 is a flowchart of damping force control of the damper. 4 is a map for searching for the target current from the damper speed and the target damping force, FIG. 5 is a graph showing the filtering characteristics of the low-pass filter, and FIG. 6 is a graph showing the waveform of the target current before and after filtering.

図1に示すように、四輪の自動車の車輪Wを懸架するサスペンション装置Sは、車体11にナックル12を上下動自在に支持するサスペンションアーム13と、サスペンションアーム13および車体11を接続する可変減衰力のダンパー14と、サスペンションアーム13および車体11を接続するコイルバネ15とを備える。ダンパー14の減衰力を制御する電子制御ユニットUには、バネ上加速度を検出するバネ上加速度センサSaからの信号と、ダンパー14の変位(ストローク)を検出するダンパー変位センサSbからの信号と、車両の横加速度を検出する横加速度センサScからの信号と、車速を検出する車速センサSdからの信号とが入力される。   As shown in FIG. 1, a suspension device S that suspends a wheel W of a four-wheeled vehicle has a suspension arm 13 that supports a knuckle 12 in a vertically movable manner on a vehicle body 11, and a variable damping that connects the suspension arm 13 and the vehicle body 11. A force damper 14 and a coil spring 15 connecting the suspension arm 13 and the vehicle body 11 are provided. The electronic control unit U that controls the damping force of the damper 14 includes a signal from the sprung acceleration sensor Sa that detects the sprung acceleration, a signal from the damper displacement sensor Sb that detects the displacement (stroke) of the damper 14, and A signal from the lateral acceleration sensor Sc that detects the lateral acceleration of the vehicle and a signal from the vehicle speed sensor Sd that detects the vehicle speed are input.

図2に示すように、ダンパー14は、下端がサスペンションアーム13に接続されたシリンダ21と、シリンダ21に摺動自在に嵌合するピストン22と、ピストン22から上方に延びてシリンダ21の上壁を液密に貫通し、上端を車体に接続されたピストンロッド23と、シリンダの下部に摺動自在に嵌合するフリーピストン24とを備えており、シリンダ21の内部にピストン22により仕切られた上側の第1流体室25および下側の第2流体室26が区画されるとともに、フリーピストン24の下部に圧縮ガスが封入されたガス室27が区画される。   As shown in FIG. 2, the damper 14 includes a cylinder 21 whose lower end is connected to the suspension arm 13, a piston 22 that is slidably fitted into the cylinder 21, and an upper wall of the cylinder 21 that extends upward from the piston 22. And a free piston 24 that is slidably fitted to the lower part of the cylinder, and is partitioned by the piston 22 inside the cylinder 21. An upper first fluid chamber 25 and a lower second fluid chamber 26 are partitioned, and a gas chamber 27 in which a compressed gas is sealed in a lower portion of the free piston 24 is partitioned.

ピストン22にはその上下面を連通させるように複数の流体通路22a…が形成されており、これらの流体通路22a…によって第1、第2流体室25,26が相互に連通する。第1、第2流体室25,26および流体通路22a…に封入される磁気粘性流体は、オイルのような粘性流体に鉄粉のような磁性体微粒子を分散させたもので、磁界を加えると磁力線に沿って磁性体微粒子が整列することで粘性流体が流れ難くなり、見かけの粘性が増加する性質を有している。ピストン22の内部にコイル28が設けられており、電子制御ユニットUによりコイル28への通電が制御される。コイル28に通電されると矢印で示すように磁束が発生し、流体通路22a…を通過する磁束により磁気粘性流体の粘性が変化する。   A plurality of fluid passages 22a are formed in the piston 22 so that the upper and lower surfaces thereof communicate with each other, and the first and second fluid chambers 25 and 26 communicate with each other through these fluid passages 22a. The magnetorheological fluid sealed in the first and second fluid chambers 25 and 26 and the fluid passages 22a is a dispersion of magnetic fine particles such as iron powder in a viscous fluid such as oil. By aligning the magnetic fine particles along the magnetic field lines, it is difficult for the viscous fluid to flow, and the apparent viscosity increases. A coil 28 is provided inside the piston 22, and energization of the coil 28 is controlled by the electronic control unit U. When the coil 28 is energized, a magnetic flux is generated as indicated by an arrow, and the viscosity of the magnetorheological fluid changes due to the magnetic flux passing through the fluid passages 22a.

