JP2006279558A - 通信端末及び統制局装置及び衛星通信装置 - Google Patents

通信端末及び統制局装置及び衛星通信装置 Download PDF

Info

Publication number
JP2006279558A
JP2006279558A JP2005095802A JP2005095802A JP2006279558A JP 2006279558 A JP2006279558 A JP 2006279558A JP 2005095802 A JP2005095802 A JP 2005095802A JP 2005095802 A JP2005095802 A JP 2005095802A JP 2006279558 A JP2006279558 A JP 2006279558A
Authority
JP
Japan
Prior art keywords
satellite
signal
downlink
frequency
downlink signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005095802A
Other languages
English (en)
Inventor
Yoshiatsu Machino
好孜 町野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005095802A priority Critical patent/JP2006279558A/ja
Publication of JP2006279558A publication Critical patent/JP2006279558A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

【課題】 無瞬断の衛星ハンドオーバを提供する。
【解決手段】 OUT衛星は、固定端末局Aからアップリンク信号F(h1)を受信し、これをダウンリンク信号f(h1)に変換してダウンリンクしている。固定端末局Bは、このダウンリンク信号f(h1)受信している。OUT衛星とIN衛星とが会合点の近傍に位置するとともに両者が所定の距離以下となった場合に、あらかじめ統制局Cの統制局装置300から送信を受けていたコマンドに基づいて、IN衛星は、OUT衛星が受信しているアップリンク信号F(h1)と同一の信号を受信し、これをOUT衛星によるダウンリンク信号f(h1)の周波数と異なる周波数のダウンリンク信号f(L1)に変換してダウンリンクする。固定端末局Bは、ダウンリンク信号f(h1)とダウンリンク信号f(L1)との2周波を受信し、両衛星からの伝播遅延を補正し、ビット単位で合成する。
【選択図】 図4

