JP2015138665A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015138665A
JP2015138665A JP2014009678A JP2014009678A JP2015138665A JP 2015138665 A JP2015138665 A JP 2015138665A JP 2014009678 A JP2014009678 A JP 2014009678A JP 2014009678 A JP2014009678 A JP 2014009678A JP 2015138665 A JP2015138665 A JP 2015138665A
Authority
JP
Japan
Prior art keywords
negative electrode
nonaqueous electrolyte
positive electrode
separator
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014009678A
Other languages
Japanese (ja)
Other versions
JP6048420B2 (en
Inventor
神谷 正人
Masato Kamiya
正人 神谷
平 齋藤
Taira Saito
平 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014009678A priority Critical patent/JP6048420B2/en
Publication of JP2015138665A publication Critical patent/JP2015138665A/en
Application granted granted Critical
Publication of JP6048420B2 publication Critical patent/JP6048420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery arranged so that the safety when it is overcharged can be ensured without using a current interrupt device (CID).SOLUTION: A nonaqueous electrolyte secondary battery comprises a battery exterior body with no CID, and in the battery exterior body, a positive electrode, a negative electrode, a separator and a nonaqueous electrolyte. The separator has a shutdown function. The positive electrode includes LiNiCoMO(where a+b+c=1; 0<a<1; 0<b<1; 0<c<1; M is at least one of Mn and Al). The negative electrode includes a graphite-based negative electrode active material. The nonaqueous electrolyte includes cyclohexylbenzene. Supposing that the total capacitance of the negative electrode is x, and the content of the cyclohexylbenzene in the nonaqueous electrolyte is y, a point (x,y) falls within a polygonal region having five apices consisting of: (14.82, 0.05); (34.19; 0.3); (34.19, 4.5); (19.95, 5.3) and (14.82, 5.5).

Description

本発明は非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

非水電解質二次電池の過充電時の安全性を確保するため様々な試みがなされている。たとえば特開2013−149456号公報(特許文献1)には、セパレータが予め定められたシャットダウン温度(Ts)において軟化・溶融して多孔性を失うように構成された電池が開示されている。   Various attempts have been made to ensure safety during overcharging of nonaqueous electrolyte secondary batteries. For example, Japanese Patent Laying-Open No. 2013-149456 (Patent Document 1) discloses a battery in which a separator is softened and melted at a predetermined shutdown temperature (Ts) to lose its porosity.

特開2013−149456号公報JP 2013-149456 A

非水電解質二次電池において、過充電時の安全性の確保は重要課題のひとつであり、各種の厳しい基準が設けられている。そのため非水電解質二次電池には、過充電時の電流遮断を目的とした対策が多重的に講じられている。たとえば、特許文献1に開示されるシャットダウン機能を有するセパレータに加えて、電流遮断機構(CID:Current Interrupt Device)を備える電池外装体が広く利用されている。   In non-aqueous electrolyte secondary batteries, ensuring safety during overcharging is one of the important issues, and various strict standards have been established. Therefore, multiple measures have been taken for non-aqueous electrolyte secondary batteries for the purpose of interrupting current during overcharge. For example, in addition to the separator having a shutdown function disclosed in Patent Document 1, a battery exterior body having a current interruption mechanism (CID: Current Interrupt Device) is widely used.

ここでCIDとは、電池の内圧が所定値に達すると電流経路を物理的に切断する機構あるいは装置であり、一般に過充電時に内圧を上昇させるための過充電添加剤とともに用いられる。過充電添加剤は、所定の電圧で酸化分解してガスを発生し、これによりCIDが作動するため、当該電圧を超える過充電を防止することができる。   Here, CID is a mechanism or device that physically cuts the current path when the internal pressure of the battery reaches a predetermined value, and is generally used with an overcharge additive for increasing the internal pressure during overcharge. The overcharge additive is oxidatively decomposed at a predetermined voltage to generate gas, and thus the CID is activated, so that overcharge exceeding the voltage can be prevented.

しかしながらCIDは振動や衝撃によって誤作動する場合がある。とりわけ車載用途のように振動が避けられない用途では、CIDの誤作動が懸念されている。また多重的な安全対策が電池価格の上昇を招いていることも否めない。   However, the CID may malfunction due to vibration or impact. In particular, in applications where vibration is inevitable, such as in-vehicle applications, there is concern about CID malfunction. In addition, it cannot be denied that multiple safety measures have led to an increase in battery prices.

非水電解質二次電池がCIDを備えない構成とした場合、セパレータのシャットダウンによって電流遮断を行なう必要がある。しかしこの場合は、セパレータの熱収縮によって電流遮断が不完全となる。すなわち過充電時に電極体の中心部と外周部との間で温度差(温度ムラ)が生じるため、温度の高い電極体の中心部ではセパレータ自体が熱収縮してしまい、セパレータの細孔が閉塞されたとしても、正極と負極とが接触して短絡に至る。   When the non-aqueous electrolyte secondary battery is configured not to have a CID, it is necessary to cut off the current by shutting down the separator. In this case, however, current interruption is incomplete due to thermal contraction of the separator. In other words, a temperature difference (temperature unevenness) occurs between the center and the outer periphery of the electrode body during overcharging, and the separator itself heat shrinks at the center of the electrode body at a high temperature, closing the pores of the separator. Even if it is made, the positive electrode and the negative electrode come into contact with each other, resulting in a short circuit.

近年、車載用電池の形状はスペースの有効利用の観点から角形が主流となりつつあるが、角形電池はラミネート型電池等に比べると放熱性が悪く、電池の厚さ方向に温度ムラが生じやすい。この傾向は電池サイズが大型になるほど顕著である。またLi+受入性の観点から負極のキャパシタンスは大きいことが好ましいが、負極のキャパシタンスが大きくなるにつれて負極材料の発熱量も大きくなり、温度ムラの拡大に拍車をかけることとなる。このような事情から従来技術では、CIDを用いずに過充電時の安全性を確保することは極めて困難であった。 In recent years, the shape of the battery for in-vehicle use has become the mainstream from the viewpoint of effective use of space. However, the square battery has poor heat dissipation compared to a laminated battery or the like, and temperature unevenness tends to occur in the thickness direction of the battery. This tendency becomes more prominent as the battery size increases. From the viewpoint of Li + acceptability, it is preferable that the capacitance of the negative electrode is large. However, as the negative electrode capacitance increases, the amount of heat generated by the negative electrode material also increases, which increases the increase in temperature unevenness. Under such circumstances, it has been extremely difficult to ensure safety during overcharge without using a CID.

本発明は上記のような課題に鑑みてなされたものであって、その目的とするところは、CIDを用いずに過充電時の安全性が確保された非水電解質二次電池を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a nonaqueous electrolyte secondary battery in which safety during overcharge is ensured without using CID. It is in.

