JP2006278322A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2006278322A
JP2006278322A JP2006052091A JP2006052091A JP2006278322A JP 2006278322 A JP2006278322 A JP 2006278322A JP 2006052091 A JP2006052091 A JP 2006052091A JP 2006052091 A JP2006052091 A JP 2006052091A JP 2006278322 A JP2006278322 A JP 2006278322A
Authority
JP
Japan
Prior art keywords
positive electrode
composite oxide
mass
battery
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006052091A
Other languages
Japanese (ja)
Other versions
JP5105393B2 (en
Inventor
Kazutaka Uchitomi
内冨  和孝
Masayuki Yamada
將之 山田
Tokuji Ueda
上田  篤司
Mitsuhiro Kishimi
光浩 岸見
Tetsuo Kawai
徹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2006052091A priority Critical patent/JP5105393B2/en
Publication of JP2006278322A publication Critical patent/JP2006278322A/en
Application granted granted Critical
Publication of JP5105393B2 publication Critical patent/JP5105393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery realizing both high capacity and safety at high level. <P>SOLUTION: This nonaqueous electrolyte secondary battery has a positive electrode which has a positive electrode mix layer containing a layered complex oxide represented by a composition formula Li<SB>(1+δ)</SB>Mn<SB>x</SB>Ni<SB>y</SB>Co<SB>(1-x-y-z)</SB>M<SB>z</SB>O<SB>2</SB>(where M is at least one kind of elements selected from a group comprising Ti, Zr, Nb, Mo, W, Al, Si, Ga, Ge and Sn, -0.15<δ<0.15, 0.1<x≤0.5, 0.6<x+y+z≤1.0 and 0≤z≤0.1) and a spinel composite oxide represented by a composition formula Li<SB>(1+η)</SB>Mn<SB>(2-W)</SB>M'<SB>W</SB>O<SB>4</SB>(where M' is at least one kind of elements selected from a group comprising Mg, Ca, Sr, Al, Ga, Zn and Cu, 0≤η≤0.2 and 0≤w≤0.1) by a specific ratio. The density of the positive electrode mix layer is 3.0-3.6 g/cm<SP>3</SP>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery.

近年、高エネルギー密度を有する電池として、リチウムイオン二次電池などの非水電解質二次電池が注目されている。リチウムイオン二次電池は、例えば、以下のように構成されている。すなわち、密閉容器の内部に電極体が収容されており、該密閉容器の蓋体には、正負一対の電極端子機構が取り付けられていて、電極体が発生する電力を電極端子機構から外部に取り出すことが可能となっている。そして、各蓋体には圧力開閉式のガス排出弁が取り付けられている。   In recent years, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have attracted attention as batteries having high energy density. The lithium ion secondary battery is configured as follows, for example. That is, the electrode body is accommodated in the sealed container, and a pair of positive and negative electrode terminal mechanisms are attached to the lid body of the sealed container, and the electric power generated by the electrode body is taken out from the electrode terminal mechanism. It is possible. Each lid is provided with a pressure open / close type gas discharge valve.

電極体は、それぞれ帯状の正極と負極とを、セパレータを介して重ね合わせ、これらを巻回して構成されている。正極は、アルミニウム箔などからなる集電体と、該集電体表面に存在する正極活物質を含有する正極合剤層で構成されており、負極は,銅箔などからなる集電体と、該集電体表面に存在する負極活物質を含有する負極合剤層で構成されている。正極合剤層は、セパレータを介して負極合剤層と対向している。正極活物質は、例えば、リチウム遷移金属複合酸化物であり,負極活物質は黒鉛などの、リチウムイオンを吸蔵・放出できる材料である。   The electrode body is configured by stacking a belt-like positive electrode and a negative electrode via a separator and winding them. The positive electrode is composed of a current collector made of aluminum foil or the like and a positive electrode mixture layer containing a positive electrode active material present on the surface of the current collector, and the negative electrode is made of a current collector made of copper foil or the like, It is comprised with the negative mix layer containing the negative electrode active material which exists in this collector surface. The positive electrode mixture layer faces the negative electrode mixture layer with a separator interposed therebetween. The positive electrode active material is, for example, a lithium transition metal composite oxide, and the negative electrode active material is a material that can occlude and release lithium ions, such as graphite.

上記リチウムイオン二次電池の充放電反応においては、リチウムイオンが、電解液を介して互いに対向する正極合剤層と負極合剤層の間を移動する。   In the charge / discharge reaction of the lithium ion secondary battery, lithium ions move between the positive electrode mixture layer and the negative electrode mixture layer facing each other through the electrolytic solution.

正極活物質として用いられるリチウム遷移金属複合酸化物としては、リチウム・コバルト複合酸化物(LiCoO)、リチウム・ニッケル複合酸化物(LiNiO)、リチウム・マンガン複合酸化物(LiMn)などが知られている。 Examples of the lithium transition metal composite oxide used as the positive electrode active material include lithium / cobalt composite oxide (LiCoO 2 ), lithium / nickel composite oxide (LiNiO 2 ), and lithium / manganese composite oxide (LiMn 2 O 4 ). It has been known.

上記のリチウム遷移金属複合酸化物のうち、リチウム・マンガン複合酸化物(LiMn)は、原料の価格面および安定供給面において最も優れているものの、工業的にはあまり用いられていない。その理由の一つは、他のリチウム遷移金属複合酸化物であるリチウム・コバルト複合酸化物(LiCoO)やリチウム・ニッケル複合酸化物(LiNiO)と比較して容量が低く、リチウム・マンガン複合酸化物のみを正極活物質として用いると電池容量が著しく減少するからである。 Among the above lithium transition metal composite oxides, lithium / manganese composite oxides (LiMn 2 O 4 ) are the most excellent in terms of raw material price and stable supply, but are not widely used industrially. One of the reasons is that the lithium-cobalt composite oxide (LiCoO 2 ) and lithium-nickel composite oxide (LiNiO 2 ), which are other lithium transition metal composite oxides, have a lower capacity, and the lithium-manganese composite oxide. This is because when only an oxide is used as the positive electrode active material, the battery capacity is remarkably reduced.

このような事情がある一方で、充放電を行うことなく電池を長期間放置した場合の保存特性(貯蔵特性)の劣化や、充放電を繰り返した場合の寿命特性(充放電サイクル特性)の劣化を防止するために、リチウム・マンガン複合酸化物(LiMn)とリチウム・ニッケル系複合酸化物(LiNi(1−x)、ただし、0<x≦0.5であり、Mは、Co、Mn、Al、Fe、Cu、およびSrからなる群より選ばれる1種類以上の金属元素)とを混合し、これを正極活物質として用いたリチウムイオン二次電池が検討されている(特許文献1)。 On the other hand, on the other hand, deterioration of storage characteristics (storage characteristics) when batteries are left for a long time without charging / discharging and deterioration of life characteristics (charging / discharging cycle characteristics) when charging / discharging is repeated. In order to prevent lithium / manganese composite oxide (LiMn 2 O 4 ) and lithium-nickel composite oxide (LiNi (1-x) M x O 2 , where 0 <x ≦ 0.5, M is one or more metal elements selected from the group consisting of Co, Mn, Al, Fe, Cu, and Sr), and a lithium ion secondary battery using this as a positive electrode active material has been studied. (Patent Document 1).

また、非水電解液中に特定の環状炭酸エステルを添加させ、炭素材料である負極活物質の表面に被膜を形成させて、充放電サイクル特性の向上を図った非水電解質二次電池において、正極活物質として、スピネル構造を有する特定組成のリチウム・マンガン系複合酸化物と、特定組成のリチウム・ニッケル・コバルト・マンガン複合酸化物を使用した正極を用いることで、充放電サイクル特性と出力特性の更なる向上が達成できることが報告されている(特許文献2)。   In addition, in a non-aqueous electrolyte secondary battery in which a specific cyclic carbonate is added to the non-aqueous electrolyte and a film is formed on the surface of the negative electrode active material that is a carbon material, the charge / discharge cycle characteristics are improved. Charge and discharge cycle characteristics and output characteristics by using a positive electrode using a lithium-manganese composite oxide with a specific composition having a spinel structure and a lithium-nickel-cobalt-manganese composite oxide with a specific composition as the positive electrode active material It has been reported that further improvement can be achieved (Patent Document 2).

特許第3024636号公報(特許請求の範囲など)Japanese Patent No. 3024636 (claims, etc.) 特開2004−146363号公報(特許請求の範囲など)JP 2004-146363 A (Claims etc.)

ところで、携帯電話などの駆動電源として用いられる非水電解質二次電池においては、高容量化や、貯蔵特性および充放電サイクル特性の改善と共に、安全性の向上についても要求されており、これらの特性を満足することが必要である。   By the way, non-aqueous electrolyte secondary batteries used as driving power sources for mobile phones and the like are required to have higher capacities, improved storage characteristics and charge / discharge cycle characteristics, as well as improved safety. It is necessary to satisfy

しかしながら、上記特許文献1や特許文献2の技術では、特に高容量と安全性を高度に両立させる、といった観点では十分な検討がなされておらず、最近の携帯電話用途などで要求されているレベルを十分に達成できているとはいい難い。   However, the techniques of Patent Document 1 and Patent Document 2 have not been sufficiently studied particularly in terms of achieving both high capacity and safety at a high level, and are required for recent cellular phone applications. It is hard to say that you have achieved enough.

本発明は、上記事情に鑑みてなされたものであり、その目的は、高容量と安全性を高いレベルで両立し得る非水電解質二次電池を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the nonaqueous electrolyte secondary battery which can make high capacity | capacitance and safety compatible at a high level.

上記目的を達成し得た本発明の非水電解質二次電池は、組成式Li(1+δ)MnNiCo(1−x−y−z)(Mは、Ti、Zr、Nb、Mo、W、Al、Si、Ga、GeおよびSnよりなる群から選ばれる少なくとも1種の元素であり、−0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z≦1.0、0≦z≦0.1である)で表される層状型リチウム・マンガン・ニッケル・コバルト複合酸化物と、組成式Li(1+η)Mn(2−W)M’(M’は、Mg、Ca、Sr、Al、Ga、Zn、およびCuよりなる群から選ばれる少なくとも1種の元素であり、0≦η≦0.2、0≦w≦0.1である)で表されるスピネル型リチウム・マンガン複合酸化物とを、活物質として含有する正極合剤層を有しており、上記正極合剤層では、上記層状型リチウム・マンガン・ニッケル・コバルト複合酸化物と、上記スピネル型リチウム・マンガン複合酸化物の合計に対し、上記スピネル型リチウム・マンガン複合酸化物の比率が20〜60質量%であり、上記正極合剤層の密度が、3.0〜3.6g/cmである正極を有することを特徴とするものである。 The non-aqueous electrolyte secondary battery of the present invention that can achieve the above-described object has a composition formula Li (1 + δ) Mn x Ni y Co (1-xyz) M z O 2 (M is Ti, Zr, At least one element selected from the group consisting of Nb, Mo, W, Al, Si, Ga, Ge and Sn, -0.15 <δ <0.15, 0.1 <x ≦ 0.5, 0.6 <x + y + z ≦ 1.0 and 0 ≦ z ≦ 0.1) and a compositional formula Li (1 + η) Mn (2-W) M ′ W O 4 (M ′ is at least one element selected from the group consisting of Mg, Ca, Sr, Al, Ga, Zn, and Cu, and 0 ≦ η ≦ 0.2, 0 ≦ w ≦ 0.1) and a spinel-type lithium / manganese composite oxide represented by In the positive electrode mixture layer, the total amount of the layered lithium / manganese / nickel / cobalt composite oxide and the spinel type lithium / manganese composite oxide is compared with the amount of the spinel type lithium / manganese composite oxide. The manganese composite oxide has a ratio of 20 to 60% by mass, and the positive electrode mixture layer has a density of 3.0 to 3.6 g / cm 3 .

本発明によれば、高容量で安全性に優れた非水電解質二次電池を提供できる。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having high capacity and excellent safety.

本発明の電池では、正極活物質として、組成式Li(1+δ)MnNiCo(1−x−y−z)(Mは、Ti、Zr、Nb、Mo、W、Al、Si、Ga、GeおよびSnよりなる群から選ばれる少なくとも1種の元素であり、−0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z≦1.0、0≦z≦0.1である)で表される層状型リチウム・マンガン・ニッケル・コバルト複合酸化物(以下、単に「層状型複合酸化物」という場合がある)と、組成式Li(1+η)Mn(2−W)M’(M’は、Mg、Ca、Sr、Al、Ga、Zn、およびCuよりなる群から選ばれる少なくとも1種の元素であり、0≦η≦0.2、0≦w≦0.1である)で表されるスピネル型リチウム・マンガン複合酸化物(以下、単に「スピネル型複合酸化物」という場合がある)を含有する正極合剤層を有している。このような正極合剤層を有する正極を用いることで、高容量としつつ充電時の正極の安定性を高め、発熱を抑制して発火などの危険性が無く安全性に優れたものとすることができると共に、充放電サイクル特性や貯蔵特性にも優れたものとすることができる。 In the battery of the present invention, as the positive electrode active material, the composition formula Li (1 + δ) Mn x Ni y Co (1-xyz) M z O 2 (M is Ti, Zr, Nb, Mo, W, Al) , Si, Ga, Ge and Sn, at least one element selected from the group consisting of -0.15 <δ <0.15, 0.1 <x ≦ 0.5, 0.6 <x + y + z ≦ 1 0.0, 0 ≦ z ≦ 0.1), a layered lithium-manganese-nickel-cobalt composite oxide (hereinafter sometimes simply referred to as “layered composite oxide”), and a composition formula Li (1 + η) Mn (2-W) M ′ W O 4 (M ′ is at least one element selected from the group consisting of Mg, Ca, Sr, Al, Ga, Zn, and Cu, and 0 ≦ η ≦ 0.2, 0 ≦ w ≦ 0.1) It has a positive electrode mixture layer containing an oxide (hereinafter sometimes simply referred to as “spinel type composite oxide”). By using a positive electrode having such a positive electrode mixture layer, the stability of the positive electrode during charging is increased while maintaining a high capacity, heat generation is suppressed, and there is no risk of ignition and excellent safety. In addition to excellent charge / discharge cycle characteristics and storage characteristics.