Description

本発明は、マルチビーム・シングルホップ通信における衛星ハンドオーバ及びビームハンドオーバを実行する通信端末、統制局装置及び衛星通信装置に関する。
準天頂衛星システムでは、軌道上に3機の衛星を配置し、各衛星が8時間ずつのサービスを受け持つ。このため、衛星間の無瞬断ハンドオーバが不可欠である。また、準天頂衛星がマルチビームによるサービスを行う場合は、無瞬断ビームハンドオーバが不可欠となる。従来の技術(例えば特許文献1)では、衛星ハンドオーバについての開示はあるが、ビームハンドオーバに関する技術の開示はない。また、従来の技術(特許文献1)は、2機の衛星が接近する数分間に衛星ハンドオーバを行なうものであり、時間の制約があった。
特開2004−080466号公報
本発明は、無瞬断の衛星ハンドオーバ及び無瞬断のビームハンドオーバを提供することを目的とする。また、無瞬断の衛星ハンドオーバ及びビームハンドオーバを同一原理で実現することを目的とする。
本発明の通信端末は、
所定の周波数のアップリンク信号を受信し受信した前記アップリンク信号の周波数を変換し第1ダウンリンク信号としてダウンリンクする第1衛星と、前記アップリンク信号を受信し受信した前記アップリンク信号の周波数を前記第1ダウンリンク信号の周波数と異なる周波数に変換し第2ダウンリンク信号としてダウンリンクする第2衛星とから、前記第1ダウンリンク信号と前記第2ダウンリンク信号とを受信する受信部と、
前記受信部が受信した前記第1ダウンリンク信号と前記第2ダウンリンク信号とを蓄積する蓄積部と、
前記蓄積部が蓄積した前記第1ダウンリンク信号と前記第2ダウンリンク信号とに基づいて、前記アップリンク信号に対応する対応信号を生成する生成部と
を備えたことを特徴とする。
本発明により、無瞬断の衛星ハンドオーバを実現することができる。
実施の形態1.
図1〜図37を用いて実施の形態1における「衛星ハンドオーバ」と「ビームハンドオーバ」を説明する。
「衛星ハンドオーバ」とは、運用する衛星を他の衛星の運用に切り替えることをいう。また、「ビームハンドオーバ」とは、マルチビーム衛星の運用において、送信あるいは受信に使用しているビームを他のビームに切り替えることをいう。例えば本実施の形態1の「衛星ハンドオーバ」は、切替元の衛星と、切替先の衛星とが一時的に同一の信号を受信して互いに異なる周波数のダウンリンク信号に変換してそれぞれダウンリンクする。通信端末はこれら周波数の異なる2周波を受信して伝播遅延補正をおこない、ビット単位の合成を行う。これにより無瞬断の衛星ハンドオーバを実現する。
本実施の形態1では、非静止衛星の例として準天頂衛星を想定している。まず、準天頂衛星について説明する。図1〜図3を用いて「準天頂衛星」を説明する。「準天頂衛星」とは、非静止衛星であって、通常の静止衛星に比べて高緯度地方において高い仰角の衛星をいう。高い仰角が得られることから、静止衛星に比較して建物等の遮蔽等の影響が少なく、通信場所が随時に変わる移動体の通信に適している。
図1は、準天頂衛星の軌道の一例をあらわしている。この例の準天頂衛星は、赤道面から約45度の傾斜角になるように遠地点で約40、000km、近地点で約32、000kmの上空を地球の自転に合わせて1日に1周回する。また、準天頂衛星は、昇交点赤経(赤道面との交点)において120度ずつ離れるように準天頂衛星10、準天頂衛星20及び準天頂衛星30の3機が配置される。しかしこれに限らず、軌道、及び機数の配置は、この例と異なる方式でも構わない。
(1)図2は、地上を固定して考えた場合に、図1における準天頂衛星の軌道を示している。図2に示すように、準天頂衛星10、準天頂衛星20、準天頂衛星30は、会合点4を交点とする「8の字」を描くように周回する。準天頂衛星10、準天頂衛星20、準天頂衛星30は、図1に示すように個別の衛星軌道を周回しているが、それぞれの衛星軌道には他の衛星の衛星軌道と交差する位置があり、衛星軌道が交差している位置にて交差する。このような複数の衛星が交差することを会合という。そして複数の非静止衛星が会合する位置を「会合点」という。後述の図16に示すように、図2の準天頂衛星10〜30は、準天頂衛星10と準天頂衛星20、準天頂衛星20と準天頂衛星30、及び準天頂衛星30と準天頂衛星10と、いずれの組も会合する。
(2)3機の準天頂衛星は、8時間ずつ交代するように、切れ目なく日本上空に位置する。図2に示す状態において、準天頂衛星10は、「8の字の上部の軌道」から出ようとしている。以下、「8の字の上部の軌道」から出ようとしている準天頂衛星を「OUT衛星」(図2の準天頂衛星10の状態の衛星)と呼ぶこととする。準天頂衛星20は、「8の字の上部の軌道」(日本を囲む部分)に入ろうとしている。以下、「8の字の上部の軌道」(日本を囲む部分)に入ろうとする準天頂衛星を「IN衛星」(図2の準天頂衛星20の状態の衛星)と呼ぶこととする。図2において、準天頂衛星10と準天頂衛星20とが会合点4の近傍に位置する場合、準天頂衛星30は、「8の字軌道」の下部に位置する。
(3)IN衛星である準天頂衛星20は、会合点4を通過し「8の字の上部の軌道」に入り再び会合点4に戻るまでに8時間を要する。また、このときOUT衛星となる準天頂衛星10は、「8の字の上部の軌道」から出て、準天頂衛星20と入れ替わり会合点4を通過し準天頂衛星30の位置に向かう。準天頂衛星10は会合点4から準天頂衛星30の位置に到達するまで8時間かかる。また、このとき、準天頂衛星30は会合点4に向かうが、準天頂衛星30の位置から会合点4に到達するまでに8時間を要する。したがって、8時間ごとに、「8の字の上部の軌道」には準天頂衛星10、準天頂衛星20、準天頂衛星30のいずれかが入れ替わりで存在する。日本では、「8の字の上部の軌道」に存在する準天頂衛星からの信号を高仰角受信することができる。
図3(出典:www2.crl.go.jp/ka/control/efsat/INdex−J.html)は、準天頂衛星10が高仰角であることを、静止衛星との比較において示す図である。静止衛星は仰角が48度以下と小さいため、ビルなどに電波がさえぎられる。これに対して、準天頂衛星10は仰角が60度以上(図3では60度以上とあるが、70度以上も可能である)と大きいため、ビルの谷間でも電波が遮られることが少ない。
次に、図4を参照して「衛星ハンドオーバ」について説明する。上述の図2の準天頂衛星システムでは、軌道上に3機の衛星を配置し、各衛星が8時間ずつのサービスを受け持つ。このため、図2の準天頂衛星システムでは、会合点4において、現在運用中のOUT衛星をIN衛星の運用に切り替える「衛星ハンドオーバ」が必要となる。すなわち、図2における「8の字の上部の軌道」においては、準天頂衛星10〜準天頂衛星30の何れか1機が運用中である。そして、会合点4において次に運用となるべきIN衛星と、現在運用中のOUT衛星とが入れ替わる。図2における「8の字の上部の軌道」の部分を「アクティブ領域」と呼ぶことがあり、「8の字の上部の軌道」に対して下の部分を「非アクティブ領域」と呼ぶことがある。OUT衛星からIN衛星への「衛星ハンドオーバ」は、OUT衛星とIN衛星との距離が、会合点の近傍において、所定の距離以下の場合に行われる。「衛星ハンドオーバ」の概要を図4を参照して説明する。
(1)OUT衛星(第1衛星)は、固定端末局A(通信端末100)からアップリンク信号F(h1)(後述の図6の説明で記号の意味を述べる)を受信し、これをダウンリンク信号f(h1)(第1ダウンリンク信号)に変換してダウンリンクしている。固定端末局B(通信端末200)は、このダウンリンク信号f(h1)受信している。
(2)OUT衛星とIN衛星(第2衛星)とが会合点4の近傍に位置するとともに両者が所定の距離以下となった場合に、あらかじめ統制局Cの統制局装置300から送信を受けていたコマンドに基づいて、IN衛星は、OUT衛星が受信しているアップリンク信号F(h1)と同一の信号を受信し、これをOUT衛星によるダウンリンク信号f(h1)の周波数と異なる周波数のダウンリンク信号f(L1)(第2ダウンリンク信号)に変換してダウンリンクする。
(3)固定端末局B(通信端末200)は、ダウンリンク信号f(h1)とダウンリンク信号f(L1)との2周波を受信し、両衛星からの伝播遅延を補正し、ビット単位で合成する。これにより瞬断のない滑らかな「衛星ハンドオーバ」を実現することができる。
次に「ビームハンドオーバ」を説明する。準天頂衛星10等がマルチビームによるサービスを行う場合、「ビームハンドオーバ」が不可欠である。「ビームハンドオーバ」は、アクティブ領域に存在する衛星についてのみ実施する。
本実施の形態1における「ビームハンドオーバ」の特徴は、固定端末局Aから移動端末局B’に対しては「同一のアップリンク信号に対して1機の衛星の1つのビームで受信し、周波数の異なる2周波に変換し、ビーム覆域の重なる2つのビームへ同時にダウンリンクする」ことである。図5は、この固定端末局Aから移動端末局B’に送信する場合の「ビームハンドオーバ」を説明する図である。図5に示すように「ビームハンドオーバ」を行う場合であって、固定端末局Aから移動端末局B’に送信する場合を、以下、「フォワードリンク」と呼ぶことにする。図5に示すように、
(1)固定端末局Aは、アップリンク信号F(L1)をビーム1によりアップリンクしている。
(2)準天頂衛星は、統制局C(統制局装置300)からコマンドを受信し、受信したコマンドに基づいて、アップリンク信号F(L1)をビーム1で受信して互いに周波数の異なるダウンリンク信号f(h1)とダウンリンク信号f(h3)の2周波に変換する。そして、ダウンリンク信号f(h1)をビーム1にダウンリンクし、ダウンリンク信号f(h3)をビーム2にダウンリンクする。
ここでビームハンドオーバにおける固定端末局A、移動端末局B’と統制局C間でのハンドオーバを行なう上での情報のやり取りはビーム4により行われる。ビーム4は、全ユーザと統制局Cとの間で制御信号を送受信する共通制御信号チャンネル(Common SignalINg Channel :CSC)用のビームである。このCSCには、後述の図6に示すようにF1チャンネルを割り当てる。CSCは、全ユーザと統制局Cとの間でF1チャンネルでビーム4を用いて制御信号を送受信する。ユーザ局(通信端末100、通信端末200)から統制局C(統制局装置300)へはスロッテド・アロハ等のn:1通信(複数のユーザから統制局へはランダム・アクセス通信)で行う。また、統制局Cからユーザ局には、TDM等の1:n通信(時間軸上をn個のスロットに切り、ユーザにスロットが与えられており、いつでも自分への情報が受信できる)で行われる。ユーザ局は統制局Cに対して回線要求、自端末ID、相手局ID、伝送速度、自端末位置等を送信する。統制局cはユーザ局に対して相手局呼び出し、衛星ID、チャンネル指定、伝送速度指定、ハンドオーバ開始時刻等を送信する。