本発明者は、上記課題を解決するため鋭意研究を行なったところ、従来CIDを作動させるために添加されていたシクロヘキシルベンゼン(CHB:CycloHexylBenzene)と、負極の総キャパシタンスとが特定の関係を満たすことにより、過充電時に電極体の温度ムラを緩和できるとの新規な知見を得、該知見に基づき更に研究を重ねることによって本発明を完成させるに至った。すなわち本発明の非水電解質二次電池は以下の構成を備える。   The present inventor conducted intensive research to solve the above-mentioned problems. As a result, cyclohexylbenzene (CHB: CycloHexylBenzene), which has been added to operate CID, and the total capacitance of the negative electrode satisfy a specific relationship. As a result, the inventors have obtained new knowledge that the temperature unevenness of the electrode body can be alleviated during overcharging, and have completed the present invention by further research based on the knowledge. That is, the nonaqueous electrolyte secondary battery of the present invention has the following configuration.

(1)非水電解質二次電池は、電池外装体と、該電池外装体の内部に、正極と、負極と、セパレータと、非水電解質とを備える。この電池外装体は内圧の上昇によって作動する電流遮断機構を有しないものである。   (1) A nonaqueous electrolyte secondary battery includes a battery outer package, and a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte inside the battery outer package. This battery exterior body does not have a current interrupting mechanism that operates when the internal pressure increases.

セパレータは温度の上昇によって孔径を閉じるシャットダウン機能を有し、正極はLiNiaCobc2(ただしa+b+c=1、0<a<1、0<b<1、0<c<1であり、MはMnおよびAlの少なくともいずれかである。)を含み、負極は黒鉛系負極活物質を含み、非水電解質はシクロヘキシルベンゼンを含む。 The separator has a shutdown function of closing the pore size by increasing the temperature, the positive electrode is an LiNi a Co b M c O 2 ( provided that a + b + c = 1,0 < a <1,0 <b <1,0 <c <1 , M is at least one of Mn and Al.), The negative electrode includes a graphite-based negative electrode active material, and the non-aqueous electrolyte includes cyclohexylbenzene.

そして交流インピーダンス測定において周波数が0.1Hzであるときの負極の総キャパシタンスをx[単位:F]とし、非水電解質におけるシクロヘキシルベンゼンの含有量をy[単位:質量%]としたとき、xy直交座標において点(x、y)が、点(14.82、0.05)、点(34.19、0.3)、点(34.19、4.5)、点(19.95、5.3)および点(14.82、5.5)からなる5点を頂点とする多角形領域に含まれる。   When the total capacitance of the negative electrode when the frequency is 0.1 Hz in AC impedance measurement is x [unit: F], and the content of cyclohexylbenzene in the nonaqueous electrolyte is y [unit: mass%], xy orthogonality is obtained. In the coordinates, the point (x, y) is the point (14.82, 0.05), the point (34.19, 0.3), the point (34.19, 4.5), the point (19.95, 5 .3) and a point (14.82, 5.5) are included in a polygonal region having apexes at five points.

上記の非水電解質二次電池において、CHBは過充電時に発熱する性質を有する。本発明者の研究によれば、非水電解質におけるCHBの含有量と負極の総キャパシタンスとが上記関係を満たす場合、電極体の外周部がCHBの発熱によって温度上昇するため、電極体の中心部と外周部との温度差が小さくなり、セパレータの局所的な熱収縮を防止することができる。これによりセパレータが全域に亘って均一にシャットダウンすることができ、以ってCIDを用いない電池であっても過充電時の安全性が確保される。   In the above non-aqueous electrolyte secondary battery, CHB has a property of generating heat during overcharge. According to the research of the present inventor, when the content of CHB in the non-aqueous electrolyte and the total capacitance of the negative electrode satisfy the above relationship, the outer peripheral portion of the electrode body rises in temperature due to the heat generated by CHB. The temperature difference between the outer peripheral portion and the outer peripheral portion is reduced, and local heat shrinkage of the separator can be prevented. As a result, the separator can be shut down uniformly over the entire area, and thus safety during overcharging is ensured even for a battery that does not use CID.

ここで「負極の総キャパシタンス」とは、非水電解質二次電池に含まれる負極合材のキャパシタンスの総量を示すものとする。負極合材の単位質量あたりのキャパシタンスの測定方法(交流インピーダンス測定)等については後述する。   Here, the “total capacitance of the negative electrode” indicates the total amount of capacitance of the negative electrode mixture contained in the nonaqueous electrolyte secondary battery. A method for measuring the capacitance per unit mass of the negative electrode mixture (AC impedance measurement) will be described later.

(2)非水電解質二次電池は角形電池であり、セパレータを挟んで正極と負極とが対向するように巻回されてなる電極体を備え、該正極および該負極は、該電極体の巻回軸の端部に非塗工部を有し、該非塗工部は集電部を構成するものであることが好ましい。   (2) The non-aqueous electrolyte secondary battery is a prismatic battery, and includes an electrode body that is wound so that the positive electrode and the negative electrode face each other with a separator interposed therebetween, and the positive electrode and the negative electrode are wound around the electrode body. It is preferable that a non-coating portion is provided at the end of the rotating shaft, and the non-coating portion constitutes a current collector.

従来このような電池構成は特に温度ムラを生じやすいものであったため、CIDが必須とされてきたが、負極の総キャパシタンスと非水電解質におけるCHBの含有量とが上記の関係を満たすことによりCIDを用いずとも過充電時の安全性を確保することができる。   Conventionally, such a battery configuration has been particularly susceptible to temperature unevenness, so CID has been essential. However, since the total capacitance of the negative electrode and the content of CHB in the nonaqueous electrolyte satisfy the above relationship, CID Safety during overcharging can be ensured without using a battery.

(3)非水電解質二次電池は、定格容量が23Ah以上であることが好ましい。従来、定格容量が23Ah以上である大型の高容量電池は温度ムラが大きく、CIDが必須であったが、負極の総キャパシタンスと非水電解質におけるCHBの含有量とが上記の関係を満たすことによりCIDを用いずとも過充電時の安全性を確保することができる。   (3) The non-aqueous electrolyte secondary battery preferably has a rated capacity of 23 Ah or more. Conventionally, large high-capacity batteries with a rated capacity of 23 Ah or more have large temperature unevenness and CID is essential, but the total capacitance of the negative electrode and the content of CHB in the nonaqueous electrolyte satisfy the above relationship. Safety without overcharge can be ensured without using CID.

本発明によれば、CIDを用いずに過充電時の安全性が確保された非水電解質二次電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte secondary battery with which the safety | security at the time of overcharge was ensured without using CID is provided.

