US9564634B2 - Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
US9564634B2
US9564634B2 US14/388,931 US201314388931A US9564634B2 US 9564634 B2 US9564634 B2 US 9564634B2 US 201314388931 A US201314388931 A US 201314388931A US 9564634 B2 US9564634 B2 US 9564634B2
Authority
US
United States
Prior art keywords
positive electrode
electrode active
active substance
particles
substance particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/388,931
Other versions
US20150060725A1 (en
Inventor
Manabu Yamamoto
Daisuke Nishikawa
Taisei Inoue
Osamu Sasaki
Hideaki Sadamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Publication of US20150060725A1 publication Critical patent/US20150060725A1/en
Assigned to TODA KOGYO CORPORATION reassignment TODA KOGYO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INOUE, TAISEI, NISHIKAWA, DAISUKE, SADAMURA, HIDEAKI, SASAKI, OSAMU, YAMAMOTO, MANABU
Application granted granted Critical
Publication of US9564634B2 publication Critical patent/US9564634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/56Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO3]2-, e.g. Li2[CoxMn1-xO3], Li2[MyCoxMn1-x-yO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/56Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO3]2-, e.g. Li2[NixMn1-xO3], Li2[MyNixMn1-x-yO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/54

Definitions

  • the present invention relates to positive electrode (cathode) active substance particles for non-aqueous electrolyte secondary batteries which are excellent in discharge capacity.
  • LiMn 2 O 4 having a spinel structure
  • LiMnO 2 having a zigzag layer structure
  • LiCoO 2 and LiNiO 2 having a layer rock-salt structure, or the like.
  • LiNiO 2 lithium ion secondary batteries using LiNiO 2 have been noticed because of large charge/discharge capacities thereof.
  • these materials tend to be still insufficient in discharge capacity, and, therefore, it has been required to further improve properties thereof.
  • Patent Literature 1 a positive electrode active substance comprising Li 2 MnO 3 belonging to a space group of C2/m and having a higher capacity exhibits a large discharge capacity
  • Patent Literature 2 a heat treatment method
  • Patent Literature 4 a method of trapping gases generated upon charging
  • Patent Literature 5 a method of modifying properties of the surface of the particles
  • an object of the present invention is to provide positive electrode active substance particles for non-aqueous electrolyte secondary batteries which have a large discharge capacity, a process for producing the positive electrode active substance particles, and a non-aqueous electrolyte secondary battery comprising a positive electrode comprising the positive electrode active substance particles.
  • positive electrode active substance particles comprising a compound having at least a crystal system belonging to a space group of R-3m and a crystal system belonging to a space group of C2/m,
  • the compound being in the form of a composite oxide comprising at least Li, Mn, an element A (that is at least one element selected from the group consisting of Si, Zr and Y) and Co and/or Ni;
  • a content of Mn in the positive electrode active substance particles being controlled such that a molar ratio of Mn/(Ni+Co+Mn) therein is not less than 0.55;
  • the positive electrode active substance particles comprising the element A in an amount of 0.03 to 5% by weight and having a tap density of 0.8 to 2.4 g/cc and a compressed density of 2.0 to 3.1 g/cc (Invention 1).
  • the positive electrode active substance particles as described in the above Invention 1, wherein the positive electrode active substance particles comprise LiM x Mn 1-x O 2 wherein M is Ni and/or Co; 0 ⁇ x ⁇ 1, as the compound having a crystal system belonging to a space group of R-3m, and Li 2 M′ (1-y) Mn y O 3 wherein M′ is Ni and/or Co; 0 ⁇ y ⁇ 1, as the compound having a crystal system belonging to a space group of C2/m (Invention 2).
  • the positive electrode active substance particles as described in the above Invention 1 or 2, wherein a molar ratio of Li/(Ni+Co+Mn) in the positive electrode active substance particles is 1.25 to 1.7 (Invention 3).
  • the positive electrode active substance particles as described in any one of the above Inventions 1 to 3, wherein the positive electrode active substance particles have a specific surface area of 0.1 to 20 m 2 /g as measured by a BET method (Invention 4).
  • the positive electrode active substance particles as described in any one of the above Inventions 1 to 4, wherein the positive electrode active substance particles are in the form of secondary particles produced by aggregating primary particles thereof in which the secondary particles have an average secondary particle diameter of 1 to 50 ⁇ m (Invention 5).
  • precursor particles of the positive electrode active substance particles as described in any one of the above Inventions 1 to 5, comprising a composite hydroxide or a composite carbonate as a main component which comprises at least Mn, an element A (that is at least one element selected from the group consisting of Si, Zr and Y) and Co and/or Ni,
  • a content of Mn in the precursor particles being controlled such that a molar ratio of Mn/(Ni+Co+Mn) therein is not less than 0.55; and the precursor particles comprising the element A in an amount of 0.025 to 5.5% by weight and having an average secondary particle diameter of 1 to 50 ⁇ m (Invention 6).
  • a non-aqueous electrolyte secondary battery using a positive electrode comprising the positive electrode active substance particles as described in any one of the above Inventions 1 to 5 (Invention 8).
  • the positive electrode active substance particles according to the present invention can exhibit a large discharge capacity and can provide a high energy, and therefore can be suitably used as positive electrode active substance particles for non-aqueous electrolyte secondary batteries.
  • the positive electrode active substance particles according to the present invention comprise a compound having at least a crystal system belonging to a space group of R-3m and a crystal system belonging to a space group of C2/m, and are in the form of a compound that comprises a composite oxide comprising at least Li, Mn, and Co and/or Ni, and an element A (at least one element selected from the group consisting of Si, Zr and Y).
  • the compound having a crystal system belonging to a space group of R-3m preferably includes those compounds represented by the formula: LiM x Mn 1-x O 2 wherein M is Ni and/or Co; 0 ⁇ x ⁇ 1.
  • Specific examples of the preferred LiM x Mn 1-x O 2 include LiCo x Mn 1-x O 2 , LiNi x Mn 1-x O 2 , and Li(Ni, Co) x Mn 1-x O 2 .
  • the compound having a crystal system belonging to a space group of C2/m preferably includes those compounds represented by the formula: Li 2 M′ (1-y) Mn y O 3 wherein M′ is Ni and/or Co; 0 ⁇ y ⁇ 1.
  • the relative intensity ratio [(a)/(b)] is less than 0.02
  • the resulting positive electrode active substance particles tend to hardly exhibit sufficient charge/discharge capacities owing to an excessively small amount of the compound having a crystal system belonging to a space group of C2/m.
  • the relative intensity ratio [(a)/(b)] is more than 0.2, lithium ions in the resulting positive electrode active substance particles tend to be hardly moved smoothly owing to an excessively large amount of the compound having a crystal system belonging to a space group of C2/m, so that the positive electrode active substance particles tend to hardly exhibit sufficient charge/discharge capacities.
  • the relative intensity ratio [(a)/(b)] is preferably 0.02 to 0.15, more preferably 0.02 to 0.12 and still more preferably 0.025 to 0.08.
  • the molar ratio of Li to a sum of Ni, Co and Mn [Li/(Ni+Co+Mn)] therein is preferably 1.25 to 1.7.
  • the molar ratio of Li/(Ni+Co+Mn) is less than 1.25, the resulting positive electrode active substance particles tend to be deteriorated in charge capacity owing to a less content of lithium contributing to charging therein.
  • the resulting positive electrode active substance particles tend to contrarily suffer from surplus of Li which is no longer incorporated into a crystal structure thereof, or deterioration in discharge capacity because of increase in resistance components owing to the excessively large amount of lithium therein.
  • the molar ratio of Li/(Ni+Co+Mn) in the positive electrode active substance particles is more preferably 1.25 to 1.65, still more preferably 1.3 to 1.6, and even still more preferably 1.35 to 1.55.
  • the content of Mn therein is controlled such that a molar ratio of Mn to a sum of Ni, Co and Mn [Mn/(Ni+Co+Mn)] therein is not less than 0.55.
  • a molar ratio of Mn/(Ni+Co+Mn) is less than 0.55, the compound having a crystal system belonging to a space group of C2/m tends to be hardly formed in a sufficient amount, so that the resulting positive electrode active substance particles tend to be deteriorated in charge/discharge capacities.
  • the molar ratio of Mn/(Ni+Co+Mn) in the positive electrode active substance particles is preferably not less than 0.6 and more preferably not less than 0.65.
  • the upper limit of the molar ratio of Mn/(Ni+Co+Mn) is preferably about 0.8.
  • the content of Ni therein is controlled such that a molar ratio of Ni to a sum of Ni, Co and Mn [Ni/(Ni+Co+Mn)] is preferably 0 to 0.45.
  • a molar ratio of Ni/(Ni+Co+Mn) is more than 0.45, the resulting positive electrode active substance particles tend to be deteriorated in thermal stability.
  • the Ni content (molar ratio of Ni/(Ni+Co+Mn)) in the positive electrode active substance particles is more preferably 0 to 0.35.
  • the content of Co therein is controlled such that a molar ratio of Co to a sum of Ni, Co and Mn [Co/(Ni+Co+Mn)] therein is preferably 0 to 0.45.
  • a molar ratio of Co/(Ni+Co+Mn) is more than 0.45, the resulting positive electrode active substance particles tend to be deteriorated in stability of their structure.
  • the Co content (molar ratio of Co/(Ni+Co+Mn)) in the positive electrode active substance particles is more preferably 0 to 0.35.
  • the positive electrode active substance particles according to the present invention comprise the element A in an amount of 0.03 to 5% by weight.
  • the content of the element A in the positive electrode active substance particles is less than 0.03% by weight, the secondary battery produced using the resulting positive electrode active substance particles tends to be hardly improved in charge/discharge rate characteristics owing to a less effect of preventing sintering between the particles when calcined.
  • the content of the element A in the positive electrode active substance particles is more than 5% by weight, the resulting positive electrode active substance particles tend to be deteriorated in discharge capacity because of increase in resistance components owing to the excessively large amount of the element A.
  • the content of the element A in the positive electrode active substance particles is preferably 0.03 to 2.3% by weight, more preferably 0.1 to 1.05% by weight and still more preferably 0.1 to 0.5% by weight.
  • the positive electrode active substance particles according to the present invention have a tap density of 0.8 to 2.4 g/cc.
  • the tap density of the positive electrode active substance particles is less than 0.8 g/cc, the density of primary particles of the resulting positive electrode active substance particles tends to become too coarse, so that it is not possible to sufficiently transfer electrons therethrough, thereby causing deterioration in discharge capacity thereof.
  • the tap density of the positive electrode active substance particles is more than 2.4 g/cc, the density of primary particles of the resulting positive electrode active substance particles tends to become too dense, so that smooth transfer of electrons therethrough tends to be inhibited, thereby also causing deterioration in discharge capacity thereof.
  • the tap density of the positive electrode active substance particles is preferably 1.0 to 2.3 g/cc, more preferably 1.5 to 2.3 g/cc, and still more preferably 1.8 to 2.3 g/cc.
  • the positive electrode active substance particles according to the present invention have a compressed density of 2.0 to 3.1 g/cc.
  • the secondary particles tend to be partially collapsed to fill spaces between the particles.
  • the compressed density of the positive electrode active substance particles is less than 2.0 g/cc, the spaces between primary particles and secondary particles of the resulting positive electrode active substance particles tend to become too coarse, so that it is not possible to sufficiently transfer electrons therethrough, thereby causing deterioration in discharge capacity thereof.
  • the compressed density of the positive electrode active substance particles is preferably 2.4 to 3.0 g/cc, more preferably 2.4 to 2.9 g/cc, and still more preferably 2.4 to 2.8 g/cc.
  • the specific surface area of the positive electrode active substance particles according to the present invention as measured by a BET method is preferably 0.1 to 20 m 2 /g.
  • the specific surface area of the positive electrode active substance particles is less than 0.1 m 2 /g, i.e., when the primary particles thereof are too large, the distance between the center and surface of the respective particles tends to be excessively increased, so that it is not possible to rapidly transfer electrons therethrough, thereby causing deterioration in charge/discharge rate characteristics thereof.
  • the specific surface area of the positive electrode active substance particles is more than 20 m 2 /g, the amount of the primary particles that may fail to come into contact with a conductive material tends to be increased owing to the excessively small primary particles, thereby causing deterioration in discharge capacity thereof.
  • the specific surface area of the positive electrode active substance particles is preferably 0.3 to 12 m 2 /g, more preferably 0.3 to 9 m 2 /g and still more preferably 1 to 7 m 2 /g.
  • the average secondary particle diameter of the positive electrode active substance particles according to the present invention is 1 to 50 ⁇ m.
  • the average secondary particle diameter of the positive electrode active substance particles is less than 1 ⁇ m, the resulting positive electrode active substance particles tend to exhibit an excessively high reactivity with an electrolyte solution owing to excessive increase in contact area with the electrolyte solution, and therefore tend to be deteriorated in stability upon charging.
  • the average secondary particle diameter of the positive electrode active substance particles is more than 50 ⁇ m, the resulting positive electrode tends to exhibit an increased internal resistance and therefore tends to be deteriorated in charge/discharge rate characteristics.
  • the average secondary particle diameter of the positive electrode active substance particles is preferably 2 to 30 ⁇ m, more preferably 2 to 20 ⁇ m, and still more preferably 2 to 16 ⁇ m.
  • the positive electrode active substance particles according to the present invention may be produced by mixing previously prepared precursor particles comprising a transition metal and the element A with a lithium compound, and then calcining the resulting mixture.
  • the above transition metal-containing precursor particles used in the present invention may be produced by supplying a mixed acid solution comprising a nickel salt, a cobalt salt, a manganese salt, a zirconium salt and a yttrium salt at desired concentrations and a mixed alkali aqueous solution comprising sodium hydroxide, ammonia, sodium carbonate and water glass into a reaction vessel, controlling a pH value of the resulting suspension to 7.5 to 13, circulating the overflowed suspension through a concentration vessel connected to an overflow pipe into the reaction vessel while controlling a concentration rate of the suspension in the concentration vessel, and then reacting the respective components until a concentration of the precursor particles in the suspension in the reaction vessel and a precipitation vessel reaches 0.2 to 15 mol/L.
  • the precursor particles may also be obtained from the overflowed suspension without using the concentration vessel.
  • the resulting product may be subjected to water-washing, drying and pulverization by ordinary methods.
  • the transition metal-containing precursor particles used in the present invention are constituted of a hydroxide or a carbonate which is synthesized by co-precipitating a solution of the raw materials with a mixed solution comprising the element A.
  • the precursor particles comprising the element A, Ni, Co and Mn are synthesized by the co-precipitation method, it is possible to more uniformly disperse the element A in the secondary particles thereof.
  • the zirconium compound used in the present invention is not particularly limited, and various kinds of zirconium compounds may be used in the present invention.
  • the zirconium compound include various soluble zirconium compounds such as zirconium sulfate, zirconium oxynitrate, zirconium oxychloride, zirconium chloride, zirconium acetate and zirconium oxalate.
  • the yttrium compound used in the present invention is not particularly limited, and various kinds of yttrium compounds may be used in the present invention.
  • Examples of the yttrium compound include various soluble yttrium compounds such as yttrium sulfate, yttrium nitrate, yttrium chloride and yttrium acetate.
  • the silicon compound used in the present invention is not particularly limited, and various kinds of silicon compounds may be used in the present invention.
  • Examples of the silicon compound include various soluble silicon compounds such as sodium silicate, potassium hexafluorosilicate and ammonium hexafluorosilicate.
  • the content of Mn therein is controlled such that a molar ratio of Mn to a sum of Ni, Co and Mn [Mn/(Ni+Co+Mn)] therein is not less than 0.55.
  • the molar ratio of Mn/(Ni+Co+Mn) is less than 0.55, the compound having a crystal system belonging to a space group of C2/m tends to be hardly formed in the positive electrode active substance particles produced from the precursor particles in a sufficient amount, so that the resulting positive electrode active substance particles tend to be deteriorated in charge/discharge capacities.
  • the molar ratio of Mn/(Ni+Co+Mn) in the precursor particles is preferably not less than 0.6 and more preferably not less than 0.65.
  • the upper limit of the molar ratio of Mn/(Ni+Co+Mn) in the precursor particles is preferably about 0.8.
  • the content of Ni therein is controlled such that a molar ratio of Ni to a sum of Ni, Co and Mn [Ni/(Ni+Co+Mn)] is preferably 0 to 0.45.
  • a molar ratio of Ni/(Ni+Co+Mn) is more than 0.45, the positive electrode active substance particles produced from the precursor particles tend to be deteriorated in thermal stability.
  • the Ni content (molar ratio of Ni/(Ni+Co+Mn)) in the precursor particles is more preferably 0 to 0.35.
  • the content of Co therein is controlled such that a molar ratio of Co to a sum of Ni, Co and Mn [Co/(Ni+Co+Mn)] therein is preferably 0 to 0.45.
  • a molar ratio of Co/(Ni+Co+Mn) is more than 0.45, the positive electrode active substance particles produced from the precursor particles tend to be deteriorated in stability of their structure.
  • the Co content (molar ratio of Co/(Ni+Co+Mn)) in the precursor particles is more preferably 0 to 0.35.
  • the precursor particles according to the present invention comprise the element A in an amount of 0.025 to 5.5% by weight.
  • the content of the element A in the precursor particles is less than 0.025% by weight, the secondary battery produced using the positive electrode active substance particles produced from the precursor particles tends to be hardly improved in charge/discharge rate characteristics owing to a less effect of preventing sintering between the particles when calcined.
  • the content of the element A in the precursor particles is more than 5.5% by weight, the positive electrode active substance particles produced from the precursor particles tend to be deteriorated in discharge capacity because of increase in resistance components owing to the excessively large amount of the element A.
  • the content of the element A in the precursor particles is preferably 0.025 to 2.5% by weight, more preferably 0.08 to 1.1% by weight and still more preferably 0.08 to 0.55% by weight.
  • the average secondary particle diameter of the precursor particles according to the present invention is 1 to 50 ⁇ m.
  • the average secondary particle diameter of the precursor particles is less than 1 ⁇ m, the positive electrode active substance particles produced from the precursor particles tend to exhibit an excessively high reactivity with an electrolyte solution owing to excessive increase in contact area with the electrolyte solution, and therefore tend to be deteriorated in stability upon charging.
  • the average secondary particle diameter of the precursor particles is more than 50 ⁇ m, the positive electrode obtained using the positive electrode active substance particles produced from the precursor particles tends to exhibit an increased internal resistance and therefore tends to be deteriorated in charge/discharge rate characteristics.
  • the average secondary particle diameter of the precursor particles is preferably 2 to 30 ⁇ m, more preferably 2 to 20 ⁇ m, and still more preferably 2 to 16 ⁇ m.
  • the BET specific surface area of the precursor particles according to the present invention is preferably 3 to 400 m 2 /g.