(3)移動端末局B’(通信端末200)は、ビーム1とビーム2とが重複する重複領域においてダウンリンク信号f(h1)とダウンリンク信号f(h3)との2周波を受信し、2周波の伝播遅延を補正し、ビット単位で合成する。このように、「ビームハンドオーバ」において、同一のアップリンク信号を異なる周波数の2つのダウンリンク信号としてダウンリンクし、受信する通信端末側で2周波の伝播遅延を補正し、ビット単位で合成することにより、瞬断のない滑らかな「ビームハンドオーバ」を実現することができる。これについては後に更に詳述する。
(4)なお、「フォワードリンク」とは逆に、「ビームハンドオーバ」を行う場合であって移動端末局B’から固定端末局Aに送信する場合を、以下、「リターンリンク」と呼ぶことにする。「リターンリンク」の説明は後述の図33〜図37の説明で詳しく述べるが、「リターンリンク」の場合の「ビームハンドオーバ」の特徴は、「同一のアップリンク信号を1機の衛星のビーム覆域の重なる2つのビームで受信し、それぞれ周波数の異なる2周波に変換し、1つのビームへ同時にダウンリンクする」ことである。
次に、図6〜図11を用いて、「衛星ハンドオーバ」及び「ビームハンドオーバ」の周波数プランを説明する。
まず、図6を参照して「衛星ハンドオーバ」における周波数関係を説明する。図6は「衛星ハンドオーバ」時におけるOUT衛星1のトランスポンダの周波数を示す概念図である。このOUT衛星1は図2のOUT衛星に対応する。図6の実線はフォワードリンク、破線はリターンリンクを示す。図6に示すように、アップリンク周波数のF2からF4の各トランスポンダ帯域を、「L1〜L4」のLow側と、「h1〜h4」のHigh側に2分割する。
本実施の形態1の「衛星ハンドオーバ」では、アップリンク周波数は、フォワードリンク、リターンリンクとも、トランスポンダのHigh側を使用することが一つの特徴である。アップリンク周波数は、「衛星ハンドオーバ」では、フォワードリンク、リターンリンクとも、トランスポンダのHigh側のアップリンク周波数が「統制局C」により指定される。
図6に示すように、アップリンクのF2からF4、及びダウンリンクのf2からf4の各トランスポンダは、「L1〜L4」のLow側、「h1〜h4」のHigh側のように、それぞれ4個のサブチャンネルから構成されている。通信キャリアはこのサブチャンネルに対し指定される。このトランスポンダ内のサブチャンネルは、High側は「h1〜h4」とし、Low側は「L1〜L4」としているのは一例であり、これに限定するものではない。なお、表記として、例えばF2のL1はF2(L1)あるいはF(L1)のように表す。
(1)本実施の形態1における「衛星ハンドオーバ」は、図2に示したように、「アクティブ領域」にあって今まさに「非アクティブ領域」に出て行こうとする衛星(OUT衛星)と、「非アクティブ領域」にあって今まさに「アクティブ領域」に入って行こうとする衛星(IN衛星)との間で、ユーザに無瞬断のサービスを提供しようとするものである。
(2)「衛星ハンドオーバ」時には、OUT衛星及びIN衛星から、周波数の異なる同一信号がダウンリンクされる。ユーザ(通信端末)は、IN衛星とOUT衛星とから、2波を同時受信する。
(3)図7は、「衛星ハンドオーバ」時におけるIN衛星1の周波数を示す図である。このIN衛星1は図2のIN衛星に対応する。実線はフォワードリンク、破線はリターンリンクを示す。図7に示すように、ダウンリンク周波数がLow側を使用するIN衛星を「IN衛星1」と呼ぶこととする。また、図9に示すように、ダウンリンク周波数がHigh側を使用するIN衛星を「IN衛星2」と呼ぶこととする。図6、図7とにより、ユーザ(通信端末)が、IN衛星1とOUT衛星1とから、2波を同時受信する場合を説明する。OUT衛星1は、ダウンリンクにHigh側の周波数を使用しているため、IN衛星1は、ダウンリンクにLow側の周波数を使用する必要がある。よって、IN衛星1はLow側の周波数を使用している。
(4)この図6、図7から分かるように、「衛星ハンドオーバ」を行っている時間帯は、ダウンリンク周波数は全て衛星ハンドオーバが使用していることになる。すなわち、ダウンリンク周波数のHigh側はOUT衛星1が使用しており、Low側はIN衛星1が使用している。このように「衛星ハンドオーバ」が行われる時は1ユーザに対して2波をダウンリンクするため、「ビームハンドオーバ」を実施するべきダウンリンクの周波数帯域は「衛星ハンドオーバ」に占有される。「ビームハンドオーバ」は、「衛星ハンドオーバ」が行われない時間帯に限られる。つまり無瞬断ビームハンドオーバで運用されていても、その間に「衛星ハンドオーバ」が入るとその時点で「ビームハンドオーバ」は終了となる。
(5)図8は、図7のIN衛星1が図2のアクティブ領域に入り会合点4に接近し、OUT衛星2となった場合を示している。従って周波数関係は図7と同じである。OUT衛星2と「衛星ハンドオーバ」を行うIN衛星2の周波数関係は、図9のようにHigh側の周波数を使用している。図2においてOUT衛星は、準天頂衛星10、準天頂衛星20、準天頂衛星30と順次入れ替わるが、図2でOUT衛星である準天頂衛星10が図6のOUT衛星1である場合、次のOUT衛星(準天頂衛星20)の周波数は、図8のOUT衛星2となる。このように、「衛星ハンドオーバ」を行うたびに、OUT衛星とIN衛星のダウンリンク周波数を、フォワードリンク回線(実線)は、h1からL1へ、L1からh1へと切り替えながら衛星ハンドオーバを実施して行く。また、リターン回線は、h2からL2へ、L2からh2へと切り替えながら衛星ハンドオーバを実施して行く。
次に図10、図11を使用して「ビームハンドオーバ」における周波数関係を説明する。「ビームハンドオーバ」は、アクティブ領域にある衛星についてのみ実施する。従って、これからアクティブ領域をでようとするOUT衛星には関係がない。
「ビームハンドオーバ」では、図10、図11に示すIN衛星1、あるいはIN衛星2のように、アップリンク周波数のF2からF4の各トランスポンダ帯域をHigh側、Low側とに2分割して、Low側を固定的に使う。航空機等のように「ビームハンドオーバ」を必要とする回線は、フォワード、リターン回線ともLow側のアップリンク周波数が統制局Cにより指定される。
(1)本実施の形態1の「ビームハンドオーバ」は、「アクティブ領域」にある衛星を使って、ユーザ(通信端末)がビーム間をまたがって移動するときに、無瞬断の通信を提供するものである。
(2)「ビームハンドオーバ」でのダウンリンク周波数は、現在のIN衛星(これからアクティブ領域に入ろうとしている衛星)が、「衛星ハンドオーバ」において、ダウンリンク周波数をHigh側とLow側とのどちら側を使っているかによって、High側或はLow側が決る。図12は「衛星ハンドオーバ」と「ビームハンドオーバ」との周波数関係を示す図である。図12に示すIN衛星1は、「衛星ハンドオーバ」において、Low側のダウンリンク周波数を使用している。このため、「ビームハンドオーバ」では、ダウンリンク周波数は、High側の周波数を用いる必要がある。なお、図12のIN衛星1はF2のみ記載している。図12のIN衛星1の場合は、ビームハンドオーバを行うたびに、フォワード回線(実線)では、各トランスポンダのHigh側の範囲内において、ダウンリンク周波数が、f2(h1)からf2(h3)へ、f(h3)からf(h1)へと、交互に変化する。
(3)また、リターン回線(破線)は、各トランスポンダのHigh側の範囲内において、ダウンリンク周波数が、f(h2)からf(h4)へ、f(h4)からf(h2)へと、交互に変化する。このIN衛星1は会合点4を過ぎてアクティブ領域へ進行し、OUT衛星2になる。
また、図12のIN衛星2の場合は、「衛星ハンドオーバ」でダウンリンク周波数がHigh側を使用している。よって、「ビームハンドオーバ」は、Low側を使用しなければならない。「ビームハンドオーバ」を行うたびに、フォワード回線(実線)では、ダウンリンク周波数がf2(L1)からf2(L3)へ、f2(L3)からf2(L1)へと変化する。また、リターン回線(破線)は、ダウンリンク周波数がf2(L2)からf2(L4)へ、f2(L4)からf2(L2)へと変化する。
図12に示すように、ダウンリンク周波数は、「衛星ハンドオーバ」と「ビームハンドオーバ」で「逆」になっている。すなわち、図12を参照して説明すれば、IN衛星1では「衛星ハンドオーバ」のダウンリンク周波数はf2のLow側であり、「ビームハンドオーバ」のダウンリンク周波数はf2のHigh側であり「逆」である。また、IN衛星2では「衛星ハンドオーバ」のダウンリンク周波数はf2のHigh側であり、「ビームハンドオーバ」のダウンリンク周波数はf2のLow側であり「逆」である。
図13〜図22を使用して図2に示した衛星軌道と、「衛星ハンドオーバ」及び「ビームハンドオーバ」との関係を具体的に説明する。周波数帯域としては、例えばアップリンクはF2、ダウンリンクはf2を想定する。
図13は、「衛星ハンドオーバ」におけるOUT衛星とIN衛星との周波数関係を示す図である。図13において、右向き矢印「→」は、フォワードリンクを示す。左向き矢印「←」はリターンリンクを示す。図14は、「ビームハンドオーバ」におけるIN衛星1とIN衛星2との周波数関係を示す図である。図13でSHOは衛星ハンドオーバを意味する。図14において、右向き矢印「→」はフォワードリンクを示す。左向き矢印「←」はリターンリンクを示す。図15は、図13、図14の「衛星ハンドオーバ」、「ビームハンドオーバ」の周波数関係をトランスポンダの概念図としたものである。図14でBHOはビームハンドオーバを意味する。図15において、(a)〜(h)は、図13の(a)〜(h)に対応する。図16は、図13の「衛星ハンドオーバ」のフォワードリンクにおける周波数関係を図2の衛星軌道として表した図である。図16の(1)は図13のフォワードリンクの(a),(b)に対応し、(2)は図13のフォワードリンクの(c),(d)に対応し、(3)は図13のフォワードリンクの(e),(f)に対応し、(4)は図13のフォワードリンクの(g),(h)に対応している。