本発明の一実施形態に係る非水電解質二次電池における負極の総キャパシタンスおよび非水電解質のシクロヘキシルベンゼン含有量と過充電試験結果との関係を示すグラフである。It is a graph which shows the relationship between the total capacitance of the negative electrode in the nonaqueous electrolyte secondary battery which concerns on one Embodiment of this invention, the cyclohexylbenzene content of a nonaqueous electrolyte, and an overcharge test result. 本発明の一実施形態に係わる黒鉛系負極活物質の示差走査熱量測定の結果を示すグラフである。It is a graph which shows the result of the differential scanning calorimetry of the graphite type negative electrode active material concerning one Embodiment of this invention. 本発明の一実施形態に係る非水電解質二次電池の構成の一例を示す模式的な透視図である。It is a typical perspective view showing an example of the composition of the nonaqueous electrolyte secondary battery concerning one embodiment of the present invention. 本発明の一実施形態に係わるキャパシタンス測定用セルを図解する模式的な断面図である。1 is a schematic cross-sectional view illustrating a capacitance measurement cell according to an embodiment of the present invention.

以下、本発明の一実施形態(以下「本実施形態」と記す)について詳細に説明するが、本実施形態はこれらに限定されるものではない。   Hereinafter, an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present embodiment is not limited thereto.

<非水電解質二次電池>
図3は本実施形態の非水電解質二次電池の構成の一例を示す模式的な透視図である。図3に示す電池1000は角形電池である。電池外装体500はCIDを有しない外装体であり、セパレータ300を挟んで正極100と負極200とが対向するように巻回されてなる電極体400と、非水電解質とを内蔵する。
<Nonaqueous electrolyte secondary battery>
FIG. 3 is a schematic perspective view showing an example of the configuration of the nonaqueous electrolyte secondary battery of the present embodiment. The battery 1000 shown in FIG. 3 is a square battery. The battery outer package 500 is an outer package that does not have a CID, and incorporates an electrode body 400 that is wound so that the positive electrode 100 and the negative electrode 200 face each other with the separator 300 interposed therebetween, and a nonaqueous electrolyte.

電極体400は、巻回軸の一方の端部に正極集電体が露出した正極非塗工部100aと、他方の端部に負極集電体が露出した負極非塗工部200aとを有している。正極非塗工部100aは正極集電部材100bに纏めて溶接され、負極非塗工部200aは負極集電部材200bに纏めて溶接されており、それぞれ集電部を構成している。そして正極集電部材100bは電池外装体500に設けられた正極端子100cと接続され、負極集電部材200bは同じく電池外装体500に設けられ負極端子200cと接続されている。以下、電池1000を構成する各部について説明する。   The electrode body 400 has a positive electrode non-coated portion 100a where the positive electrode current collector is exposed at one end of the winding shaft, and a negative electrode non-coated portion 200a where the negative electrode current collector is exposed at the other end. doing. The positive electrode non-coated portion 100a is collectively welded to the positive electrode current collecting member 100b, and the negative electrode non-coated portion 200a is collectively welded to the negative electrode current collecting member 200b, and each constitutes a current collecting portion. The positive electrode current collecting member 100b is connected to the positive electrode terminal 100c provided in the battery outer package 500, and the negative electrode current collector member 200b is also provided in the battery outer package 500 and connected to the negative electrode terminal 200c. Hereinafter, each part which comprises the battery 1000 is demonstrated.

(負極)
負極200は長尺帯状のシート部材であり、負極集電体(たとえばCu箔)上に黒鉛系負極活物質を含む負極合材層が固着されてなる。負極200は、幅方向の片側の端部に負極集電体が連続して露出した負極非塗工部200aを有する。
(Negative electrode)
The negative electrode 200 is a long strip-shaped sheet member, and a negative electrode mixture layer containing a graphite-based negative electrode active material is fixed on a negative electrode current collector (for example, Cu foil). The negative electrode 200 has a negative electrode non-coated portion 200a in which the negative electrode current collector is continuously exposed at one end in the width direction.

負極合材層は、黒鉛系負極活物質と結着材とを含む負極合材から構成される。黒鉛系負極活物質は、天然黒鉛および人造黒鉛のいずれであってもよい。結着材としては、たとえばカルボキシメチルセルロース(CMC)およびスチレンブタジエンゴム(SBR)等を用いることができる。負極合材層は、たとえば黒鉛系負極活物質とCMCとSBRとを水中で混練して得た負極合材スラリーを負極集電体上に塗工、乾燥して、さらに圧延することにより形成される。   The negative electrode mixture layer is composed of a negative electrode mixture containing a graphite-based negative electrode active material and a binder. The graphite-based negative electrode active material may be either natural graphite or artificial graphite. As the binder, for example, carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR) can be used. The negative electrode mixture layer is formed, for example, by applying a negative electrode mixture slurry obtained by kneading a graphite-based negative electrode active material, CMC, and SBR in water onto a negative electrode current collector, drying, and further rolling. The

図1に示すように本実施形態において負極200の総キャパシタンスは、14.82F以上34.19F以下であることを要する。ここで負極200の総キャパシタンスは、負極200に吸着し得る電荷の総量に等しいことから、負極200の反応性を示す指標と考えることができる。前述のように負極の総キャパシタンスが大きくなると、Li+受入性が向上するが、その反面、負極の発熱量が大きくなる。 As shown in FIG. 1, in this embodiment, the total capacitance of the negative electrode 200 needs to be 14.82F or more and 34.19F or less. Here, since the total capacitance of the negative electrode 200 is equal to the total amount of charges that can be adsorbed to the negative electrode 200, it can be considered as an index indicating the reactivity of the negative electrode 200. As described above, when the total capacitance of the negative electrode is increased, the Li + acceptability is improved. On the other hand, the calorific value of the negative electrode is increased.

図2は、黒鉛系負極活物質を含む負極(SOC100%)とエチレンカーボネート(EC)との混合物における示差走査熱量測定(DSC)の結果を示すグラフである。図2に示すサンプルAとサンプルBとでは、キャパシタンスが互いに異なっており、サンプルAはサンプルBに比べてキャパシタンスが大きいものである。図2から分かるように、キャパシタンスが大きいサンプルAは、100℃〜220℃の範囲でサンプルBに比べ発熱量が大きい。したがって負極の総キャパシタンスが大きくなると、電極体の温度ムラが拡大すると考えられる。そのため従来技術では、過充電時の発熱量の懸念から、負極の総キャパシタンスは14.82F未満の範囲に制限されていた。   FIG. 2 is a graph showing the results of differential scanning calorimetry (DSC) in a mixture of a negative electrode (SOC 100%) containing graphite-based negative electrode active material and ethylene carbonate (EC). The sample A and the sample B shown in FIG. 2 have different capacitances, and the sample A has a larger capacitance than the sample B. As can be seen from FIG. 2, the sample A having a large capacitance generates a larger amount of heat than the sample B in the range of 100 ° C. to 220 ° C. Therefore, it is considered that when the total capacitance of the negative electrode increases, the temperature unevenness of the electrode body increases. Therefore, in the prior art, the total capacitance of the negative electrode has been limited to a range of less than 14.82 F due to concern about the amount of heat generated during overcharging.

