JP3539518B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP3539518B2
JP3539518B2 JP22728795A JP22728795A JP3539518B2 JP 3539518 B2 JP3539518 B2 JP 3539518B2 JP 22728795 A JP22728795 A JP 22728795A JP 22728795 A JP22728795 A JP 22728795A JP 3539518 B2 JP3539518 B2 JP 3539518B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
lithium
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22728795A
Other languages
Japanese (ja)
Other versions
JPH0955211A (en
Inventor
和伸 松本
博行 戸城
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP22728795A priority Critical patent/JP3539518B2/en
Publication of JPH0955211A publication Critical patent/JPH0955211A/en
Application granted granted Critical
Publication of JP3539518B2 publication Critical patent/JP3539518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池に係わり、さらに詳しくは、その正極活物質の改良に関する。
【0002】
【従来の技術】
リチウム二次電池用の正極活物質としては、リチウムコバルト酸化物(LiCoO2 )やリチウムニッケル酸化物(LiNiO2 )などのリチウム複合酸化物が高電圧を出し得る正極活物質として知られている。
【0003】
また、それぞれの酸化物について多くの固溶体が提案されており、たとえばLiNiO2 についても、LiNi1-x Cox 2 のようなCo(コバルト)の固溶体(たとえば、米国特許第4980080号明細書)や、Liy Ni1-x MeX 2 (Me=Mn、Ti、V、Feなど)のようなMn(マンガン)、Ti(チタン)、V(バナジウム)、Fe(鉄)などの固溶体(たとえば、特開平5−283076号公報)が提案されている。
【0004】
【発明が解決しようとする課題】
上記正極活物質のうち、LiNiO2 やそれをベースにした固溶体は、LiCoO2 に比べて安価で、しかもLiCoO2 と同等の大きな充放電容量が期待できるという利点があるものの、LiCoO2 に比べて水分(空気中の湿気)に対して弱く、大気中で取り扱うと負荷特性が悪くなるという問題があった。
【0005】
したがって、本発明は、水分に対する耐性を高め、大気中で取り扱った場合でも、負荷特性が良好なリチウム二次電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、LiNiO2 にLi2 MnO3 を固溶させてLi1+1/3yNi1-y Mn2/3y2 (ただし、0<y≦0.5)で表される固溶体とすることによって、大気中で取り扱った場合でも、負荷特性の低下を防止することができ、良好な負荷特性を有するリチウム二次電池が得られることを見出し、本発明を完成するにいたった。
【0007】
本発明について、さらに詳細に説明すると、LiNiO2 (リチウムニッケル酸化物)を正極活物質として用いた場合に負荷特性が悪くなるのは、LiNiO2 がH2 O(水)と反応して他の物質に変化するためであると考えられる。これに対し、LiCoO2 (リチウムコバルト酸化物)はこのような反応が生じにくい。たとえば、LiCoO2 は水中に浸漬した後も250℃で乾燥すれば、浸漬前と同様の負荷特性が得られる。しかし、LiNiO2 は一旦水に浸漬すると、乾燥しても、1C放電時で浸漬前の50〜70%の充放電容量に低下する。
【0008】
そこで、本発明者らは、LiNiO2 が水と反応しやすいのは、その結晶構造にあると考え、種々の化合物との固溶体を検討し、その結果、一連のLiMO2 (MはMnなどの第一遷移金属)とは異なる化学式、構造のLi2 MnO3 をLiNiO2 に固溶することによって、大気中で取り扱っても、負荷特性の低下を防止できることを見出した。