  • the lithium compound used in the present invention is not particularly limited, and various lithium salts may be used in the present invention.
  • the lithium compound include lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, lithium chloride, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate and lithium oxide.
  • the lithium compound may be mixed with the precursor particles in an amount of 20 to 100% by weight based on the weight of the precursor particles.
  • the lithium compound used in the present invention preferably has an average particle diameter of not more than 50 ⁇ m and more preferably not more than 30 ⁇ m.
  • the average particle diameter of the lithium compound is more than 50 ⁇ m, the lithium compound tends to be hardly uniformly mixed with the precursor particles, so that it may be difficult to obtain composite oxide particles having a good crystallinity.
  • the mixing treatment of the precursor particles comprising a transition metal and the element A with the lithium compound may be conducted by either a dry method or a wet method as long as they can be uniformly mixed with each other.
  • the mixing treatment of the precursor particles comprising a transition metal and the element A with the lithium compound may be conducted at one time.
  • the precursor particles comprising a transition metal and the element A may be first mixed with one kind of lithium compound, followed by calcining the obtained mixture, and the resulting calcined product may be mixed with the other kind of lithium compound.
  • the process for producing the positive electrode active substance particles there may be mentioned, for example, a process of dry-mixing the precursor particles comprising a transition metal and the element A with the lithium compound and then calcining the resulting mixture, a process of spraying a slurry comprising the precursor particles comprising a transition metal and the element A and the lithium compound, etc., into a high-temperature container heated to 100 to 400° C. to obtain dry particles and then calcining the thus obtained dry particles, or the like.
  • the calcination temperature used in the production processes is preferably 500 to 1500° C.
  • the reaction of Li with Ni, Co and Mn may fail to proceed sufficiently, so that these elements tend to be hardly formed into a composite material thereof, and therefore it is not possible to obtain the positive electrode active substance particles having the aimed compressed density.
  • the calcination temperature is more than 1500° C., sintering tends to excessively proceed.
  • the calcination temperature is more preferably 700 to 1200° C. and still more preferably 800 to 1050° C.
  • the atmosphere upon the calcination is preferably an oxidative gas atmosphere, and more preferably ordinary atmospheric air.
  • the calcination time is preferably 1 to 30 hr.
  • the resulting positive electrode active substance particles comprise a compound comprising at least a crystal system belonging to a space group of R-3m and a crystal system belonging to a space group of C2/m at specific proportions.
  • the compound obtained by the calcination it may be basically required to prepare the precursor particles whose Mn content is controlled such that the molar ratio of Mn/(Ni+Co+Mn) therein is not less than 0.55 and preferably 0.55 to 0.8.
  • the method of controlling the molar ratio of Mn/(Ni+Co+Mn) in the precursor particles to the above range there may be used the method of controlling amounts of the nickel salt, cobalt salt and manganese salt as the raw materials, the method of controlling a pH value of the reaction solution, the method of controlling the reaction solution using a complexing agent such as ammonia, or the like.
  • the crystal system belonging to a space group of R-3m is derived from the above compound of LiM x Mn 1-x O 2
  • the crystal system belonging to a space group of C2/m is derived from the above compound Li 2 M′ (1-y) Mn y O 3 .
  • the complexing agent there may be used one or more compounds selected from the group consisting of ammonium ion donating substances, hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, dimethylglyoxime, dithizone, oxine, acetyl acetone and glycine.
  • the peak intensity ratio [(a)/(b)] may vary by controlling the calcination conditions. That is, when the calcination temperature is raised, there is such a tendency that the peak intensity ratio [(a)/(b)] is lowered, i.e., the amount of Li 2 M′ (1-y) Mn y O 3 having a crystal system belonging to a space group of C2/m is reduced. On the contrary, when the calcination temperature is dropped, there is such a tendency that the peak intensity ratio [(a)/(b)] is increased, i.e., the amount of Li 2 M′ (1-y) Mn y O 3 having a crystal system belonging to a space group of C2/m is increased.
  • the positive electrode comprising the positive electrode active substance particles according to the present invention is described.
  • a conducting agent and a binder are added to and mixed with the positive electrode active substance particles by an ordinary method.
  • the preferred conducting agent include acetylene black, carbon black and graphite.
  • the preferred binder include polytetrafluoroethylene and polyvinylidene fluoride.
  • the secondary battery produced by using the positive electrode comprising the positive electrode active substance particles according to the present invention comprises the above positive electrode, a negative electrode and an electrolyte.
  • Examples of a negative electrode active substance which may be used for production of the negative electrode include metallic lithium, lithium/aluminum alloys, lithium/tin alloys, and graphite or black lead.
  • a solvent for the electrolyte solution there may be used combination of ethylene carbonate and diethyl carbonate, as well as an organic solvent comprising at least one compound selected from the group consisting of carbonates such as propylene carbonate and dimethyl carbonate, and ethers such as dimethoxyethane.
  • the electrolyte there may be used a solution prepared by dissolving lithium phosphate hexafluoride as well as at least one lithium salt selected from the group consisting of lithium perchlorate and lithium borate tetrafluoride in the above solvent.
  • the secondary battery produced by using the positive electrode comprising the positive electrode active substance particles according to the present invention has a discharge capacity at 0.1 C of not less than 250 mAh/g, preferably not less than 260 mAh/g, more preferably not less than 270 mAh/g and still more preferably not less than 280 mAh/g as measured by the below-mentioned evaluation method.
  • the discharge capacity at 0.1 C of the secondary battery is preferably as high as possible.
  • the secondary battery produced by using the positive electrode comprising the positive electrode active substance particles according to the present invention has a discharge capacity at 1 C of not less than 210 mAh/g, preferably not less than 220 mAh/g, more preferably not less than 230 mAh/g and still more preferably not less than 240 mAh/g as measured by the below-mentioned evaluation method.
  • the discharge capacity at 1 C of the secondary battery is preferably as high as possible.
  • the present inventors since the element A is well dispersed inside and outside of the positive electrode active substance particles, the particles can be prevented from suffering from excessive sintering when calcined, so that the resulting secondary battery can be enhanced in discharge capacity.
  • Typical examples of the present invention are as follows.
  • the BET specific surface area was measured by a BET method using nitrogen.
  • the tap density of the positive electrode active substance particles was determined as follows. That is, a predetermined amount of the positive electrode active substance particles passed through a mesh screen were filled in a measuring cylinder, and then tapped 500 times to measure a bulk density of the particles as a tap density thereof.
  • the compressed density of the positive electrode active substance particles was determined as follows. That is, a predetermined amount of the positive electrode active substance particles passed through a mesh screen were filled in a highly closed mold like a tablet machine, and then compressed by applying a pressure of 3 t/cm 2 thereto to measure a bulk density of the particles as a compressed density thereof.
  • the contents of lithium, nickel, cobalt, manganese, yttrium, zirconium and silicon constituting the positive electrode active substance particles were determined as follow. That is, the positive electrode active substance particles were dissolved in an acid, and the resulting solution was analyzed by a plasma emission spectroscopic device “ICPS-7500” (manufactured by Shimadzu Seisakusho Co., Ltd.).
  • the identification of the phase and the measurement of the intensity were carried out by X-ray diffraction analysis.
  • the X-ray diffraction analysis was conducted using an X-ray diffractometer “RINT-2000” manufactured by Rigaku Co., Ltd., (tube: Cu; tube voltage: 40 kV; tube current: 40 mA; step angle: 0.020°; count time: 0.6 s; divergence slit: 1°; scattering slit: 1°; light-receiving slit: 0.30 mm).
  • the average secondary particle diameter of the particles was determined as follows. That is, the particles were observed using a scanning electron microscope “SEM-EDX” equipped with an energy disperse type X-ray analyzer (manufactured by Hitachi High-Technologies Corp.) to measure diameters thereof and calculate a volume-average value of the measured diameters as the average secondary particle diameter of the particles.
  • the coin cell produced by using the positive electrode active substance particles was evaluated for charge/discharge characteristics and cycle characteristics.
  • a metallic lithium sheet blanked into 16 mm ⁇ was used as a negative electrode, and 1 mol/L LiPF 6 solution of mixed solvent comprising EC and DMC in a volume ratio of 1:2 was used as an electrolyte solution, to thereby produce a coin cell of a CR2032 type.
  • the initial charge/discharge cycle of the coin cell was conducted as follows. That is, while being kept at 25° C., the coin cell was charged at a current density of 20 mA/g until reaching 4.6 V and then charged at a constant voltage until the current value reached 1/100, and discharged at a current density of 20 mA/g until reaching 2.0 V. Similarly, in the second and subsequent cycles, the discharge capacity was measured by setting a discharge rate to 0.1 C and 1 C.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 50° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.2 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the molar ratio of Ni:Co:Mn was 18.7:12.4:68.9 (i.e., the molar ratio of Mn/(Ni+Co+Mn) was 0.689); and the Si content was 0.152% by weight. Further, as a result of observing the precursor particles using a scanning electron microscope (SEM), it was recognized that secondary particles having an average secondary particle diameter of 12.7 ⁇ m were formed.
  • SEM scanning electron microscope
  • the positive electrode active substance particles comprised a crystal system belonging to a space group of R-3m and a crystal system belonging to a space group of C2/m, and had a peak intensity ratio [(a)/(b)] of 0.066.
  • the molar ratio of Li/(Ni+Co+Mn) was 1.42; the molar ratio of Ni:Co:Mn was 18.7:12.4:68.9 (i.e., the molar ratio of Mn/(Ni+Co+Mn) was 0.689); the Si content was 0.179% by weight; the tap density was 2.10 g/cc; and the compressed density was 2.55 g/cc.
  • the BET specific surface area of the positive electrode active substance particles as measured by a nitrogen absorption method was 5.52 m 2 /g. Further, as a result of observing the positive electrode active substance particles using a scanning electron microscope (SEM), it was recognized that secondary particles having an average secondary particle diameter of 12.1 ⁇ m were formed.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 60° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.5 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • co-precipitated precursor and lithium hydroxide particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 950° C. for 5 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.2 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 900° C. for 5 hr under an air flow using an electric furnace.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 30° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.9 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 780° C. for 10 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 60° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.1 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 1080° C. for 5 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.4 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 850° C. for 10 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.6 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 10.4 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 700° C. for 15 hr under an air flow using an electric furnace.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 50° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.6 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • co-precipitated precursor and lithium hydroxide particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 550° C. for 25 hr under an oxygen flow using an electric furnace.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate-, Mn sulfate and Zr sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.4 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 70° C. while flowing a nitrogen gas therethrough. Further, an Ni nitrate-, Co nitrate-, Mn nitrate and Y nitrate-containing mixed aqueous solution and a sodium carbonate aqueous solution were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.6 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • co-precipitated precursor and lithium nitrate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 850° C. for 10 hr under an air flow using an electric furnace.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 30° C. while flowing a nitrogen gas therethrough. Further, an Ni chloride-, Co chloride-, Mn chloride and Zr chloride-containing mixed aqueous solution and a lithium hydroxide aqueous solution were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 11.5 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 850° C. for 5 hr under an air flow using an electric furnace.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 50° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate-, Mn sulfate and Y sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.5 ( ⁇ 0.2). During the reaction, the slurry was discharged out of the reaction system through an overflow line. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 1250° C. for 5 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate-, Mn sulfate and Zr sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.4 ( ⁇ 0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained.
  • the thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 900° C. for 5 hr under an air flow using an electric furnace.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 50° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.1 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 830° C. for 10 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 45° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.9 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 850° C. for 5 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 50° C. while flowing a nitrogen gas therethrough. Further, a Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.5 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 800° C. for 10 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.0 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 600° C. for 25 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 11.7 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.5 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • co-precipitated precursor and lithium hydroxide particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 1030° C. for 5 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 11.4 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 10° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 12.5 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 900° C. for 5 hr under an oxygen flow using an electric furnace.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 50° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.8 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • co-precipitated precursor and lithium hydroxide particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 430° C. for 25 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate-, Mn sulfate and Zr sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.8 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 750° C. for 10 hr under an air flow using an electric furnace.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 60° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.0 ( ⁇ 0.2). During the reaction, the slurry was discharged out of the reaction system through an overflow line. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • a closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.8 ( ⁇ 0.2).
  • a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel.
  • a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
  • the thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other.
  • the resulting mixture was calcined at 700° C. for 5 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
  • Example 1 18.7 12.4 68.9
  • Example 2 21.3 11.6 67.0
  • Example 3 19.2 12.4 68.4
  • Example 4 23.0 14.4 62.5
  • Example 5 21.1 14.5 64.4
  • Example 6 18.5 12.4 69.2
  • Example 7 22.7 8.2 69.2
  • Example 8 20.7 21.1 58.2
  • Example 9 26.3 2.9 70.9
  • Example 10 19.1 12.2 68.7
  • Example 11 39.4 0.0 60.6
  • Example 12 2.9 39.7 57.3
  • Example 13 21.5 7.2 71.3
  • Example 14 19.3 13.0 67.7
  • Example 15 19.3 13.0 67.7
  • Example 15 19.3 13.0 67.7
  • Example 15 19.3 13.0 67.7
  • Example 15 19.3 13.0 67.7
  • Example 15 19.3 13.0 67.7
  • Example 15 19.3 13.0 67.7
  • Example 15 19.3 13.0 67.7
  • Example 15 19.3 13.0 67.7
  • Example 9 TABLE 3 4.6 V 4.6 V Examples and Discharge capacity Discharge capacity Comparative 0.1 C 1 C Examples mAh/g mAh/g Example 1 289 246 Example 2 281 242 Example 3 282 241 Example 4 274 235 Example 5 270 231 Example 6 268 229 Example 7 264 227 Example 8 252 212 Example 9 250 211 Example 10 284 243 Example 11 251 216 Example 12 257 211 Example 13 256 217 Example 14 271 232 Example 15 272 235 Example 16 267 226 Example 17 259 213 Comparative 218 116 Example 1 Comparative 193 97 Example 2 Comparative 230 142 Example 3 Comparative 192 149 Example 4 Comparative 153 86 Example 5 Reference 137 81 Example 1/ Comparative Example 6 Comparative 151 97 Example 7 Comparative 173 74 Example 8 Comparative 254 186 Example 9
  • the discharge capacity thereof as measured at 0.1 C was not less than 250 mA/g, and the discharge capacity thereof as measured at 1 C was not less than 210 mA/g.
  • the positive electrode active substance particles obtained according to the present invention had a large discharge capacity owing to the presence of the crystal structure belonging to a space group of 2 C/m, and further were prevented from suffering from excessive sintering upon calcination thereof owing the element A incorporated therein.
  • the positive electrode active substance particles had appropriate tap density and compressed density and therefore can provide an excellent positive electrode material having a high capacity even at a high discharge rate.
  • the positive electrode active substance particles as obtained in Comparative Examples which failed to comprise an appropriate amount of the element A, or to which the element A was added after synthesis of the precursor particles were deteriorated in discharge capacity as compared those obtained in Examples.
  • an appropriate amount of the element A was allowed to coexist in the particles in a well dispersed state, it was possible to obtain a positive electrode active substance for non-aqueous electrolyte secondary batteries which was excellent in discharge capacity.
  • the positive electrode active substance particles according to the present invention are useful as a positive electrode active substance for non-aqueous electrolyte secondary batteries which is excellent in charge/discharge capacities.
  • the positive electrode active substance particles according to the present invention are largely improved in charge/discharge capacities, and therefore can be suitably used as positive electrode active substance particles for non-aqueous electrolyte secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to positive electrode active substance particles comprising a compound having at least a crystal system belonging to a space group of R-3m and a crystal system belonging to a space group of C2/m, the positive electrode active substance particles having a specific intensity ratio; a content of Mn in the positive electrode active substance particles being controlled such that a molar ratio of Mn/(Ni+Co+Mn) therein is not less than 0.55; and the positive electrode active substance particles comprising an element A (that is at least one element selected from the group consisting of Si, Zr and Y) in an amount of 0.03 to 5% by weight and having a tap density of 0.8 to 2.4 g/cc and a compressed density of 2.0 to 3.1 g/cc. The positive electrode active substance particles can be produced by calcining a mixture of precursor particles comprising the element A, Mn, Ni and/or Co, and a lithium compound.