すなわち、上記スピネル型複合酸化物では充電状態におけるMnが安定であるため、正極からの発熱を抑制でき、電池の安全性を高めることができる。更に、添加元素M’を加えることで、Mnの溶出を低減できるため、貯蔵特性や充放電サイクル特性を向上させることができる。しかしながら、従来公知の上記スピネル型複合酸化物は理論容量が小さく、更に密度も小さいことから、該複合酸化物のみを正極活物質として電池を構成した場合には、電池容量を高めることが困難であった。他方、上記層状型複合酸化物は、例えば、従来からリチウムイオン二次電池の正極活物質として汎用されているリチウム含有遷移金属複合酸化物であるLiCoOと同等の容量を有している。本発明では、上記スピネル型複合酸化物と上記層状型複合酸化物を併用することで、正極合剤層の密度を高めて、高容量であり、且つ安全性にも優れた電池の提供を可能としたのである。また、本発明の電池では、上記構成の採用により、貯蔵特性や充放電サイクル特性にも優れたものとなる。 That is, since the spinel-type composite oxide has stable Mn in the charged state, heat generation from the positive electrode can be suppressed and the safety of the battery can be improved. Furthermore, since the elution of Mn can be reduced by adding the additive element M ′, storage characteristics and charge / discharge cycle characteristics can be improved. However, since the above known spinel type composite oxide has a small theoretical capacity and a low density, it is difficult to increase the battery capacity when a battery is formed using only the composite oxide as a positive electrode active material. there were. On the other hand, the layered composite oxide has a capacity equivalent to, for example, LiCoO 2 , which is a lithium-containing transition metal composite oxide conventionally used as a positive electrode active material for lithium ion secondary batteries. In the present invention, it is possible to provide a battery having a high capacity and excellent safety by increasing the density of the positive electrode mixture layer by using the spinel type composite oxide and the layered type composite oxide together. It was. Moreover, in the battery of this invention, it becomes what was excellent also in the storage characteristic and the charging / discharging cycle characteristic by employ | adopting the said structure.

本発明に係る正極では、正極合剤層の密度が、3.0g/cm以上、好ましくは3.1g/cm以上であって、3.6g/cm以下、好ましくは3.5g/cm以下である。正極合剤層の密度をこのように調整することで、高い安全性を保持したまま、高容量の電池を得ることができる。すなわち、正極合剤層の密度が小さすぎると、上記層状型複合酸化物と上記スピネル型複合酸化物の配合比に関わらず、容量が低くなりすぎて、本発明で達成すべき効果がなくなってしまう。他方、正極合剤層の密度が大きすぎると、安全性が低下し、更に正極の引張強度も低下する。本発明でいう正極合剤層の密度は、以下のようにして測定する。まず、正極を1cm×1cmの大きさに切り取り、マイクロメータで厚み(l)を、精密天秤で質量(m)を測定する。次に、正極合剤層を削り取り、集電体(後述する)のみを取り出して、その集電体の厚み(l)と質量(m)を正極と同様に測定する。得られた厚みと質量から、以下の式によって正極合剤層密度(dca)を求める(なお、上記の厚みの単位はcm、質量の単位はgである)。
ca=(m−m)/(l−l
なお、正極合剤層の密度を上記値に調整するには、後述する正極の構成および製法を採用すればよい。
In the positive electrode according to the present invention, the density of the positive electrode mixture layer is 3.0 g / cm 3 or more, preferably 3.1 g / cm 3 or more, and 3.6 g / cm 3 or less, preferably 3.5 g / cm 3. cm 3 or less. By adjusting the density of the positive electrode mixture layer in this way, a high-capacity battery can be obtained while maintaining high safety. That is, if the density of the positive electrode mixture layer is too small, the capacity becomes too low regardless of the blending ratio of the layered complex oxide and the spinel complex oxide, and the effect to be achieved in the present invention is lost. End up. On the other hand, when the density of the positive electrode mixture layer is too large, the safety is lowered and the tensile strength of the positive electrode is also lowered. The density of the positive electrode mixture layer referred to in the present invention is measured as follows. First, cut a positive electrode to a size of 1 cm × 1 cm, a thickness micrometer (l 1), measuring the mass (m 1) a precision balance. Next, the positive electrode mixture layer is scraped off, and only the current collector (described later) is taken out, and the thickness (l c ) and mass (m c ) of the current collector are measured in the same manner as the positive electrode. From the obtained thickness and mass, the positive electrode mixture layer density (d ca ) is determined by the following formula ( note that the unit of thickness is cm and the unit of mass is g).
d ca = (m 1 −m c ) / (l 1 −l c )
In addition, what is necessary is just to employ | adopt the structure and manufacturing method of a positive electrode mentioned later, in order to adjust the density of a positive mix layer to the said value.

正極合剤層の密度は、正極合剤層中における上記層状型複合酸化物と上記スピネル型複合酸化物の含有比率を制御することで、調整することができる。上記層状型複合酸化物の比率を、40質量%以上、より好ましくは50質量%以上であって、80質量%以下、より好ましくは70質量%以下とする。言い換えれば、上記層状型複合酸化物と上記スピネル型複合酸化物の合計に対し、上記スピネル型複合酸化物の比率を、20質量%以上、より好ましくは30質量%以上であって、60質量%以下、より好ましくは50質量%以下とする。   The density of the positive electrode mixture layer can be adjusted by controlling the content ratio of the layered complex oxide and the spinel complex oxide in the positive electrode mixture layer. The ratio of the layered complex oxide is 40% by mass or more, more preferably 50% by mass or more, and 80% by mass or less, more preferably 70% by mass or less. In other words, the ratio of the spinel composite oxide to the total of the layered composite oxide and the spinel composite oxide is 20% by mass or more, more preferably 30% by mass or more, and 60% by mass. Hereinafter, it is more preferably 50% by mass or less.

また、上記層状型複合酸化物においては、Mnの数を表すxとNiの数を表すyとが、例えば、同等であることが好ましく、x=yであることが特に好ましい。このような組成の上記層状型複合酸化物を用いた場合には、電池の安全性が一層向上する。かかる組成の上記層状型複合酸化物では、高容量でありながら、充電時の安定性が増すことで優れた安全性を示す構造を形成しているものと考えられる。   In the layered composite oxide, x representing the number of Mn and y representing the number of Ni are preferably the same, for example, and particularly preferably x = y. When the layered complex oxide having such a composition is used, the safety of the battery is further improved. It is considered that the layered complex oxide having such a composition forms a structure exhibiting excellent safety by increasing stability during charging while having a high capacity.

また、上記スピネル型複合酸化物では、Mnの一部が、他の元素(具体的には、Mg、Ca、Sr、Al、Ga、Zn、およびCuよりなる群から選ばれる少なくとも1種の元素)で置換されていることが好ましい。すなわち、上記スピネル型複合酸化物を表す上記の組成式において、0<w≦0.1、であることが好ましい。このように、上記スピネル型複合酸化物が、元素置換されたスピネル型リチウム・マンガン複合酸化物(元素置換スピネル型リチウム・マンガン複合酸化物)である場合には、該複合酸化物中のMnが、より安定であるために、充放電サイクル特性や貯蔵性が改善される該複合酸化物を用いた電池では、その安全性が一層向上する。   In the above spinel-type composite oxide, at least one element selected from the group consisting of other elements (specifically, Mg, Ca, Sr, Al, Ga, Zn, and Cu) is part of Mn. ) Is preferably substituted. That is, it is preferable that 0 <w ≦ 0.1 in the composition formula representing the spinel-type composite oxide. Thus, when the spinel-type composite oxide is an element-substituted spinel-type lithium / manganese composite oxide (element-substituted spinel-type lithium / manganese composite oxide), Mn in the composite oxide is In addition, since the battery is more stable, the safety of the battery using the composite oxide with improved charge / discharge cycle characteristics and storability is further improved.

上記層状型複合酸化物は、平均粒径が、5μm以上、好ましくは7μm以上であって、25μm以下、好ましくは15μm以下であることが望ましい。また、上記スピネル型複合酸化物は、平均粒径が、10μm以上、好ましくは15μm以上であって、30μm以下、好ましくは25μm以下であることが推奨される。上記層状型複合酸化物や上記スピネル型複合酸化物が、上記の平均粒径を有する場合には、正極に用いる導電助剤や結着剤(後述する)の量を低減できるため、正極合剤層の密度を上記所定値に制御することが容易となり、電池の一層の高容量化が達成できる。すなわち、上記層状型複合酸化物や上記スピネル型複合酸化物の平均粒径が大きすぎると、正極合剤層の密度を高め難く、電池容量の向上効果が小さくなる傾向にある。また、上記層状型複合酸化物や上記スピネル型複合酸化物の平均粒径が小さすぎると、表面積が大きくなるために、正極合剤層の形成に必要となる導電助剤量やバインダ量が多くなり、正極合剤層の密度が小さくなることがある。   The layered composite oxide has an average particle size of 5 μm or more, preferably 7 μm or more, and is 25 μm or less, preferably 15 μm or less. Further, it is recommended that the above spinel type complex oxide has an average particle size of 10 μm or more, preferably 15 μm or more, and 30 μm or less, preferably 25 μm or less. When the layered complex oxide or the spinel complex oxide has the above average particle diameter, the amount of the conductive auxiliary and binder (described later) used for the positive electrode can be reduced, so that the positive electrode mixture It becomes easy to control the density of the layer to the predetermined value, and a further increase in capacity of the battery can be achieved. That is, if the average particle size of the layered complex oxide or the spinel complex oxide is too large, it is difficult to increase the density of the positive electrode mixture layer, and the effect of improving battery capacity tends to be small. Further, if the average particle size of the layered complex oxide or the spinel complex oxide is too small, the surface area becomes large, so that the amount of conductive auxiliary agent and binder required for forming the positive electrode mixture layer is large. Thus, the density of the positive electrode mixture layer may be reduced.

また、上記スピネル型リチウム・マンガン複合酸化物は、上記層状型リチウム・マンガン・ニッケル・コバルト複合酸化物よりも、平均粒径で、5μm以上、より好ましくは10μm以上大きな粒径を有していることが望ましい。このような程度に粒径の異なる材料を混合することで、充填性が高まり、正極合剤層の密度を向上させることができるためである。また、上記スピネル型複合酸化物は、高温貯蔵時にマンガンが溶け出す可能性があり、比表面積は小さい方がよい。よって、上記スピネル型複合酸化物の平均粒径の方を大きくすることが好ましい。なお、本発明でいう上記層状型複合酸化物および上記スピネル型複合酸化物の平均粒径は、後記の実施例で採用した方法により測定される値である。   The spinel type lithium / manganese composite oxide has an average particle size larger than that of the layered type lithium / manganese / nickel / cobalt composite oxide by 5 μm or more, more preferably 10 μm or more. It is desirable. This is because, by mixing materials having different particle sizes to such a degree, the filling property can be improved and the density of the positive electrode mixture layer can be improved. Further, the spinel-type composite oxide may dissolve manganese during high temperature storage, and the specific surface area is preferably small. Therefore, it is preferable to increase the average particle diameter of the spinel type complex oxide. In addition, the average particle diameter of the said layered type complex oxide and said spinel type complex oxide as used in the field of this invention is a value measured by the method employ | adopted in the below-mentioned Example.

上記層状型複合酸化物は、比表面積が、0.1m/g以上、好ましくは0.2m/g以上であって、0.6m/g以下、好ましくは0.5m/g以下であることが望ましい。また、上記スピネル型複合酸化物は、比表面積が、0.05m/g以上、好ましくは0.1m/g以上であって、0.3m/g以下、好ましくは0.2m/g以下であることが推奨される。このような形態を有する上記層状型複合酸化物および上記スピネル型複合酸化物を用いることで、電池の安全性、更には貯蔵特性および充放電サイクル特性を一層高めることができる。 The layered complex oxide has a specific surface area of 0.1 m 2 / g or more, preferably 0.2 m 2 / g or more, and is 0.6 m 2 / g or less, preferably 0.5 m 2 / g or less. It is desirable that Furthermore, the spinel-type composite oxide has a specific surface area, 0.05 m 2 / g or more, there is preferably 0.1 m 2 / g or more, 0.3 m 2 / g or less, preferably 0.2 m 2 / It is recommended to be g or less. By using the layered complex oxide and the spinel complex oxide having such a configuration, it is possible to further improve battery safety, storage characteristics, and charge / discharge cycle characteristics.

すなわち、上記のように小さな比表面積を有する上記層状型複合酸化物および上記スピネル型複合酸化物では、正極と電解液との反応面積を小さくすることができるため、電池の安全性を一層高めることができる。また、特に上記の形態を有する層状型複合酸化物では、その焼結性が高められており、該複合酸化物を有する正極合剤層を形成するための正極合剤の作製時や、正極合剤層形成時における該複合酸化物の崩壊を抑制できるため、電池の貯蔵特性や充放電サイクル特性を一層改善することができる。すなわち、上記層状型複合酸化物や上記スピネル型複合酸化物の比表面積が大きすぎると、電池の安全性向上効果が小さくなることがある他、貯蔵特性や充放電サイクル特性も低下傾向にある。また、上記層状型複合酸化物や上記スピネル型複合酸化物の比表面積が小さすぎると、電解液との接触面積が小さくなりすぎて、電池の負荷特性や低温特性が低下してしまう。なお、本発明でいう上記層状型複合酸化物および上記スピネル型複合酸化物の比表面積は、後記の実施例で採用した方法により測定される値である。   That is, in the layered complex oxide and the spinel complex oxide having a small specific surface area as described above, the reaction area between the positive electrode and the electrolytic solution can be reduced, thereby further improving the safety of the battery. Can do. In particular, the sinterability of the layered composite oxide having the above-described form is enhanced, and it is possible to prepare a positive electrode mixture for forming a positive electrode mixture layer having the composite oxide, or to form a positive electrode mixture. Since the collapse of the composite oxide at the time of forming the agent layer can be suppressed, the storage characteristics and charge / discharge cycle characteristics of the battery can be further improved. That is, if the specific surface area of the layered complex oxide or the spinel complex oxide is too large, the effect of improving the safety of the battery may be reduced, and the storage characteristics and charge / discharge cycle characteristics tend to be reduced. On the other hand, if the specific surface area of the layered complex oxide or the spinel complex oxide is too small, the contact area with the electrolytic solution becomes too small, and the load characteristics and low temperature characteristics of the battery deteriorate. The specific surface areas of the layered complex oxide and the spinel complex oxide referred to in the present invention are values measured by the method employed in the examples described later.

上記層状型複合酸化物は、例えば、以下の手法により作製することができる。ニッケル含有塩(硫酸塩など)とマンガン含有塩(硫酸塩など)とコバルト含有塩(硫酸塩など)とを、各金属元素が所定の組成比となるように混合し、この混合物を水に溶かした後、これに水酸化物の水溶液(アルカリ性水溶液)を加えて沈殿させる。この沈殿物を取り出し、十分に水洗し乾燥させて共沈水酸化物を得る。この共沈水酸化物に、各金属元素が所定の組成比となるようにLi水酸化物を加え、十分に混合する。この混合物を酸化性雰囲気中で焼成することで上記層状型複合酸化物が得られる。なお、焼成時の雰囲気としては、例えば、酸素分圧を0.19〜1気圧とすることが好ましく、また、焼成温度は、例えば、600〜1000℃とし、焼成時間は、例えば、6〜48時間とすることが望ましい。   The layered complex oxide can be produced, for example, by the following method. A nickel-containing salt (such as sulfate), a manganese-containing salt (such as sulfate), and a cobalt-containing salt (such as sulfate) are mixed so that each metal element has a predetermined composition ratio, and this mixture is dissolved in water. After that, an aqueous hydroxide solution (alkaline aqueous solution) is added thereto to cause precipitation. The precipitate is taken out, sufficiently washed with water and dried to obtain a coprecipitated hydroxide. Li hydroxide is added to the coprecipitated hydroxide so that each metal element has a predetermined composition ratio, and mixed sufficiently. The layered complex oxide is obtained by firing this mixture in an oxidizing atmosphere. In addition, as an atmosphere at the time of baking, it is preferable that oxygen partial pressure shall be 0.19-1 atmosphere, for example, baking temperature shall be 600-1000 degreeC, for example, and baking time will be 6-48, for example. Time is desirable.