図16を説明する。図16(1)〜(4)に示すように「衛星ハンドオーバ」のアップリンク周波数はF(h1)であり、固定である。図16の(1)では、準天頂衛星10がOUT衛星であり、準天頂衛星20がIN衛星である。この場合、準天頂衛星20の周波数関係は、図15(b)に示すようにIN衛星1である。OUT衛星はF(h1)を受信し、f(h1)をダウンリンクしている。IN衛星1はF(h1)を受信し、f(L1)をダウンリンクしている。
図16(1)の状態から準天頂衛星20がアクティブ領域に進入して、やがてOUT衛星となり図16(2)の状態となる。準天頂衛星30がIN衛星である。準天頂衛星30の周波数関係は図15(d)に示すようにIN衛星2である。OUT衛星はF(h1)を受信し、f(L1)をダウンリンクしている。IN衛星2はF(h1)を受信し、f(h1)をダウンリンクしている。
図16(2)の状態から準天頂衛星30がアクティブ領域に進入して、やがてOUT衛星となり図16(3)の状態となる。準天頂衛星10がIN衛星である。準天頂衛星10の周波数関係は図15(f)に示すようにIN衛星1である。OUT衛星はF(h1)を受信し、f(h1)をダウンリンクしている。IN衛星1はF(h1)を受信し、f(L1)をダウンリンクしている。
図16(3)の状態から準天頂衛星10がアクティブ領域に進入して、やがてOUT衛星となり図16(4)の状態となる。準天頂衛星20がIN衛星である。準天頂衛星20の周波数関係は図15(h)に示すようにIN衛星2である。OUT衛星はF(h1)を受信し、f(L1)をダウンリンクしている。IN衛星2はF(h1)を受信し、f(h1)をダウンリンクしている。以下、これを繰り返す。
図17〜図22は、図14の「ビームハンドオーバ」におけるIN衛星1の「フォワードリンク」及び「リターンリンク」の周波数関係を図2の衛星軌道を使用して表した図である。図17〜図19はIN衛星1であった準天頂衛星20がアクティブ領域に進行してフォワードリンクのビームハンドオーバを行う場合を説明する図である。まず図17〜図19によりフォワードリンクのビームハンドオーバを説明する。
図17において、IN衛星1であった準天頂衛星20は、アップリンク信号F(L1)を受信し、ビーム1にダウンリンク信号f(h1)をダウンリンクする。アップリンク信号はF(L1)として固定である。
図18において、移動端末局B’(通信端末200)がビーム1とビーム2の重複領域に入ると、準天頂衛星20は、ビーム1からアップリンク信号F(L1)を受信し、ビーム1にダウンリンク信号f(h1)をダウンリンクするとともに、ビーム2にダウンリンク信号f(h3)をダウンリンクする。
図19において、移動端末局B’(通信端末200)がビーム2とビーム3の重複領域に入ると、準天頂衛星20は、ビーム1からアップリンク信号F(L1)を受信し、ビーム2にダウンリンク信号f(h3)をダウンリンクするとともに、ビーム3にダウンリンク信号f(h1)をダウンリンクする。
図20〜図22は、IN衛星1であった準天頂衛星20がアクティブ領域に進行してリターンリンクの「ビームハンドオーバ」を行う場合を説明する図である。
図20において、準天頂衛星20は、ビーム1に存在する移動端末局B’(通信端末)からアップリンク信号F(L2)を受信して周波数を変換し、ダウンリンク信号f(h2)としてビーム1にダウンリンクする。
図21において、準天頂衛星20は、ビーム1とビーム2の重複領域に存在する移動端末局B’(通信端末)からアップリンク信号F(L2)を受信して周波数を変換し、ダウンリンク信号f(h2)及びダウンリンク信号f(h4)としてビーム1にダウンリンクする。
図22において、準天頂衛星20は、ビーム2とビーム3の重複領域に存在する移動端末局B’(通信端末)からアップリンク信号F(L2)を受信して周波数を変換し、ダウンリンク信号f(h2)及びダウンリンク信号f(h4)としてビーム1にダウンリンクする。
次に、図23〜図37を使用して「衛星ハンドオーバ」における通信端末の動作を含めて説明する。タイプ1〜タイプ4の場合を説明する。タイプ1は、「衛星ハンドオーバ」におけるフォワードリンクの場合である。タイプ2は、「衛星ハンドオーバ」におけるリターンリンクの場合である。タイプ3は、「ビームハンドオーバ」におけるフォワードリンクの場合である。
タイプ4は、「ビームハンドオーバ」におけるリターンリンクの場合である。
(タイプ1)
タイプ1として、図23を参照し、「衛星ハンドオーバ」におけるフォワードリンクの場合を説明する。
(1)「衛星ハンドオーバ」の場合のフォワードリンクの周波数関係を図23に示す。図23は、図15(a),(b)に対応する。固定端末局Aは、衛星へ周波数F(h1)でアップリンクする。OUT衛星(第1衛星)は、このアップリンク信号F(h1)を受信しf(h1)(第1ダウンリンク信号)でダウンリンクする。IN衛星(第2衛星)は、このアップリンク信号F(h1)を受信しf(L1)(第2ダウンリンク信号)でダウンリンクする。IN衛星のこの動作は、統制局Cの統制局装置300がIN衛星に送信するコマンドに基づく。図24は、統制局装置300の基本構成を示す。制統局装置300は、前記コマンドを作成するコマンド作成部302と、コマンド作成部302が作成したコマンドをIN衛星に送信する送信部301と、CSCにより送信する制御信号を作成する統制側CSC作成部303と、この制御信号を送信するCSC送信部304とを備える。コマンド作成部301は、IN衛星に対するコマンドとして、OUT衛星が第1ダウンリンク信号をダウンリンクしている場合にアップリンク信号を受信し、受信したアップリンク信号の周波数を第1ダウンリンク信号の周波数と異なる周波数に変換し第2ダウンリンク信号としてダウンリンクする指示を示すコマンドを作成する。また、コマンド作成部301が作成する前記コマンドは、OUT衛星とIN衛星との距離が所定の距離以下の場合に、IN衛星に第2ダウンリンク信号のダウンリンクを指示する。すなわち、OUT衛星とIN衛星とが会合点4の近傍に位置する場合に、IN衛星が第2ダウンリンク信号をダウンリンクするべき指示を示すコマンドである。
(2)固定端末局Bの通信端末200は、ダウンリンクされた2波を同時受信し、遅延補正を行い、ビット単位で受信信号の切替を行う。
(3)このダウンリンク周波数は、衛星ハンドオーバが行われるたびに変更される。OUT衛星/IN衛星でh1/L1,L1/h1,h1/L1,…と変化する。
図25は、通信端末200の受信機能を示す機能ブロック図である。通信端末200は、受信部201と、蓄積部202と、生成部203と、CSCによる制御信号を受信するCSC受信部204と、CSC受信部204が受信した制御信号から制御情報を生成する端末側CSC生成部205とを備える。なお、通信端末100の構成も通信端末200と同様である。
(1)受信部部201は、所定の周波数のアップリンク信号F(h1)を受信しダウンリンク信号f(h1)に周波数変換してダウンリンクするOUT衛星と、アップリンク信号F(h1)を受信しダウンリンク信号f(h1)と異なる周波数に変換しダウンリンク信号f(L1)としてダウンリンクするIN衛星とから、ダウンリンク信号f(h1)とダウンリンク信号f(L1)とを受信する。
(2)蓄積部202は、受信部201が受信したダウンリンク信号f(h1)とダウンリンク信号f(L1)とを蓄積する。
(3)生成部203は、蓄積部202が蓄積したダウンリンク信号f(h1)とダウンリンク信号f(L1)とに基づいて、アップリンク信号F(h1)に対応する対応信号を生成する。「対応信号」とは、ダウンリンク信号f(h1)とダウンリンク信号f(L1)とを合成して生成される信号であって、瞬断のない信号をいう。固定端末局Aから送信されるアップリンク信号F(h1)は、例えば、図26(a)に示すように、ビット1〜ビット8等により構成されているものとする。IN衛星がダウンリンクするダウンリンク信号f(L1)は図26(b)のようである。一方、OUT衛星がダウンリンクするダウンリンク信号f(h1)は図26(c)のようである。受信する信号を単にOUT衛星からのf(h1)から、IN衛星のf(L1)に切り替えるのみでは、ビットにズレがあるため瞬断が生じる。このため、生成部203は、図26(b)、(c)の信号を合成し、(d)に示す信号(対応信号)を生成する。生成部203が信号を合成することによって、瞬断することなくビットが再生される。なお、「ビームハンドオーバ」の場合は、通信端末が1機のマルチビーム衛星から同一内容である周波数の異なる2周波の信号を受信するが、この場合も、上記に説明した「衛星ハンドオーバ」の場合と同様である。
(タイプ2)
タイプ2として、図27を参照し、「衛星ハンドオーバ」におけるリターンリンクの場合を説明する。図27は、「衛星ハンドオーバ」のリターンリンクの周波数関係を示す。図27は、図15(a),(b)に対応する。固定端末局Bは、衛星へ周波数F(h2)でアップリンクする。OUT衛星はf(h2)でダウンリンクし、IN衛星はf(L2)でダウンリンクする。この周波数関係は、「衛星ハンドオーバ」が行われるたびに変更される。OUT衛星/IN衛星で、h2/L2,L2/h2,h2/L2,…と変化する。
次に「ビームハンドオーバ」の場合を説明する。「ビームハンドオーバ」は基本的に固定端末局Aと移動端末局B’との間の通信である。移動端末局B’がビーム間を移動する。送受端末局の何れも移動局であり、何れもビームハンドオーバが要求される場合も考えられるが、本実施の形態では固定局と移動局間との通信を想定する。
(タイプ3)
タイプ3として、図28〜図32を参照し、「ビームハンドオーバ」におけるフォワードリンクの場合を説明する。図28〜図32に「ビームハンドオーバ」のフォワードリンクの周波数関係を示す。ビーム1に存在する固定端末局Aから移動端末局B’へ送信する場合である。移動端末局B’は、受信しながらビーム間を移動する。この場合は、「衛星ハンドオーバ」で「IN衛星」のダウンリンク周波数がLow側を使用しているものとする(すなわち、この場合のIN衛星は、IN衛星1である)。
(1)図28のように、航空機である移動端末局B’がビーム1(受信側存在ビーム)内に存在するときは、固定端末局Aは、F(L1)をアップリンクし、移動端末局B’はf(h1)を受信する。