Description

This application is the U.S. national phase of International Application No. PCT/JP2013/057151 filed 14 Mar. 2013 which designated the U.S. and claims priority to JP Patent Application No. 2012-82386 filed 30 Mar. 2012, the entire contents of each of which are hereby incorporated by reference.
TECHNICAL FIELD
The present invention relates to positive electrode (cathode) active substance particles for non-aqueous electrolyte secondary batteries which are excellent in discharge capacity.
BACKGROUND ART
With the recent rapid development of portable and cordless electronic devices such as audio-visual (AV) devices and personal computers, there is an increasing demand for secondary batteries having a small size, a light weight and a high energy density as a power source for driving these electronic devices. Also, in consideration of global environments, electric cars and hybrid cars have been recently developed and put into practice, so that there is an increasing demand for lithium ion secondary batteries used in large size applications which have excellent storage characteristics. Under these circumstances, the lithium ion secondary batteries having advantages such as large charge/discharge capacities have been noticed.
Hitherto, as positive electrode active substances useful for high energy-type lithium ion secondary batteries exhibiting a 4 v-grade voltage, there are generally known LiMn2O4 having a spinel structure, LiMnO2 having a zigzag layer structure, LiCoO2 and LiNiO2 having a layer rock-salt structure, or the like. Among the secondary batteries using these active substances, lithium ion secondary batteries using LiNiO2 have been noticed because of large charge/discharge capacities thereof. However, in the case where the secondary batteries are used in a movable body requiring a large energy such as electric cars, these materials tend to be still insufficient in discharge capacity, and, therefore, it has been required to further improve properties thereof.
In recent years, it has been found that a positive electrode active substance comprising Li2MnO3 belonging to a space group of C2/m and having a higher capacity exhibits a large discharge capacity (Patent Literature 1).
With respect to the above material, there have also been made various studies on enhancement of a discharge capacity and a rate characteristic thereof. It has been reported that the properties of the material is improved by additives (Patent Literature 2), a heat treatment method (Patent Literature 3), a method of trapping gases generated upon charging (Patent Literature 4), a method of modifying properties of the surface of the particles (Patent Literature 5), etc. However, these conventional methods tend to be still insufficient.
CITATION LISTS Patent Literature
  • Patent Literature 1: Japanese Patent Application Laid-open (KOKAI) No. 9-55211 (1997)
  • Patent Literature 2: Japanese Patent Application Laid-open (KOKAI) No. 2010-251189
  • Patent Literature 3: Japanese Patent Application Laid-open (KOKAI) No. 2011-29000
  • Patent Literature 4: Japanese Patent Application Laid-open (KOKAI) No. 2010-277790
  • Patent Literature 5: Japanese Patent Application Laid-open (KOKAI) No. 2011-96626
SUMMARY OF INVENTION Problem to be Solved by the Invention
At present, it has been strongly required to provide a positive electrode active substance for non-aqueous electrolyte secondary batteries which is excellent in discharge capacity. However, the positive electrode active substance capable of fully satisfying the above requirement has not been obtained until now.
In particular, in the application field of electric cars, etc., there is a strong demand for secondary batteries having a large capacity.
In consequence, an object of the present invention is to provide positive electrode active substance particles for non-aqueous electrolyte secondary batteries which have a large discharge capacity, a process for producing the positive electrode active substance particles, and a non-aqueous electrolyte secondary battery comprising a positive electrode comprising the positive electrode active substance particles.
Mean for Solving the Problem
That is, according to the present invention, there are provided positive electrode active substance particles comprising a compound having at least a crystal system belonging to a space group of R-3m and a crystal system belonging to a space group of C2/m,
the compound being in the form of a composite oxide comprising at least Li, Mn, an element A (that is at least one element selected from the group consisting of Si, Zr and Y) and Co and/or Ni;
a relative intensity ratio [(a)/(b)] of a maximum diffraction peak intensity (a) observed at 2θ=20.8±1° in a powder X-ray diffraction pattern of the positive electrode active substance particles as measured using a Cu—Kα ray to a maximum diffraction peak intensity (b) observed at 2θ=18.6±1° in the powder X-ray diffraction pattern being 0.02 to 0.2;
a content of Mn in the positive electrode active substance particles being controlled such that a molar ratio of Mn/(Ni+Co+Mn) therein is not less than 0.55; and
the positive electrode active substance particles comprising the element A in an amount of 0.03 to 5% by weight and having a tap density of 0.8 to 2.4 g/cc and a compressed density of 2.0 to 3.1 g/cc (Invention 1).
Also, according to the present invention, there are provided the positive electrode active substance particles as described in the above Invention 1, wherein the positive electrode active substance particles comprise LiMxMn1-xO2 wherein M is Ni and/or Co; 0<x·1, as the compound having a crystal system belonging to a space group of R-3m, and Li2M′(1-y)MnyO3 wherein M′ is Ni and/or Co; 0<y·1, as the compound having a crystal system belonging to a space group of C2/m (Invention 2).
Also, according to the present invention, there are provided the positive electrode active substance particles as described in the above Invention 1 or 2, wherein a molar ratio of Li/(Ni+Co+Mn) in the positive electrode active substance particles is 1.25 to 1.7 (Invention 3).
Also, according to the present invention, there are provided the positive electrode active substance particles as described in any one of the above Inventions 1 to 3, wherein the positive electrode active substance particles have a specific surface area of 0.1 to 20 m2/g as measured by a BET method (Invention 4).
Also, according to the present invention, there are provided the positive electrode active substance particles as described in any one of the above Inventions 1 to 4, wherein the positive electrode active substance particles are in the form of secondary particles produced by aggregating primary particles thereof in which the secondary particles have an average secondary particle diameter of 1 to 50 μm (Invention 5).
In addition, according to the present invention, there are provided precursor particles of the positive electrode active substance particles as described in any one of the above Inventions 1 to 5, comprising a composite hydroxide or a composite carbonate as a main component which comprises at least Mn, an element A (that is at least one element selected from the group consisting of Si, Zr and Y) and Co and/or Ni,
a content of Mn in the precursor particles being controlled such that a molar ratio of Mn/(Ni+Co+Mn) therein is not less than 0.55; and the precursor particles comprising the element A in an amount of 0.025 to 5.5% by weight and having an average secondary particle diameter of 1 to 50 μm (Invention 6).
Further, according to the present invention, there is provided a process for producing the positive electrode active substance particles as described in any one of the above Inventions 1 to 5, comprising the step of calcining a mixture comprising the precursor particles as described in the above Invention 6, and a lithium compound at a temperature of 500 to 1500° C. (Invention 7).
Furthermore, according to the present invention, there is provided a non-aqueous electrolyte secondary battery using a positive electrode comprising the positive electrode active substance particles as described in any one of the above Inventions 1 to 5 (Invention 8).
Effect of the Invention
The positive electrode active substance particles according to the present invention can exhibit a large discharge capacity and can provide a high energy, and therefore can be suitably used as positive electrode active substance particles for non-aqueous electrolyte secondary batteries.
PREFERRED EMBODIMENTS FOR CARRYING OUT THE INVENTION
The construction of the present invention is described in more detail below.
The positive electrode active substance particles according to the present invention comprise a compound having at least a crystal system belonging to a space group of R-3m and a crystal system belonging to a space group of C2/m, and are in the form of a compound that comprises a composite oxide comprising at least Li, Mn, and Co and/or Ni, and an element A (at least one element selected from the group consisting of Si, Zr and Y).
The compound having a crystal system belonging to a space group of R-3m preferably includes those compounds represented by the formula: LiMxMn1-xO2 wherein M is Ni and/or Co; 0<x·1. Specific examples of the preferred LiMxMn1-xO2 include LiCoxMn1-xO2, LiNixMn1-xO2, and Li(Ni, Co)xMn1-xO2.
Meanwhile, the numerical character “3” of the above space group of “R-3 m” is actually indicated with a “macron”, i.e., expressed by “3”, but the symbol of the space group is conveniently expressed herein merely by “R-3 m”.
The compound having a crystal system belonging to a space group of C2/m preferably includes those compounds represented by the formula: Li2M′(1-y)MnyO3 wherein M′ is Ni and/or Co; 0<y·1.
When the positive electrode active substance particles according to the present invention are subjected to a powder X-ray diffraction analysis using a Cu—Kα ray as a radiation source, one peak inherent to LiMxMn1-xO2 as the compound having a crystal system belonging to a space group of R-3m is observed at 2θ=18.6±1° in the powder diffraction pattern, whereas another peak inherent to Li2M′(1-y)MnyO3 as the compound having a crystal system belonging to a space group of C2/m is observed at 2θ=20.8±1° in the powder diffraction pattern.
In the positive electrode active substance particles according to the present invention, the relative intensity ratio of a maximum diffraction peak intensity (a) observed at 2θ=20.8±1° in the powder X-ray diffraction pattern to a maximum diffraction peak intensity (b) observed at 2θ=18.6±1° in the powder X-ray diffraction pattern [(a)/(b)] is 0.02 to 0.2. When the relative intensity ratio [(a)/(b)] is less than 0.02, the resulting positive electrode active substance particles tend to hardly exhibit sufficient charge/discharge capacities owing to an excessively small amount of the compound having a crystal system belonging to a space group of C2/m. When the relative intensity ratio [(a)/(b)] is more than 0.2, lithium ions in the resulting positive electrode active substance particles tend to be hardly moved smoothly owing to an excessively large amount of the compound having a crystal system belonging to a space group of C2/m, so that the positive electrode active substance particles tend to hardly exhibit sufficient charge/discharge capacities. The relative intensity ratio [(a)/(b)] is preferably 0.02 to 0.15, more preferably 0.02 to 0.12 and still more preferably 0.025 to 0.08.
In the positive electrode active substance particles according to the present invention, the molar ratio of Li to a sum of Ni, Co and Mn [Li/(Ni+Co+Mn)] therein is preferably 1.25 to 1.7. When the molar ratio of Li/(Ni+Co+Mn) is less than 1.25, the resulting positive electrode active substance particles tend to be deteriorated in charge capacity owing to a less content of lithium contributing to charging therein. When the molar ratio of Li/(Ni+Co+Mn) is more than 1.7, the resulting positive electrode active substance particles tend to contrarily suffer from surplus of Li which is no longer incorporated into a crystal structure thereof, or deterioration in discharge capacity because of increase in resistance components owing to the excessively large amount of lithium therein. The molar ratio of Li/(Ni+Co+Mn) in the positive electrode active substance particles is more preferably 1.25 to 1.65, still more preferably 1.3 to 1.6, and even still more preferably 1.35 to 1.55.
In the positive electrode active substance particles according to the present invention, the content of Mn therein is controlled such that a molar ratio of Mn to a sum of Ni, Co and Mn [Mn/(Ni+Co+Mn)] therein is not less than 0.55. When the molar ratio of Mn/(Ni+Co+Mn) is less than 0.55, the compound having a crystal system belonging to a space group of C2/m tends to be hardly formed in a sufficient amount, so that the resulting positive electrode active substance particles tend to be deteriorated in charge/discharge capacities. The molar ratio of Mn/(Ni+Co+Mn) in the positive electrode active substance particles is preferably not less than 0.6 and more preferably not less than 0.65. The upper limit of the molar ratio of Mn/(Ni+Co+Mn) is preferably about 0.8.
In the positive electrode active substance particles according to the present invention, the content of Ni therein is controlled such that a molar ratio of Ni to a sum of Ni, Co and Mn [Ni/(Ni+Co+Mn)] is preferably 0 to 0.45. When the molar ratio of Ni/(Ni+Co+Mn) is more than 0.45, the resulting positive electrode active substance particles tend to be deteriorated in thermal stability. The Ni content (molar ratio of Ni/(Ni+Co+Mn)) in the positive electrode active substance particles is more preferably 0 to 0.35.
In the positive electrode active substance particles according to the present invention, the content of Co therein is controlled such that a molar ratio of Co to a sum of Ni, Co and Mn [Co/(Ni+Co+Mn)] therein is preferably 0 to 0.45. When the molar ratio of Co/(Ni+Co+Mn) is more than 0.45, the resulting positive electrode active substance particles tend to be deteriorated in stability of their structure. The Co content (molar ratio of Co/(Ni+Co+Mn)) in the positive electrode active substance particles is more preferably 0 to 0.35.
The positive electrode active substance particles according to the present invention comprise the element A in an amount of 0.03 to 5% by weight. When the content of the element A in the positive electrode active substance particles is less than 0.03% by weight, the secondary battery produced using the resulting positive electrode active substance particles tends to be hardly improved in charge/discharge rate characteristics owing to a less effect of preventing sintering between the particles when calcined. When the content of the element A in the positive electrode active substance particles is more than 5% by weight, the resulting positive electrode active substance particles tend to be deteriorated in discharge capacity because of increase in resistance components owing to the excessively large amount of the element A. The content of the element A in the positive electrode active substance particles is preferably 0.03 to 2.3% by weight, more preferably 0.1 to 1.05% by weight and still more preferably 0.1 to 0.5% by weight.