また、上記スピネル型複合酸化物は、例えば、以下の手法により作製することができる。リチウム、マンガン、およびマンガンの一部を他の元素で置換する場合には該元素が、所定の組成となるように、Liの水酸化物と、マンガン含有塩(硫酸塩など)と、マンガンの一部を置換するための他の元素を含有する塩(硫酸塩など)混合し、大気中で、700〜1000℃で、2〜48時間熱処理することで、上記スピネル型複合酸化物を得ることができる。   The spinel complex oxide can be produced, for example, by the following method. When substituting lithium, manganese, and part of manganese with other elements, the hydroxide of Li, a manganese-containing salt (such as sulfate), and manganese The above spinel-type composite oxide is obtained by mixing a salt (such as sulfate) containing another element for partial substitution and heat-treating in the air at 700 to 1000 ° C. for 2 to 48 hours. Can do.

本発明の電池に係る正極は、例えば、上記の活物質(上記層状型複合酸化物および上記スピネル型複合酸化物)を含有する正極合剤層を、集電体に表面に形成することで作製できる。正極合剤層は、上記活物質の他に、導電助剤や結着剤を含有しており、例えば、上記活物質、導電助剤および結着剤などを含む混合物(正極合剤)に、適当な溶剤を加えて十分に混練して得られる正極合剤ペーストや正極合剤スラリーなどを、集電体表面に塗布し乾燥することで、所望の厚みと密度に制御しつつ形成することができる。   The positive electrode according to the battery of the present invention is produced, for example, by forming a positive electrode mixture layer containing the above active material (the layered complex oxide and the spinel complex oxide) on the surface of the current collector. it can. In addition to the active material, the positive electrode mixture layer contains a conductive additive and a binder. For example, in a mixture (positive electrode mixture) containing the active material, the conductive additive and the binder, A positive electrode mixture paste, a positive electrode mixture slurry, or the like obtained by adding an appropriate solvent and sufficiently kneaded can be applied to the surface of the current collector and dried to be formed while controlling the desired thickness and density. it can.

導電助剤としては、本発明の電池において、実質上、化学的に安定な電子伝導性材料であれば特に限定されない。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック;ケッチェンブラック;チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維;などの炭素材料の他、金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛;チタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を同時に使用しても構わない。これらの中でも、アセチレンブラック、ケッチェンブラック、カーボンブラックといった炭素材料が特に好ましい。   The conductive auxiliary agent is not particularly limited as long as it is a chemically stable electron conductive material in the battery of the present invention. For example, graphites such as natural graphite (flaky graphite, etc.) and artificial graphite; acetylene black; ketjen black; carbon blacks such as channel black, furnace black, lamp black, and thermal black; carbon fibers; Other conductive fibers such as metal fibers; carbon fluoride; metal powders such as aluminum; zinc oxide; conductive whiskers such as potassium titanate; conductive metal oxides such as titanium oxide; organics such as polyphenylene derivatives These may be used alone, or two or more of them may be used simultaneously. Among these, carbon materials such as acetylene black, ketjen black, and carbon black are particularly preferable.

結着剤(バインダ)は、正極合剤層において、上記活物質や導電助剤を結着する役割を担うものである。本発明に係る正極において用いる結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。具体的には、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体などのフッ素樹脂;スチレンブタジエンゴム(SBR);エチレン−アクリル酸共重合体または該共重合体のNaイオン架橋体;エチレン−メタクリル酸共重合体または該共重合体のNaイオン架橋体;エチレン−アクリル酸メチル共重合体または該共重合体のNaイオン架橋体;エチレン−メタクリル酸メチル共重合体または該共重合体のNaイオン架橋体;などが挙げられ、これらの材料を1種単独で用いてもよく、2種以上を同時に使用しても構わない。これらの材料の中でも、PVDF、PTFEが特に好ましい。 The binder (binder) plays a role of binding the active material and the conductive additive in the positive electrode mixture layer. The binder used in the positive electrode according to the present invention may be either a thermoplastic resin or a thermosetting resin. Specifically, for example, polyolefins such as polyethylene and polypropylene; polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chloro Fluoropolymers such as trifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer; styrene butadiene rubber (SBR) ); Ethylene-acrylic acid copolymer or Na + ion crosslinked product of the copolymer; ethylene-methacrylic acid copolymer or Na + ion crosslinked product of the copolymer; ethylene-methyl acrylate copolymer or the copolymer Copolymer Na + ion cross-linked product; ethylene-methyl methacrylate copolymer or Na + ion cross-linked product of the copolymer; and the like, and these materials may be used alone or in combination. The above may be used simultaneously. Among these materials, PVDF and PTFE are particularly preferable.

本発明の電池に係る正極合剤層においては、上記活物質(上記層状型複合酸化物および上記スピネル型複合酸化物)の比表面積が上記の通り小さいことが好ましいが、これに対応して、例えば、粒径の小さな炭素材料であるカーボンブラック、アセチレンブラック、ケッチェンブラックといった導電助剤や上記の結着剤を少量含有させるだけで、各粒子間の電荷の移動や固定化が容易になるため、正極合剤層中における導電助剤量および結着剤量を低減することができ、電極(正極合剤層)密度の向上、延いては電池の高容量化に効果があると考えられる。   In the positive electrode mixture layer according to the battery of the present invention, the specific surface area of the active material (the layered complex oxide and the spinel complex oxide) is preferably small as described above. For example, it is easy to transfer and immobilize the charge between each particle just by adding a small amount of conductive aid such as carbon black, acetylene black, ketjen black, etc., which are carbon materials having a small particle diameter, and the above binder. Therefore, it is considered that the amount of the conductive auxiliary agent and the amount of the binder in the positive electrode mixture layer can be reduced, and it is effective in improving the density of the electrode (positive electrode mixture layer), and thus in increasing the capacity of the battery. .

すなわち、上記活物質(上記層状型複合酸化物および上記スピネル型複合酸化物)と導電助剤と結着剤を含む正極合剤全量中におけるカーボンブラック、アセチレンブラック、ケッチェンブラックよりなる群から選ばれる少なくとも一種の炭素材料の含有量は、0.5質量%以上、より好ましくは0.7質量%以上であって、3質量%以下、より好ましくは2質量%以下であることが望ましい。上記炭素材料の含有量が多すぎると、電池とした際の負荷特性の向上は図れるものの、上記活物質の充填性が低下する。他方、上記炭素材料の含有量が少なすぎると、正極中の導電が取り難くなる。また、カーボンブラック、アセチレンブラック、ケッチェンブラックよりなる群から選ばれる少なくとも一種の炭素材料以外の導電助剤も使用する場合では、正極合剤全量中における全導電助剤含有量は、0.5質量%以上、より好ましくは1質量%以上であって、4質量%以下、より好ましくは3質量%以下とすることが望ましい。導電助剤含有量が多すぎると、電池とした際の負荷特性の向上は図れるものの、上記活物質の充填性が低下する。他方、導電助剤含有量が少なすぎると、正極中の導電が取り難くなる。   That is, it is selected from the group consisting of carbon black, acetylene black, and ketjen black in the total amount of the positive electrode mixture containing the active material (the layered composite oxide and the spinel composite oxide), the conductive additive, and the binder. The content of the at least one carbon material is 0.5% by mass or more, more preferably 0.7% by mass or more, and 3% by mass or less, more preferably 2% by mass or less. When the content of the carbon material is too large, the load characteristics of the battery can be improved, but the filling property of the active material is lowered. On the other hand, if the content of the carbon material is too small, it is difficult to take electrical conductivity in the positive electrode. In the case where a conductive auxiliary other than at least one carbon material selected from the group consisting of carbon black, acetylene black, and ketjen black is also used, the total conductive auxiliary content in the total positive electrode mixture is 0.5 It is desirable that the content is not less than mass%, more preferably not less than 1 mass%, not more than 4 mass%, more preferably not more than 3 mass%. When the content of the conductive auxiliary agent is too large, the load characteristics when the battery is made can be improved, but the filling property of the active material is lowered. On the other hand, when the content of the conductive auxiliary agent is too small, it becomes difficult to remove the conductivity in the positive electrode.

また、上記正極合剤全量中における結着剤の含有量は、0.5質量%以上、より好ましくは1質量%以上であって、3質量%以下、より好ましくは2.5質量%以下であることが望ましい。結着剤含有量が多すぎると、電極の強度は向上するが、上記活物質の充填性や、電池とした際の負荷特性が低下する。他方、結着剤含有量が少なすぎると、正極合剤層の結着性が低下する。   The content of the binder in the total amount of the positive electrode mixture is 0.5% by mass or more, more preferably 1% by mass or more, and 3% by mass or less, more preferably 2.5% by mass or less. It is desirable to be. When the binder content is too high, the strength of the electrode is improved, but the filling properties of the active material and the load characteristics when used as a battery are lowered. On the other hand, when there is too little binder content, the binding property of a positive mix layer will fall.

ちなみに、上記正極合剤全量中における上記活物質の含有量は、上記層状型複合酸化物と上記スピネル型複合酸化物の合計で、93質量%以上、より好ましくは94.5質量%以上であって、99質量%以下、より好ましくは98質量%以下であることが望ましい。上記活物質含有量が多すぎると、正極合剤層中の導電助剤量や結着剤量が低下して、上記の不具合が生じることがある。また、上記活物質の含有量が少なすぎると、電池とした際の容量が小さくなることがある。   Incidentally, the content of the active material in the total amount of the positive electrode mixture is 93% by mass or more, more preferably 94.5% by mass or more in total of the layered complex oxide and the spinel complex oxide. 99 mass% or less, more preferably 98 mass% or less. When there is too much said active material content, the amount of the conductive support agent and binder amount in a positive mix layer may fall, and said malfunction may arise. Moreover, when there is too little content of the said active material, the capacity | capacitance at the time of setting it as a battery may become small.

なお、正極合剤層を形成するための正極合剤ペーストや正極合剤スラリーに用い得る溶剤としては、例えば、N−メチル−2−ピロリドン(NMP)などが挙げられる。   In addition, as a solvent which can be used for the positive mix paste and positive mix slurry for forming a positive mix layer, N-methyl-2-pyrrolidone (NMP) etc. are mentioned, for example.

正極合剤層の厚みは、例えば、30〜100μmとすることが好ましい。   The thickness of the positive electrode mixture layer is preferably 30 to 100 μm, for example.

正極に用いる集電体としては、本発明の電池において、実質上、化学的に安定な電子伝導体であれば特に限定されない。かかる集電体を構成する材料としては、例えば、アルミニウムやその合金、ステンレス鋼、ニッケルやその合金、チタンやその合金、炭素、導電性樹脂などの他に、アルミニウムまたはステンレス鋼の表面にカーボンまたはチタンを処理させたものなどが用いられる。これらの中でも、アルミニウムおよびアルミニウム合金が特に好ましい。これらの材料は表面を酸化して用いることもできる。また、表面処理により集電体表面に凹凸を付けることが好ましい。集電体の形状としては、フォイルの他、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが挙げられる。集電体の厚みは特に限定されないが、例えば、1〜500μmであることが好ましい。   The current collector used for the positive electrode is not particularly limited as long as it is a substantially chemically stable electron conductor in the battery of the present invention. Examples of the material constituting the current collector include aluminum and its alloys, stainless steel, nickel and its alloys, titanium and its alloys, carbon, conductive resin, etc., as well as carbon or aluminum on the surface of aluminum or stainless steel. A material obtained by treating titanium is used. Of these, aluminum and aluminum alloys are particularly preferable. These materials can also be used after oxidizing the surface. Moreover, it is preferable to give an unevenness | corrugation to the collector surface by surface treatment. Examples of the shape of the current collector include films, sheets, nets, punched materials, lath bodies, porous bodies, foamed bodies, and molded bodies of fiber groups, in addition to foils. Although the thickness of a collector is not specifically limited, For example, it is preferable that it is 1-500 micrometers.

また、本発明の非水電解質二次電池では、非水電解質として、例えば、下記の非水系溶媒中に、下記の無機イオン塩を溶解させることで調製した溶液(非水電解液)を使用することが好ましい。   In the nonaqueous electrolyte secondary battery of the present invention, as the nonaqueous electrolyte, for example, a solution (nonaqueous electrolyte) prepared by dissolving the following inorganic ion salt in the following nonaqueous solvent is used. It is preferable.

溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトン等などの非プロトン性有機溶媒を1種単独で、または2種以上を混合した混合溶媒として用いることができる。   Examples of the solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), γ-butyrolactone, 1, 2 -Dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxymethane, dioxolane derivatives, Sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3-propane sultone, etc. Aprotic organic solvents can be used as alone in a mixed solvent or a mixture of two or more.

非水電解質に係る無機イオン塩としては、例えば、LiClO 、LiPF 、LiBF 、LiAsF 、LiSbF 、LiCFSO 、LiCFCO 、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などのリチウム塩から選ばれる少なくとも1種が挙げられる。このリチウム塩の電解液中の濃度としては、0.5〜2mol/lとすることが好ましく、0.8〜1.5mol/lとすることがより好ましい。 The inorganic ion salt according to the non-aqueous electrolyte, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, From lithium salts such as LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] There may be mentioned at least one selected. The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 2 mol / l, and more preferably 0.8 to 1.5 mol / l.

更に、電池に用いる上記非水電解質は、シクロヘキシルベンゼンまたはその誘導体を含有していることが好ましい。シクロヘキシルベンゼンを含有している非水電解質を使用した電池では、例えば、過充電状態となった場合の安全性が更に向上する。これは、電池が過充電状態となり、ある電圧以上になった時点で、非水電解質中のシクロヘキシルベンゼンの重合が生じて電極表面に皮膜が形成され、かかる皮膜が形成された部分ではインピーダンスが上昇して更なる電圧上昇が抑えられ、充電電気量が蓄積されるのが抑制されるためであると考えられる。   Furthermore, it is preferable that the non-aqueous electrolyte used in the battery contains cyclohexylbenzene or a derivative thereof. In a battery using a non-aqueous electrolyte containing cyclohexylbenzene, for example, safety in the case of an overcharged state is further improved. This is because when the battery is overcharged and exceeds a certain voltage, polymerization of cyclohexylbenzene in the non-aqueous electrolyte occurs and a film is formed on the surface of the electrode, and the impedance increases at the part where the film is formed. This is considered to be because a further increase in voltage is suppressed and accumulation of charge electricity is suppressed.