ところが本発明者が、負極の総キャパシタンスと過充電時の安全性との関係について詳細に調査したところ、負極の総キャパシタンスを14.82F以上34.19F以下という、従来に比してことさら大きい範囲としながら、CHBを特定の範囲で非水電解質に添加した場合は、過充電時の安全性が顕著に向上するという驚くべき結果が得られた。   However, the present inventor conducted a detailed investigation on the relationship between the total capacitance of the negative electrode and the safety during overcharge, and found that the total capacitance of the negative electrode was 14.82F or more and 34.19F or less, which was a much larger range than before. However, when CHB was added to the non-aqueous electrolyte in a specific range, a surprising result was obtained that the safety during overcharging was significantly improved.

具体的には、負極の総キャパシタンスをx[F]とし、非水電解質のCHB含有量をy[質量%]としたとき、xy直交座標において点(x、y)が、点(14.82、0.05)、点(34.19、0.3)、点(34.19、4.5)、点(19.95、5.3)および点(14.82、5.5)からなる5点を頂点とする多角形領域(以下「領域α」と記す)に含まれる場合に、CIDを必要としない程に過充電時の安全性が向上することが明らかとなった。この理由は、あえて発熱量の大きい負極を用い、さらに過充電時に発熱するCHBを非水電解質に添加することによって、電極体400の外周部が温度上昇して、電極体400の温度ムラが解消され、セパレータ300を早い段階で均一にシャットダウンさせることができるからであると考えられる。   Specifically, when the total capacitance of the negative electrode is x [F] and the CHB content of the nonaqueous electrolyte is y [mass%], the point (x, y) is the point (14.82) in the xy orthogonal coordinates. 0.05), point (34.19, 0.3), point (34.19, 4.5), point (19.95, 5.3) and point (14.82, 5.5) It is clear that the safety at the time of overcharging is improved to the extent that no CID is required when it is included in a polygonal region having the five points as vertices (hereinafter referred to as “region α”). The reason for this is that by using a negative electrode with a large calorific value and adding CHB that generates heat during overcharging to the non-aqueous electrolyte, the temperature of the outer periphery of the electrode body 400 rises and temperature unevenness of the electrode body 400 is eliminated. This is considered to be because the separator 300 can be shut down uniformly at an early stage.

(キャパシタンスの測定方法)
負極の総キャパシタンスは、「負極合材の単位質量あたりのキャパシタンス」に「負極合材層の総目付量(乾燥時の総塗工質量)」を乗ずることにより算出することができる。負極合材の単位質量あたりのキャパシタンス(周波数0.1Hz時)は次のようにして測定することができる。
(Measurement method of capacitance)
The total capacitance of the negative electrode can be calculated by multiplying the “capacitance per unit mass of the negative electrode mixture” by the “total weight of the negative electrode mixture layer (total coating mass during drying)”. The capacitance per unit mass of the negative electrode mixture (at a frequency of 0.1 Hz) can be measured as follows.

まず負極200から測定用試料(たとえば21.15cm2)を2枚切り出す。次に、図4を参照して第1の測定用試料62aと第2の測定用試料62bとを、測定用セパレータ61を挟んで対向させ電極群を作製する。さらに該電極群および非水電解質(たとえばLiPF6=1.0mol/L、EC:DMC:EMC=1:1:1)を用いて、2枚の測定用試料を対電極とする測定用セル60(ビーカーセルあるいはラミネートセル等)を作製する。そして測定用セル60を用いて、25℃環境下で交流インピーダンス測定を行ない、所定範囲の周波数(f)に対して得られたインピーダンスZ(f)を、下記式(1)として示す一群の関係式を用いて、その所定範囲の周波数に対する電気二重層容量成分C(f)に変換する。そして得られたC(f)のうち周波数0.1HzにおけるC’(f)を第1の測定用試料62aまたは第2の測定用試料62bの負極合材の質量で除することにより、「負極合材の単位質量あたりのキャパシタンス」とすることができる。なお交流インピーダンス測定には、従来公知の周波数応答アナライザを用いることができる。また測定周波数の範囲は、たとえば0.1〜100000Hz程度である。 First, two measurement samples (for example, 21.15 cm 2 ) are cut out from the negative electrode 200. Next, referring to FIG. 4, the first measurement sample 62a and the second measurement sample 62b are opposed to each other with the measurement separator 61 interposed therebetween, and an electrode group is manufactured. Further, using the electrode group and a non-aqueous electrolyte (for example, LiPF 6 = 1.0 mol / L, EC: DMC: EMC = 1: 1: 1), a measurement cell 60 having two measurement samples as counter electrodes. (A beaker cell or a laminate cell) is produced. Then, AC impedance measurement is performed in a 25 ° C. environment using the measurement cell 60, and the impedance Z (f) obtained with respect to the frequency (f) in a predetermined range is a group of relationships represented by the following formula (1). Using the equation, the electric double layer capacitance component C (f) for the frequency in the predetermined range is converted. Then, by dividing C ′ (f) at a frequency of 0.1 Hz among the obtained C (f) by the mass of the negative electrode mixture of the first measurement sample 62a or the second measurement sample 62b, “negative electrode” "Capacitance per unit mass of composite material". A conventionally known frequency response analyzer can be used for the AC impedance measurement. The measurement frequency range is, for example, about 0.1 to 100,000 Hz.

Figure 2015138665
Figure 2015138665

(非水電解質)
本実施形態の非水電解質は、典型的には非プロトン性溶媒に溶質(リチウム塩)が溶解されてなる液体状の電解質である。そして本実施形態の非水電解質には、CHBが0.05質量%以上5.50質量%以下の範囲で添加されおり、かつCHBの添加量と負極の総キャパシタンスとは前述の特定の関係を満たすものである。当該条件を満たす限り、非水電解質は如何なる構成であってもよい。
(Nonaqueous electrolyte)
The nonaqueous electrolyte of this embodiment is typically a liquid electrolyte in which a solute (lithium salt) is dissolved in an aprotic solvent. And in the nonaqueous electrolyte of this embodiment, CHB is added in the range of 0.05% by mass or more and 5.50% by mass or less, and the addition amount of CHB and the total capacitance of the negative electrode have the specific relationship described above. To meet. As long as the conditions are satisfied, the nonaqueous electrolyte may have any configuration.