ダンパー14が収縮してシリンダ21に対してピストン22が下動すると、第1流体室25の容積が増加して第2流体室26の容積が減少するため、第2流体室26の磁気粘性流体がピストン22の流体通路22a…を通過して第1流体室25に流入し、逆にダンパー14が伸長してシリンダ21に対してピストン22が上動すると、第2流体室26の容積が増加して第1流体室25の容積が減少するため、第1流体室25の磁気粘性流体がピストン22の流体通路22a…を通過して第2流体室26に流入し、その際に流体通路22a…を通過する磁気粘性流体の粘性抵抗によりダンパー14が減衰力を発生する。   When the damper 14 contracts and the piston 22 moves downward with respect to the cylinder 21, the volume of the first fluid chamber 25 increases and the volume of the second fluid chamber 26 decreases. Passes through the fluid passage 22a of the piston 22 and flows into the first fluid chamber 25. Conversely, when the damper 14 extends and the piston 22 moves upward relative to the cylinder 21, the volume of the second fluid chamber 26 increases. Since the volume of the first fluid chamber 25 decreases, the magnetorheological fluid in the first fluid chamber 25 passes through the fluid passage 22a ... of the piston 22 and flows into the second fluid chamber 26, and at that time, the fluid passage 22a The damper 14 generates a damping force due to the viscous resistance of the magnetorheological fluid passing through.

このとき、コイル28に通電して磁界を発生させると、ピストン22の流体通路22a…に存在する磁気粘性流体の見かけの粘性が増加して該流体通路22aを通過し難くなるため、ダンパー14の減衰力が増加する。この減衰力の増加量は、コイル28に供給する電流の大きさにより任意に制御することができる。   At this time, when the coil 28 is energized to generate a magnetic field, the apparent viscosity of the magnetorheological fluid existing in the fluid passages 22a of the piston 22 increases, making it difficult to pass through the fluid passage 22a. Damping force increases. The increase amount of the damping force can be arbitrarily controlled by the magnitude of the current supplied to the coil 28.

尚、ダンパー14に衝撃的な圧縮荷重が加わって第2流体室26の容積が減少するとき、ガス室27を縮小させながらフリーピストン24が下降することで衝撃を吸収する。またダンパー14に衝撃的な引張荷重が加わって第2流体室26の容積が増加するとき、ガス室27を拡張させながらフリーピストン24が上昇することで衝撃を吸収する。更に、ピストン22が下降してシリンダ21内に収納されるピストンロッド23の容積が増加したとき、その容積の増加分を吸収するようにフリーピストン24が下降する。   When a shocking compressive load is applied to the damper 14 to reduce the volume of the second fluid chamber 26, the free piston 24 descends while the gas chamber 27 is contracted to absorb the impact. Further, when a shocking tensile load is applied to the damper 14 to increase the volume of the second fluid chamber 26, the impact is absorbed by the free piston 24 rising while the gas chamber 27 is expanded. Further, when the piston 22 descends and the volume of the piston rod 23 accommodated in the cylinder 21 increases, the free piston 24 descends so as to absorb the increase in the volume.

しかして、電子制御ユニットUは、バネ上加速度センサSaで検出したバネ上加速度、ダンパー変位センサSbで検出したダンパー変位、横加速度センサScで検出した横加速度(あるいは車速センサSdで検出した車速)に基づいて、各車輪W…の合計4個のダンパー14…の減衰力を個別に制御することで、路面の凹凸を乗り越える際の車両の動揺を抑えて乗り心地を高めるスカイフック制御のような乗り心地制御と、車両の旋回時のローリングや車両の急加速時や急減速時のピッチングを抑える操縦安定制御とを、車両の運転状態に応じて選択的に実行する。   Thus, the electronic control unit U detects the sprung acceleration detected by the sprung acceleration sensor Sa, the damper displacement detected by the damper displacement sensor Sb, the lateral acceleration detected by the lateral acceleration sensor Sc (or the vehicle speed detected by the vehicle speed sensor Sd). Based on the above, by controlling the damping force of each of the four dampers 14 of each wheel W individually, such as skyhook control that increases the ride comfort by suppressing the vehicle swaying when overcoming the road surface unevenness Ride comfort control and steering stability control that suppresses rolling during turning of the vehicle and pitching during sudden acceleration and deceleration of the vehicle are selectively executed according to the driving state of the vehicle.