The positive electrode active substance particles according to the present invention have a tap density of 0.8 to 2.4 g/cc. When the tap density of the positive electrode active substance particles is less than 0.8 g/cc, the density of primary particles of the resulting positive electrode active substance particles tends to become too coarse, so that it is not possible to sufficiently transfer electrons therethrough, thereby causing deterioration in discharge capacity thereof. When the tap density of the positive electrode active substance particles is more than 2.4 g/cc, the density of primary particles of the resulting positive electrode active substance particles tends to become too dense, so that smooth transfer of electrons therethrough tends to be inhibited, thereby also causing deterioration in discharge capacity thereof. The tap density of the positive electrode active substance particles is preferably 1.0 to 2.3 g/cc, more preferably 1.5 to 2.3 g/cc, and still more preferably 1.8 to 2.3 g/cc.
The positive electrode active substance particles according to the present invention have a compressed density of 2.0 to 3.1 g/cc. When pressing the electrode sheet, the secondary particles tend to be partially collapsed to fill spaces between the particles. When the compressed density of the positive electrode active substance particles is less than 2.0 g/cc, the spaces between primary particles and secondary particles of the resulting positive electrode active substance particles tend to become too coarse, so that it is not possible to sufficiently transfer electrons therethrough, thereby causing deterioration in discharge capacity thereof. When the compressed density of the positive electrode active substance particles is more than 3.1 g/cc, the spaces between primary particles and secondary particles of the resulting positive electrode active substance particles tend to become too dense, so that a contact area of the particles with an electrolyte solution tends to be reduced, and smooth transfer of electrons therethrough tends to be inhibited, thereby causing deterioration in charge/discharge rate characteristics thereof. The compressed density of the positive electrode active substance particles is preferably 2.4 to 3.0 g/cc, more preferably 2.4 to 2.9 g/cc, and still more preferably 2.4 to 2.8 g/cc.
The specific surface area of the positive electrode active substance particles according to the present invention as measured by a BET method is preferably 0.1 to 20 m2/g. When the specific surface area of the positive electrode active substance particles is less than 0.1 m2/g, i.e., when the primary particles thereof are too large, the distance between the center and surface of the respective particles tends to be excessively increased, so that it is not possible to rapidly transfer electrons therethrough, thereby causing deterioration in charge/discharge rate characteristics thereof. When the specific surface area of the positive electrode active substance particles is more than 20 m2/g, the amount of the primary particles that may fail to come into contact with a conductive material tends to be increased owing to the excessively small primary particles, thereby causing deterioration in discharge capacity thereof. The specific surface area of the positive electrode active substance particles is preferably 0.3 to 12 m2/g, more preferably 0.3 to 9 m2/g and still more preferably 1 to 7 m2/g.
The average secondary particle diameter of the positive electrode active substance particles according to the present invention is 1 to 50 μm. When the average secondary particle diameter of the positive electrode active substance particles is less than 1 μm, the resulting positive electrode active substance particles tend to exhibit an excessively high reactivity with an electrolyte solution owing to excessive increase in contact area with the electrolyte solution, and therefore tend to be deteriorated in stability upon charging. When the average secondary particle diameter of the positive electrode active substance particles is more than 50 μm, the resulting positive electrode tends to exhibit an increased internal resistance and therefore tends to be deteriorated in charge/discharge rate characteristics. The average secondary particle diameter of the positive electrode active substance particles is preferably 2 to 30 μm, more preferably 2 to 20 μm, and still more preferably 2 to 16 μm.
Next, the process for producing the positive electrode active substance particles according to the present invention is described.
The positive electrode active substance particles according to the present invention may be produced by mixing previously prepared precursor particles comprising a transition metal and the element A with a lithium compound, and then calcining the resulting mixture.
The above transition metal-containing precursor particles used in the present invention may be produced by supplying a mixed acid solution comprising a nickel salt, a cobalt salt, a manganese salt, a zirconium salt and a yttrium salt at desired concentrations and a mixed alkali aqueous solution comprising sodium hydroxide, ammonia, sodium carbonate and water glass into a reaction vessel, controlling a pH value of the resulting suspension to 7.5 to 13, circulating the overflowed suspension through a concentration vessel connected to an overflow pipe into the reaction vessel while controlling a concentration rate of the suspension in the concentration vessel, and then reacting the respective components until a concentration of the precursor particles in the suspension in the reaction vessel and a precipitation vessel reaches 0.2 to 15 mol/L. Alternatively, the precursor particles may also be obtained from the overflowed suspension without using the concentration vessel. After completion of the reaction, the resulting product may be subjected to water-washing, drying and pulverization by ordinary methods.
The transition metal-containing precursor particles used in the present invention are constituted of a hydroxide or a carbonate which is synthesized by co-precipitating a solution of the raw materials with a mixed solution comprising the element A. When the precursor particles comprising the element A, Ni, Co and Mn are synthesized by the co-precipitation method, it is possible to more uniformly disperse the element A in the secondary particles thereof.
The zirconium compound used in the present invention is not particularly limited, and various kinds of zirconium compounds may be used in the present invention. Examples of the zirconium compound include various soluble zirconium compounds such as zirconium sulfate, zirconium oxynitrate, zirconium oxychloride, zirconium chloride, zirconium acetate and zirconium oxalate.
The yttrium compound used in the present invention is not particularly limited, and various kinds of yttrium compounds may be used in the present invention. Examples of the yttrium compound include various soluble yttrium compounds such as yttrium sulfate, yttrium nitrate, yttrium chloride and yttrium acetate.
The silicon compound used in the present invention is not particularly limited, and various kinds of silicon compounds may be used in the present invention. Examples of the silicon compound include various soluble silicon compounds such as sodium silicate, potassium hexafluorosilicate and ammonium hexafluorosilicate.
In the precursor particles according to the present invention, the content of Mn therein is controlled such that a molar ratio of Mn to a sum of Ni, Co and Mn [Mn/(Ni+Co+Mn)] therein is not less than 0.55. When the molar ratio of Mn/(Ni+Co+Mn) is less than 0.55, the compound having a crystal system belonging to a space group of C2/m tends to be hardly formed in the positive electrode active substance particles produced from the precursor particles in a sufficient amount, so that the resulting positive electrode active substance particles tend to be deteriorated in charge/discharge capacities. The molar ratio of Mn/(Ni+Co+Mn) in the precursor particles is preferably not less than 0.6 and more preferably not less than 0.65. The upper limit of the molar ratio of Mn/(Ni+Co+Mn) in the precursor particles is preferably about 0.8.
In the precursor particles according to the present invention, the content of Ni therein is controlled such that a molar ratio of Ni to a sum of Ni, Co and Mn [Ni/(Ni+Co+Mn)] is preferably 0 to 0.45. When the molar ratio of Ni/(Ni+Co+Mn) is more than 0.45, the positive electrode active substance particles produced from the precursor particles tend to be deteriorated in thermal stability. The Ni content (molar ratio of Ni/(Ni+Co+Mn)) in the precursor particles is more preferably 0 to 0.35.
In the posit precursor particles according to the present invention, the content of Co therein is controlled such that a molar ratio of Co to a sum of Ni, Co and Mn [Co/(Ni+Co+Mn)] therein is preferably 0 to 0.45. When the molar ratio of Co/(Ni+Co+Mn) is more than 0.45, the positive electrode active substance particles produced from the precursor particles tend to be deteriorated in stability of their structure. The Co content (molar ratio of Co/(Ni+Co+Mn)) in the precursor particles is more preferably 0 to 0.35.
The precursor particles according to the present invention comprise the element A in an amount of 0.025 to 5.5% by weight. When the content of the element A in the precursor particles is less than 0.025% by weight, the secondary battery produced using the positive electrode active substance particles produced from the precursor particles tends to be hardly improved in charge/discharge rate characteristics owing to a less effect of preventing sintering between the particles when calcined. When the content of the element A in the precursor particles is more than 5.5% by weight, the positive electrode active substance particles produced from the precursor particles tend to be deteriorated in discharge capacity because of increase in resistance components owing to the excessively large amount of the element A. The content of the element A in the precursor particles is preferably 0.025 to 2.5% by weight, more preferably 0.08 to 1.1% by weight and still more preferably 0.08 to 0.55% by weight.
The average secondary particle diameter of the precursor particles according to the present invention is 1 to 50 μm. When the average secondary particle diameter of the precursor particles is less than 1 μm, the positive electrode active substance particles produced from the precursor particles tend to exhibit an excessively high reactivity with an electrolyte solution owing to excessive increase in contact area with the electrolyte solution, and therefore tend to be deteriorated in stability upon charging. When the average secondary particle diameter of the precursor particles is more than 50 μm, the positive electrode obtained using the positive electrode active substance particles produced from the precursor particles tends to exhibit an increased internal resistance and therefore tends to be deteriorated in charge/discharge rate characteristics. The average secondary particle diameter of the precursor particles is preferably 2 to 30 μm, more preferably 2 to 20 μm, and still more preferably 2 to 16 μm.
The BET specific surface area of the precursor particles according to the present invention is preferably 3 to 400 m2/g.
The lithium compound used in the present invention is not particularly limited, and various lithium salts may be used in the present invention. Examples of the lithium compound include lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, lithium chloride, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate and lithium oxide. Among these lithium compounds, preferred is lithium carbonate. The lithium compound may be mixed with the precursor particles in an amount of 20 to 100% by weight based on the weight of the precursor particles.
In addition, the lithium compound used in the present invention preferably has an average particle diameter of not more than 50 μm and more preferably not more than 30 μm. When the average particle diameter of the lithium compound is more than 50 μm, the lithium compound tends to be hardly uniformly mixed with the precursor particles, so that it may be difficult to obtain composite oxide particles having a good crystallinity.
The mixing treatment of the precursor particles comprising a transition metal and the element A with the lithium compound may be conducted by either a dry method or a wet method as long as they can be uniformly mixed with each other.
The mixing treatment of the precursor particles comprising a transition metal and the element A with the lithium compound may be conducted at one time. Alternatively, the precursor particles comprising a transition metal and the element A may be first mixed with one kind of lithium compound, followed by calcining the obtained mixture, and the resulting calcined product may be mixed with the other kind of lithium compound.
As the process for producing the positive electrode active substance particles according to the present invention, there may be mentioned, for example, a process of dry-mixing the precursor particles comprising a transition metal and the element A with the lithium compound and then calcining the resulting mixture, a process of spraying a slurry comprising the precursor particles comprising a transition metal and the element A and the lithium compound, etc., into a high-temperature container heated to 100 to 400° C. to obtain dry particles and then calcining the thus obtained dry particles, or the like.
The calcination temperature used in the production processes is preferably 500 to 1500° C. When the calcination temperature is less than 500° C., the reaction of Li with Ni, Co and Mn may fail to proceed sufficiently, so that these elements tend to be hardly formed into a composite material thereof, and therefore it is not possible to obtain the positive electrode active substance particles having the aimed compressed density. When the calcination temperature is more than 1500° C., sintering tends to excessively proceed. The calcination temperature is more preferably 700 to 1200° C. and still more preferably 800 to 1050° C. The atmosphere upon the calcination is preferably an oxidative gas atmosphere, and more preferably ordinary atmospheric air. The calcination time is preferably 1 to 30 hr.