非水電解液中のシクロヘキシルベンゼンまたはその誘導体の含有量は、例えば、上記非水系溶媒100質量部に対して、0.5質量部以上、より好ましくは1.5質量部以上であって、5質量部以下、より好ましくは4質量部以下であることが好ましい。非水電解質中のシクロヘキシルベンゼンまたはその誘導体の含有量が少なすぎると、これらを含有させることによる効果が十分に確保できず、多すぎると、電池の充放電サイクル特性や貯蔵特性が低下することがある。   The content of cyclohexylbenzene or a derivative thereof in the non-aqueous electrolyte is, for example, 0.5 parts by mass or more, more preferably 1.5 parts by mass or more with respect to 100 parts by mass of the non-aqueous solvent. It is preferable that it is below 4 parts by mass, more preferably below 4 parts by mass. If the content of cyclohexylbenzene or its derivative in the non-aqueous electrolyte is too small, the effects of including these cannot be sufficiently ensured, and if too large, the charge / discharge cycle characteristics and storage characteristics of the battery may deteriorate. is there.

また、電池に使用する非水電解質がシクロヘキシルベンゼンまたはその誘導体を含有している場合には、上記非水電解質は、更に環状硫黄化合物を含有していることが好ましい。   Moreover, when the non-aqueous electrolyte used for the battery contains cyclohexylbenzene or a derivative thereof, the non-aqueous electrolyte preferably further contains a cyclic sulfur compound.

電池が通常使用される条件下においても、シクロヘキシルベンゼンまたはその誘導体の重合反応はごく一部生じていることが確認されているが、特に電池が高温に曝されたり、充放電サイクルの経過に伴って電極が劣化して正極電位が高めにシフトした場合、部分的に活性な点ができた場合などに、かかる重合反応が促進される。このように、電池が通常使用される条件下において、シクロヘキシルベンゼンまたはその誘導体の重合反応が進んで、電極表面に皮膜が形成されてしまうと、電池の内部抵抗が増大してしまったり、また、シクロヘキシルベンゼンまたはその誘導体の重合に伴ってガスが発生して電池が膨らみ、正負極間の接触が悪くなるなどして、電池の充放電サイクル特性や貯蔵特性が低下することがある。   It has been confirmed that only a part of the polymerization reaction of cyclohexylbenzene or its derivatives has occurred under the conditions under which the battery is normally used. However, especially when the battery is exposed to high temperatures or the charge / discharge cycle progresses. When the electrode deteriorates and the positive electrode potential shifts higher, such a polymerization reaction is promoted when a partially active point is formed. Thus, under the conditions where the battery is normally used, when the polymerization reaction of cyclohexylbenzene or its derivative proceeds and a film is formed on the electrode surface, the internal resistance of the battery increases, As the cyclohexylbenzene or its derivative is polymerized, gas is generated, the battery swells, the contact between the positive and negative electrodes is deteriorated, and the charge / discharge cycle characteristics and storage characteristics of the battery may deteriorate.

ここで、非水電解質中に、シクロヘキシルベンゼンまたはその誘導体と共に環状硫黄化合物を含有させておくと、シクロヘキシルベンゼンまたはその誘導体の重合反応が起きる前に環状硫黄化合物の皮膜が電極表面に形成され、この皮膜がシクロヘキシルベンゼンまたはその誘導体と電極との接触を防止する。そのため、電池が通常使用される条件では、シクロヘキシルベンゼンまたはその誘導体の重合反応が抑制されることから、電池の安全性を高めつつ、充放電サイクル特性や貯蔵特性も向上させることができる。   Here, when a non-aqueous electrolyte contains a cyclic sulfur compound together with cyclohexylbenzene or a derivative thereof, a film of the cyclic sulfur compound is formed on the electrode surface before the polymerization reaction of cyclohexylbenzene or a derivative thereof occurs. The coating prevents contact between the cyclohexylbenzene or its derivative and the electrode. Therefore, since the polymerization reaction of cyclohexylbenzene or a derivative thereof is suppressed under the conditions in which the battery is normally used, the charge / discharge cycle characteristics and the storage characteristics can be improved while enhancing the safety of the battery.

非水電解質中の環状硫黄化合物の含有量は、例えば、非水系溶媒100質量部に対して、0.3質量部以上、より好ましくは0.5質量部以上であって、3質量部以下、より好ましくは2質量部以下であることが好ましい。非水電解質中の環状硫黄化合物の含有量が少なすぎると、これを使用することによる効果が十分に確保できないことがあり、多すぎると、リチウムイオンの挿入・脱離反応が阻害され、電池の負荷特性の低下と共に充放電サイクル特性も低下することがある。   The content of the cyclic sulfur compound in the nonaqueous electrolyte is, for example, 0.3 parts by mass or more, more preferably 0.5 parts by mass or more, and 3 parts by mass or less, with respect to 100 parts by mass of the nonaqueous solvent. More preferably, it is 2 parts by mass or less. If the content of the cyclic sulfur compound in the non-aqueous electrolyte is too low, the effect of using this may not be sufficiently secured. If it is too high, the insertion / extraction reaction of lithium ions will be inhibited, and the battery The charging / discharging cycle characteristics may also be reduced along with the deterioration of the load characteristics.

なお、環状硫黄化合物としては、例えば、1,3−プロパンスルトン、1,4−ブタンスルトン、3−フェニル−1,3−プロパンスルトン、4−フェニル−1,4−プロパンスルトンなどが好ましく使用できる。   As the cyclic sulfur compound, for example, 1,3-propane sultone, 1,4-butane sultone, 3-phenyl-1,3-propane sultone, 4-phenyl-1,4-propane sultone and the like can be preferably used.

本発明の非水電解質二次電池は、上記の正極を有し、好ましくは上記の非水電解質を用いたものであれば、他の構成要素については特に制限は無く、従来公知の非水電解質二次電池で採用されている各構成要素を適用することができる。   The non-aqueous electrolyte secondary battery of the present invention has the above-described positive electrode, and there is no particular limitation on other components as long as the non-aqueous electrolyte is preferably used. Each component employed in the secondary battery can be applied.

本発明の非水電解質二次電池の負極としては、例えば、負極活物質を含有する負極合剤層を集電体表面に形成してなるものが挙げられる。負極合剤層は、負極活物質の他に、結着剤や導電助剤(必要に応じて)を含有しており、例えば、負極活物質および結着剤(更には導電助剤)などを含む混合物(負極合剤)に、適当な溶剤を加えて十分に混練して得られる負極合剤スラリーなどを、集電体表面に塗布し乾燥することで、所望の厚みとしつつ形成することができる。   As a negative electrode of the nonaqueous electrolyte secondary battery of the present invention, for example, a negative electrode mixture layer containing a negative electrode active material is formed on the current collector surface. The negative electrode mixture layer contains, in addition to the negative electrode active material, a binder and a conductive aid (if necessary). For example, the negative electrode active material and the binder (and further a conductive aid) A negative electrode mixture slurry obtained by adding a suitable solvent to the mixture (negative electrode mixture) and kneading it sufficiently can be applied to the surface of the current collector and dried to form a desired thickness. it can.

負極活物質としては、例えば、天然黒鉛(鱗片状黒鉛)、人造黒鉛、膨張黒鉛などの黒鉛材料;ピッチをか焼して得られるコークスなどの易黒鉛化性炭素質材料;フルフリルアルコール樹脂(PFA)やポリパラフェニレン(PPP)およびフェノール樹脂を低温焼成して得られる非晶質炭素などの難黒鉛化性炭素質材料;などの炭素材料が挙げられる。また、炭素材料の他に、リチウムやリチウム含有化合物も負極活物質として用いることができる。リチウム含有化合物としては、Li−Alなどのリチウム合金や、Si、Snなどのリチウムとの合金化が可能な元素を含む合金が挙げられる。更にSn酸化物やSi酸化物などの酸化物系材料も用いることができる。負極合剤全量中における負極活物質含有量は、例えば、80〜98質量%であることが望ましい。   Examples of the negative electrode active material include graphite materials such as natural graphite (flaky graphite), artificial graphite, and expanded graphite; graphitizable carbonaceous materials such as coke obtained by calcining pitch; furfuryl alcohol resin ( Carbon materials such as non-graphitizable carbonaceous materials such as amorphous carbon obtained by low-temperature firing of PFA), polyparaphenylene (PPP), and phenol resins. In addition to the carbon material, lithium or a lithium-containing compound can also be used as the negative electrode active material. Examples of the lithium-containing compound include lithium alloys such as Li—Al, and alloys containing elements that can be alloyed with lithium such as Si and Sn. Furthermore, oxide-based materials such as Sn oxide and Si oxide can also be used. The negative electrode active material content in the total amount of the negative electrode mixture is preferably, for example, 80 to 98% by mass.

導電助剤は、電子伝導性材料であれば特に限定されないし、使用しなくても構わない。導電助剤の具体例としては、アセチレンブラック;ケッチェンブラック;チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維;などの炭素材料の他、金属繊維などの導電性繊維類;フッ化カーボン;銅、ニッケルなどの金属粉末類;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を同時に使用しても構わない。これらの中でも、アセチレンブラックや炭素繊維が特に好ましい。負極に導電助剤を使用する場合には、負極合剤全量中における導電助剤含有量を1〜10質量%とすることが望ましい。   The conductive aid is not particularly limited as long as it is an electron conductive material, and may not be used. Specific examples of conductive aids include acetylene black; ketjen black; carbon blacks such as channel black, furnace black, lamp black, and thermal black; carbon materials such as carbon fibers; and conductive fibers such as metal fibers. Carbon fluoride, metal powders such as copper and nickel, organic conductive materials such as polyphenylene derivatives, and the like. These may be used alone or in combination of two or more. Absent. Among these, acetylene black and carbon fiber are particularly preferable. When using a conductive additive for the negative electrode, the conductive auxiliary agent content in the total amount of the negative electrode mixture is preferably 1 to 10% by mass.

負極合剤層に係る結着剤は、負極合剤層において、負極活物質や導電助剤などを結着する役割を担うものである。かかる結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。具体的には、例えば、上記本発明の電極に係る結着剤と同じ材料が使用でき、それらの材料を1種単独で用いてもよく、2種以上を同時に使用しても構わない。その中でも、PVDF、SBR、エチレン−アクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−アクリル酸メチル共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸メチル共重合体または該共重合体のNaイオン架橋体が特に好ましい。負極合剤全量中における結着剤含有量は、例えば、2〜10質量%であることが望ましい。 The binder related to the negative electrode mixture layer plays a role of binding the negative electrode active material, the conductive auxiliary agent and the like in the negative electrode mixture layer. Such a binder may be either a thermoplastic resin or a thermosetting resin. Specifically, for example, the same materials as the binder according to the electrode of the present invention can be used, and these materials may be used alone or in combination of two or more. Among them, PVDF, SBR, ethylene-acrylic acid copolymer or Na + ion crosslinked product of the copolymer, ethylene-methacrylic acid copolymer or Na + ion crosslinked product of the copolymer, ethylene-methyl acrylate A copolymer or a Na + ion crosslinked product of the copolymer, an ethylene-methyl methacrylate copolymer or a Na + ion crosslinked product of the copolymer is particularly preferred. The binder content in the total amount of the negative electrode mixture is preferably 2 to 10% by mass, for example.

負極に用いる集電体としては、本発明の非水電解質二次電池において、実質上、化学的に安定な電子伝導体であれば特に限定されない。かかる集電体を構成する材料としては、例えば、ステンレス鋼、ニッケルやその合金、銅やその合金、チタンやその合金、炭素、導電性樹脂などの他に、銅またはステンレス鋼の表面にカーボンまたはチタンを処理させたものなどが用いられる。これらの中でも、銅および銅合金が特に好ましい。これらの材料は表面を酸化して用いることもできる。また、表面処理により集電体表面に凹凸を付けることが好ましい。集電体の形状としては、フォイルの他、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが挙げられる。集電体の厚みは特に限定されないが、例えば、1〜500μmであることが好ましい。   The current collector used for the negative electrode is not particularly limited as long as it is a substantially chemically stable electronic conductor in the nonaqueous electrolyte secondary battery of the present invention. Examples of the material constituting the current collector include stainless steel, nickel or an alloy thereof, copper or an alloy thereof, titanium or an alloy thereof, carbon, conductive resin, carbon, or the like on the surface of copper or stainless steel. A material obtained by treating titanium is used. Among these, copper and copper alloys are particularly preferable. These materials can also be used after oxidizing the surface. Moreover, it is preferable to give an unevenness | corrugation to the collector surface by surface treatment. Examples of the shape of the current collector include films, sheets, nets, punched materials, lath bodies, porous bodies, foamed bodies, and molded bodies of fiber groups, in addition to foils. Although the thickness of a collector is not specifically limited, For example, it is preferable that it is 1-500 micrometers.

なお、負極合剤層を形成するための負極合剤スラリーに用い得る溶剤としては、例えば、水、NMPなどが挙げられる。   In addition, as a solvent which can be used for the negative mix slurry for forming a negative mix layer, water, NMP, etc. are mentioned, for example.

負極合剤層の厚みは、例えば、30〜100μmとすることが好ましい。   The thickness of the negative electrode mixture layer is preferably 30 to 100 μm, for example.

本発明の非水電解質二次電池内では、上記正極と上記負極との間に、上記の非水電解質を含ませたセパレータが配される。セパレータとしては、大きなイオン透過度および所定の機械的強度を有する絶縁性の微多孔性薄膜が用いられる。また、セパレータとしては、一定温度以上(例えば100〜140℃)で構成材料の溶融によって孔が閉塞し、抵抗を上げる機能を有するもの(すなわち、シャットダウン機能を有するもの)が好ましい。セパレータの具体例としては、耐有機溶剤性および疎水性を有するポリオレフィン系ポリマー(ポリエチレン、ポリプロピレンなど)、またはガラス繊維などの材料で構成されるシート(多孔質シート)、不織布若しくは織布;該ポリオレフィン系ポリマーの微粒子を接着剤で固着した多孔質体などが挙げられる。セパレータの孔径は、正負極より脱離した正負極の活物質、導電助剤および結着剤などが通過しない程度であることが好ましく、例えば、0.01〜1μmであることが望ましい。セパレータの厚みは、10〜300μmとすることが一般的であるが、本発明では、16〜26μmとすることが好ましい。また、セパレータの空孔率は、構成材料や厚みに応じて決定されるが、30〜80%であることが一般的である。   In the nonaqueous electrolyte secondary battery of the present invention, a separator containing the nonaqueous electrolyte is disposed between the positive electrode and the negative electrode. As the separator, an insulating microporous thin film having a large ion permeability and a predetermined mechanical strength is used. Moreover, as a separator, what has a function which a hole obstruct | occludes by fusion | melting of a constituent material above a fixed temperature (for example, 100-140 degreeC), and raises resistance (namely, what has a shutdown function) is preferable. Specific examples of the separator include a polyolefin polymer (polyethylene, polypropylene, etc.) having resistance to organic solvents and hydrophobicity, or a sheet (porous sheet) made of a material such as glass fiber, a nonwoven fabric or a woven fabric; the polyolefin And a porous body in which fine particles of a polymer are fixed with an adhesive. The pore diameter of the separator is preferably such that the active material of the positive and negative electrodes, the conductive auxiliary agent, the binder and the like separated from the positive and negative electrodes do not pass through, and is preferably 0.01 to 1 μm, for example. The thickness of the separator is generally 10 to 300 μm, but in the present invention, the thickness is preferably 16 to 26 μm. Further, the porosity of the separator is determined according to the constituent material and thickness, but is generally 30 to 80%.