図3には、車両の旋回時にダンパー14…の減衰力を高めてローリングを抑制する操縦安定制御の作用を説明するフローチャートが示される。   FIG. 3 shows a flowchart for explaining the operation of the steering stability control that suppresses rolling by increasing the damping force of the dampers 14 when the vehicle turns.

先ずステップS1で横加速度センサScにより検出した横加速度YGを時間微分して横加速度微分値dYG/dtを算出し、この横加速度微分値dYG/dtにゲインGainを乗算してダンパー14に発生させるべき目標減衰力Ftを算出する。続くステップS2でダンパー変位センサSbにより検出したダンパー変位を時間微分してダンパー速度Vpを算出する。続くステップS3で前記目標減衰力Ftおよび前記ダンパー速度Vpを図4のマップに適用して目標電流Itを検索する。そしてステップS4で前記目標電流Itをダンパー14のコイルに供給して前記目標減衰力Ftを発生させることで、車両のローリングを抑制して操縦安定性能を向上させる。   First, in step S1, the lateral acceleration YG detected by the lateral acceleration sensor Sc is time-differentiated to calculate a lateral acceleration differential value dYG / dt, and the lateral acceleration differential value dYG / dt is multiplied by a gain Gain to be generated in the damper 14. The power target damping force Ft is calculated. In the subsequent step S2, the damper speed Vp is calculated by differentiating the damper displacement detected by the damper displacement sensor Sb with respect to time. In the following step S3, the target current It is searched by applying the target damping force Ft and the damper speed Vp to the map of FIG. In step S4, the target current It is supplied to the coil of the damper 14 to generate the target damping force Ft, thereby suppressing rolling of the vehicle and improving the steering stability performance.

図4は目標減衰力Ftおよびダンパー速度Vpから目標電流Itを検索するマップであって、ダンパー速度Vpが一定の場合には目標減衰力Ftが増加するほど目標電流Itが増加し、また目標減衰力Ftが一定の場合にはダンパー速度Vpが増加するほど目標電流Itが減少する。例えば、目標減衰力FtがFt1の場合、ダンパー速度VpがVptであれば目標電流はIt5であるが、ダンパー速度VpがVpt1に増加すると目標電流はIt4に減少し、ダンパー速度VpがVpt2に減少すると目標電流はIt6に増加する。   FIG. 4 is a map for retrieving the target current It from the target damping force Ft and the damper speed Vp. When the damper speed Vp is constant, the target current It increases as the target damping force Ft increases. When the force Ft is constant, the target current It decreases as the damper speed Vp increases. For example, when the target damping force Ft is Ft1 and the damper speed Vp is Vpt, the target current is It5, but when the damper speed Vp increases to Vpt1, the target current decreases to It4 and the damper speed Vp decreases to Vpt2. Then, the target current increases to It6.

ところで、図4のマップの横軸のパラメータであるダンパー速度Vpは、ダンパー変位センサSbで検出したダンパー変位を微分フィルターを通過させて時間微分したものに相当するが、バネ下共振領域までの制御を確実に行うべく位相遅れを最小限に抑えるように微分フィルターを設計すると、出力されるダンパー速度Vpにある程度の高周波ノイズが乗ることが避けられない。従来は、この高周波ノイズが乗ったダンパー速度Vpをローパスフィルターを通過させて高周波ノイズ成分を除去した後に、図4のマップから目標電流Itを検索していたが、本実施例では高周波ノイズが乗ったダンパー速度Vpをそのまま図4のマップに適用して目標電流Itを検索する。   Incidentally, the damper speed Vp, which is a parameter on the horizontal axis of the map of FIG. 4, corresponds to a time-differentiated damper displacement detected by the damper displacement sensor Sb through a differential filter. If the differential filter is designed so as to minimize the phase delay in order to reliably perform the above, it is inevitable that a certain amount of high-frequency noise is applied to the output damper speed Vp. Conventionally, the target current It is searched from the map of FIG. 4 after passing the damper speed Vp on which the high-frequency noise is applied through a low-pass filter to remove the high-frequency noise component. In this embodiment, the high-frequency noise is applied. The target current It is searched by applying the damper speed Vp as it is to the map of FIG.