In the present invention, it is essentially required that the resulting positive electrode active substance particles comprise a compound comprising at least a crystal system belonging to a space group of R-3m and a crystal system belonging to a space group of C2/m at specific proportions. In order to allow the compound obtained by the calcination to comprise the above two kinds of crystal systems in specific proportions, it may be basically required to prepare the precursor particles whose Mn content is controlled such that the molar ratio of Mn/(Ni+Co+Mn) therein is not less than 0.55 and preferably 0.55 to 0.8. As the method of controlling the molar ratio of Mn/(Ni+Co+Mn) in the precursor particles to the above range, there may be used the method of controlling amounts of the nickel salt, cobalt salt and manganese salt as the raw materials, the method of controlling a pH value of the reaction solution, the method of controlling the reaction solution using a complexing agent such as ammonia, or the like. Meanwhile, the crystal system belonging to a space group of R-3m is derived from the above compound of LiMxMn1-xO2 whereas the crystal system belonging to a space group of C2/m is derived from the above compound Li2M′(1-y)MnyO3. These compounds are produced at the same time through a series of the production steps, and the proportions therebetween may be basically determined according to the Li and Mn contents in the precursor particles as described above.
In the method of controlling a pH value of the reaction solution, when the pH value of the reaction solution is lowered, there is such a tendency that the peak intensity ratio [(a)/(b)] is decreased, i.e., the amount of Li2M′(1-y)MnyO3 having a crystal system belonging to a space group of C2/m is reduced. On the contrary, when the pH value of the reaction solution is raised, there is such a tendency that the peak intensity ratio [(a)/(b)] is increased, i.e., the amount of Li2M′(1-y)MnyO3 having a crystal system belonging to a space group of C2/m is increased.
In the method of controlling the reaction solution by a complexing agent, when the amount of the complexing agent added to the reaction solution is reduced, there is such a tendency that the peak intensity ratio [(a)/(b)] is decreased, i.e., the amount of Li2M′(1-y)MnyO3 having a crystal system belonging to a space group of C2/m is reduced. On the contrary, when the amount of the complexing agent added to the reaction solution is increased, there is such a tendency that the peak intensity ratio [(a)/(b)] is increased, i.e., the amount of Li2M′(1-y)MnyO3 having a crystal system belonging to a space group of C2/m is increased.
As the complexing agent, there may be used one or more compounds selected from the group consisting of ammonium ion donating substances, hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, dimethylglyoxime, dithizone, oxine, acetyl acetone and glycine.
Further, the peak intensity ratio [(a)/(b)] may vary by controlling the calcination conditions. That is, when the calcination temperature is raised, there is such a tendency that the peak intensity ratio [(a)/(b)] is lowered, i.e., the amount of Li2M′(1-y)MnyO3 having a crystal system belonging to a space group of C2/m is reduced. On the contrary, when the calcination temperature is dropped, there is such a tendency that the peak intensity ratio [(a)/(b)] is increased, i.e., the amount of Li2M′(1-y)MnyO3 having a crystal system belonging to a space group of C2/m is increased.
Next, the positive electrode comprising the positive electrode active substance particles according to the present invention is described.
When producing the positive electrode comprising the positive electrode active substance particles according to the present invention, a conducting agent and a binder are added to and mixed with the positive electrode active substance particles by an ordinary method. Examples of the preferred conducting agent include acetylene black, carbon black and graphite. Examples of the preferred binder include polytetrafluoroethylene and polyvinylidene fluoride.
The secondary battery produced by using the positive electrode comprising the positive electrode active substance particles according to the present invention comprises the above positive electrode, a negative electrode and an electrolyte.
Examples of a negative electrode active substance which may be used for production of the negative electrode include metallic lithium, lithium/aluminum alloys, lithium/tin alloys, and graphite or black lead.
Also, as a solvent for the electrolyte solution, there may be used combination of ethylene carbonate and diethyl carbonate, as well as an organic solvent comprising at least one compound selected from the group consisting of carbonates such as propylene carbonate and dimethyl carbonate, and ethers such as dimethoxyethane.
Further, as the electrolyte, there may be used a solution prepared by dissolving lithium phosphate hexafluoride as well as at least one lithium salt selected from the group consisting of lithium perchlorate and lithium borate tetrafluoride in the above solvent.
The secondary battery produced by using the positive electrode comprising the positive electrode active substance particles according to the present invention has a discharge capacity at 0.1 C of not less than 250 mAh/g, preferably not less than 260 mAh/g, more preferably not less than 270 mAh/g and still more preferably not less than 280 mAh/g as measured by the below-mentioned evaluation method. The discharge capacity at 0.1 C of the secondary battery is preferably as high as possible.
The secondary battery produced by using the positive electrode comprising the positive electrode active substance particles according to the present invention has a discharge capacity at 1 C of not less than 210 mAh/g, preferably not less than 220 mAh/g, more preferably not less than 230 mAh/g and still more preferably not less than 240 mAh/g as measured by the below-mentioned evaluation method. The discharge capacity at 1 C of the secondary battery is preferably as high as possible.
<Function>
It is considered by the present inventors that since the element A is well dispersed inside and outside of the positive electrode active substance particles, the particles can be prevented from suffering from excessive sintering when calcined, so that the resulting secondary battery can be enhanced in discharge capacity.
EXAMPLES
Typical examples of the present invention are as follows.
The BET specific surface area was measured by a BET method using nitrogen.
The tap density of the positive electrode active substance particles was determined as follows. That is, a predetermined amount of the positive electrode active substance particles passed through a mesh screen were filled in a measuring cylinder, and then tapped 500 times to measure a bulk density of the particles as a tap density thereof.
The compressed density of the positive electrode active substance particles was determined as follows. That is, a predetermined amount of the positive electrode active substance particles passed through a mesh screen were filled in a highly closed mold like a tablet machine, and then compressed by applying a pressure of 3 t/cm2 thereto to measure a bulk density of the particles as a compressed density thereof.
The contents of lithium, nickel, cobalt, manganese, yttrium, zirconium and silicon constituting the positive electrode active substance particles were determined as follow. That is, the positive electrode active substance particles were dissolved in an acid, and the resulting solution was analyzed by a plasma emission spectroscopic device “ICPS-7500” (manufactured by Shimadzu Seisakusho Co., Ltd.).
The identification of the phase and the measurement of the intensity were carried out by X-ray diffraction analysis. The X-ray diffraction analysis was conducted using an X-ray diffractometer “RINT-2000” manufactured by Rigaku Co., Ltd., (tube: Cu; tube voltage: 40 kV; tube current: 40 mA; step angle: 0.020°; count time: 0.6 s; divergence slit: 1°; scattering slit: 1°; light-receiving slit: 0.30 mm).
The average secondary particle diameter of the particles was determined as follows. That is, the particles were observed using a scanning electron microscope “SEM-EDX” equipped with an energy disperse type X-ray analyzer (manufactured by Hitachi High-Technologies Corp.) to measure diameters thereof and calculate a volume-average value of the measured diameters as the average secondary particle diameter of the particles.
The coin cell produced by using the positive electrode active substance particles was evaluated for charge/discharge characteristics and cycle characteristics.
First, 84% by weight of the composite oxide as a positive electrode active substance, 4% by weight of acetylene black and 4% by weight of a graphite “KS-6” both serving as a conducting material, and 8% by weight of polyvinylidene fluoride dissolved in N-methyl pyrrolidone as a binder, were mixed with each other, and the resulting mixture was applied onto a metallic Al foil and then dried at 150° C. The thus obtained sheets were blanked into 16 mmφ and then compression-bonded to each other under a pressure of 1 t/cm2, thereby producing an electrode having a thickness of 50 μm and using the thus produced electrode as a positive electrode. A metallic lithium sheet blanked into 16 mmφ was used as a negative electrode, and 1 mol/L LiPF6 solution of mixed solvent comprising EC and DMC in a volume ratio of 1:2 was used as an electrolyte solution, to thereby produce a coin cell of a CR2032 type.
The initial charge/discharge cycle of the coin cell was conducted as follows. That is, while being kept at 25° C., the coin cell was charged at a current density of 20 mA/g until reaching 4.6 V and then charged at a constant voltage until the current value reached 1/100, and discharged at a current density of 20 mA/g until reaching 2.0 V. Similarly, in the second and subsequent cycles, the discharge capacity was measured by setting a discharge rate to 0.1 C and 1 C.
Example 1
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 50° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.2 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
As a result of subjecting the resulting precursor particles to ICP composition analysis, it was confirmed that the molar ratio of Ni:Co:Mn was 18.7:12.4:68.9 (i.e., the molar ratio of Mn/(Ni+Co+Mn) was 0.689); and the Si content was 0.152% by weight. Further, as a result of observing the precursor particles using a scanning electron microscope (SEM), it was recognized that secondary particles having an average secondary particle diameter of 12.7 μm were formed.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 880° C. for 5 hr under an air flow using an electric furnace.
As a result of subjecting the resulting positive electrode active substance particles to X-ray diffraction analysis, it was confirmed that the positive electrode active substance particles comprised a crystal system belonging to a space group of R-3m and a crystal system belonging to a space group of C2/m, and had a peak intensity ratio [(a)/(b)] of 0.066.
In addition, as a result of subjecting the resulting positive electrode active substance particles to ICP composition analysis, it was confirmed that the molar ratio of Li/(Ni+Co+Mn) was 1.42; the molar ratio of Ni:Co:Mn was 18.7:12.4:68.9 (i.e., the molar ratio of Mn/(Ni+Co+Mn) was 0.689); the Si content was 0.179% by weight; the tap density was 2.10 g/cc; and the compressed density was 2.55 g/cc. The BET specific surface area of the positive electrode active substance particles as measured by a nitrogen absorption method was 5.52 m2/g. Further, as a result of observing the positive electrode active substance particles using a scanning electron microscope (SEM), it was recognized that secondary particles having an average secondary particle diameter of 12.1 μm were formed.
Example 2
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 60° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.5 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium hydroxide particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 950° C. for 5 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
Example 3
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.2 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 900° C. for 5 hr under an air flow using an electric furnace.
Example 4
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 30° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.9 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 780° C. for 10 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
Example 5
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 60° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.1 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 1080° C. for 5 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
Example 6
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.4 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 850° C. for 10 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
Example 7
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.6 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 880° C. for 5 hr under an air flow using an electric furnace.
Example 8
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 10.4 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 700° C. for 15 hr under an air flow using an electric furnace.
Example 9
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 50° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.6 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium hydroxide particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 550° C. for 25 hr under an oxygen flow using an electric furnace.
Example 10
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate-, Mn sulfate and Zr sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.4 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 930° C. for 5 hr under an air flow using an electric furnace.
Example 11
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 70° C. while flowing a nitrogen gas therethrough. Further, an Ni nitrate-, Co nitrate-, Mn nitrate and Y nitrate-containing mixed aqueous solution and a sodium carbonate aqueous solution were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.6 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium nitrate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 850° C. for 10 hr under an air flow using an electric furnace.
Example 12
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 30° C. while flowing a nitrogen gas therethrough. Further, an Ni chloride-, Co chloride-, Mn chloride and Zr chloride-containing mixed aqueous solution and a lithium hydroxide aqueous solution were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 11.5 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 850° C. for 5 hr under an air flow using an electric furnace.
Example 13
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 50° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate-, Mn sulfate and Y sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.5 (±0.2). During the reaction, the slurry was discharged out of the reaction system through an overflow line. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 1250° C. for 5 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
Example 14
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate-, Mn sulfate and Zr sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.4 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 900° C. for 5 hr under an air flow using an electric furnace.
Example 15
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 50° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.1 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 830° C. for 10 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