(2)図29のように、移動端末局B’がビーム1を出てビーム2へ入る所で、統制局C(統制局装置300)からのコマンドにより、マルチビーム衛星は、ビーム1にf(h1)(第1ダウンリンク信号)をダウンリンクするとともに、ビーム2(隣接ビーム)にf(h3)(第2ダウンリンク信号)を同時にダウンリンクする。この場合、統制局装置300(図24)のコマンド作成部301は、マルチビーム衛星に対するコマンドとして、ビーム1(所定のビーム)にf(h1)(第1ダウンリンク信号)をダウンリンクしている場合に更にアップリンク信号をf(h1)と異なる周波数のf(h3)(第2ダウンリンク信号)へ変換し、f(h3)をビーム1と隣接する隣接ビームであってビーム1と重複する重複領域を有するビーム2(隣接ビーム)にダウンリンクする指示を示すコマンドを作成する。統制局装置300の送信部302は、コマンド作成部301が作成した前記コマンドをマルチビーム衛星に送信する。この場合、コマンド作成部301が作成する前記コマンドは、アップリンク信号F(L1)の送信先である移動端末局B’(通信端末)が、ビーム1とビーム2との重複領域に存在する場合に、ビーム2(隣接ビーム)へf(h3)(第2ダウンリンク信号)のダウンリンクを指示する。
(3)移動端末局B’(通信端末200)は、ビームエッジ(ビーム1とビーム2との重複領域)で、f(h1)とf(h3)とを選択受信する。この場合の通信端末200の受信の動作は図25、図26の説明で述べたとおりである。
(4)そして図30のように、規定の時間経過後、統制局C(統制局装置300)は、ビーム1のf(h1)信号をオフする。
(5)図31のように、移動端末局B’がビーム2を出てビーム3へ入る所(ビーム2とビーム3との重複領域)で、統制局C(統制局装置300)からのコマンドにより、衛星は、ビーム2にf(h3)(第1ダウンリンク信号)をダウンリンクするとともに、ビーム3(隣接ビーム)にf(h1)(第2ダウンリンク信号)を同時にダウンリンクする。この場合、移動端末局B’(通信端末200)は、ビームエッジ(ビーム2とビーム3との重複領域)でf(h3)とf(h1)とを選択受信する。
(6)図32のように、統制局C(統制局装置300)は、規定の時間経過後、衛星によるビーム2のf(h3)信号をオフする。
(タイプ4)
タイプ4として、図33〜図37を参照し、「ビームハンドオーバ」におけるリターンリンクの場合を説明する。図33〜図37は、「ビームハンドオーバ」のリターンリンクの周波数関係を示す。移動端末局B’からビーム1に存在する固定端末局Aへ送信する場合である。移動端末局B’(通信端末200)が送信しながらビーム間を移動する。この場合も、「衛星ハンドオーバ」でIN衛星のダウンリンク周波数がLow側を使用しているものとする(すなわち、この場合の衛星は、IN衛星1である)。
(1)図33のように、移動端末局B’がビーム1内に存在するときは、移動端末局B’は、F(L2)をアップリンクし、固定端末局Aはf(h2)(第1ダウンリンク信号)を受信する。
(2)図34のように、移動端末局B’がビーム1を出てビーム2へ入る所(ビーム1とビーム2の重複領域)で、統制局C(統制局装置300)からのコマンドにより、衛星は、ビーム1にf(h2)(第1ダウンリンク信号)をダウンリンクするとともに、ビーム1にf(h4)(第2ダウンリンク信号)を同時にダウンリンクする。この場合、統制局装置300(図24)のコマンド作成部301は、マルチビーム衛星に対するコマンドとして、アップリンク信号F(L2)が複数のビームのうち2つのビームが重複する重複領域からアップリンクされている場合にアップリンク信号F(L2)を受信し、受信したアップリンク信号F(L2)を互いに周波数の異なるf(h2)(第1ダウンリンク信号)とf(h4)(第2ダウンリンク信号)とに変換し、f(h2)とf(h4)とを複数のビームのうちアップリンク信号の送信先である固定端末局A(通信端末100)が存在するビーム1にダウンリンクする指示を示すコマンドを作成する。統制局装置300の送信部302は、コマンド作成部301が作成した前記コマンドを衛星に送信する。
(3)この場合、固定端末局A(通信端末100)は、ダウンリンクされたf(h2)とf(h4)とを選択受信する。
(4)そして、図35のように、統制局Cは、規定の時間経過後、衛星によるf(h2)のダウンリンクをオフする。
(5)図36のように、移動端末局B’がビーム2を出てビーム3へ入る所(ビーム2とビーム3との重複領域)で、統制局Cからのコマンドにより、衛星は、ビーム1にf(h4)(第1ダウンリンク信号)をダウンリンクするとともに、ビーム1にf(h2)(第2ダウンリンク信号)を同時にダウンリンクする。固定端末局Aは、f(h4)とf(h2)を選択受信する。
(6)そして、図37のように、統制局Cは、規定の時間経過後、衛星によるf(h4)のダウンリンクをオフする。
実施の形態1の通信端末200は、OUT衛星とIN衛星とから同一のアップリンク信号の周波数を変換した、互いに周波数の異なるダウンリンク信号を受信する受信部と、受信部が受信した互いに周波数の異なるダウンリンク信号から対応信号を生成する生成部を備えたので、無瞬断の「衛星ハンドオーバ」を実現することができる。
実施の形態1の通信端末200は、マルチビーム衛星から同一のアップリンク信号の周波数を変換した、互いに周波数の異なるダウンリンク信号を受信する受信部と、受信部が受信した互いに周波数の異なるダウンリンク信号から対応信号を生成する生成部を備えたので、無瞬断の「ビームハンドオーバ」を実現することができる。
実施の形態1の統制局装置300は、IN衛星に対するコマンドとして、OUT衛星が第1ダウンリンク信号をダウンリンクしている場合にアップリンク信号を受信し、受信したアップリンク信号の周波数を第1ダウンリンク信号の周波数と異なる周波数に変換し第2ダウンリンク信号としてダウンリンクする指示を示すコマンドを作成するコマンド作成部を備えたので、無瞬断の衛星ハンドオーバを実現することができる。
実施の形態1の統制局装置300は、マルチビーム衛星に対するコマンドとして、所定のビームに第1ダウンリンク信号をダウンリンクしている場合に更にアップリンク信号を第1ダウンリンク信号と異なる周波数の第2ダウンリンク信号に変換し、第2ダウンリンク信号を前記所定のビームと隣接する隣接ビームであって前記所定のビームと重複する重複領域を有する隣接ビームにダウンリンクする指示を示すコマンドを作成するコマンド作成部を備えたので、無瞬断のビームハンドオーバを実現することができる。
実施の形態1の統制局装置300は、マルチビーム衛星に対するコマンドとして、アップリンク信号が複数のビームのうち2つのビームが重複する重複領域からアップリンクされている場合に前記アップリンク信号を受信し、受信した前記アップリンク信号を互いに周波数の異なる第1ダウンリンク信号と第2ダウンリンク信号とに変換し、前記第1ダウンリンク信号と前記第2ダウンリンク信号とを前記複数のビームのうち前記アップリンク信号の送信先である通信端末が存在するビームにダウンリンクする指示を示すコマンドを作成するコマンド作成部を備えたので、無瞬断のビームハンドオーバを実現することができる。
実施の形態2.
図38〜図43を使用して実施の形態2に係る中継器500(衛星通信装置の一例)を説明する。図38は、中継器500の構成を示す。図38において、ビーム1からビーム3は、ユーザが通信を行うビームである。ビーム4は、図5の説明で述べたように、全ユーザと統制局Cの間で制御信号を送受信する共通制御信号チャンネル(Common SignalINg Channel :CSC)用のビームである。その他に、衛星中継器内で信号のルートを設定するスイッチマトリクス制御及び周波数変換器のローカル周波数を変えるためのシンセサイザ周波数制御及び中継器の状態を地上に送るためのテレメトリ・コマンド機器からなる。
中継器500の動作を説明する。
(1)地上からアップリンクされた信号は、受信アンテナ部で受信され、3つのホーンの何れかで受信される。
(2)ホーンに入力したアップリンク信号は、右旋左旋円偏波を分波する円偏器(Ortho−Mode Transducer :OMT)で送受分離が行われる。
(3)送受分離された信号は、入力フィルタ(IFA)に入力する。
(4)このIFAで帯域外不要波が除去され、低雑音増幅器(LNA)で低雑音増幅が行われる。
(5)低雑音増幅が行われた信号は、ハイブリッド(H)により2分配される。この2分配された一方は、「衛星ハンドオーバ」のための第一のスイッチマトリクスに入力する。他方は、ビームハンドオーバ用のスイッチマトリクスに入力する。
(6)このスイッチマトリクスの構成を図39に示す。この図39は、3入力3出力の「3×3スイッチマトリクス」を示している。他の「3×8スイッチマトリクス」も、構成の考え方は同じである。図39において「3×3」とあるのは「3×3スイッチマトリクス」を示し、「3×8」とあるのは「3×8スイッチマトリクス」を示し、「8×3」とあるのは「8×3スイッチマトリクス」を示す。「3×3スイッチマトリクス」では、入力信号は、3分配される。分配された信号の各々は、出力スイッチの各端子に繋がっている。図39の出力スイッチは、一つの出力端子当たり、2個の2点スイッチ(SPDT)で構成されている。出力スイッチの接点の選択により分配された3つの信号は、3つの出力端子の何れにも出力可能となる。この接点動作は、地上からのコマンド制御信号(CMD)により行われる。
(7)第一のスイッチマトリクスを出た信号は、周波数変換機(D/C)へ入力し、ここでアップリンク周波数は、中間周波数(IF)帯に変換される。このD/Cでは、ローカル周波数を変えることにより出力周波数が変化するため、ローカル発振器としてシンセサイズド・ローカル発振器を用いる。これにより地上からのCMDにより、このシンセサイザのローカル周波数を変え、任意の周波数が出力可能となる。D/CでIF周波数に変換された信号は、さらに第二、第三のスイッチマトリクスを経由してフィルタバンクへ入力する。
(8)このフィルタバンクは、バンドパスフィルタ(BPF)とチャンネル増幅器(CAMP)から構成されている。このBPFの中心周波数は、IF帯であるが、周波数間隔は、周波数プランと同じである。このBPFによりアップリンクされたビームに含まれる全帯域の信号から、そのサブチャンネル内の信号のみが出力される。このフィルタバンクにより切り取られた信号は、第四、第五のスイッチマトリクスを経由しアップコンバータ(U/C)でIF周波数がダウンリンク周波数に変換される。