非プロトン性溶媒としては、たとえばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、γ−ブチロラクトン(GBL)およびビニレンカーボネート(VC)等の環状カーボネート類や、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)およびジエチルカーボネート(DEC)等の鎖状カーボネート類等を用いることができる。これらの非プロトン性溶媒は電気伝導率や電気化学的な安定性の観点から、2種以上を適宜併用して用いることができる。特に環状カーボネートと鎖状カーボネートとを混合して用いることが好ましく、環状カーボネートと鎖状カーボネートの体積比は1:9〜5:5程度が好ましい。なお本実施形態の非水電解質はゲル状であってもよい。   Examples of the aprotic solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone (GBL) and vinylene carbonate (VC), and dimethyl carbonate (DMC). , Chain carbonates such as ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) can be used. These aprotic solvents can be used in an appropriate combination of two or more from the viewpoint of electrical conductivity and electrochemical stability. In particular, it is preferable to use a mixture of a cyclic carbonate and a chain carbonate, and the volume ratio of the cyclic carbonate to the chain carbonate is preferably about 1: 9 to 5: 5. Note that the nonaqueous electrolyte of the present embodiment may be in the form of a gel.

また溶質であるリチウム塩としては、たとえばLiPF6、LiBF4、LiClO4、LiAsF6、Li(CF3SO22N、Li(CF3SO3)等を用いることができる。また、これらの溶質についても2種以上を併用してもよい。非水電解質中における溶質の濃度は特に限定されないが、放電特性および保存特性の観点から0.5〜2.0mol/L程度であることが好ましい。 As the solute lithium salt, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, Li (CF 3 SO 3 ) or the like can be used. Moreover, you may use 2 or more types together about these solutes. The concentration of the solute in the nonaqueous electrolyte is not particularly limited, but is preferably about 0.5 to 2.0 mol / L from the viewpoint of discharge characteristics and storage characteristics.

(セパレータ)
セパレータ300はシャットダウン機能を有する。セパレータ300のシャットダウン温度は、好ましくは110℃〜150℃程度であり、より好ましくは120℃〜140℃程度である。セパレータ300には、たとえばポリオレフィン系の微多孔膜、たとえばポリエチレン(PE)、ポリプロピレン(PP)製の微多孔膜が好適である。また複数の微多孔膜を積層して用いてもよい。セパレータ300の厚さは、たとえば5〜40μm程度とすることができる。セパレータ300の孔径および空孔率は、透気度が所望の値となるように適宜調整すればよい。
(Separator)
The separator 300 has a shutdown function. The shutdown temperature of the separator 300 is preferably about 110 ° C to 150 ° C, more preferably about 120 ° C to 140 ° C. For the separator 300, for example, a polyolefin-based microporous film, for example, a microporous film made of polyethylene (PE) or polypropylene (PP) is suitable. A plurality of microporous membranes may be laminated and used. The thickness of the separator 300 can be about 5-40 micrometers, for example. What is necessary is just to adjust suitably the hole diameter and porosity of the separator 300 so that air permeability may become a desired value.

(正極)
正極100は長尺帯状のシート部材であり、正極集電体(たとえばAl箔)上に正極活物質を含む正極合材層が固着されてなる。正極100は、幅方向の片側の端部に正極集電体が連続して露出した正極非塗工部100aを有する。
(Positive electrode)
The positive electrode 100 is a long belt-like sheet member, and a positive electrode mixture layer containing a positive electrode active material is fixed on a positive electrode current collector (for example, an Al foil). The positive electrode 100 has a positive electrode non-coated portion 100a in which a positive electrode current collector is continuously exposed at one end portion in the width direction.

正極合材層は、正極活物質と導電助材と結着材とを含む正極合材から構成される。本実施形態において正極活物質は3元系正極活物質、すなわちLiNiaCobc2(ただしa+b+c=1、0<a<1、0<b<1、0<c<1であり、MはMnおよびAlの少なくともいずれかである。)を含む。かかる組成を満たす正極活物質としては、たとえばLiNi1/3Co1/3Mn1/32、LiNi0.4Co0.3Mn0.32、LiNi0.5Co0.3Mn0.22、LiNi0.5Co0.3Al0.22等を挙げることができる。3元系正極活物質は、PEやPP製の微多孔膜セパレータにおけるシャットダウン温度付近での発熱量が小さい。したがって3元系正極活物質を用いることにより、セパレータのシャットダウンは主に負極側での発熱に依存することとなるため、負極側での発熱を利用してセパレータを均一にシャットダウンさせる本実施形態にとって都合がよい。なお上記組成式においてMはより好ましくはMnであり、a、bおよびcは、より好ましくは0.2≦a≦0.4、0.2≦b≦0.4、0.2≦c≦0.4を満たす。 The positive electrode mixture layer is composed of a positive electrode mixture containing a positive electrode active material, a conductive additive, and a binder. In this embodiment, the positive electrode active material is a ternary positive electrode active material, that is, LiNi a Co b M c O 2 (where a + b + c = 1, 0 <a <1, 0 <b <1, 0 <c <1, M is at least one of Mn and Al. Examples of the positive electrode active material satisfying such a composition include LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.4 Co 0.3 Mn 0.3 O 2, LiNi 0.5 Co 0.3 Mn 0.2 O 2 , LiNi 0.5 Co 0.3 Al 0.2. O 2 etc. can be mentioned. The ternary positive electrode active material has a small calorific value near the shutdown temperature in a microporous membrane separator made of PE or PP. Therefore, by using the ternary positive electrode active material, the shutdown of the separator mainly depends on the heat generation on the negative electrode side. Therefore, for this embodiment in which the separator is shut down uniformly using the heat generation on the negative electrode side. convenient. In the above composition formula, M is more preferably Mn, and a, b, and c are more preferably 0.2 ≦ a ≦ 0.4, 0.2 ≦ b ≦ 0.4, 0.2 ≦ c ≦. It satisfies 0.4.

なお本実施形態の正極は、3元系正極活物質の他にLiCoO2、LiNiO2、LiMnO2、LiMn24、LiFePO4等の正極活物質を含んでいてもよいが、その場合は正極活物質の総質量に対して3元系正極活物質の占める割合を50質量%以上とすることが好ましく、75質量%以上とすることがより好ましい。 The positive electrode of the present embodiment may contain a positive electrode active material such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , and LiFePO 4 in addition to the ternary positive electrode active material. The ratio of the ternary positive electrode active material to the total mass of the active material is preferably 50% by mass or more, and more preferably 75% by mass or more.