Example 16
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 45° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.9 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 850° C. for 5 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
Example 17
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 50° C. while flowing a nitrogen gas therethrough. Further, a Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.5 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 800° C. for 10 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
Comparative Example 1
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.0 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 600° C. for 25 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
Comparative Example 2
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 11.7 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 1250° C. for 5 hr under an air flow using an electric furnace.
Comparative Example 3
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.5 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium hydroxide particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 1030° C. for 5 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
Comparative Example 4
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 11.4 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 1030° C. for 5 hr under an air flow using an electric furnace.
Comparative Example 5
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 10° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide and sodium silicate were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 12.5 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 900° C. for 5 hr under an oxygen flow using an electric furnace.
Reference Example 1 and Comparative Example 6
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 50° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate, sodium silicate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.8 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium hydroxide particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 430° C. for 25 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
In this Example, although the precursor particles corresponding to those of Invention 6 were used therein (Reference Example 1), the calcination temperature used therein failed to satisfy the requirement defined in Invention 7, and the resulting positive electrode active substance particles failed to satisfy the requirement defined in Invention 1 (Comparative Example 6).
Comparative Example 7
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate-, Mn sulfate and Zr sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium hydroxide and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 9.8 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 750° C. for 10 hr under an air flow using an electric furnace.
Comparative Example 8
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 60° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.0 (±0.2). During the reaction, the slurry was discharged out of the reaction system through an overflow line. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor, lithium carbonate particles and silicon oxide were weighed and intimately mixed with each other. The resulting mixture was calcined at 900° C. for 5 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
Comparative Example 9
A closed type reaction vessel was charged with 14 L of water, and an inside of the reaction vessel was maintained at 40° C. while flowing a nitrogen gas therethrough. Further, an Ni sulfate-, Co sulfate- and Mn sulfate-containing mixed aqueous solution and a mixed aqueous solution of sodium carbonate and ammonia were successively added into the reaction vessel while stirring such that the pH value therein was adjusted to 8.8 (±0.2). During the reaction, a filtrate only was discharged out of the reaction system using a concentration device, whereas a solid component separated from the filtrate was retained in the reaction vessel. After completion of the reaction, a slurry comprising a co-precipitated product was obtained. The thus obtained slurry was filtered, and the resulting solid was washed with water and dried at 105° C. overnight, thereby obtaining a co-precipitated precursor in the form of particles.
The thus obtained co-precipitated precursor and lithium carbonate particles were weighed and intimately mixed with each other. The resulting mixture was calcined at 700° C. for 5 hr under an air flow using an electric furnace, thereby obtaining positive electrode active substance particles.
Various properties of the precursor particles obtained in Examples 1 to 17 and Comparative Examples 1 to 9 are shown in Table 1, various properties of the positive electrode active substance particles obtained therefrom are shown in Table 2, and various properties of batteries produced using the positive electrode active substance particles are shown in Table 3.
TABLE 1
Properties of precursor particles
Examples and Ni/ Co/ Mn/
Comparative (Ni + Co + Mn) (Ni + Co + Mn) (Ni + Co + Mn)
Examples (mol/mol (%)) (mol/mol (%)) (mol/mol (%))
Example 1 18.7 12.4 68.9
Example 2 21.3 11.6 67.0
Example 3 19.2 12.4 68.4
Example 4 23.0 14.4 62.5
Example 5 21.1 14.5 64.4
Example 6 18.5 12.4 69.2
Example 7 22.7 8.2 69.2
Example 8 20.7 21.1 58.2
Example 9 26.3 2.9 70.9
Example 10 19.1 12.2 68.7
Example 11 39.4 0.0 60.6
Example 12 2.9 39.7 57.3
Example 13 21.5 7.2 71.3
Example 14 19.3 13.0 67.7
Example 15 23.6 0.0 76.4
Example 16 24.4 0.0 75.6
Example 17 0.0 32.2 67.8
Comparative 19.0 10.2 70.8
Example 1
Comparative 18.8 12.1 69.0
Example 2
Comparative 21.4 10.9 67.7
Example 3
Comparative 50.0 20.7 29.3
Example 4
Comparative 7.8 8.6 83.6
Example 5
Reference 20.4 10.8 68.7
Example 1/
Comparative
Example 6
Comparative 17.6 8.5 73.9
Example 7
Comparative 11.2 19.6 69.1
Example 8
Comparative 21.0 11.4 67.5
Example 9
Examples and Properties of precursor particles
Comparative Si Zr Y
Examples (wt %) (wt %) (wt %)
Example 1 0.152 0.000 0.000
Example 2 0.228 0.000 0.000
Example 3 0.142 0.000 0.000
Example 4 0.824 0.000 0.000
Example 5 0.099 0.000 0.000
Example 6 0.033 0.000 0.000
Example 7 0.038 0.000 0.000
Example 8 2.156 0.000 0.000
Example 9 4.259 0.000 0.000
Example 10 0.000 0.267 0.000
Example 11 0.000 0.000 0.239
Example 12 0.000 0.000 0.038
Example 13 0.002 0.000 0.031
Example 14 0.003 0.029 0.000
Example 15 0.103 0.000 0.000
Example 16 0.138 0.000 0.000
Example 17 0.169 0.000 0.000
Comparative 9.362 0.000 0.000
Example 1
Comparative 0.000 0.000 0.000
Example 2
Comparative 0.000 0.000 0.000
Example 3
Comparative 0.134 0.000 0.000
Example 4
Comparative 3.542 0.000 0.000
Example 5
Reference 0.397 0.000 0.000
Example 1/
Comparative
Example 6
Comparative 0.000 8.657 0.000
Example 7
Comparative 0.128 0.000 0.000
Example 8
Comparative 0.000 0.000 0.000
Example 9
Properties of Heat treatment
precursor particles conditions
Secondary
Examples and particle Calcination
Comparative Si + Zr + Y diameter temperature Gas
Examples (wt %) (μm) (° C.) atmosphere
Example 1 0.152 12.7 880 Air
Example 2 0.228 17.9 950 Air
Example 3 0.142 5.6 900 Air
Example 4 0.824 6.7 780 Air
Example 5 0.099 21.8 1080 Air
Example 6 0.033 14.7 850 Air
Example 7 0.038 3.6 880 Air
Example 8 2.156 2.5 700 Air
Example 9 4.259 2.1 550 Oxygen
Example 10 0.267 5.8 930 Air
Example 11 0.239 27.1 850 Air
Example 12 0.038 1.2 850 Air
Example 13 0.033 33.6 1250 Air
Example 14 0.032 6.0 900 Air
Example 15 0.103 12.1 830 Air
Example 16 0.138 3.4 850 Air
Example 17 0.169 12.6 800 Air
Comparative 9.362 6.1 600 Air
Example 1
Comparative 0.000 2.1 1250 Air
Example 2
Comparative 0.000 15.7 1030 Air
Example 3
Comparative 0.134 11.3 1030 Air
Example 4
Comparative 3.542 0.8 900 Oxygen
Example 5
Reference 0.397 8.1 430 Air
Example 1/
Comparative
Example 6
Comparative 8.675 2.4 750 Air
Example 7
Comparative 0.128 56.1 900 Air
Example 8
Comparative 0.000 13.2 700 Air
Example 9
TABLE 2
Properties of positive electrode active
Examples and substance particles
Comparative Si Zr Y
Examples (wt %) (wt %) (wt %)
Example 1 0.179 0.000 0.000
Example 2 0.268 0.000 0.000
Example 3 0.116 0.000 0.000
Example 4 0.965 0.000 0.000
Example 5 0.117 0.000 0.000
Example 6 0.040 0.000 0.000
Example 7 0.032 0.000 0.000
Example 8 1.740 0.000 0.000
Example 9 3.436 0.000 0.000
Example 10 0.000 0.215 0.000
Example 11 0.000 0.000 0.280
Example 12 0.000 0.000 0.031
Example 13 0.003 0.000 0.036
Example 14 0.004 0.023 0.000
Example 15 0.122 0.000 0.000
Example 16 0.113 0.000 0.000
Example 17 0.199 0.000 0.000
Comparative 10.955 0.000 0.000
Example 1
Comparative 0.000 0.000 0.000
Example 2
Comparative 0.000 0.000 0.000
Example 3
Comparative 0.109 0.000 0.000
Example 4
Comparative 2.857 0.000 0.000
Example 5
Reference 0.466 0.000 0.000
Example 1/
Comparative
Example 6
Comparative 0.000 6.996 0.000
Example 7
Comparative 0.151 0.000 0.000
Example 8
Comparative 0.000 0.000 0.000
Example 9
Properties of positive electrode active
substance particles
Examples and Li/ Ni/
Comparative Si + Zr + Y (Ni + Co + Mn) (Ni + Co + Mn)
Examples (wt %) (mol/mol (%)) (mol/mol (%))
Example 1 0.179 1.42 18.7
Example 2 0.268 1.34 21.3
Example 3 0.116 1.50 19.2
Example 4 0.965 1.34 23.0
Example 5 0.117 1.57 21.1
Example 6 0.040 1.39 18.5
Example 7 0.032 1.51 22.7
Example 8 1.740 1.64 20.7
Example 9 3.436 1.67 26.3
Example 10 0.215 1.50 19.1
Example 11 0.280 1.27 39.4
Example 12 0.031 1.66 2.9
Example 13 0.040 1.40 21.5
Example 14 0.027 1.49 19.3
Example 15 0.122 1.38 23.6
Example 16 0.113 1.51 24.4
Example 17 0.199 1.35 0.0
Comparative 10.955 1.38 19.0
Example 1
Comparative 0.000 1.52 18.8
Example 2
Comparative 0.000 1.35 21.4
Example 3
Comparative 0.109 1.04 50.0
Example 4
Comparative 2.857 1.83 7.8
Example 5
Reference 0.466 1.39 20.4
Example 1/
Comparative
Example 6
Comparative 6.996 1.50 17.6
Example 7
Comparative 0.151 1.35 11.2
Example 8
Comparative 0.000 1.36 21.0
Example 9
Properties of positive electrode active
substance particles
Peak
Examples and Co/ Mn/ intensity
Comparative (Ni + Co + Mn) (Ni + Co + Mn) ratio (a)/(b)
Examples (mol/mol (%)) (mol/mol (%)) (−)
Example 1 12.4 68.9 0.066
Example 2 11.6 67.0 0.059
Example 3 12.4 68.4 0.044
Example 4 14.4 62.5 0.022
Example 5 14.5 64.4 0.114
Example 6 12.4 69.2 0.053
Example 7 8.2 69.2 0.036
Example 8 21.1 58.2 0.124
Example 9 2.9 70.9 0.184
Example 10 12.2 68.7 0.046
Example 11 0.0 60.6 0.029
Example 12 39.7 57.3 0.024
Example 13 7.2 71.3 0.067
Example 14 13.0 67.7 0.043
Example 15 0.0 76.4 0.118
Example 16 0.0 75.6 0.069
Example 17 32.2 67.8 0.071
Comparative 10.2 70.8 0.037
Example 1
Comparative 12.1 69.0 0.057
Example 2
Comparative 10.9 67.7 0.056
Example 3
Comparative 20.7 29.3 0.010
Example 4
Comparative 8.6 83.6 0.229
Example 5
Reference 10.8 68.7 0.047
Example 1/
Comparative
Example 6
Comparative 8.5 73.9 0.035
Example 7
Comparative 19.6 69.1 0.460
Example 8
Comparative 11.4 67.5 0.059
Example 9
Properties of positive electrode active
substance particles
Examples Secondary
and Tap Compressed particle
Comparative BET density density diameter
Examples (m2/g) (g/cc) (g/cc) (μm)
Example 1 5.52 2.10 2.55 12.1
Example 2 3.14 2.23 2.67 17.0
Example 3 3.45 1.82 2.79 5.9
Example 4 7.73 1.76 2.42 6.4
Example 5 0.91 2.33 2.84 20.7
Example 6 5.10 2.12 2.57 14.0
Example 7 3.37 1.63 2.70 3.8
Example 8 10.49 1.24 3.13 2.7
Example 9 15.35 0.84 2.22 2.2
Example 10 4.17 1.83 2.71 6.1
Example 11 3.92 2.36 2.60 25.7
Example 12 3.30 0.88 2.49 1.3
Example 13 0.28 2.38 3.02 31.9
Example 14 3.10 1.80 2.72 6.4
Example 15 2.71 1.91 2.64 11.5
Example 16 4.36 1.22 2.47 3.6
Example 17 6.48 2.08 2.55 12.0
Comparative 27.40 0.72 1.94 5.8
Example 1
Comparative 0.15 1.73 3.17 2.2
Example 2
Comparative 0.71 2.05 3.13 14.9
Example 3
Comparative 0.09 2.53 3.38 12.0
Example 4
Comparative 7.90 0.57 2.14 0.8
Example 5
Reference 21.96 1.74 1.97 7.7
Example 1/
Comparative
Example 6
Comparative 6.44 0.70 2.36 2.5
Example 7
Comparative 1.63 2.47 3.03 53.3
Example 8
Comparative 8.97 1.73 2.13 12.5
Example 9
TABLE 3
4.6 V 4.6 V
Examples and Discharge capacity Discharge capacity
Comparative 0.1 C 1 C
Examples mAh/g mAh/g
Example 1 289 246
Example 2 281 242
Example 3 282 241
Example 4 274 235
Example 5 270 231
Example 6 268 229
Example 7 264 227
Example 8 252 212
Example 9 250 211
Example 10 284 243
Example 11 251 216
Example 12 257 211
Example 13 256 217
Example 14 271 232
Example 15 272 235
Example 16 267 226
Example 17 259 213
Comparative 218 116
Example 1
Comparative 193 97
Example 2
Comparative 230 142
Example 3
Comparative 192 149
Example 4
Comparative 153 86
Example 5
Reference 137 81
Example 1/
Comparative
Example 6
Comparative 151 97
Example 7
Comparative 173 74
Example 8
Comparative 254 186
Example 9
In any of the positive electrode active substance particles obtained in Examples 1 to 17, the discharge capacity thereof as measured at 0.1 C was not less than 250 mA/g, and the discharge capacity thereof as measured at 1 C was not less than 210 mA/g. Thus, it was confirmed that the positive electrode active substance particles obtained according to the present invention had a large discharge capacity owing to the presence of the crystal structure belonging to a space group of 2 C/m, and further were prevented from suffering from excessive sintering upon calcination thereof owing the element A incorporated therein. Further, the positive electrode active substance particles had appropriate tap density and compressed density and therefore can provide an excellent positive electrode material having a high capacity even at a high discharge rate.
On the other hand, the positive electrode active substance particles as obtained in Comparative Examples which failed to comprise an appropriate amount of the element A, or to which the element A was added after synthesis of the precursor particles were deteriorated in discharge capacity as compared those obtained in Examples. Thus, it was recognized that when an appropriate amount of the element A was allowed to coexist in the particles in a well dispersed state, it was possible to obtain a positive electrode active substance for non-aqueous electrolyte secondary batteries which was excellent in discharge capacity.
Even though the calcination temperature was controlled as in Comparative Example 9 so as to allow a tap density and a compressed density of the resulting particles to fall within the ranges defined by the present invention, the resulting positive electrode active substance was deficient in discharge capacity at 1 C owing to a poor crystallinity thereof.
From the above results, it is confirmed that the positive electrode active substance particles according to the present invention are useful as a positive electrode active substance for non-aqueous electrolyte secondary batteries which is excellent in charge/discharge capacities.
INDUSTRIAL APPLICABILITY
The positive electrode active substance particles according to the present invention are largely improved in charge/discharge capacities, and therefore can be suitably used as positive electrode active substance particles for non-aqueous electrolyte secondary batteries.