図6の細線は上述のようにして得られた目標電流Itの波形を示すもので、ダンパー速度Vpの高周波ノイズの影響で目標電流Itにも高周波ノイズが乗っていることが分かる。そこで、高周波ノイズが乗った目標電流Itを図5に示すローパスフィルターを通過させ、サスペンションSのバネ下共振領域の共振周波数に相当する15Hz以下の振動波形のみを抽出する。図6における太線は前記ローパスフィルターを通過させた目標電流Itの波形を示すもので、高周波成分が除去されてバネ下共振領域の波形が抽出されていることが分かる。従って、この目標電流Itでダンパー14の減衰力を制御することで、車両のローリングを抑制する操縦安定制御を的確に行うことができ、しかも高周波ノイズによるダンパー14の減衰力の切換頻度の増加を抑制することで騒音の低減に寄与することができる。   The thin line in FIG. 6 shows the waveform of the target current It obtained as described above, and it can be seen that the target current It also has high frequency noise due to the high frequency noise of the damper speed Vp. Therefore, the target current It carrying high-frequency noise is passed through the low-pass filter shown in FIG. 5, and only the vibration waveform of 15 Hz or less corresponding to the resonance frequency of the unsprung resonance region of the suspension S is extracted. The thick line in FIG. 6 shows the waveform of the target current It passed through the low-pass filter, and it can be seen that the waveform of the unsprung resonance region is extracted by removing the high frequency component. Therefore, by controlling the damping force of the damper 14 with the target current It, it is possible to accurately perform the steering stability control that suppresses rolling of the vehicle, and to increase the switching frequency of the damping force of the damper 14 due to the high frequency noise. It can contribute to noise reduction by suppressing.

またダンパー変位センサSbで検出したダンパー変位を微分フィルターを通過させてダンパー速度Vpを求める際に、ある程度のノイズを許容することができるので、位相遅れの少ない微分フィルターを用いてダンパー速度Vpの位相遅れを最小限に抑えることができる。更に目標電流Itを求める過程の最終段にローパスフィルターを配置したので、このローパスフィルターでマップ検索の際に発生したノイズをも除去することができる。   Further, when the damper displacement detected by the damper displacement sensor Sb is passed through the differential filter to obtain the damper speed Vp, a certain amount of noise can be allowed. Therefore, the phase of the damper speed Vp is determined using a differential filter with little phase delay. Delay can be minimized. Further, since a low-pass filter is disposed at the final stage of the process of obtaining the target current It, noise generated during map search can be removed by this low-pass filter.

尚、上述した操縦安定制御が行われていないときの乗り心地制御は周知のスカイフック制御であり、バネ上速度(上向きを正)とダンパー速度(伸長方向を正)とが同方向であるとき、ダンパー14…は減衰力を増加させる方向に制御され、バネ上速度とダンパー速度とが逆方向であるとき、ダンパー14…は減衰力を減少させる方向に制御される。バネ上速度はバネ上加速度センサSaで検出したバネ上加速度を積分して得ることができ、ダンパー速度はダンパー変位センサSbで検出したダンパー変位を微分して得ることができる。   The ride comfort control when the above-described steering stability control is not performed is the well-known skyhook control, and when the sprung speed (upward is positive) and the damper speed (extension direction is positive) are the same direction. The dampers 14 are controlled to increase the damping force. When the sprung speed and the damper speed are opposite directions, the dampers 14 are controlled to decrease the damping force. The sprung speed can be obtained by integrating the sprung acceleration detected by the sprung acceleration sensor Sa, and the damper speed can be obtained by differentiating the damper displacement detected by the damper displacement sensor Sb.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、実施例では横加速度センサScで検出した横加速度YGを時間微分した横加速度微分値dYG/dtに基づいて車両のローリングを抑制する操縦安定制御について説明したが、本発明は車速センサSdで検出した車速を2階時間微分した前後加速度微分値dXG/dtに基づいて車両のピッチングを抑制する操縦安定制御に対しても適用することができる。   For example, in the embodiment, the steering stability control that suppresses the rolling of the vehicle based on the lateral acceleration differential value dYG / dt obtained by time-differentiating the lateral acceleration YG detected by the lateral acceleration sensor Sc has been described. However, the present invention provides the vehicle speed sensor Sd. The present invention can also be applied to steering stability control that suppresses pitching of the vehicle based on the longitudinal acceleration differential value dXG / dt obtained by differentiating the detected vehicle speed by the second floor time.