正極合材に含まれる導電助材としては、たとえばアセチレンブラック(AB)等を用いることができ、結着材としてはポリフッ化ビニリデン(PVdF)等を用いることができる。正極合材層は、たとえば正極活物質と導電助材と結着材とを、たとえばN−メチルピロリドン(NMP)等の溶媒中で混練して得た正極合材スラリーを正極集電体上に塗工、乾燥して、さらに圧延することにより形成される。   For example, acetylene black (AB) or the like can be used as the conductive additive included in the positive electrode mixture, and polyvinylidene fluoride (PVdF) or the like can be used as the binder. For example, the positive electrode mixture layer is obtained by mixing a positive electrode mixture slurry obtained by kneading, for example, a positive electrode active material, a conductive additive, and a binder in a solvent such as N-methylpyrrolidone (NMP) on the positive electrode current collector. It is formed by coating, drying and rolling.

以下実施例を用いて本実施形態をより詳細に説明するが、本実施形態はこれらに限定されるものではない。   Hereinafter, the present embodiment will be described in more detail using examples, but the present embodiment is not limited thereto.

<実施例1>
以下のようにしてCIDを有しない角形非水電解質二次電池を作製し、過充電試験を行なって安全性を評価した。
<Example 1>
A rectangular non-aqueous electrolyte secondary battery having no CID was produced as follows, and an overcharge test was performed to evaluate safety.

(正極の作製)
正極活物質(LiNi1/3Co1/3Mn1/32)と、導電助材(AB)と、結着材(PVdF)とを、溶媒(NMP)中で混練することにより正極合材スラリーを得た。該正極合材スラリーを長尺帯状のAl箔上に塗工、乾燥して、さらに圧延することにより正極100を得た。正極100は幅方向の片側に正極非塗工部100aを有するものとした。
(Preparation of positive electrode)
A positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), a conductive additive (AB), and a binder (PVdF) are kneaded in a solvent (NMP) to mix the positive electrode. A material slurry was obtained. The positive electrode mixture slurry was coated on a long strip-shaped Al foil, dried, and further rolled to obtain a positive electrode 100. The positive electrode 100 has a positive electrode non-coated portion 100a on one side in the width direction.

(負極の作製)
負極活物質(天然黒鉛粉末)と、増粘材(CMC)と、結着材(SBR)とを水中で混練することにより負極合材スラリーを得た。該負極合材スラリーを長尺帯状のCu箔上に塗工、乾燥して、さらに圧延することにより負極200を得た。負極200は幅方向の片側に負極非塗工部200aを有するものとした。
(Preparation of negative electrode)
A negative electrode mixture slurry was obtained by kneading a negative electrode active material (natural graphite powder), a thickener (CMC), and a binder (SBR) in water. The negative electrode mixture slurry was coated on a long strip of Cu foil, dried, and further rolled to obtain a negative electrode 200. The negative electrode 200 had the negative electrode non-coating part 200a on one side in the width direction.

またこのとき表1に示すように、負極合材層の片面目付量は7.3mg/cm2とし、負極合材層の塗工面積は14500cm2とした。また前述の方法に従って、周波数0.1Hzにおける負極合材の単位質量あたりのキャパシタンスを測定したところ0.14F/gであった。したがって負極の総キャパシタンスは次式(2)により、14.82Fである
(負極の総キャパシタンス)=(負極合材の単位質量あたりのキャパシタンス)×(片面目付量)×(塗工面積)・・・(2)。
Also as shown in Table 1 this time, one side basis weight of the negative electrode composite material layer was set to 7.3 mg / cm 2, the coating area of the negative electrode material layer was 14500cm 2. Moreover, when the capacitance per unit mass of the negative electrode composite material at a frequency of 0.1 Hz was measured according to the above-mentioned method, it was 0.14 F / g. Therefore, the total capacitance of the negative electrode is 14.82 F according to the following formula (2) (total capacitance of the negative electrode) = (capacitance per unit mass of the negative electrode mixture) × (weight per side) × (coating area). (2).

(非水電解質の調整)
ECとEMCとDECとを、EC:EMC:DEC=3:5:2(体積比)となるように混合して非プロトン性溶媒を得た。次いで該非プロトン性溶媒にCHB(0.05質量%)およびLiPF6(1.0mol/L)を溶解させることにより、非水電解質を調整した。
(Nonaqueous electrolyte adjustment)
EC, EMC, and DEC were mixed so that EC: EMC: DEC = 3: 5: 2 (volume ratio) to obtain an aprotic solvent. Next, a nonaqueous electrolyte was prepared by dissolving CHB (0.05 mass%) and LiPF 6 (1.0 mol / L) in the aprotic solvent.

(組み立て)
セパレータ300として、PP/PE/PPの3層構造を有する微多孔膜セパレータ(厚さ20μm、シャットダウン温度130℃)を準備した。そして図3を参照して、セパレータ300を挟んで正極100と負極200とが対向するように巻回して巻回体を得、さらに該巻回体をプレス成形することにより電極体400(厚さ20mm)を得た。なおここで電極体400の厚さとは、図3に示す矢印の方向の厚さを示す。
(assembly)
A microporous membrane separator (thickness 20 μm, shutdown temperature 130 ° C.) having a three-layer structure of PP / PE / PP was prepared as the separator 300. Then, referring to FIG. 3, a wound body is obtained by winding the separator 300 so that the positive electrode 100 and the negative electrode 200 face each other, and the wound body is press-molded to obtain an electrode body 400 (thickness). 20 mm). Here, the thickness of the electrode body 400 indicates the thickness in the direction of the arrow shown in FIG.

次いで電極体400を、CIDを有していない電池外装体500に挿入し、非水電解質を注液することにより、定格容量が23Ahである実施例1にかかる角形非水電解質二次電池を得た。   Next, the prismatic nonaqueous electrolyte secondary battery according to Example 1 having a rated capacity of 23 Ah is obtained by inserting the electrode body 400 into the battery outer package 500 having no CID and injecting a nonaqueous electrolyte. It was.

<実施例2〜6および比較例1〜7>
負極の総キャパシタンスが表1に示す値となるように、負極合材の単位質量あたりのキャパシタンス、片面目付量および塗工面積を変更し、これに合わせて正極および電池容量設計を変更し、さらにCHBの添加量を変更することを除いては、実施例1と同様にして実施例2〜6および比較例1〜7に係る角形非水電解質二次電池を得た。
<Examples 2-6 and Comparative Examples 1-7>
Change the capacitance per unit mass of the negative electrode mixture, the amount per unit area of the negative electrode, and the coating area so that the total capacitance of the negative electrode becomes the value shown in Table 1, and change the positive electrode and battery capacity design accordingly. Except for changing the amount of CHB added, prismatic nonaqueous electrolyte secondary batteries according to Examples 2 to 6 and Comparative Examples 1 to 7 were obtained in the same manner as Example 1.