上記の正極と負極とは、例えば、セパレータを介して積層した積層電極体としたり、更に正極と負極とをセパレータを介して積層した後に巻回し、巻回電極体として用いることができる。   The positive electrode and the negative electrode can be used, for example, as a laminated electrode body laminated via a separator, or after the positive electrode and the negative electrode are laminated via a separator and wound.

本発明の非水電解質二次電池の形態としては、例えば、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。   As a form of the nonaqueous electrolyte secondary battery of the present invention, for example, a tubular shape (such as a rectangular tube shape or a cylindrical shape) using a steel can, an aluminum can, or the like as an outer can is cited. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。なお、本実施例で採用した各評価方法は、以下の通りである。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention. In addition, each evaluation method employ | adopted by the present Example is as follows.

(1)層状型複合酸化物およびスピネル型複合酸化物(正極活物質)の平均粒径
レーザー式の粒度分布測定装置(Microtrac社製「HRA(9320−X100)」」)を用いて、純水に試料を分散させ、光吸収モードの条件で、積算で50%となる粒径(D50)として求めた。
(1) Average particle diameter of layered complex oxide and spinel complex oxide (positive electrode active material) Pure water using a laser particle size distribution analyzer (“HRA (9320-X100)” manufactured by Microtrac)) The sample was dispersed in the sample, and the particle size (D 50 ) was determined to be 50% in total under the conditions of the light absorption mode.

(2)層状型複合酸化物およびスピネル型複合酸化物(正極活物質)の比表面積
ガス吸着を利用した1点式のBET測定装置(Mountech社製「Macsorb HM−1201」)を用いて、前処理として、Nガスフロー中、150℃の環境下で1時間保持した後のBET比表面積を求めた。
(2) Specific surface area of layered complex oxide and spinel complex oxide (positive electrode active material) Using a one-point BET measuring device (“Macsorb HM-1201” manufactured by Mountaintech) using N 2 gas adsorption As a pretreatment, the BET specific surface area after maintaining for 1 hour in an environment of 150 ° C. in an N 2 gas flow was determined.

(3)電池容量
実施例および比較例で作製した電池について、0.2Aの条件で4.2Vまで定電流充電を行い、その後、電流値が0.02Aとなるまで定電圧充電を行った。次に、0.2Aで3.0Vまで定電流放電を行って電池容量を求めた。
(3) Battery capacity About the battery produced by the Example and the comparative example, constant current charge was performed to 4.2V on the conditions of 0.2A, and then constant voltage charge was performed until the electric current value was set to 0.02A. Next, constant current discharge was performed at 0.2 A to 3.0 V to obtain the battery capacity.

(4)電池の充放電サイクル特性
実施例および比較例で作製した電池について、0.8Aで4.2Vまで定電流充電を行い、その後、電流値が0.08Aになるまで定電圧充電を行い、続いて0.8Aで3.0Vまで定電流放電を行う操作を1サイクルとし、これを300サイクルまで繰り返した。1サイクル目の放電容量に対する300サイクル目の放電容量の維持率(%)を求め、これにより充放電サイクル特性を評価した。
(4) Charging / discharging cycle characteristics of batteries For the batteries prepared in the examples and comparative examples, constant current charging is performed at 0.8 A to 4.2 V, and then constant voltage charging is performed until the current value reaches 0.08 A. Subsequently, a constant current discharge operation at 0.8 A to 3.0 V was defined as one cycle, and this was repeated up to 300 cycles. The maintenance rate (%) of the discharge capacity at the 300th cycle relative to the discharge capacity at the first cycle was determined, and thereby the charge / discharge cycle characteristics were evaluated.

(5)貯蔵特性
実施例および比較例で作製した電池について、0.2Aの条件で4.2Vまで定電流充電を行い、その後、電流値が0.02Aとなるまで定電圧充電を行った。充電後の電池を60℃で20日間貯蔵し、その後0.2Aで3.0Vまで定電流放電を行って電池容量を求め、上記(3)で求めた電池容量に対する維持率(%)によって貯蔵特性を評価した。
(5) Storage characteristics About the battery produced by the Example and the comparative example, the constant current charge was performed to 4.2V on 0.2A conditions, and the constant voltage charge was then performed until the electric current value was set to 0.02A. The charged battery is stored at 60 ° C. for 20 days, then discharged at a constant current of 0.2 A to 3.0 V to determine the battery capacity, and stored according to the maintenance rate (%) with respect to the battery capacity determined in (3) above. Characteristics were evaluated.

(6)安全性
上記容量試験後の各電池を、2.0A(実施例1〜4)または2.5A(実施例4)で12Vまで充電後、更に12Vで定電圧充電し(過充電試験)、電池の表面温度が130℃を超えた場合には「不良」とした。供試電池のサンプル数は3とし、この中で1つでも不良の電池があれば「不合格(×)」と判断し、不良の電池が全くなければ「合格(○)」と判断した。
(6) Safety Each battery after the capacity test is charged to 2.0V (Examples 1 to 4) or 2.5A (Example 4) to 12V, and then further charged at a constant voltage of 12V (overcharge test). ) When the surface temperature of the battery exceeded 130 ° C., it was determined as “defective”. The number of samples of the test battery was three, and if any one of the batteries was defective, it was determined as “failed (x)”, and if there was no defective battery, it was determined as “passed (◯)”.

(7)正極活物質の組成
正極組成(Li、Mn、Ni、Co)の分析は、ICP(Inductive Coupled Plasma)法を用いて以下のように行った。まず、3.0Vまで完全に放電した電池を分解して正極を取り出し、正極合剤層をはがし取り、そこから0.2g採取して100mL容器に入れた。その後、純水5mL、王水2mL、純水10mLを順に加えて加熱溶解し、冷却後、さらに25倍に希釈してICP(JARREL ASH社製「ICP−757」)にて組成を分析した(検量線法)。得られた結果から、正極活物質の組成を導出した。
(7) Composition of positive electrode active material Analysis of the positive electrode composition (Li, Mn, Ni, Co) was performed as follows using an ICP (Inductive Coupled Plasma) method. First, the battery that had been completely discharged to 3.0 V was disassembled, the positive electrode was taken out, the positive electrode mixture layer was peeled off, 0.2 g was collected therefrom, and placed in a 100 mL container. Thereafter, 5 mL of pure water, 2 mL of aqua regia, and 10 mL of pure water were sequentially added and dissolved by heating. After cooling, the solution was further diluted 25 times and analyzed by ICP (“ICP-757” manufactured by JARREL ASH) ( Calibration curve method). From the obtained results, the composition of the positive electrode active material was derived.

(8)正極合剤層および負極合剤層の密度
まず、正極および負極を1cm×1cmの大きさに切り取り、それぞれマイクロメータで厚み(l)を、精密天秤で質量(m)を測定した。次に、正極の正極合剤層、および負極の負極合剤層を削り取り、集電体のみを取り出して、各集電体の厚み(l)と質量(m)を正極と同様に測定した。得られた厚みと質量から、以下の式によって正極合剤層密度および負極合剤層密度(dca)を求めた(なお、上記の厚みの単位はcm、質量の単位はgである)。
ca=(m−m)/(l−l
(8) The density of the positive electrode mixture layer and the negative electrode mixture layer is first cut positive and negative electrodes to a size of 1 cm × 1 cm, thickness with a micrometer, respectively (l 1), measuring the mass (m 1) a precision balance did. Next, the positive electrode mixture layer of the positive electrode, and scrape a negative electrode mixture layer of the negative electrode is taken out only the collector, measuring the thickness of each current collector (l c) and mass (m c) in the same manner as the positive electrode did. From the obtained thickness and mass, the positive electrode mixture layer density and the negative electrode mixture layer density (d ca ) were determined by the following formulas (in addition, the unit of thickness is cm and the unit of mass is g).
d ca = (m 1 −m c ) / (l 1 −l c )

実施例1(開発電池1〜7)および比較例1(比較電池1〜2)
実施例1および比較例1においては、主に正極活物質である層状型複合酸化物とスピネル型複合酸化物の組成比を変化させて非水電解質二次電池を作製した。
Example 1 (developed batteries 1-7) and Comparative Example 1 (comparative batteries 1-2)
In Example 1 and Comparative Example 1, a non-aqueous electrolyte secondary battery was manufactured by changing the composition ratio of the layered complex oxide and the spinel complex oxide which are mainly positive electrode active materials.

<正極の作製>
LiMnNiCo(1−x−y)で表される層状型リチウム・マンガン・ニッケル・コバルト複合酸化物を合成した。ニッケルの硫酸塩とマンガンの硫酸塩とコバルトの硫酸塩とを、各金属元素が表1に示す組成比となるように混合し、この混合物を水(大凡、各硫酸塩1molに対して、1000gの水)に溶かして水溶液Aを得た。また、水溶液Bとして、アンモニア水(濃度:25質量%)を用意した。NaOHでpHを12に調整したアンモニア水(濃度:2質量%)を撹拌しながら、水溶液Aを46ml/minで、水溶液Bを3.3ml/minで滴下し、Mn、Ni、Coの共沈水酸化物を得、これを取り出して十分に水洗し乾燥させた。この共沈水酸化物に、各金属元素が表1に示す組成比となるようにLi水酸化物を加え、十分に混合した。この混合物を酸化性雰囲気中で焼成して、表1に示す組成の層状型複合酸化物を得た。なお、焼成時の雰囲気としては、酸素分圧を0.19〜1気圧とし、また、焼成温度を600〜1000℃、焼成時間を6〜48時間とし、これらの範囲の中から、各組成の層状型複合酸化物の合成に好適な条件を選択した。得られた各層状型複合酸化物の平均粒径(直径)は10μmであり、BET比表面積は0.25m/gであった。
<Preparation of positive electrode>
Was synthesized LiMn x Ni y Co (1- x-y) layered-type lithium-manganese-nickel-cobalt composite oxide represented by O 2. Nickel sulfate, manganese sulfate, and cobalt sulfate were mixed so that each metal element had the composition ratio shown in Table 1, and this mixture was mixed with water (approximately 1000 g per 1 mol of each sulfate. To obtain an aqueous solution A. As aqueous solution B, aqueous ammonia (concentration: 25% by mass) was prepared. While stirring aqueous ammonia (concentration: 2% by mass) adjusted to pH 12 with NaOH, aqueous solution A was added dropwise at 46 ml / min, and aqueous solution B was added dropwise at 3.3 ml / min. Co-precipitated water of Mn, Ni, and Co An oxide was obtained, taken out, sufficiently washed with water and dried. Li hydroxide was added to the coprecipitated hydroxide so that each metal element had the composition ratio shown in Table 1, and mixed well. This mixture was fired in an oxidizing atmosphere to obtain a layered composite oxide having the composition shown in Table 1. As the atmosphere during firing, the oxygen partial pressure is 0.19 to 1 atmosphere, the firing temperature is 600 to 1000 ° C., and the firing time is 6 to 48 hours. Conditions suitable for the synthesis of the layered complex oxide were selected. Each layered composite oxide thus obtained had an average particle diameter (diameter) of 10 μm and a BET specific surface area of 0.25 m 2 / g.

また、スピネル型リチウム・マンガン複合酸化物は、次のようにして合成した。リチウムの水酸化物(LiOH)および硫酸マンガン(開発電池7については、更にMgO)を、各金属元素が表1に示す組成となるように混合し、これを大気中で、800℃、20時間の条件で加熱処理して、表1に示す組成のスピネル型リチウム・マンガン複合酸化物を得た。得られた各スピネル型複合酸化物の平均粒径(直径)は20μmであり、BET比表面積は0.1m/gであった。 The spinel type lithium / manganese composite oxide was synthesized as follows. Lithium hydroxide (LiOH) and manganese sulfate (for the developed battery 7, MgO) were mixed so that each metal element had the composition shown in Table 1, and this was mixed in the atmosphere at 800 ° C. for 20 hours. The spinel-type lithium / manganese composite oxide having the composition shown in Table 1 was obtained by heat treatment under the following conditions. Each spinel-type composite oxide obtained had an average particle diameter (diameter) of 20 μm and a BET specific surface area of 0.1 m 2 / g.

上記のようにして得られた層状型複合酸化物とスピネル型複合酸化物を、表1に示す組成で混合して正極活物質を得た。この正極活物質の粉末:96質量%と、人造黒鉛粉末:1質量%と、アセチレンブラック(AB):1質量%と、PVDFが8質量%のNMP溶液とを混合し、正極合剤スラリーを調製した。なお、上記スラリー中のPVDF量は、固形分全量中、2質量%となるようにした。このスラリーを、厚みが15μmで、長さが420mm、幅が170mmのアルミニウム箔の両面に塗布し、120℃で12時間の真空乾燥を施し、ロール式(幅30cm、線圧40kg)のプレス機でプレスして、厚みが60μmの正極合剤層を集電体両面に有する正極を得た。   The layered complex oxide and spinel complex oxide obtained as described above were mixed in the composition shown in Table 1 to obtain a positive electrode active material. This positive electrode active material powder: 96% by mass, artificial graphite powder: 1% by mass, acetylene black (AB): 1% by mass, and an NMP solution containing 8% by mass of PVDF are mixed together to produce a positive electrode mixture slurry. Prepared. The amount of PVDF in the slurry was 2% by mass in the total solid content. This slurry is applied to both sides of an aluminum foil having a thickness of 15 μm, a length of 420 mm and a width of 170 mm, and vacuum-dried at 120 ° C. for 12 hours, and is a roll type (width 30 cm, linear pressure 40 kg) press. To obtain a positive electrode having a positive electrode mixture layer having a thickness of 60 μm on both sides of the current collector.