また実施例ではダンパー14…の減衰力を磁気粘性流体を用いて可変制御しているが、減衰力を可変制御する手法は任意である。   In the embodiment, the damping force of the dampers 14 is variably controlled using a magnetorheological fluid, but any method for variably controlling the damping force is arbitrary.

車両のサスペンション装置の正面図Front view of vehicle suspension system 可変減衰力ダンパーの拡大断面図Expanded sectional view of variable damping force damper ダンパーの減衰力制御のフローチャートFlow chart of damper damping force control ダンパー速度および目標減衰力から目標電流を検索するマップMap to search for target current from damper speed and target damping force ローパスフィルターの濾波特性を示すグラフGraph showing the filtering characteristics of a low-pass filter 目標電流の濾波前および濾波後の波形を示すグラフGraph showing the waveform of the target current before and after filtering

符号の説明Explanation of symbols

14 ダンパー
It 制御量(目標電流)
S サスペンション装置
14 Damper It Control amount (Target current)
S suspension device

Claims (2)

車両のサスペンション装置(S)に設けられたダンパー(14)の減衰力を調整する制御量(It)を、ダンパー変位を時間微分して求めたダンパー速度(Vp)に基づいて決定する可変減衰力ダンパーの制御装置であって、
前記制御量(It)を、サスペンション装置(S)のバネ下共振領域の周波数を通過させるフィルターを用いて濾波することを特徴とする可変減衰力ダンパーの制御装置。
Variable damping force for determining a control amount (It) for adjusting the damping force of the damper (14) provided in the vehicle suspension device (S) based on the damper speed (Vp) obtained by differentiating the damper displacement over time A damper control device,
A control device for a variable damping force damper, wherein the control amount (It) is filtered using a filter that allows the frequency of the unsprung resonance region of the suspension device (S) to pass through.
前記フィルターは、15Hz以下の周波数を通過させるローパスフィルターであることを特徴とする、請求項1に記載の可変減衰力ダンパーの制御装置。
The control device for a variable damping force damper according to claim 1, wherein the filter is a low-pass filter that passes a frequency of 15 Hz or less.
JP2005098164A 2005-03-30 2005-03-30 Controlling device for adjustable damping force damper Pending JP2006273222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098164A JP2006273222A (en) 2005-03-30 2005-03-30 Controlling device for adjustable damping force damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098164A JP2006273222A (en) 2005-03-30 2005-03-30 Controlling device for adjustable damping force damper

Publications (1)

Publication Number Publication Date
JP2006273222A true JP2006273222A (en) 2006-10-12

Family

ID=37208364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098164A Pending JP2006273222A (en) 2005-03-30 2005-03-30 Controlling device for adjustable damping force damper

Country Status (1)