Claims (11)

The invention claimed is:
1. Positive electrode active substance particles comprising a compound having at least a crystal system belonging to a space group of R-3m and a crystal system belonging to a space group of C2/m,
the compound being in the form of a composite oxide comprising at least Li, Mn, an element A, and Co and/or Ni, wherein element A is at least one element selected from the group consisting of Si, Zr and Y;
a relative intensity ratio [(a)/(b)] of a maximum diffraction peak intensity (a) observed at 2θ=20.8±1° in a powder X-ray diffraction pattern of the positive electrode active substance particles as measured using a Cu—Kα ray to a maximum diffraction peak intensity (b) observed at 2θ=18.6±1° in the powder X-ray diffraction pattern being 0.02 to 0.2;
a content of Mn in the positive electrode active substance particles being a molar ratio of Mn/(Ni+Co+Mn) therein is not less than 0.55; and
the positive electrode active substance particles comprising the element A in an amount of 0.03 to 5% by weight and having a tap density of 1.63 to 2.4 g/cc and a compressed density of 2.0 to 3.1 g/cc,
wherein a molar ratio of Li/(Ni+Co+Mn) in the positive electrode active substance particles is 1.25 to 1.7.
2. The positive electrode active substance particles according to claim 1, wherein the positive electrode active substance particles comprise LiMxMn1-xO2 wherein M is Ni and/or Co; 0<x≦1, as the compound having a crystal system belonging to a space group of R-3m, and Li2M′(1-y)MnyO3 wherein M′ is Ni and/or Co; 0<y≦1, as the compound having a crystal system belonging to a space group of C2/m.
3. The positive electrode active substance particles according to claim 1, wherein the positive electrode active substance particles have a specific surface area of 0.1 to 20 m2/g as measured by a BET method.
4. The positive electrode active substance particles according to claim 1, wherein the positive electrode active substance particles are in the form of secondary particles produced by aggregating primary particles thereof in which the secondary particles have an average secondary particle diameter of 1 to 50 μm.
5. Precursor particles to the positive electrode active substance particles according to claim 1, the precursor particles comprising a composite hydroxide or a composite carbonate as a main component which comprises at least Mn, an element A, and Co and/or Ni, wherein element A is at least one element selected from the group consisting of Si, Zr and Y,
a content of Mn in the precursor particles being a molar ratio of Mn/(Ni+Co+Mn) therein is not less than 0.55; and the precursor particles comprising the element A in an amount of 0.025 to 5.5% by weight and having an average secondary particle diameter of 1 to 50 μm.
6. A process for producing the positive electrode active substance particles as claimed in claim 1, comprising the step of calcining a mixture comprising the precursor particles, and a lithium compound at a temperature of 500 to 1500° C.
7. A non-aqueous electrolyte secondary battery using a positive electrode comprising the positive electrode active substance particles as claimed in claim 1.
8. The positive electrode active substance particles according to claim 1, wherein a content of Mn in the positive electrode active substance particles being controlled such that a molar ratio of Mn/(Ni+Co+Mn) therein is not less than 0.573.
9. The positive electrode active substance particles according to claim 1, wherein the tap density is 1.76 to 2.4 g/cc.
10. Positive electrode active substance particles consisting of a compound having at least a crystal system belonging to a space group of R-3m and a crystal system belonging to a space group of C2/m,
the compound being in the form of a composite oxide consisting of Li, Mn, an element A, oxygen and Co and/or Ni, wherein element A is at least one element selected from the group consisting of Si, Zr and Y;
a relative intensity ratio [(a)/(b)] of a maximum diffraction peak intensity (a) observed at 2θ=20.8±1° in a powder X-ray diffraction pattern of the positive electrode active substance particles as measured using a Cu—Kα ray to a maximum diffraction peak intensity (b) observed at 2θ=18.6±1° in the powder X-ray diffraction pattern being 0.02 to 0.2;
a content of Mn in the positive electrode active substance particles being controlled such that a molar ratio of Mn/(Ni+Co+Mn) therein is not less than 0.55; and
the positive electrode active substance particles comprising the element A in an amount of 0.03 to 5% by weight and having a tap density of 1.63 to 2.4 g/cc and a compressed density of 2.0 to 3.1 g/cc,
wherein a molar ratio of Li/(Ni+Co+Mn) in the positive electrode active substance particles is 1.25 to 1.7.
11. The positive electrode active substance particles according to claim 10, wherein the tap density is 1.76 to 2.4 g/cc.
US14/388,931 2012-03-30 2013-03-14 Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery Active US9564634B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-82386 2012-03-30
JP2012082386A JP6003157B2 (en) 2012-03-30 2012-03-30 Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2012-082386 2012-03-30
PCT/JP2013/057151 WO2013146287A1 (en) 2012-03-30 2013-03-14 Positive electrode active material particle powder and method for producing same, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
US20150060725A1 US20150060725A1 (en) 2015-03-05
US9564634B2 true US9564634B2 (en) 2017-02-07