なお、開発電池4用には、層状型複合酸化物含有層と、スピネル型複合酸化物含有層の2層構造の正極合剤層を有する正極を作製した。層状型複合酸化物:96質量%と、人造黒鉛粉末:1質量%と、アセチレンブラック(AB):1質量%と、PVDFが8質量%のNMP溶液とを混合した正極合剤スラリー(a)と、スピネル型複合酸化物:96質量%と、人造黒鉛粉末:1質量%と、アセチレンブラック(AB):1質量%と、PVDFが8質量%のNMP溶液とを混合した正極合剤スラリー(b)を調製した。なお、これらスラリー(a)および(b)中のPVDF量は、固形分全量中、2質量%となるようにした。次に、厚みが15μmで、長さが420mm、幅が170mmのアルミニウム箔の両面に、上記スラリー(a)を塗布し、その上に上記スラリー(b)を塗布して、120℃で12時間の真空乾燥を施し、ロール式(幅30cm、線圧40kg)のプレス機でプレスして、厚みが60μmの正極合剤層(集電体側の層状型複合酸化物含有層の厚みが44μmで、その上のスピネル型複合酸化物含有層の厚みが16μm)を集電体両面に有する正極を得た。   For the developed battery 4, a positive electrode having a two-layered positive electrode mixture layer of a layered complex oxide-containing layer and a spinel complex oxide-containing layer was produced. Layered complex oxide: 96% by mass, artificial graphite powder: 1% by mass, acetylene black (AB): 1% by mass, and positive electrode mixture slurry (a) in which an NMP solution containing 8% by mass of PVDF is mixed Spinel type complex oxide: 96% by mass, artificial graphite powder: 1% by mass, acetylene black (AB): 1% by mass, and a positive electrode mixture slurry (mixed with an NMP solution containing 8% by mass PVDF) b) was prepared. The amount of PVDF in these slurries (a) and (b) was 2% by mass in the total solid content. Next, the slurry (a) is applied to both surfaces of an aluminum foil having a thickness of 15 μm, a length of 420 mm, and a width of 170 mm, and the slurry (b) is applied thereon, at 120 ° C. for 12 hours. Is vacuum-dried and pressed with a roll-type (width 30 cm, linear pressure 40 kg) press, and a positive electrode material mixture layer having a thickness of 60 μm (the thickness of the layered complex oxide-containing layer on the current collector side is 44 μm, A positive electrode having a spinel-type composite oxide-containing layer thereon having a thickness of 16 μm on both surfaces of the current collector was obtained.

<負極の作製>
天然黒鉛:97.5質量%と、SBR:1.5質量%、増粘剤のカルボキシルメチルセルロース(CMC):1質量%を、水を用いて混合して負極合剤スラリーを調製した。このスラリーを、厚みが8μm、長さが420mm、幅が170mmの銅箔の両面に塗布し、120℃で12時間の真空乾燥を施し、ロール式(幅30cm、線圧40kg)のプレス機でプレスした後、裁断して、厚みが50μmの負極合剤層が集電体の両面に形成された負極を作製した。なお、負極の負極合剤層密度は1.65g/cmとした。
<Production of negative electrode>
Natural graphite: 97.5% by mass, SBR: 1.5% by mass, and carboxymethyl cellulose (CMC) as a thickener: 1% by mass were mixed with water to prepare a negative electrode mixture slurry. This slurry was applied to both sides of a copper foil having a thickness of 8 μm, a length of 420 mm, and a width of 170 mm, vacuum-dried at 120 ° C. for 12 hours, and a roll type (30 cm width, linear pressure 40 kg) press. After pressing, cutting was performed to prepare a negative electrode in which a negative electrode mixture layer having a thickness of 50 μm was formed on both surfaces of the current collector. The negative electrode mixture layer density of the negative electrode was 1.65 g / cm 3 .

<電極体の作製>
上記の正極と負極とを、セパレータを介して重ね合わせ、これらを巻き取って巻回電極体を作製した。なお、セパレータには、厚みが23μmのポリエチレン製多孔膜を用いた。
<Production of electrode body>
The positive electrode and the negative electrode were overlapped via a separator, and these were wound up to produce a wound electrode body. The separator was a polyethylene porous film having a thickness of 23 μm.

<非水電解液>
体積比が1:2のエチレンカーボネートとメチルエチルカーボネートとの混合溶媒に,1mol/lのLiPFを溶かした非水電解液を使用した。
<Non-aqueous electrolyte>
A non-aqueous electrolyte solution in which 1 mol / l LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and methyl ethyl carbonate having a volume ratio of 1: 2 was used.

<電池組み立て>
上記電極体および非水電解液を用いて,角形非水電解質二次電池(リチウムイオン二次電池)を組み立てた。組み立てに際しては、先ず、上記電極体の各端面に集電板を溶接により接合した。次に、集電板のリード部を、アルミニウム合金製の蓋体に取り付けられている電極端子機構と接続した。その後、アルミニウム合金製の正極缶の内部に電極体を収容して、正極缶の開口部周縁に蓋体を溶接固定した。最後に、注液孔から密閉容器(すなわち、正極缶と蓋体を溶接したもの)内に上記電解液を注入して、図1に示す構造を有し、厚さが4mm、幅が34mm、高さが50mmの角形形状の非水電解質二次電池(開発電池1〜7および比較電池1〜2)を作製した。
<Battery assembly>
A square nonaqueous electrolyte secondary battery (lithium ion secondary battery) was assembled using the electrode body and the nonaqueous electrolyte. In assembly, first, a current collector plate was joined to each end face of the electrode body by welding. Next, the lead portion of the current collector plate was connected to an electrode terminal mechanism attached to an aluminum alloy lid. Then, the electrode body was accommodated in the positive electrode can made of aluminum alloy, and the lid body was welded and fixed to the periphery of the opening of the positive electrode can. Finally, the electrolytic solution is injected from the liquid injection hole into a sealed container (that is, a positive electrode can and a lid welded), and has the structure shown in FIG. 1, having a thickness of 4 mm, a width of 34 mm, Square-shaped nonaqueous electrolyte secondary batteries (developed batteries 1 to 7 and comparative batteries 1 and 2) having a height of 50 mm were produced.

ここで、ここで図1に示す電池1について説明すると、正極6と負極7は上記のようにセパレータ8を介して渦巻状に巻回した巻回電極体9として、角形の電池ケース2に前記非水電解液とともに収容されている。ただし、図1では、煩雑化を避けるため、正極6や負極7の集電体や非水電解液などは図示していない。   Here, the battery 1 shown in FIG. 1 will be described. The positive electrode 6 and the negative electrode 7 are formed in the rectangular battery case 2 as the wound electrode body 9 wound in a spiral shape through the separator 8 as described above. It is housed with a non-aqueous electrolyte. However, in FIG. 1, in order to avoid complication, the collectors of the positive electrode 6 and the negative electrode 7, the non-aqueous electrolyte, and the like are not shown.

電池ケース2は電池1の外装材の主要部分を構成するものであり、この電池ケース2は正極端子を兼ねている。そして、電池ケース2の底部にはポリテトラフルオロエチレンシートからなる絶縁体10が配置され、上記正極6、負極7およびセパレータ8からなる巻回電極体9からは正極6および負極7のそれぞれ一端に接続された正極リード体11と負極リード体12が引き出されている。また、電池ケース2の開口部を封口する蓋板3にはポリプロピレン製の絶縁パッキング4を介してステンレス鋼製の端子5が取り付けられ、この端子5には絶縁体13介してステンレス鋼製のリード板14が取り付けられている。   The battery case 2 constitutes a main part of the outer packaging material of the battery 1, and the battery case 2 also serves as a positive electrode terminal. An insulator 10 made of a polytetrafluoroethylene sheet is disposed at the bottom of the battery case 2, and the wound electrode body 9 made up of the positive electrode 6, the negative electrode 7 and the separator 8 is connected to one end of each of the positive electrode 6 and the negative electrode 7. The connected positive electrode lead body 11 and negative electrode lead body 12 are drawn out. Further, a stainless steel terminal 5 is attached to the lid plate 3 that seals the opening of the battery case 2 via an insulating packing 4 made of polypropylene, and a stainless steel lead is connected to the terminal 5 via an insulator 13. A plate 14 is attached.

そして、この蓋板3は上記電池ケース2の開口部に挿入され、両者の接合部を溶接することによって、電池ケース2の開口部が封口され、電池1の内部が密閉されている。   And this cover plate 3 is inserted in the opening part of the said battery case 2, the opening part of the battery case 2 is sealed by welding the junction part of both, and the inside of the battery 1 is sealed.

この実施例1の電池1では、正極リード体11を蓋板3に直接溶接することによって電池ケース2と蓋板3とが正極端子として機能し、負極リード体12をリード板14に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子5が負極端子として機能するようになっているが、電池ケース2の材質などによっては、その正負が逆になる場合もある。   In the battery 1 of Example 1, the battery case 2 and the lid plate 3 function as positive terminals by directly welding the positive electrode lead body 11 to the lid plate 3, and the negative electrode lead body 12 is welded to the lead plate 14, The terminal 5 functions as a negative electrode terminal by connecting the negative electrode lead body 8 and the terminal 11 through the lead plate 13. However, depending on the material of the battery case 2, the sign is reversed. In some cases.

上記実施例1および比較例1で得られた各正極活物質、各正極、および各電池についての評価結果を表1に示す。   Table 1 shows the evaluation results for each positive electrode active material, each positive electrode, and each battery obtained in Example 1 and Comparative Example 1.

Figure 2006278322
Figure 2006278322

表1中、正極合剤層の「種類」の欄において、層状型(A):Li0.99Mn0.34Ni0.34Co0.32、層状型(B):Li1.02Mn0.4Ni0.4Co0.2、層状型(C):Li1.00Mn0.33Ni0.33Co0.33Ti0.01、スピネル型(A):LiMn、スピネル型(B):LiMn1.9Mg0.1、を夫々意味している。また、「使用比率」の欄は、正極合剤層中における層状型複合酸化物とスピネル型複合酸化物の質量比(層状型複合酸化物/スピネル型複合酸化物)を意味している。この他、「使用態様」の欄の「混合」は、層状型複合酸化物とスピネル型複合酸化物を混合して用いたことを、「2層」は、層状型複合酸化物含有層とスピネル型複合酸化物含有層の2層構成としたことを、夫々意味している。 In Table 1, the column "Type" of the positive electrode mixture layer, a layered type (A): Li 0.99 Mn 0.34 Ni 0.34 Co 0.32 O 2, layered type (B): Li 1. 02 Mn 0.4 Ni 0.4 Co 0.2 O 2 , layered type (C): Li 1.00 Mn 0.33 Ni 0.33 Co 0.33 Ti 0.01 O 2 , spinel type (A) : LiMn 2 O 4 , spinel type (B): LiMn 1.9 Mg 0.1 O 4 . The column “Usage ratio” means the mass ratio of the layered complex oxide to the spinel complex oxide (layered complex oxide / spinel complex oxide) in the positive electrode mixture layer. In addition, “mixing” in the column “use mode” indicates that the layered complex oxide and the spinel complex oxide are mixed and used, and “two layers” indicates that the layered complex oxide-containing layer and the spinel are used. This means that the two-layer structure of the type complex oxide-containing layer is used.

開発電池1〜3および比較電池2の結果から、スピネル型複合酸化物の比率を高めると、容量が減少し、更に、Mn溶出量の増大によって、充放電サイクル特性や貯蔵特性も悪化する。スピネル型複合酸化物の比率が70質量%以上になると、それらの劣化が大きくなりすぎて、実用化は困難となる(比較電池2)。逆に、スピネル型複合酸化物の比率が低くなり過ぎると、安全性が低下し、実用化できない(比較電池1)。開発電池1〜3および比較電池4の結果から分かるように、正極活物質に、層状型複合酸化物とスピネル型複合酸化物を併用することで、容量や安全性に関する目標をクリアできる(開発電池1〜3)が、これらの正極活物質をそれぞれ別の層に含有させた2層構造の正極合剤層としても、正極自体の総発熱量は同じであるため、層状型複合酸化物とスピネル型複合酸化物を併有する単層構造の正極合剤層とした場合と同様の効果を得ることができる(開発電池4)。また、層状型複合酸化物の組成を変えてCo量を減らしても、ほぼ同等の電池特性が得られる(開発電池5)。更に、層状型複合酸化物、スピネル型複合酸化物のいずれにおいても、微量の異種元素を添加することで、安定性が高まってMnの溶出などが低減され、電池の貯蔵特性が向上する(開発電池6、7)。   From the results of the developed batteries 1 to 3 and the comparative battery 2, when the ratio of the spinel type complex oxide is increased, the capacity is decreased, and further, the charge / discharge cycle characteristics and the storage characteristics are also deteriorated due to the increase in the elution amount of Mn. When the ratio of the spinel-type composite oxide is 70% by mass or more, the deterioration thereof becomes too large and practical application becomes difficult (Comparative Battery 2). On the other hand, if the ratio of the spinel type complex oxide becomes too low, the safety is lowered and cannot be put into practical use (Comparative Battery 1). As can be seen from the results of the developed batteries 1 to 3 and the comparative battery 4, by using the layered composite oxide and the spinel composite oxide in combination with the positive electrode active material, the capacity and safety goals can be cleared (developed battery). 1 to 3) also have a positive electrode mixture layer having a two-layer structure in which these positive electrode active materials are contained in separate layers, because the total calorific value of the positive electrode itself is the same. The same effect can be obtained as in the case of a positive electrode mixture layer having a single layer structure that also contains a type complex oxide (developed battery 4). Further, even if the amount of Co is reduced by changing the composition of the layered composite oxide, substantially the same battery characteristics can be obtained (developed battery 5). Furthermore, in both layered complex oxides and spinel complex oxides, the addition of a trace amount of different elements improves stability and reduces elution of Mn and improves battery storage characteristics (development) Batteries 6, 7).

実施例2(開発電池8〜12)および比較例2(比較電池3〜4)
実施例2および比較例2においては、正極活物質として、開発電池1に係る正極活物質と同じ組成・混合比のものを用い、正極合剤層の組成について、導電助剤量および結着剤量を表2に示すように変更した他は実施例1(開発電池1)と同様にして非水電解質二次電池を作製した。各正極および各電池についての評価結果を表2に示す。
Example 2 (developed batteries 8-12) and Comparative Example 2 (comparative batteries 3-4)
In Example 2 and Comparative Example 2, the positive electrode active material having the same composition and mixing ratio as the positive electrode active material according to the developed battery 1 was used. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 (developed battery 1) except that the amount was changed as shown in Table 2. Table 2 shows the evaluation results for each positive electrode and each battery.

Figure 2006278322
Figure 2006278322

なお、表2における開発電池11の「AB」欄における「(KB)」は、アセチレンブラック(AB)に代えてケッチェンブラック(KB)を用いたことを意味している。また表2の正極活物質の組成において、AB(KB)、黒鉛、結着剤を除く残部は正極活物質(層状型複合酸化物およびスピネル型複合酸化物)である。   In Table 2, “(KB)” in the “AB” column of the developed battery 11 means that ketjen black (KB) was used instead of acetylene black (AB). In the composition of the positive electrode active material in Table 2, the balance excluding AB (KB), graphite, and the binder is the positive electrode active material (layered complex oxide and spinel complex oxide).