(9)このU/Cのローカル発振器もシンセサイザが用いられている。これによりIF帯の信号周波数は、任意のダウンリンク周波数に変換される。U/Cを出た信号は、第六のスイッチマトリクスでビーム選択が行われる。そしてこの後、進行波管増幅器(TWTA)で電力を増幅した後、送信フィルタ(TX−FIL)で帯域外不要波を取り除き、送信アンテナへ送られここから地上へと送信される。
(10)ビーム4は、全ユーザと統制局Cの間で制御信号を送受信する共通制御信号チャンネル(Common SignalINg Channel :CSC)用のビーム(ビーム4)である。よって、このビームは、前記サービス用ビーム1から3のすべてを含んだ覆域を照射する。この制御チャンネルは、周波数プランのF1チャンネルを使用する。
その他に衛星中継器内で信号のルートを設定するスイッチマトリクス制御及び周波数変換器のローカル周波数を変えるためのシンセサイザ周波数制御及び中継器の状態を地上に送るためのテレメトリ・コマンド機器(TT&C)からなる。
次に、図40、図41を使用して「衛星ハンドオーバ」時の中継器500の信号経路である経路1,2を示す。
(1)経路1
図40の「経路1」は、OUT衛星(図15(a))の信号経路である。「経路1」は、固定端末局Aから周波数F2(h1)でアップリンクし、OUT衛星がf2(h1)に変換してダウンリンクする場合を示す。
(2)経路2
図41の「経路2」は,図15(b)に示したIN衛星1の信号経路である。固定端末局AからF2(h1)でアップリンクし、IN衛星1でf2(L1)に変換してダウンリンクする場合を示す。
次に、図42、図43を使用して「ビームハンドオーバ」時の中継器500の信号経路3〜8を示す。ここでは「衛星ハンドオーバ」でIN衛星のダウンリンクがLow側の周波数を用いる場合(つまりこの場合IN衛星はIN衛星1である)である。従ってIN衛星1は、「ビームハンドオーバ」では、フォワードリンク及びリターンリンクとも、High側の周波数を用いる。
(3)経路3(図28に対応)
「経路3」(実線)は、ビーム1からF2(L1)で送信(アップリンク)し、ビーム1へf2(h1)がダウンリンクされる場合を示している。
(4)経路4(図29に対応)
移動端末局B’がビーム1とビーム2の境界に来ると、「経路4」(一点鎖線)が同時オンとなり、f2(h3)信号がビーム2にダウンリンクされる。ある規定の時間経過後、ビーム1のf2(h1)信号がオフとなり、ビーム2のf2(h3)信号のみがダウンリンクされる。
(5)経路5(図31に対応)
移動端末局B’がビーム2とビーム3の境界(重複領域)に来ると、「経路5」(破線)が同時オンとなる。これにより、f2(h1)信号がビーム3にダウンリンクされる。ある規定の時間後、ビーム2のf2(h3)信号がオフとなり、ビーム3のf2(h1)信号のみがダウンリンクされる。
次に示す経路6〜経路8は「ビームハンドオーバ」のリターンリンクの場合である。
(6)経路6(図33に対応)
図43の「経路6」(実線)は、ビーム1からF2(L2)で送信(アップリンク)し、ビーム1へf2(h2)がダウンリンクされる経路である。
(7)経路7(図34に対応)
移動端末局B’がビーム1とビーム2の境界(重複領域)に来ると、「経路7」(一点鎖線)が同時オンとなり、ビーム1にf2(h4)信号が出力される。これにより、ビーム1にf2(h2)信号とf2(h4)信号が同時にダウンリンクされる。ある規定の時間後、ビーム1のf2(h2)信号がオフとなり、ビーム1の中でf2(h4)信号のみがダウンリンクされる。
(8)経路8(図36に対応)
移動端末局B’がビーム2とビーム3の境界(重複領域)に来ると、「経路8」(破線)が同時オンとなる。これにより、f2(h2)信号がビーム1にダウンリンクされる。ある規定の時間経過後、ビーム1のf2(h4)信号がオフとなり、ビーム1の中のf2(h2)信号のみがダウンリンクされる。
(1)以上のように「衛星ハンドオーバ」及び「ビームハンドオーバ」とも、同一信号で、周波数の異なる2周波を衛星からダウンリンクする。これにより、確実な無瞬断ハンドオーバを実現することができる。
(2)また、「衛星ハンドオーバ」に関しては、「衛星ハンドオーバ」が行われる間(およそ2分間)は、地上からコマンドを送信する必要がない。このため、運用者は、2衛星の最接近時のコンテンジェンシーに対して、速やかな対応が可能となる。
(3)また、ハンドオーバは、端末局での2波の同時受信、及びビット単位での合成が行われ、時間的には5〜10秒で終了する。このために、端末局アンテナが、最も利得の高いビーム中心で2衛星を捕らえることができ、ハンドオーバ時の回線断が起こりにくい。
実施の形態2に係る中継装置(衛星通信装置)は、OUT衛星に上空で会合するIN衛星へ搭載され、OUT衛星が第1ダウンリンク信号をダウンリンクしており、かつ、会合によりOUT衛星とIN衛星との距離が所定の距離以下の場合に、アップリンク信号を受信し受信したアップリンク信号の周波数を第1ダウンリンク信号の周波数と異なる周波数に変換し第2ダウンリンク信号としてダウンリンクするので、無瞬断の衛星ハンドオーバを実現することができる。
実施の形態2に係る中継装置(衛星通信装置)は、複数のビームのいずれかのビーム内に存在する送信側の通信端末から前記複数のビームのいずれかのビーム内に存在する移動可能な受信側の通信端末に送信するための所定の周波数のアップリンク信号を受信し、受信した前記アップリンク信号の周波数を変換し第1ダウンリンク信号として前記受信側の通信端末が存在する受信側存在ビームにダウンリンクするとともに、前記受信側の通信端末が前記受信側存在ビーム内を移動することにより前記受信側存在ビームに隣接する隣接ビームであって前記受信側存在ビームと重複する重複領域を有する隣接ビームの前記重複領域に位置する場合に、前記アップリンク信号を前記第1ダウンリンク信号の周波数と異なる周波数の第2ダウンリンク信号に変換し、前記第2ダウンリンク信号を前記隣接ビームにダウンリンクするので、無瞬断のビームハンドオーバを実現することができる。
実施の形態2に係る中継装置(衛星通信装置)は、複数のビームのうち2つのビームが重複する重複領域に存在する送信側の通信端末から前記複数のビームのいずれかのビーム内に存在する受信側の通信端末に送信するための所定の周波数のアップリンク信号を受信した場合に、受信した前記アップリンク信号を互いに周波数の異なる第1ダウンリンク信号と第2ダウンリンク信号とに変換し、前記第1ダウンリンク信号と前記第2ダウンリンク信号とを前記受信側の通信端末が存在するビームにダウンリンクするので、無瞬断のビームハンドオーバを実現することができる。
実施の形態1における、準天頂衛星の軌道を説明する図である。 実施の形態1における、地上を固定して考えた場合の準天頂衛星の軌道を表す。 実施の形態1における、準天頂衛星が高仰角であることを示す図である。 実施の形態1における、衛星ハンドオーバを説明する図である。 実施の形態1における、ビームハンドオーバを説明する図である。 実施の形態1における、衛星ハンドオーバ時のOUT衛星1のアップリンク周波数とダウンリンク周波数との関係を示す図である。 実施の形態1における、衛星ハンドオーバ時のIN衛星1のアップリンク周波数とダウンリンク周波数との関係を示す図である。 実施の形態1における、衛星ハンドオーバ時のOUT衛星2のアップリンク周波数とダウンリンク周波数との関係を示す図である。 実施の形態1における、衛星ハンドオーバ時のIN衛星2のアップリンク周波数とダウンリンク周波数との関係を示す図である。 実施の形態1における、ビームハンドオーバ時のIN衛星1の周波数関係を示す図である。 実施の形態1における、ビームハンドオーバ時のIN衛星2の周波数関係を示す図である。 実施の形態1における、衛星ハンドオーバとビームハンドオーバとの周波数関係を示す図である。 実施の形態1における、衛星ハンドオーバ時の周波数関係を示す。 実施の形態1における、ビームハンドオーバ時の周波数関係を示す。 実施の形態1における、図11、図12に対応する図である。 実施の形態1における、図11の衛星ハンドオーバを説明する図である。 実施の形態1における、図12のビームハンドオーバを説明する図である。 実施の形態1における、図12のビームハンドオーバを説明する図である。 実施の形態1における、図12のビームハンドオーバを説明する図である。 実施の形態1における、図12のビームハンドオーバを説明する図である。 実施の形態1における、図12のビームハンドオーバを説明する図である。 実施の形態1における、図12のビームハンドオーバを説明する図である。 実施の形態1における、衛星ハンドオーバのフォワード回線を説明する図である。 実施の形態1における、統制局装置300のブロック図である。 実施の形態1における、通信端末200の受信機能を示すブロック図である。 実施の形態1における、通信端末200の受信動作を説明する図である。 実施の形態1における、衛星ハンドオーバのリターン回線を説明する図である。 実施の形態1における、ビームハンドオーバのフォワード回線を説明する図である。 実施の形態1における、ビームハンドオーバのフォワード回線を説明する図である。 実施の形態1における、ビームハンドオーバのフォワード回線を説明する図である。 実施の形態1における、ビームハンドオーバのフォワード回線を説明する図である。 実施の形態1における、ビームハンドオーバのフォワード回線を説明する図である。 実施の形態1における、ビームハンドオーバのリターン回線を説明する図である。 実施の形態1における、ビームハンドオーバのリターン回線を説明する図である。 実施の形態1における、ビームハンドオーバのリターン回線を説明する図である。 実施の形態1における、ビームハンドオーバのリターン回線を説明する図である。 実施の形態1における、ビームハンドオーバのリターン回線を説明する図である。 実施の形態2における、中継器を示す図である。 実施の形態2における、「3×3スイッチマトリクス」の構成を示す図である。 実施の形態2における、中継器での経路1を示す図である。 実施の形態2における、中継器での経路2を示す図である。 実施の形態2における、中継器での経路3、経路4、経路5を示す図である。 実施の形態2における、中継器での経路6、経路7、経路8を示す図である。
符号の説明
A 固定端末局、B 固定端末局、B’ 移動端末局、C 統制局、4 会合点、10,20,30 準天頂衛星、100,200 通信端末、201 受信部、202 蓄積部、203 生成部、300 統制局装置、301 送信部、302 コマンド作成部、500 中継器。