Family

ID=49259551

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/388,931 Active US9564634B2 (en) 2012-03-30 2013-03-14 Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery

Country Status (6)

Country Link
US (1) US9564634B2 (en)
EP (1) EP2833445B1 (en)
JP (1) JP6003157B2 (en)
KR (1) KR102024962B1 (en)
CN (1) CN104247100B (en)
WO (1) WO2013146287A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343951B2 (en) * 2014-02-13 2018-06-20 戸田工業株式会社 Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6316687B2 (en) * 2014-07-09 2018-04-25 住友化学株式会社 Method for producing lithium-containing composite oxide
JP6600136B2 (en) * 2015-01-23 2019-10-30 住友化学株式会社 Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6487279B2 (en) 2015-06-10 2019-03-20 住友化学株式会社 Lithium-containing composite oxide, positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
CN108432000B (en) * 2015-11-11 2021-04-27 住友化学株式会社 Positive electrode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US10916768B2 (en) 2016-03-30 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6983152B2 (en) * 2016-05-24 2021-12-17 住友化学株式会社 Positive electrode active material, its manufacturing method and positive electrode for lithium ion secondary batteries
JP6142295B1 (en) * 2016-06-07 2017-06-07 株式会社田中化学研究所 Positive electrode active material for secondary battery
CN107507973B (en) * 2016-06-14 2022-05-10 三星电子株式会社 Composite positive active material, positive electrode and lithium battery including the same, and method for preparing the same
WO2018021557A1 (en) * 2016-07-29 2018-02-01 住友金属鉱山株式会社 Nickel manganese composite hydroxide, production method for nickel manganese composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, production method for positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN109716564B (en) 2016-09-21 2022-09-09 巴斯夫户田电池材料有限公司 Positive electrode active material, method for producing same, and nonaqueous electrolyte secondary battery
JPWO2018181967A1 (en) * 2017-03-31 2020-03-05 東ソー株式会社 Manganese oxide, method for producing the same, and lithium secondary battery
US11545662B2 (en) 2017-12-15 2023-01-03 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN109694102A (en) * 2018-12-17 2019-04-30 肇庆遨优动力电池有限公司 A kind of lithium-rich manganese-based anode material and preparation method thereof
JP6640976B1 (en) * 2018-12-20 2020-02-05 住友化学株式会社 Lithium transition metal composite oxide powder, nickel-containing transition metal composite hydroxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7235650B2 (en) * 2019-12-25 2023-03-08 住友化学株式会社 Lithium transition metal composite oxide powder, nickel-containing transition metal composite hydroxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP7371571B2 (en) * 2020-05-07 2023-10-31 株式会社Gsユアサ Non-aqueous electrolyte storage device and method for manufacturing the same

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086993A1 (en) 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
US20040091779A1 (en) 2002-11-01 2004-05-13 The University Of Chicago Layered cathode materials for lithium ion rechargeable batteries
KR20050087912A (en) * 2004-02-27 2005-09-01 한국전기연구원 Cathode active material for lithium secondary battery and manufacturing method thereof
US20060083989A1 (en) * 2003-04-17 2006-04-20 Seimi Chemical Co., Ltd. Lithium-nickel-cobalt-maganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
JP2006278322A (en) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2006331943A (en) * 2005-05-27 2006-12-07 Sony Corp Cathode active substance and battery
JP2008084766A (en) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2008098154A (en) 2006-09-12 2008-04-24 Sumitomo Chemical Co Ltd Lithium composite metal oxide and nonaqueous electrolyte secondary battery
WO2008081839A1 (en) 2006-12-27 2008-07-10 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for production thereof
US20090104530A1 (en) * 2006-04-07 2009-04-23 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
EP2062858A1 (en) 2006-09-12 2009-05-27 Sumitomo Chemical Company, Limited Lithium composite metal oxides and nonaqueous-electrolyte secondary cell
US20110003200A1 (en) * 2006-12-26 2011-01-06 Mitsubishi Chemical Corporation Lithium transition metal based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, lithium secondary battery positive electrode by using the same, and lithium secondary battery
JP2011029000A (en) 2009-07-24 2011-02-10 Nissan Motor Co Ltd Method of manufacturing positive electrode material for lithium ion battery
US20110052990A1 (en) 2009-08-28 2011-03-03 Sanyo Electric Co., Ltd. Lithium ion secondary battery
WO2011040383A1 (en) 2009-09-30 2011-04-07 戸田工業株式会社 Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
JP2011105588A (en) 2009-10-22 2011-06-02 Toda Kogyo Corp Nickel-cobalt-manganese-based compound particle powder and method for producing the same, lithium composite oxide particle powder and method for producing the same, and nonaqueous electrolyte secondary battery
WO2012133113A1 (en) 2011-03-30 2012-10-04 戸田工業株式会社 Positive electrode active material granular powder and method for producing same, and nonaqueous electrolyte secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539518B2 (en) 1995-08-11 2004-07-07 日立マクセル株式会社 Lithium secondary battery
JP4984436B2 (en) * 2005-05-27 2012-07-25 ソニー株式会社 Positive electrode active material for lithium ion secondary battery, method for producing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5272870B2 (en) 2009-04-17 2013-08-28 株式会社Gsユアサ Active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP5282966B2 (en) 2009-05-27 2013-09-04 トヨタ自動車株式会社 Lithium ion secondary battery
JP5791877B2 (en) 2009-09-30 2015-10-07 三洋電機株式会社 Positive electrode active material, method for producing the positive electrode active material, and nonaqueous electrolyte secondary battery using the positive electrode active material

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1391950A1 (en) 2001-04-20 2004-02-25 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
WO2002086993A1 (en) 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
US20040091779A1 (en) 2002-11-01 2004-05-13 The University Of Chicago Layered cathode materials for lithium ion rechargeable batteries
US20060083989A1 (en) * 2003-04-17 2006-04-20 Seimi Chemical Co., Ltd. Lithium-nickel-cobalt-maganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
KR20050087912A (en) * 2004-02-27 2005-09-01 한국전기연구원 Cathode active material for lithium secondary battery and manufacturing method thereof
JP2006278322A (en) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2006331943A (en) * 2005-05-27 2006-12-07 Sony Corp Cathode active substance and battery
US20090104530A1 (en) * 2006-04-07 2009-04-23 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
US20090280412A1 (en) 2006-09-12 2009-11-12 Sumitomo Chemical Company, Limited Lithium composite metal oxide and nonaqueous electrolyte secondary battery
JP2008098154A (en) 2006-09-12 2008-04-24 Sumitomo Chemical Co Ltd Lithium composite metal oxide and nonaqueous electrolyte secondary battery
EP2062858A1 (en) 2006-09-12 2009-05-27 Sumitomo Chemical Company, Limited Lithium composite metal oxides and nonaqueous-electrolyte secondary cell
JP2008084766A (en) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
US20110003200A1 (en) * 2006-12-26 2011-01-06 Mitsubishi Chemical Corporation Lithium transition metal based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, lithium secondary battery positive electrode by using the same, and lithium secondary battery
US20100104944A1 (en) 2006-12-27 2010-04-29 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method of manufacturing the same
WO2008081839A1 (en) 2006-12-27 2008-07-10 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for production thereof
JP2011029000A (en) 2009-07-24 2011-02-10 Nissan Motor Co Ltd Method of manufacturing positive electrode material for lithium ion battery
JP2011071090A (en) 2009-08-28 2011-04-07 Sanyo Electric Co Ltd Lithium ion secondary battery
US20110052990A1 (en) 2009-08-28 2011-03-03 Sanyo Electric Co., Ltd. Lithium ion secondary battery
WO2011040383A1 (en) 2009-09-30 2011-04-07 戸田工業株式会社 Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
US20120217435A1 (en) 2009-09-30 2012-08-30 Manabu Yamamoto Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP2011105588A (en) 2009-10-22 2011-06-02 Toda Kogyo Corp Nickel-cobalt-manganese-based compound particle powder and method for producing the same, lithium composite oxide particle powder and method for producing the same, and nonaqueous electrolyte secondary battery
US20130045421A1 (en) 2009-10-22 2013-02-21 Masashi Kobino Nickel-cobalt-maganese-based compound particles and process for producing the nickel-cobalt-manganese-based compound particles, lithium composite oxide particles and process for producing the lithium composite oxide particles, and non-aqueous electrolyte secondary battery
WO2012133113A1 (en) 2011-03-30 2012-10-04 戸田工業株式会社 Positive electrode active material granular powder and method for producing same, and nonaqueous electrolyte secondary battery
EP2693535A1 (en) 2011-03-30 2014-02-05 Toda Kogyo Corporation Positive electrode active material granular powder and method for producing same, and nonaqueous electrolyte secondary battery
US20140045068A1 (en) 2011-03-30 2014-02-13 Toda Kogyo Corporation Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Extended European Search Report issued in Application No. 13767403.2 dated Oct. 19, 2015.
International Preliminary Examination Report in PCT/JP2013/057151 dated Oct. 9, 2014.
International Search Report for PCT/JP2013/057151, mailed May 28, 2013.
Machine translation of JP2006331943, 2015. *

Also Published As

Publication number Publication date
EP2833445A1 (en) 2015-02-04
KR102024962B1 (en) 2019-09-24
CN104247100B (en) 2017-06-13
KR20140138780A (en) 2014-12-04
WO2013146287A1 (en) 2013-10-03
EP2833445B1 (en) 2017-11-29
EP2833445A4 (en) 2015-11-18
JP6003157B2 (en) 2016-10-05
CN104247100A (en) 2014-12-24
JP2013211239A (en) 2013-10-10
US20150060725A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
US9564634B2 (en) Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
US11072869B2 (en) Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery
US9249034B2 (en) Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
US20160111725A1 (en) Positive electrode active substance precursor particles, positive electrode active substance particles and non-aqueous electrolyte secondary battery
US9698420B2 (en) Li-Ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery
US9586834B2 (en) Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
US20190157667A1 (en) Lithium composite oxide particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery
US8066913B2 (en) Li-Ni composite oxide particles for non-aqueous electrolyte secondary cell, process for producing the same, and non-aqueous electrolyte secondary cell
US8592085B2 (en) Nickel-cobalt-maganese-based compound particles and process for producing the nickel-cobalt-manganese-based compound particles, lithium composite oxide particles and process for producing the lithium composite oxide particles, and non-aqueous electrolyte secondary battery
US9505631B2 (en) Positive electrode active material for secondary batteries with nonaqueous electrolytic solution, process for the production of the active material, and secondary batteries with nonaqueous electrolytic solution
EP2910528B1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY

Legal Events

Date Code Title Description
AS Assignment

Owner name: TODA KOGYO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAMOTO, MANABU;NISHIKAWA, DAISUKE;INOUE, TAISEI;AND OTHERS;REEL/FRAME:035171/0244

Effective date: 20150224

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8