表2から以下のことが分かる。AB(KB)と黒鉛の比率で、AB量を増やすと、ABはかさ高いために、正極合剤層の密度が若干低下するものの、電池特性はほとんど変化しない。逆にAB量をなくしてしまうと、導電ネットワークがうまく構築されずに充放電サイクル特性が大きく劣化する。また、導電助剤量や結着剤量を増加しすぎると、それらの密度が低いために正極合剤層の密度が低くなりすぎて、実用化できない。   Table 2 shows the following. When the amount of AB is increased by the ratio of AB (KB) and graphite, AB is bulky, so the density of the positive electrode mixture layer is slightly reduced, but the battery characteristics are hardly changed. On the other hand, if the amount of AB is lost, the conductive network is not well constructed and the charge / discharge cycle characteristics are greatly deteriorated. On the other hand, if the amount of the conductive auxiliary agent or the amount of the binder is excessively increased, the density of the positive electrode mixture layer becomes too low because of their low density, and cannot be put into practical use.

実施例3(開発電池13〜17)
実施例3においては、正極活物質として、LiMn0.3Ni0.4Co0.3とLiMnの混合比70/30(質量比)の混合物を用い、これら層状型複合酸化物とスピネル型複合酸化物の平均粒径と比表面積を、表3に示すように変更した他は、実施例1(開発電池1)と同様にして非水電解質二次電池を作製した。各正極および各電池についての評価結果を表3に示す。
Example 3 (development batteries 13 to 17)
In Example 3, a mixture of LiMn 0.3 Ni 0.4 Co 0.3 O 2 and LiMn 2 O 4 having a mixing ratio of 70/30 (mass ratio) was used as the positive electrode active material. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 (development battery 1) except that the average particle size and specific surface area of the product and the spinel-type composite oxide were changed as shown in Table 3. Table 3 shows the evaluation results for each positive electrode and each battery.

Figure 2006278322
Figure 2006278322

表3から分かるように、開発電池13〜15では、粒径の小さな層状型複合酸化物を用いた開発電池16や、粒径の小さなスピネル型複合酸化物を用いた開発電池17に比べて、正極活物質の比表面積が小さいためにMnの溶出が抑えられており、貯蔵特性や充放電サイクル特性が向上している。   As can be seen from Table 3, in the development batteries 13 to 15, compared to the development battery 16 using a layered composite oxide having a small particle size and the development battery 17 using a spinel composite oxide having a small particle size, Since the specific surface area of the positive electrode active material is small, elution of Mn is suppressed, and storage characteristics and charge / discharge cycle characteristics are improved.

実施例4(開発電池18〜21)
実施例4においては、実施例1で使用したものと同じ非水電解液に、更にシクロヘキシルベンゼン(CB)および環状硫黄化合物として1,3−プロパンスルトンを、それぞれ表4に示す量で含有させたものを使用し、セパレータに、表4に示す厚さのものを変更した他は、実施例1(開発電池1)と同様にして非水電解質二次電池を作製した。各電池についての構成および評価結果を表4に示す。
Example 4 (Developed batteries 18 to 21)
In Example 4, cyclohexylbenzene (CB) and 1,3-propane sultone as a cyclic sulfur compound were further added to the same nonaqueous electrolytic solution used in Example 1 in the amounts shown in Table 4, respectively. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 (development battery 1) except that the separator was changed and the thickness shown in Table 4 was changed. Table 4 shows the configuration and evaluation results for each battery.

Figure 2006278322
Figure 2006278322

表4から分かるように、CBを含有する非水電解液を用いた開発電池18〜21では、電流値を2.5Aに上げたより危険性の高い過充電試験でも安全性を保つことができた。このように、非水電解質(電解液)にCBを添加することによって、過充電試験の限界電流値を高め得ることが判明した。   As can be seen from Table 4, in the developed batteries 18 to 21 using the non-aqueous electrolyte containing CB, safety could be maintained even in a more dangerous overcharge test in which the current value was increased to 2.5A. . Thus, it was found that the limit current value of the overcharge test can be increased by adding CB to the nonaqueous electrolyte (electrolytic solution).

なお、CBと共に環状硫黄化合物(1,3−プロパンスルトン)を含有する非水電解液を用いた開発電池18〜20に比べて、CBは含有するが環状硫黄化合物は含有しない非水電解液を用いた開発電池21では、充放電サイクル特性や貯蔵特性が劣っている。これは、開発電池21においては、電極表面で環状硫黄化合物由来の皮膜が形成されないことで、充放電のサイクルや高温貯蔵の熱によって、非水電解液中のCBが分解したためであると考えられる。これらの結果から、電池の特性をより向上させるには、CBは環状硫黄化合物と併用することが、より好ましいことが分かった。   In addition, compared with the development batteries 18 to 20 using a nonaqueous electrolytic solution containing a cyclic sulfur compound (1,3-propane sultone) together with CB, a nonaqueous electrolytic solution containing CB but not containing a cyclic sulfur compound is used. The used developed battery 21 is inferior in charge / discharge cycle characteristics and storage characteristics. This is considered to be because, in the developed battery 21, the CB in the non-aqueous electrolyte was decomposed by the charge / discharge cycle and the heat of high-temperature storage because the film derived from the cyclic sulfur compound was not formed on the electrode surface. . From these results, it was found that CB is more preferably used in combination with a cyclic sulfur compound in order to further improve the battery characteristics.

本発明の非水電解質二次電池の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

1 電池
2 電池ケース
3 蓋板
4 絶縁パッキング
5 端子
6 正極
7 負極
8 セパレータ
9 巻回電極体
10 絶縁体
11 正極リード体
12 負極リード体
13 絶縁体
14 リード板
DESCRIPTION OF SYMBOLS 1 Battery 2 Battery case 3 Cover plate 4 Insulation packing 5 Terminal 6 Positive electrode 7 Negative electrode 8 Separator 9 Winding electrode body 10 Insulator 11 Positive electrode lead body 12 Negative electrode lead body 13 Insulator 14 Lead plate

Claims (7)

組成式Li(1+δ)MnNiCo(1−x−y−z)(Mは、Ti、Zr、Nb、Mo、W、Al、Si、Ga、GeおよびSnよりなる群から選ばれる少なくとも1種の元素であり、−0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z≦1.0、0≦z≦0.1である)で表される層状型リチウム・マンガン・ニッケル・コバルト複合酸化物と、組成式Li(1+η)Mn(2−W)M’(M’は、Mg、Ca、Sr、Al、Ga、Zn、およびCuよりなる群から選ばれる少なくとも1種の元素であり、0≦η≦0.2、0≦w≦0.1である)で表されるスピネル型リチウム・マンガン複合酸化物とを、活物質として含有する正極合剤層を有しており、
上記正極合剤層では、上記層状型リチウム・マンガン・ニッケル・コバルト複合酸化物と、上記スピネル型リチウム・マンガン複合酸化物の合計に対し、上記スピネル型リチウム・マンガン複合酸化物の比率が20〜60質量%であり、
上記正極合剤層の密度が、3.0〜3.6g/cmである正極を有することを特徴とする非水電解質二次電池。
Composition formula Li (1 + δ) Mn x Ni y Co (1-xyz) M z O 2 (M is a group consisting of Ti, Zr, Nb, Mo, W, Al, Si, Ga, Ge and Sn) At least one element selected from: -0.15 <δ <0.15, 0.1 <x ≦ 0.5, 0.6 <x + y + z ≦ 1.0, 0 ≦ z ≦ 0.1 A layered lithium-manganese-nickel-cobalt composite oxide represented by the formula: Li (1 + η) Mn (2-W) M ′ W O 4 (M ′ is Mg, Ca, Sr, Al, A spinel-type lithium-manganese composite oxide represented by at least one element selected from the group consisting of Ga, Zn, and Cu, and 0 ≦ η ≦ 0.2 and 0 ≦ w ≦ 0.1 And a positive electrode mixture layer containing as an active material,
In the positive electrode mixture layer, the ratio of the spinel type lithium / manganese composite oxide is 20 to the total of the layered type lithium / manganese / nickel / cobalt composite oxide and the spinel type lithium / manganese composite oxide. 60% by mass,
A non-aqueous electrolyte secondary battery comprising a positive electrode having a density of the positive electrode mixture layer of 3.0 to 3.6 g / cm 3 .
上記層状型リチウム・マンガン・ニッケル・コバルト複合酸化物は、平均粒径が5〜25μmで、上記スピネル型リチウム・マンガン複合酸化物は、平均粒径が10〜30μmである請求項1に記載の非水電解質二次電池。   2. The layered lithium / manganese / nickel / cobalt composite oxide has an average particle size of 5 to 25 μm, and the spinel type lithium / manganese composite oxide has an average particle size of 10 to 30 μm. Non-aqueous electrolyte secondary battery. 上記スピネル型リチウム・マンガン複合酸化物は、上記層状型リチウム・マンガン・ニッケル・コバルト複合酸化物よりも、5μm以上大きな平均粒径を有している請求項2に記載の非水電解質二次電池。   3. The nonaqueous electrolyte secondary battery according to claim 2, wherein the spinel type lithium / manganese composite oxide has an average particle size of 5 μm or more larger than the layered type lithium / manganese / nickel / cobalt composite oxide. . 上記層状型リチウム・マンガン・ニッケル・コバルト複合酸化物は、比表面積が0.1〜0.6m/gであり、上記スピネル型リチウム・マンガン複合酸化物は、比表面積が0.05〜0.3m/gである請求項1〜3のいずれかに記載の非水電解質二次電池。 The layered lithium / manganese / nickel / cobalt composite oxide has a specific surface area of 0.1 to 0.6 m 2 / g, and the spinel type lithium / manganese composite oxide has a specific surface area of 0.05 to 0. the non-aqueous electrolyte secondary battery according to claim 1 which is .3m 2 / g. 上記正極合剤層は、上記活物質、導電助剤および結着剤を含有する正極合剤で構成されており、
上記導電助剤は、カーボンブラック、アセチレンブラック、ケッチェンブラックよりなる群から選択される少なくとも1種の炭素材料を含んでおり、且つ正極合剤全量中における上記炭素材料の含有量が、0.5〜3質量%であり、
正極合剤全量中における上記結着剤の含有量が、0.5〜3質量%である請求項1〜4のいずれかに記載の非水電解質二次電池。
The positive electrode mixture layer is composed of a positive electrode mixture containing the active material, a conductive additive and a binder,
The conductive auxiliary agent includes at least one carbon material selected from the group consisting of carbon black, acetylene black, and ketjen black, and the content of the carbon material in the total amount of the positive electrode mixture is 0.00. 5 to 3% by mass,
The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the content of the binder in the total amount of the positive electrode mixture is 0.5 to 3% by mass.
非水系溶媒中に無機イオン塩が溶解しており、かつ上記非水系溶媒100質量部に対して、シクロヘキシルベンゼンまたはその誘導体を0.5〜5質量%含有している非水電解質を使用した請求項1〜5のいずれかに記載の非水電解質二次電池。   Claims using a non-aqueous electrolyte in which an inorganic ion salt is dissolved in a non-aqueous solvent and 0.5 to 5% by mass of cyclohexylbenzene or a derivative thereof is contained with respect to 100 parts by mass of the non-aqueous solvent. Item 6. The nonaqueous electrolyte secondary battery according to any one of Items 1 to 5. 環状硫黄化合物を、非水系溶媒100質量部に対して0.3〜3質量部含有している非非水電解質を使用した請求項6に記載の非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 6, wherein a nonnonaqueous electrolyte containing a cyclic sulfur compound in an amount of 0.3 to 3 parts by mass with respect to 100 parts by mass of the nonaqueous solvent is used.
JP2006052091A 2005-03-02 2006-02-28 Nonaqueous electrolyte secondary battery Active JP5105393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052091A JP5105393B2 (en) 2005-03-02 2006-02-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005057086 2005-03-02
JP2005057086 2005-03-02
JP2006052091A JP5105393B2 (en) 2005-03-02 2006-02-28 Nonaqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012196792A Division JP2013020975A (en) 2005-03-02 2012-09-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006278322A true JP2006278322A (en) 2006-10-12
JP5105393B2 JP5105393B2 (en) 2012-12-26