Claims (13)

  1. 所定の周波数のアップリンク信号を受信し受信した前記アップリンク信号の周波数を変換し第1ダウンリンク信号としてダウンリンクする第1衛星と、前記アップリンク信号を受信し受信した前記アップリンク信号の周波数を前記第1ダウンリンク信号の周波数と異なる周波数に変換し第2ダウンリンク信号としてダウンリンクする第2衛星とから、前記第1ダウンリンク信号と前記第2ダウンリンク信号とを受信する受信部と、
    前記受信部が受信した前記第1ダウンリンク信号と前記第2ダウンリンク信号とを蓄積する蓄積部と、
    前記蓄積部が蓄積した前記第1ダウンリンク信号と前記第2ダウンリンク信号とに基づいて、前記アップリンク信号に対応する対応信号を生成する生成部と
    を備えたことを特徴とする通信端末。
  2. 前記第1衛星は、
    運用中の衛星を他の衛星の運用に切り替える衛星ハンドオーバにおける前記運用中の衛星を示す切替元衛星であり、
    前記第2衛星は、
    前記衛星ハンドオーバにおける前記他の衛星を示す切替先衛星であることを特徴とする請求項1記載の通信端末。
  3. 前記第1衛星と前記第2衛星との距離は、
    所定の距離以下であることを特徴とする請求項2記載の通信端末。
  4. 複数のビームを使用して通信を中継可能なマルチビーム衛星であるとともに、前記複数のビームのいずれかの所定の周波数のアップリンク信号を受信し、受信した前記アップリンク信号を互いに周波数の異なる2つのダウンリンク信号に変換し、変換した前記2つのダウンリンク信号のうち一方を前記複数のビームのうち所定のビームにダウンリンクし、他方を前記所定のビームと隣接する隣接ビームであって前記所定のビームと重複する重複領域を有する隣接ビームにダウンリンクするマルチビーム衛星から、前記重複領域において、周波数の異なる前記2つのダウンリンク信号を受信する受信部と、
    前記受信部が受信した周波数の異なる前記2つのダウンリンク信号を蓄積する蓄積部と、
    前記蓄積部が蓄積した周波数の異なる前記2つのダウンリンク信号に基づいて、前記アップリンク信号に対応する対応信号を生成する生成部と
    を備えたことを特徴とする通信端末。
  5. 複数のビームを使用して通信を中継可能なマルチビーム衛星であるとともに、前記複数のビームのうち2つのビームが重複する重複領域から所定の周波数のアップリンク信号を受信し、受信した前記アップリンク信号を互いに周波数の異なる2つのダウンリンク信号に変換し、変換した前記2つのダウンリンク信号を前記複数のビームのうちいずれかのビームにダウンリンクするマルチビーム衛星から、前記いずれかのビーム内において、周波数の異なる前記2つのダウンリンク信号を受信する受信部と、
    前記受信部が受信した周波数の異なる前記2つのダウンリンク信号を蓄積する蓄積部と、
    前記蓄積部が蓄積した周波数の異なる前記2つのダウンリンク信号に基づいて、前記アップリンク信号に対応する対応信号を生成する生成部と
    を備えたことを特徴とする通信端末。
  6. 所定の周波数のアップリンク信号を受信し受信した前記アップリンク信号の周波数を変換し第1ダウンリンク信号としてダウンリンクする第1衛星の運用から、前記アップリンク信号を受信し受信した前記アップリンク信号の周波数を変換し第2ダウンリンク信号としてダウンリンクする第2衛星の運用に切り替える衛星ハンドオーバを統制する統制局装置において、
    前記第2衛星に対するコマンドとして、前記第1衛星が前記第1ダウンリンク信号をダウンリンクしている場合に前記アップリンク信号を受信し、受信した前記アップリンク信号の周波数を前記第1ダウンリンク信号の周波数と異なる周波数に変換し前記第2ダウンリンク信号としてダウンリンクする指示を示すコマンドを作成するコマンド作成部と、
    前記コマンド作成部が作成した前記コマンドを前記第2衛星に送信する送信部と
    を備えたことを特徴とする統制局装置。
  7. 前記コマンド作成部が作成する前記コマンドは、
    前記第1衛星と前記第2衛星との距離が所定の距離以下の場合に、前記第2ダウンリンク信号のダウンリンクを指示することを特徴とする請求項6記載の統制局装置。
  8. 複数のビームを使用して通信を中継可能なマルチビーム衛星であるとともに、前記複数のビームのうちいずれかのビーム内から所定の周波数のアップリンク信号を受信し受信した前記アップリンク信号の周波数を変換し第1ダウンリンク信号として前記複数のビームのうち所定のビームにダウンリンクするマルチビーム衛星の運用を統制する統制局装置において、
    前記マルチビーム衛星に対するコマンドとして、前記所定のビームに前記第1ダウンリンク信号をダウンリンクしている場合に更に前記アップリンク信号を前記第1ダウンリンク信号と異なる周波数の第2ダウンリンク信号に変換し、前記第2ダウンリンク信号を前記所定のビームと隣接する隣接ビームであって前記所定のビームと重複する重複領域を有する隣接ビームにダウンリンクする指示を示すコマンドを作成するコマンド作成部と、
    前記コマンド作成部が作成した前記コマンドを前記マルチビーム衛星に送信する送信部と
    を備えたことを特徴とする統制局装置。
  9. 前記コマンド作成部が作成する前記コマンドは、
    前記アップリンク信号の送信先である通信端末が前記重複領域に存在する場合に前記隣接ビームへ前記第2ダウンリンク信号のダウンリンクを指示することを特徴とする請求項8記載の統制局装置。
  10. 複数のビームを使用して通信を中継可能なマルチビーム衛星であるとともに、前記複数のビームのうち所定のビーム内からアップリンク信号を受信し受信した前記アップリンク信号の周波数を変換しダウンリンク信号として前記複数のビームのうちいずれかのビームにダウンリンクするマルチビーム衛星の運用を統制する統制局装置において、
    前記マルチビーム衛星に対するコマンドとして、前記アップリンク信号が前記複数のビームのうち2つのビームが重複する重複領域からアップリンクされている場合に前記アップリンク信号を受信し、受信した前記アップリンク信号を互いに周波数の異なる第1ダウンリンク信号と第2ダウンリンク信号とに変換し、前記第1ダウンリンク信号と前記第2ダウンリンク信号とを前記複数のビームのうち前記アップリンク信号の送信先である通信端末が存在するビームにダウンリンクする指示を示すコマンドを作成するコマンド作成部と、
    前記コマンド作成部が作成したコマンドを前記マルチビーム衛星に送信する送信部と
    を備えたことを特徴とする統制局装置。
  11. 所定の周波数のアップリンク信号を受信し受信した前記アップリンク信号の周波数を変換し第1ダウンリンク信号としてダウンリンクする第1衛星に上空で会合する第2衛星へ搭載され、前記第1衛星が前記第1ダウンリンク信号をダウンリンクしており、かつ、会合により前記第1衛星と前記第2衛星との距離が所定の距離以下の場合に、前記アップリンク信号を受信し受信した前記アップリンク信号の周波数を前記第1ダウンリンク信号の周波数と異なる周波数に変換し第2ダウンリンク信号としてダウンリンクすることを特徴とする衛星通信装置。
  12. 複数のビームを使用して通信を中継可能なマルチビーム衛星に搭載される衛星通信装置において、
    前記複数のビームのいずれかのビーム内に存在する送信側の通信端末から前記複数のビームのいずれかのビーム内に存在する移動可能な受信側の通信端末に送信するための所定の周波数のアップリンク信号を受信し、受信した前記アップリンク信号の周波数を変換し第1ダウンリンク信号として前記受信側の通信端末が存在する受信側存在ビームにダウンリンクするとともに、前記受信側の通信端末が前記受信側存在ビーム内を移動することにより前記受信側存在ビームに隣接する隣接ビームであって前記受信側存在ビームと重複する重複領域を有する隣接ビームの前記重複領域に位置する場合に、前記アップリンク信号を前記第1ダウンリンク信号の周波数と異なる周波数の第2ダウンリンク信号に変換し、前記第2ダウンリンク信号を前記隣接ビームにダウンリンクすることを特徴とする衛星通信装置。
  13. 複数のビームを使用して通信を中継可能なマルチビーム衛星に搭載される衛星通信装置において、
    前記複数のビームのうち2つのビームが重複する重複領域に存在する送信側の通信端末から前記複数のビームのいずれかのビーム内に存在する受信側の通信端末に送信するための所定の周波数のアップリンク信号を受信した場合に、受信した前記アップリンク信号を互いに周波数の異なる第1ダウンリンク信号と第2ダウンリンク信号とに変換し、前記第1ダウンリンク信号と前記第2ダウンリンク信号とを前記受信側の通信端末が存在するビームにダウンリンクすることを特徴とする衛星通信装置。
JP2005095802A 2005-03-29 2005-03-29 通信端末及び統制局装置及び衛星通信装置 Withdrawn JP2006279558A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005095802A JP2006279558A (ja) 2005-03-29 2005-03-29 通信端末及び統制局装置及び衛星通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005095802A JP2006279558A (ja) 2005-03-29 2005-03-29 通信端末及び統制局装置及び衛星通信装置