【0009】
このような本発明において正極活物質として用いるLiNiO2 とLi2 MnO3 との固溶体は、従来提案の正極活物質と次の点で異なっている。
【0010】
たとえば、特開平5−283076号公報に記載のLiy Ni1-x MeX 2 のMe=Mnの場合などは、LiNiO2 にLiMO2 型の化合物を固溶させたものであり、本発明のLi2 MnO3 (Li2 HO3 型物質)を固溶させたものとは異なる。本発明において、正極活物質として用いるLiNiO2 とLiMnO3 との固溶体は、Li1+1/3yNi1-y Mn2/3y2 (ただし、0<y≦0.5)の化学式で表されるものであり、前記Liy Ni1-x Mex 2 (基本的にはyは1であり、NiとMeを合わせてMと表記するとLiMO2 型である)とは係数の相違によって区別できる。
【0011】
本発明のリチウム二次電池の構成は、たとえば以下のように行う。
正極は、上記のLiNiO2 とLi2 MnO2 との固溶体(これをリチウムニッケルマンガン酸化物と表記する)を用い、それにたとえばりん片状黒鉛、アセチレンブラックなどの電子伝導助剤と、たとえばポリフッ化ビニリデンやポリテトラフルオロエチレンなどの結着剤を適宜加えて混合し、得られた正極合剤を適宜の手段で成形することによって作製される。通常は、N−メチルピロリドンに正極活物質と電子伝導助剤とポリフッ化ビニリデンとを加えて混合し、正極合剤を含有した塗液を調製し、その塗液をアルミニウム箔、ステンレス鋼箔などの金属箔上に塗布し、乾燥、プレスしてシート状に成形することによって、正極が作製される。特にポリフッ化ビニリデンを結着剤として用いたときは、N−メチルピロリドンに溶解しやすく塗液にしやすい。
【0012】
負極活物質としては、リチウム金属またはリチウム含有化合物が用いられるが、そのリチウム含有化合物としてはリチウム合金とそれ以外のものとがある。上記リチウム合金としては、たとえばリチウム−アルミニウム、リチウム−鉛、リチウム−インジウム、リチウム−ガリウム、リチウム−インジウム−ガリウムなどが挙げられる。リチウム合金以外のリチウム含有化合物としては、たとえば乱層構造を有する炭素材料、黒鉛、タングステン酸化物、リチウム鉄複合酸化物などが挙げられる。これらは製造時にはリチウムを含んでいないものもあるが、負極活物質として作用するときには、化学的手段、電気化学的手段などによってリチウムを含有した状態になる。
【0013】
負極の作製も前記正極の場合とほぼ同様の手段で行われる。たとえば、上記負極活物質にポリフッ化ビニリデンやポリテトラフルオロエチレンなどの結着剤を適宜加えて混合し、得られた負極合剤を適宜の手段で成形することによって作製される。通常は、N−メチルピロリドンに負極活物質と結着剤を加えて混合し、負極合剤を含有した塗液を調製し、その塗液を銅箔、ステンレス鋼箔などの金属箔上に塗布し、乾燥した後、プレスしてシート状に成形することによって、負極が作製される。
【0014】
なお、正極活物質と負極活物質の好ましい重量比率は、負極活物質として用いる材料により若干異なるが、負極活物質として黒鉛を用いる場合、正極活物質/負極活物質(重量比)を2〜3の範囲にした電池が充放電容量が大きいことから好ましい。
【0015】
電解液としては、たとえば1,2−ジメトキシエタン、1,2−ジエトキシエタン、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、ジエチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどの単独または2種以上の混合溶媒に、たとえばLiCF3 SO3 、LiC4 9 SO3 、LiClO4 、LiPF6 、LiBF4 などの電解液の1種または2種以上を溶解させた有機電解液が用いられる。電池内に充填する電解液量は、多すぎると漏液などの原因になり、少なすぎると電極に行きわたらず、電池の負荷特性が悪くなるので、正極合剤と負極合剤との合計に対して0.1〜0.5重量%程度であることが好ましい。
【0016】
セパレータとしては、強度が高く、しかも電解液の保液率の大きいものが好ましく、そのような観点から、厚さ10〜50μmで、開口率30〜70%のポリプロピレン製の微孔性フィルムやポリエチレン製の微孔性フィルムなどが好ましい。
【0017】
上記正極の作製にあたって、正極活物質に添加するりん片状黒鉛などの電子伝導助剤は正極活物質に対して1〜9重量%、特に2〜7重量%が好ましく、また、同様に正極活物質に添加するポリフッ化ビニリデンなどの結着剤は正極活物質に対して1〜5重量%、特に1〜4重量%が好ましい。なお、上記電子伝導助剤や結着剤の量は正極活物質100重量%に対する量である。