Family

ID=37212839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052091A Active JP5105393B2 (en) 2005-03-02 2006-02-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5105393B2 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181830A (en) * 2007-01-26 2008-08-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008192437A (en) * 2007-02-05 2008-08-21 Sanyo Electric Co Ltd Battery unit
JP2009004310A (en) * 2007-06-25 2009-01-08 Mitsubishi Chemicals Corp Cathode active material for lithium secondary battery, cathode for lithium secondary battery using the same, and lithium secondary battery
WO2009136589A1 (en) * 2008-05-07 2009-11-12 日立マクセル株式会社 Nonaqueous secondary battery and electronic device
JP2010047466A (en) * 2008-07-25 2010-03-04 Mitsui Mining & Smelting Co Ltd Layer-structure lithium transition metal oxide
US7816033B2 (en) 2006-05-29 2010-10-19 Lg Chem, Ltd. Cathode active material comprising mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese oxide and lithium secondary battery containing same
JP2011054516A (en) * 2009-09-04 2011-03-17 Hitachi Ltd Lithium ion secondary battery
JP2011076997A (en) * 2009-10-02 2011-04-14 Nec Energy Devices Ltd Lithium-ion secondary battery
JP2012033397A (en) * 2010-07-30 2012-02-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2012081518A2 (en) * 2010-12-15 2012-06-21 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2012190731A (en) * 2011-03-14 2012-10-04 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery, and method for manufacturing the same
WO2012161474A3 (en) * 2011-05-23 2013-01-17 주식회사 엘지화학 High-power lithium secondary battery having improved output density properties
WO2013008475A1 (en) * 2011-07-13 2013-01-17 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2013020975A (en) * 2005-03-02 2013-01-31 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery
WO2013009078A3 (en) * 2011-07-13 2013-04-04 주식회사 엘지화학 High-energy lithium secondary battery having improved energy density characteristics
WO2013069670A1 (en) * 2011-11-09 2013-05-16 新神戸電機株式会社 Nonaqueous electrolyte secondary battery
WO2013069643A1 (en) * 2011-11-09 2013-05-16 新神戸電機株式会社 Nonaqueous electrolyte secondary battery
WO2013128674A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
JP2013218843A (en) * 2012-04-06 2013-10-24 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery, and secondary battery system using the same
WO2014041793A1 (en) * 2012-09-11 2014-03-20 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
WO2014098037A1 (en) * 2012-12-18 2014-06-26 オートモーティブエナジーサプライ株式会社 Mixed electrode for nonaqueous electrolyte batteries and method for producing same
JP2014160568A (en) * 2013-02-20 2014-09-04 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery, and secondary battery system arranged by use thereof
WO2014142280A1 (en) * 2013-03-15 2014-09-18 日産自動車株式会社 Non-aqueous electrolyte secondary battery
WO2014175354A1 (en) * 2013-04-26 2014-10-30 日産自動車株式会社 Nonaqueous-electrolyte secondary battery
US20150060725A1 (en) * 2012-03-30 2015-03-05 Toda Kogyo Corp. Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
WO2015037522A1 (en) * 2013-09-11 2015-03-19 日立マクセル株式会社 Nonaqueous secondary battery
JP2015076389A (en) * 2013-10-11 2015-04-20 オートモーティブエナジーサプライ株式会社 Nonaqueous electrolyte secondary battery
WO2015107832A1 (en) * 2014-01-16 2015-07-23 株式会社カネカ Nonaqueous electrolyte secondary battery and battery pack of same
JP2015138665A (en) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US9184447B2 (en) 2011-05-23 2015-11-10 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
EP2822079A4 (en) * 2012-02-29 2016-01-13 Shin Kobe Electric Machinery Lithium-ion battery
US9263737B2 (en) 2011-05-23 2016-02-16 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
JP2016513344A (en) * 2013-02-14 2016-05-12 エルジー・ケム・リミテッド Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
WO2016103511A1 (en) * 2014-12-26 2016-06-30 日産自動車株式会社 Electrical device
WO2016103509A1 (en) * 2014-12-26 2016-06-30 日産自動車株式会社 Electrical device
US9385372B2 (en) 2011-05-23 2016-07-05 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high energy density
JP2016136489A (en) * 2015-01-23 2016-07-28 株式会社豊田自動織機 Positive electrode and lithium ion secondary electrode
JP2017004696A (en) * 2015-06-08 2017-01-05 日産自動車株式会社 Positive electrode for nonaqueous electrolyte secondary battery
JP6070824B2 (en) * 2013-03-15 2017-02-01 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JPWO2015040818A1 (en) * 2013-09-17 2017-03-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US9601756B2 (en) 2011-05-23 2017-03-21 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9716266B2 (en) 2013-03-15 2017-07-25 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2018037256A (en) * 2016-08-31 2018-03-08 積水化学工業株式会社 Active substance-carbon material composite, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and carbon material
US9985278B2 (en) 2011-05-23 2018-05-29 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
JP2019515465A (en) * 2016-11-23 2019-06-06 エルジー・ケム・リミテッド Positive electrode for secondary battery and lithium secondary battery including the same
JP2020537324A (en) * 2017-11-06 2020-12-17 エルジー・ケム・リミテッド Lithium secondary battery
CN113782743A (en) * 2021-08-27 2021-12-10 合肥国轩高科动力能源有限公司 Lithium ion battery positive electrode material and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315503A (en) * 1999-03-01 2000-11-14 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2001256978A (en) * 2000-02-14 2001-09-21 Samsung Sdi Co Ltd Positive pole active material for lithium secondary battery and its manufacturing method
JP2002110253A (en) * 2000-09-29 2002-04-12 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2002203556A (en) * 2000-12-28 2002-07-19 Sony Corp Non-aqueous electrolyte secondary battery
JP2003051338A (en) * 2001-08-06 2003-02-21 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2003092108A (en) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2003168430A (en) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2004214139A (en) * 2003-01-08 2004-07-29 Sony Corp Electrolyte and battery using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315503A (en) * 1999-03-01 2000-11-14 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2001256978A (en) * 2000-02-14 2001-09-21 Samsung Sdi Co Ltd Positive pole active material for lithium secondary battery and its manufacturing method
JP2002110253A (en) * 2000-09-29 2002-04-12 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2002203556A (en) * 2000-12-28 2002-07-19 Sony Corp Non-aqueous electrolyte secondary battery
JP2003092108A (en) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2003051338A (en) * 2001-08-06 2003-02-21 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2003168430A (en) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2004214139A (en) * 2003-01-08 2004-07-29 Sony Corp Electrolyte and battery using the same

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020975A (en) * 2005-03-02 2013-01-31 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery
US7816033B2 (en) 2006-05-29 2010-10-19 Lg Chem, Ltd. Cathode active material comprising mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese oxide and lithium secondary battery containing same
JP2008181830A (en) * 2007-01-26 2008-08-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008192437A (en) * 2007-02-05 2008-08-21 Sanyo Electric Co Ltd Battery unit
JP2009004310A (en) * 2007-06-25 2009-01-08 Mitsubishi Chemicals Corp Cathode active material for lithium secondary battery, cathode for lithium secondary battery using the same, and lithium secondary battery
US8795884B2 (en) 2008-05-07 2014-08-05 Hitachi Maxell, Ltd. Nonaqueous secondary battery and electronic device
JP5342552B2 (en) * 2008-05-07 2013-11-13 日立マクセル株式会社 Non-aqueous secondary battery and electronic equipment
WO2009136589A1 (en) * 2008-05-07 2009-11-12 日立マクセル株式会社 Nonaqueous secondary battery and electronic device
JP2010047466A (en) * 2008-07-25 2010-03-04 Mitsui Mining & Smelting Co Ltd Layer-structure lithium transition metal oxide
JP2011054516A (en) * 2009-09-04 2011-03-17 Hitachi Ltd Lithium ion secondary battery
JP2011076997A (en) * 2009-10-02 2011-04-14 Nec Energy Devices Ltd Lithium-ion secondary battery
JP2012033397A (en) * 2010-07-30 2012-02-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US8802298B2 (en) 2010-07-30 2014-08-12 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
US9337479B2 (en) 2010-12-15 2016-05-10 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US20130260262A1 (en) * 2010-12-15 2013-10-03 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2012081518A3 (en) * 2010-12-15 2012-09-20 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2012081518A2 (en) * 2010-12-15 2012-06-21 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JPWO2012081518A1 (en) * 2010-12-15 2014-05-22 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2012190731A (en) * 2011-03-14 2012-10-04 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery, and method for manufacturing the same
US9203081B2 (en) 2011-05-23 2015-12-01 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9184447B2 (en) 2011-05-23 2015-11-10 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
WO2012161474A3 (en) * 2011-05-23 2013-01-17 주식회사 엘지화학 High-power lithium secondary battery having improved output density properties
US9263737B2 (en) 2011-05-23 2016-02-16 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9985278B2 (en) 2011-05-23 2018-05-29 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9385372B2 (en) 2011-05-23 2016-07-05 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high energy density
US9601756B2 (en) 2011-05-23 2017-03-21 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
CN103650212A (en) * 2011-07-13 2014-03-19 株式会社Lg化学 High-energy lithium secondary battery having improved energy density characteristics
WO2013008475A1 (en) * 2011-07-13 2013-01-17 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
CN103650218A (en) * 2011-07-13 2014-03-19 株式会社杰士汤浅国际 Nonaqueous electrolyte secondary battery
WO2013009078A3 (en) * 2011-07-13 2013-04-04 주식회사 엘지화학 High-energy lithium secondary battery having improved energy density characteristics
US9525167B2 (en) 2011-07-13 2016-12-20 Lg Chem, Ltd. Lithium secondary battery of high energy with improved energy property
JPWO2013008475A1 (en) * 2011-07-13 2015-02-23 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
EP2733776A4 (en) * 2011-07-13 2015-03-18 Gs Yuasa Int Ltd Nonaqueous electrolyte secondary battery
WO2013069670A1 (en) * 2011-11-09 2013-05-16 新神戸電機株式会社 Nonaqueous electrolyte secondary battery
WO2013069643A1 (en) * 2011-11-09 2013-05-16 新神戸電機株式会社 Nonaqueous electrolyte secondary battery
WO2013128674A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
EP2822079A4 (en) * 2012-02-29 2016-01-13 Shin Kobe Electric Machinery Lithium-ion battery
JP5626473B2 (en) * 2012-02-29 2014-11-19 新神戸電機株式会社 Lithium ion battery
US20150060725A1 (en) * 2012-03-30 2015-03-05 Toda Kogyo Corp. Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
US9564634B2 (en) * 2012-03-30 2017-02-07 Toda Kogyo Corporation Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP2013218843A (en) * 2012-04-06 2013-10-24 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery, and secondary battery system using the same
CN104584279A (en) * 2012-09-11 2015-04-29 株式会社杰士汤浅国际 Nonaqueous electrolyte secondary battery
JPWO2014041793A1 (en) * 2012-09-11 2016-08-12 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US9660262B2 (en) 2012-09-11 2017-05-23 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery
WO2014041793A1 (en) * 2012-09-11 2014-03-20 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
CN104854742A (en) * 2012-12-18 2015-08-19 汽车能源供应公司 Mixed electrode for nonaqueous electrolyte batteries and method for producing same
US10026953B2 (en) 2012-12-18 2018-07-17 Automotive Energy Supply Corporation Mixed electrode for nonaqueous electrolyte battery, and manufacturing method for the same
WO2014098037A1 (en) * 2012-12-18 2014-06-26 オートモーティブエナジーサプライ株式会社 Mixed electrode for nonaqueous electrolyte batteries and method for producing same
JP2014120381A (en) * 2012-12-18 2014-06-30 Automotive Energy Supply Corp Mixed electrode for nonaqueous electrolyte battery and method for producing the same
JP2016513344A (en) * 2013-02-14 2016-05-12 エルジー・ケム・リミテッド Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
US9761875B2 (en) 2013-02-14 2017-09-12 Lg Chem, Ltd. Cathode active material for lithium secondary battery and lithium secondary battery comprising the same
JP2014160568A (en) * 2013-02-20 2014-09-04 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery, and secondary battery system arranged by use thereof
US9608261B2 (en) 2013-03-15 2017-03-28 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US9716266B2 (en) 2013-03-15 2017-07-25 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6070822B2 (en) * 2013-03-15 2017-02-01 日産自動車株式会社 Nonaqueous electrolyte secondary battery
JP6070824B2 (en) * 2013-03-15 2017-02-01 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
WO2014142280A1 (en) * 2013-03-15 2014-09-18 日産自動車株式会社 Non-aqueous electrolyte secondary battery
JPWO2014142283A1 (en) * 2013-03-15 2017-02-16 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
CN105190981A (en) * 2013-04-26 2015-12-23 日产自动车株式会社 Nonaqueous-electrolyte secondary battery
WO2014175354A1 (en) * 2013-04-26 2014-10-30 日産自動車株式会社 Nonaqueous-electrolyte secondary battery
JPWO2014175354A1 (en) * 2013-04-26 2017-02-23 日産自動車株式会社 Nonaqueous electrolyte secondary battery
US10033033B2 (en) 2013-04-26 2018-07-24 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery
WO2015037522A1 (en) * 2013-09-11 2015-03-19 日立マクセル株式会社 Nonaqueous secondary battery
JPWO2015040818A1 (en) * 2013-09-17 2017-03-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2015076389A (en) * 2013-10-11 2015-04-20 オートモーティブエナジーサプライ株式会社 Nonaqueous electrolyte secondary battery
WO2015107832A1 (en) * 2014-01-16 2015-07-23 株式会社カネカ Nonaqueous electrolyte secondary battery and battery pack of same
US10283760B2 (en) 2014-01-16 2019-05-07 Kaneka Corporation Nonaqueous electrolyte secondary battery and battery pack of same
JP2015138665A (en) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2016103511A1 (en) * 2014-12-26 2016-06-30 日産自動車株式会社 Electrical device
JPWO2016103509A1 (en) * 2014-12-26 2017-09-21 日産自動車株式会社 Electrical device
JPWO2016103511A1 (en) * 2014-12-26 2017-10-12 日産自動車株式会社 Electrical device
CN107112588A (en) * 2014-12-26 2017-08-29 日产自动车株式会社 Electrical equipment
CN107112526A (en) * 2014-12-26 2017-08-29 日产自动车株式会社 Electrical equipment
WO2016103509A1 (en) * 2014-12-26 2016-06-30 日産自動車株式会社 Electrical device
JP2016136489A (en) * 2015-01-23 2016-07-28 株式会社豊田自動織機 Positive electrode and lithium ion secondary electrode
JP2017004696A (en) * 2015-06-08 2017-01-05 日産自動車株式会社 Positive electrode for nonaqueous electrolyte secondary battery
JP2018037256A (en) * 2016-08-31 2018-03-08 積水化学工業株式会社 Active substance-carbon material composite, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and carbon material
JP2019515465A (en) * 2016-11-23 2019-06-06 エルジー・ケム・リミテッド Positive electrode for secondary battery and lithium secondary battery including the same
JP2020537324A (en) * 2017-11-06 2020-12-17 エルジー・ケム・リミテッド Lithium secondary battery
US11258056B2 (en) 2017-11-06 2022-02-22 Lg Energy Solution, Ltd. Positive electrode material, positive electrode, and lithium secondary battery which include spinel-structured lithium manganese-based positive electrode active material
JP7047217B2 (en) 2017-11-06 2022-04-05 エルジー エナジー ソリューション リミテッド Lithium secondary battery
US11532807B2 (en) 2017-11-06 2022-12-20 Lg Energy Solution, Ltd. Spinel-structured lithium manganese-based positive electrode active material, and positive electrode and lithium secondary battery which include the positive electrode active material
CN113782743A (en) * 2021-08-27 2021-12-10 合肥国轩高科动力能源有限公司 Lithium ion battery positive electrode material and preparation method and application thereof
CN113782743B (en) * 2021-08-27 2022-07-12 合肥国轩高科动力能源有限公司 Lithium ion battery positive electrode material and preparation method and application thereof

Also Published As

Publication number Publication date
JP5105393B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5105393B2 (en) Nonaqueous electrolyte secondary battery
JP4897223B2 (en) Nonaqueous electrolyte secondary battery
JP4877898B2 (en) Nonaqueous electrolyte secondary battery
JP4554911B2 (en) Nonaqueous electrolyte secondary battery
KR101367393B1 (en) Nonaqueous secondary battery
JP5221892B2 (en) Nonaqueous electrolyte secondary battery
JP5361029B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5079291B2 (en) Nonaqueous electrolyte secondary battery
JP2008288112A (en) Nonaqueous electrolytic secondary battery
JP2007194202A (en) Lithium ion secondary battery
JP2008123787A (en) Nonaqueous electrolyte battery, lithium titanium composite oxide, and battery pack
WO2007007542A1 (en) Lithium ion secondary battery
JP2009117159A (en) Positive electrode and lithium ion secondary battery
JP5522844B2 (en) Electrode for electrochemical element and lithium ion secondary battery
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP6607188B2 (en) Positive electrode and secondary battery using the same
KR102207920B1 (en) Composite cathode active material, preparation method thereof, and cathode and lithium battery containing the material
JP2023001306A (en) Electrode for lithium secondary battery
JP2015195195A (en) Nonaqueous electrolyte secondary battery
JP2003203631A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP4284232B2 (en) Nonaqueous electrolyte secondary battery
JP6632233B2 (en) Non-aqueous electrolyte secondary battery
JP5763889B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JP2013020975A (en) Nonaqueous electrolyte secondary battery
JP6400364B2 (en) Cathode active material for non-aqueous secondary battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

R150 Certificate of patent or registration of utility model

Ref document number: 5105393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250