Publications (1)

Publication Number Publication Date
JP2006279558A true JP2006279558A (ja) 2006-10-12

Family

ID=37213829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005095802A Withdrawn JP2006279558A (ja) 2005-03-29 2005-03-29 通信端末及び統制局装置及び衛星通信装置

Country Status (1)

Country Link
JP (1) JP2006279558A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2779482A1 (en) * 2013-03-15 2014-09-17 EMC SatCom Technologies, LLC Seamless hand-off from a descending satellite to an ascending satellite in an medium equatorial earth orbit (MEO) constellation
JP6099773B2 (ja) * 2014-01-28 2017-03-22 三菱電機株式会社 衛星通信システム、ゲートウェイ、通信網制御局及び衛星通信方法
JP2018531531A (ja) * 2015-08-05 2018-10-25 クアルコム,インコーポレイテッド 衛星通信システムにおける衛星間のハンドオフ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2779482A1 (en) * 2013-03-15 2014-09-17 EMC SatCom Technologies, LLC Seamless hand-off from a descending satellite to an ascending satellite in an medium equatorial earth orbit (MEO) constellation
US9130644B2 (en) 2013-03-15 2015-09-08 Emc Satcom Technologies, Llc Power booster in an MEO setting
JP6099773B2 (ja) * 2014-01-28 2017-03-22 三菱電機株式会社 衛星通信システム、ゲートウェイ、通信網制御局及び衛星通信方法
JPWO2015114715A1 (ja) * 2014-01-28 2017-03-23 三菱電機株式会社 衛星通信システム、ゲートウェイ、通信網制御局及び衛星通信方法
JP2018531531A (ja) * 2015-08-05 2018-10-25 クアルコム,インコーポレイテッド 衛星通信システムにおける衛星間のハンドオフ

Similar Documents

Publication Publication Date Title
US5765098A (en) Method and system for transmitting radio signals between a fixed terrestrial station and user mobile terminals via a network of satellites
US5722042A (en) Satellite communication system having double-layered earth orbit satellite constellation with two different altitudes
JP4409094B2 (ja) 通信システムにおける交差偏波分離方法及び装置
US9859973B2 (en) Hybrid space system based on a constellation of low-orbit satellites working as space repeaters for improving the transmission and reception of geostationary signals
US5592481A (en) Multiple satellite repeater capacity loading with multiple spread spectrum gateway antennas
US5943324A (en) Methods and apparatus for mobile station to mobile station communications in a mobile satellite communication system
US9363712B2 (en) Satellite communication system for a continuous high-bitrate access service over a coverage area including at least one polar region
US5825325A (en) Intersatellite communications systems
KR19980080437A (ko) 위성 통신 시스템 및 통신 시스템의 작동 방법
JP2003249884A (ja) 柔軟性ハブ−スポーク衛星通信ネットワークを実装するための装置および方法
US6954614B2 (en) Wideband transmission through narrowband transponder
JP2010278886A (ja) 地上/衛星共用携帯電話システムとそのシステム相互干渉軽減方法
JP2001148652A (ja) 低高度地球周回衛星のための動的衛星フィルタ制御器
JPH0439249B2 (ja)
NZ242764A (en) Low orbit satellite communications system: multiple elliptical beams elongated in flyby direction
JP4804849B2 (ja) 通信衛星及び通信システム
US6871045B2 (en) In-orbit reconfigurable communications satellite
JP2006279558A (ja) 通信端末及び統制局装置及び衛星通信装置
US6633551B1 (en) High-rel beacon signal sequencer
CN112564770A (zh) 一种多星共位的卫星通信系统
EP0780998B1 (en) Intersatellite communication system with switching at subchannel level using bent-pipe architecture
JP4037302B2 (ja) 衛星通信システム、基地局及び移動局
US6947740B2 (en) Communication satellite in a satellite communication system with high aspect ratio cell arrangement and shared and allocable bandwidth
JPS59161940A (ja) 衛星通信における送信電力制御方式
Furukawa et al. N-STAR mobile communications system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090616