Country Link
JP (1) JP2006273222A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275137A (en) * 2007-04-26 2008-11-13 S & T Daewoo Co Ltd Damper equipped with relative displacement measurement sensor
EP2022655A1 (en) * 2007-08-08 2009-02-11 Honda Motor Co., Ltd Control apparatus of a variable damping force damper
JP2009040140A (en) * 2007-08-07 2009-02-26 Honda Motor Co Ltd Controller for variable attenuation force damper
JP2011016389A (en) * 2009-07-07 2011-01-27 Honda Motor Co Ltd Control device for damping force variable damper
JP2012177454A (en) * 2011-02-28 2012-09-13 Kyb Co Ltd Carriage
JP5841200B1 (en) * 2014-07-08 2016-01-13 Kyb株式会社 Signal processing apparatus, suspension control apparatus, and signal processing method
CN111880439A (en) * 2020-07-10 2020-11-03 清华大学 Method and apparatus for controlling current of magnetorheological damper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596922A (en) * 1991-05-16 1993-04-20 Toyota Motor Corp Control device for active suspension
JPH08268025A (en) * 1995-03-31 1996-10-15 Toyota Central Res & Dev Lab Inc Suspension device for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596922A (en) * 1991-05-16 1993-04-20 Toyota Motor Corp Control device for active suspension
JPH08268025A (en) * 1995-03-31 1996-10-15 Toyota Central Res & Dev Lab Inc Suspension device for vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275137A (en) * 2007-04-26 2008-11-13 S & T Daewoo Co Ltd Damper equipped with relative displacement measurement sensor
US7992692B2 (en) 2007-04-26 2011-08-09 S & T Daewoo Co., Ltd. Damper equipped with relative displacement detecting sensor
JP2009040140A (en) * 2007-08-07 2009-02-26 Honda Motor Co Ltd Controller for variable attenuation force damper
JP2009040171A (en) * 2007-08-08 2009-02-26 Honda Motor Co Ltd Controller for attenuation force variable damper
JP4567034B2 (en) * 2007-08-08 2010-10-20 本田技研工業株式会社 Control device for damping force variable damper
EP2022655A1 (en) * 2007-08-08 2009-02-11 Honda Motor Co., Ltd Control apparatus of a variable damping force damper
US8078360B2 (en) 2007-08-08 2011-12-13 Honda Motor Co., Ltd. Control apparatus of a variable damping force damper
JP2011016389A (en) * 2009-07-07 2011-01-27 Honda Motor Co Ltd Control device for damping force variable damper
JP2012177454A (en) * 2011-02-28 2012-09-13 Kyb Co Ltd Carriage
JP5841200B1 (en) * 2014-07-08 2016-01-13 Kyb株式会社 Signal processing apparatus, suspension control apparatus, and signal processing method
WO2016006443A1 (en) * 2014-07-08 2016-01-14 Kyb株式会社 Signal processing device, suspension control device, and signal processing method
CN111880439A (en) * 2020-07-10 2020-11-03 清华大学 Method and apparatus for controlling current of magnetorheological damper
CN111880439B (en) * 2020-07-10 2021-06-29 清华大学 Method and apparatus for controlling current of magnetorheological damper

Similar Documents

Publication Publication Date Title
JP4546307B2 (en) Control device for variable damping force damper
JP4972440B2 (en) Control device for damping force variable damper
JP4567034B2 (en) Control device for damping force variable damper
US8165749B2 (en) Control system for adjustable damping force damper
US7593797B2 (en) Control system for adjustable damping force damper
JP2006273222A (en) Controlling device for adjustable damping force damper
JP4648055B2 (en) Control device for variable damping force damper in vehicle
JP5021348B2 (en) Control device for damping force variable damper
JP4427555B2 (en) Control device for damping force variable damper
JP2007225023A (en) Variable attenuating force damper
JP4546323B2 (en) Variable damping force damper
JP2006077787A (en) Variable damping force damper
JP4421985B2 (en) Road surface condition judgment method
JP2006321259A (en) Adjustable damper
JP4690759B2 (en) Control device for variable damping force damper
JP5043751B2 (en) Control device for damping force variable damper
JP2006273225A (en) Controlling device for adjustable damping force damper
JP4371962B2 (en) Variable damping force damper
JP2006281875A (en) Variable damping force damper control device
JP2010095210A (en) Vehicular suspension device
JP2006335160A (en) Vibration control system and vibration control method for vehicle body
JP2006076318A (en) Variable attenuating force damper
JP2007290461A (en) Vehicle equipped with damping force-variable damper
JP2006088739A (en) Damper with variable damping force
JP5131685B2 (en) Control device for damping force variable damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100428