<評価>
各電池の過充電試験を以下の要領で実施し、過充電時の安全性を評価した。結果を表1に示す。なお以下の説明において「電流値1.0C」とは、電池の定格容量を1時間で放電する電流値を示すものとする。
<Evaluation>
The overcharge test of each battery was performed as follows, and the safety during overcharge was evaluated. The results are shown in Table 1. In the following description, “current value 1.0 C” indicates a current value for discharging the rated capacity of the battery in one hour.

(過充電試験)
25℃環境下で、CC−CV充電(電流値1.0C、CV電圧10V、CV充電時間10分)を行なった後、10分間放置してからOCVを測定した。そして測定されたOCVに基づき、次の「A」および「B」の2水準で過充電時の安全性を評価した。
(Overcharge test)
After performing CC-CV charging (current value: 1.0 C, CV voltage: 10 V, CV charging time: 10 minutes) in a 25 ° C. environment, the OCV was measured after being left for 10 minutes. And based on the measured OCV, the safety | security at the time of an overcharge was evaluated by the following 2 levels of "A" and "B".

A:OCVが4.2V以上
B:OCVが3.6V以下
ここで過充電後のOCVが高いほど、短絡面積が小さく過充電時の安全性に優れると評価できる。特にOCVが4.2V以上であれば、実質的に短絡は発生しておらず、十分な安全性を有するといえる。
A: OCV is 4.2 V or more B: OCV is 3.6 V or less Here, it can be evaluated that the higher the OCV after overcharging, the smaller the short circuit area and the better the safety during overcharging. In particular, if the OCV is 4.2 V or more, it can be said that a short circuit does not substantially occur and the safety is sufficient.

Figure 2015138665
Figure 2015138665

また同結果を、負極の総キャパシタンスをx[F]とし、非水電解質のCHB含有量をy[質量%]とするxy座標にプロットした(図1)。図1中、丸形の凡例は「A:OCVが4.2V以上」であったことを示し、菱形の凡例は「B:OCVが3.6V以下」であったことを示している。   The results were plotted on xy coordinates where the total capacitance of the negative electrode was x [F] and the CHB content of the nonaqueous electrolyte was y [mass%] (FIG. 1). In FIG. 1, the round legend indicates that “A: OCV is 4.2 V or higher”, and the rhombus legend indicates that “B: OCV is 3.6 V or lower”.

(結果と考察)
(i)比較例2、比較例5、比較例6および比較例7
比較例2、5、6および7は、いずれも過充電後のOCVが低く、過充電時の安全性は十分ではなかった。図1に示すxy座標においてこれらの比較例は、領域αから上側に外れた領域(CHBが多い)、または右側に外れた領域(負極の総キャパシタンスが大きい)に位置する。したがってこれらの比較例では、CHBあるいは負極に起因する発熱量が過度に大きくなり、セパレータの熱収縮が起こったものと考えられる。
(Results and discussion)
(I) Comparative Example 2, Comparative Example 5, Comparative Example 6 and Comparative Example 7
In Comparative Examples 2, 5, 6 and 7, the OCV after overcharge was low, and the safety during overcharge was not sufficient. In the xy coordinates shown in FIG. 1, these comparative examples are located in a region that deviates upward from the region α (a lot of CHB) or a region that deviates to the right (the total capacitance of the negative electrode is large). Therefore, in these comparative examples, it is considered that the amount of heat generated due to CHB or the negative electrode becomes excessively large, and the thermal contraction of the separator occurs.

(ii)比較例1および比較例4
比較例1および4も、過充電後のOCVが低く、過充電時の安全性は十分ではなかった。図1に示すxy座標においてこれらの比較例は、領域αから下側に外れた領域(CHBが少ない)に位置する。したがってCHBによる電極体の温度ムラ抑制効果が小さく、温度ムラが大きくなり、セパレータのシャットダウンが不均一になったものと考えられる。
(Ii) Comparative Example 1 and Comparative Example 4
In Comparative Examples 1 and 4, the OCV after overcharging was low, and the safety during overcharging was not sufficient. In the xy coordinates shown in FIG. 1, these comparative examples are located in a region (the amount of CHB is small) deviated downward from the region α. Therefore, it is considered that the effect of suppressing temperature unevenness of the electrode body by CHB is small, the temperature unevenness is large, and the shutdown of the separator is not uniform.

(iii)実施例1〜6
これらの比較例に対して点(x、y)が領域αに属する実施例1〜6は、いずれも過充電試験後におけるOCVが4.2V以上であり、実質的に短絡が発生しておらず、十分な安全性を有していた。この理由は、CHBの添加量と負極の総キャパシタンスとの関係を制御したことにより、電極体の厚さ方向における温度ムラが大幅に緩和され、セパレータのシャットダウンが全域に亘って均一に起こったからであると考えられる。
(Iii) Examples 1-6
In Examples 1 to 6 in which the point (x, y) belongs to the region α with respect to these comparative examples, the OCV after the overcharge test is 4.2 V or more, and a short circuit has not substantially occurred. Therefore, it had sufficient safety. The reason for this is that by controlling the relationship between the amount of CHB added and the total capacitance of the negative electrode, the temperature unevenness in the thickness direction of the electrode body was greatly alleviated, and the shutdown of the separator occurred uniformly over the entire area. It is believed that there is.

以上の結果から、電池外装体と、該電池外装体の内部に、正極と、負極と、セパレータと、非水電解質とを備え、該電池外装体は、内圧の上昇によって作動する電流遮断機構を有しておらず、該セパレータは、温度の上昇によって孔径を閉じるシャットダウン機能を有し、該正極は、LiNiaCobc2(ただしa+b+c=1、0<a<1、0<b<1、0<c<1、MはMnおよびAlの少なくともいずれかである。)を含み、該負極は、黒鉛系負極活物質を含み、該非水電解質は、シクロヘキシルベンゼンを含み、交流インピーダンス測定において周波数が0.1Hzであるときの該負極の総キャパシタンスをx[F]とし、該非水電解質における該シクロヘキシルベンゼンの含有量をy[質量%]としたとき、xy直交座標において点(x、y)が、点(14.82、0.05)、点(34.19、0.3)、点(34.19、4.5)、点(19.95、5.3)および点(14.82、5.5)からなる5点を頂点とする多角形領域に含まれる実施例に係る非水電解質二次電池は、CIDを有せずとも過充電時の安全性が確保された電池であることが確認できた。 From the above results, the battery exterior body includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte inside the battery exterior body, and the battery exterior body has a current blocking mechanism that is activated by an increase in internal pressure. not without having, the separator has a shutdown function of closing the pore size by increasing the temperature, the positive electrode, LiNi a Co b M c O 2 ( provided that a + b + c = 1,0 < a <1,0 <b <1, 0 <c <1, M is at least one of Mn and Al.), The negative electrode includes a graphite-based negative electrode active material, the nonaqueous electrolyte includes cyclohexylbenzene, and AC impedance measurement Where the total capacitance of the negative electrode when the frequency is 0.1 Hz is x [F], and the content of the cyclohexylbenzene in the nonaqueous electrolyte is y [mass%], The point (x, y) is the point (14.82, 0.05), the point (34.19, 0.3), the point (34.19, 4.5), the point (19.95, 5. 3) and the nonaqueous electrolyte secondary battery according to the example included in the polygonal region having the five points consisting of the points (14.82, 5.5) as a vertex is safe at the time of overcharge without having a CID. It was confirmed that the battery was secured.

以上のように本実施形態および実施例の説明を行なったが、今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等意味および範囲内でのすべての変更が含まれることが意図される。   Although the present embodiment and examples have been described as described above, it should be considered that the embodiments and examples disclosed this time are illustrative and not restrictive in all respects. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

60 測定用セル、61 測定用セパレータ、62a 第1の測定用試料、62b 第2の測定用試料、100 正極、100a 正極非塗工部、100b 正極集電部材、100c 正極端子、200 負極、200a 負極非塗工部、200b 負極集電部材、200c 負極端子、300 セパレータ、400 電極体、500 電池外装体、1000 電池、α 領域。   60 measurement cell, 61 measurement separator, 62a first measurement sample, 62b second measurement sample, 100 positive electrode, 100a positive electrode non-coated portion, 100b positive current collecting member, 100c positive electrode terminal, 200 negative electrode, 200a Negative electrode non-coated portion, 200b negative electrode current collecting member, 200c negative electrode terminal, 300 separator, 400 electrode body, 500 battery outer body, 1000 battery, α region.

Claims (1)

電池外装体と、
前記電池外装体の内部に、正極と、負極と、セパレータと、非水電解質とを備え、
前記電池外装体は、内圧の上昇によって作動する電流遮断機構を有しておらず、
前記セパレータは、温度の上昇によって孔径を閉じるシャットダウン機能を有し、
前記正極は、LiNiaCobc2(ただしa+b+c=1、0<a<1、0<b<1、0<c<1であり、MはMnおよびAlの少なくともいずれかである。)を含み、
前記負極は、黒鉛系負極活物質を含み、
前記非水電解質は、シクロヘキシルベンゼンを含み、
交流インピーダンス測定において周波数が0.1Hzであるときの前記負極の総キャパシタンスをx[F]とし、前記非水電解質における前記シクロヘキシルベンゼンの含有量をy[質量%]としたとき、xy直交座標において点(x、y)が、点(14.82、0.05)、点(34.19、0.3)、点(34.19、4.5)、点(19.95、5.3)および点(14.82、5.5)からなる5点を頂点とする多角形領域に含まれる、非水電解質二次電池。
A battery case;
Inside the battery exterior body, a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte,
The battery exterior body does not have a current interrupting mechanism that operates due to an increase in internal pressure,
The separator has a shutdown function that closes the hole diameter as the temperature rises,
The positive electrode is LiNi a Co b M c O 2 ( provided that a + b + c = 1,0 < a <1,0 <b <1,0 <c <1, M is at least one of Mn and Al. )
The negative electrode includes a graphite-based negative electrode active material,
The non-aqueous electrolyte includes cyclohexylbenzene,
In AC impedance measurement, when the total capacitance of the negative electrode when the frequency is 0.1 Hz is x [F] and the content of the cyclohexylbenzene in the non-aqueous electrolyte is y [mass%], in xy orthogonal coordinates The point (x, y) is the point (14.82, 0.05), the point (34.19, 0.3), the point (34.19, 4.5), the point (19.95, 5.3). ) And a point (14.82, 5.5), a non-aqueous electrolyte secondary battery included in a polygonal region having a vertex at five points.
JP2014009678A 2014-01-22 2014-01-22 Nonaqueous electrolyte secondary battery Active JP6048420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014009678A JP6048420B2 (en) 2014-01-22 2014-01-22 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014009678A JP6048420B2 (en) 2014-01-22 2014-01-22 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015138665A true JP2015138665A (en) 2015-07-30
JP6048420B2 JP6048420B2 (en) 2016-12-21

Family

ID=53769542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014009678A Active JP6048420B2 (en) 2014-01-22 2014-01-22 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6048420B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249262A (en) * 2001-01-29 2003-09-05 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2006278322A (en) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2011192541A (en) * 2010-03-15 2011-09-29 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
WO2013073012A1 (en) * 2011-11-15 2013-05-23 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2013218913A (en) * 2012-04-10 2013-10-24 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2013243104A (en) * 2012-04-27 2013-12-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249262A (en) * 2001-01-29 2003-09-05 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2006278322A (en) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2011192541A (en) * 2010-03-15 2011-09-29 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
WO2013073012A1 (en) * 2011-11-15 2013-05-23 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2013218913A (en) * 2012-04-10 2013-10-24 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2013243104A (en) * 2012-04-27 2013-12-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6048420B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP5693222B2 (en) Lithium secondary battery
KR101772754B1 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
Huang Development and characterization of a bilayer separator for lithium ion batteries
WO2013008475A1 (en) Nonaqueous electrolyte secondary battery
US10305109B2 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
EP2993723A1 (en) Electrolyte solution for an energy storage device
JP2016058282A (en) Nonaqueous electrolyte battery
JP2021533553A (en) Positive electrode sheet and its manufacturing method, and lithium ion secondary battery
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2019186164A (en) Nonaqueous electrolyte secondary battery
US20130017455A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
US10511024B2 (en) Electrode for nonaqueous electrolyte secondary battery and method of manufacturing the same
KR101900149B1 (en) Non-Aqueous Electrolyte Secondary Battery
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
KR20160119699A (en) Non-aqueous electrolyte secondary battery
EP4235874A1 (en) Secondary battery, battery module, battery pack and electric apparatus
JP2016066461A (en) Lithium ion secondary battery
JP2019175592A (en) Electrolyte solution and lithium ion battery
JP7175161B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP6048420B2 (en) Nonaqueous electrolyte secondary battery
JP2013157136A (en) Nonaqueous electrolyte secondary battery
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery
JP2014241267A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP7006450B2 (en) Non-aqueous electrolyte secondary battery
JP2018190624A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R151 Written notification of patent or utility model registration

Ref document number: 6048420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151