【0018】
また、負極の作製にあたって、負極活物質に添加するポリフッ化ビニリデンなどの結着剤は負極活物質に対して5〜20重量%が好ましい。この結着剤の量も負極活物質100重量%に対する量である。
【0019】
正極、負極などの電極作製時の塗液の塗布は、アプリケーター、リバースロール、ダイコートなどにより行うのが好ましい。特に数10μm程度の薄層塗布ではリバースロールやダイコートにより塗布することが好ましい。なお、電極作製にあたっては、塗液の組成を変えて、異なる組成の塗液を重ねて塗布する重層塗布も可能である。
【0020】
電池の構造は、たとえば鉄(ただし、表面にニッケルメッキを施す)、ステンレス鋼などの金属製の角形や円筒形の電池ケースに内部でガスが発生した場合に電池の破裂を防止するための防爆用ベント(防爆用安全弁)を設けたものが好ましい。
【0021】
【発明の実施の形態】
つぎに、実施例をあげて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。
【0022】
実施例1
負極活物質として2800℃で合成した人造黒鉛を用い、正極活物質としては水酸化リチウム(LiOH・H2 O)と酸化ニッケル(III)(Ni2 3 )と炭酸マンガン(MnCO3 )とを熱処理して合成したLiNiO2 とLi2 MnO3 との固溶体からなるリチウムニッケルマンガン酸化物を用いた。なお、上記リチウムニッケルマンガン酸化物の合成は以下に示すように行った。
【0023】
酸化ニッケルと炭酸マンガンをNi/Mn=9/1(モル比)の割合になるように秤量したのち、充分混合し、水酸化リチウムをLi/(Ni+Mn)=1.35(モル比)となるように添加し、メノウ製の乳鉢で粉砕しつつ混合した。これを酸素(O2 )気流中において500℃で2時間予備加熱した後、680℃で20時間加熱して焼成することによって、リチウムニッケルマンガン酸化物を合成した。このようにして合成したリチウムニッケルマンガン酸化物は、化学式で表すと、ほぼLi1.05Ni0.86Mn0.092 になる。
【0024】
上記のリチウムニッケルマンガン酸化物を正極活物質として用い、このリチウムニッケルマンガン酸化物91重量部に対して電子伝導助剤としてりん片状黒鉛を6重量部と、結着剤としてポリフッ化ビニリデンを3重量部加えて混合した。
【0025】
上記りん片状黒鉛のリチウムニッケルマンガン酸化物への混合は、相対湿度70%、温度25℃の雰囲気中で約3時間行った。そして、ポリフッ化ビニリデンの混合は、ポリフッ化ビニリデンをあらかじめN−メチルピロリドンに溶解しておき、それにリチウムニッケルマンガン酸化物とりん片状黒鉛との混合物を加え、さらにN−メチルピロリドンを加えて粘度を調整して塗液を調製した。
【0026】
この塗液を厚さ20μmのアルミニウム箔の上に乗せ、一定の隙間(200μm)を設けたアプリケーターで塗液を擦り切ることによって塗布し、乾燥して塗膜を形成した。同様にアルミニウム箔の裏面にも塗液を塗布し、真空乾燥して塗膜を形成した。この電極体をプレスし、ついで幅28mmに裁断して、シート状の正極を作製した。
【0027】
負極は人造黒鉛を負極活物質として用い、この人造黒鉛90重量部に対して結着剤としてポリフッ化ビニリデン(あらかじめN−メチルピロリドンに溶解させておく)を10重量部加えて混合し、さらにN−メチルピロリドンを加えて粘度を調整して塗液を調製し、その塗液を厚さ18μmの銅箔上に前記正極の場合と同様に塗布し、乾燥した後、プレスし、ついで幅30mmに裁断して、シート状の負極を作製した。
【0028】
上記のようにして作製した正極と負極の活物質の重量比は、正極活物質/負極活物質=2.0であった。
【0029】
電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶液(体積比で1:1)に1mol/lのLiPF6を溶解した有機電解液を用いた。
【0030】
以上の電池構成材料を用い、図1に示す構造でR5形(外径:14.95mm、高さ:39.7mm)の筒形リチウム二次電池を作製した。
【0031】
電池の作製にあたっては、正極端部のアルミニウム箔および負極端部の銅箔を露出させた部分に、それぞれ短冊状のアルミニウム製タブおよびニッケル製タブを抵抗溶接し、該正極と負極との間に厚さ25μmのポリエチレン製の微孔性フィルムからなるセパレータを介在させて渦巻状に巻回して渦巻状電極体を作製した。
【0032】
つぎに、上記渦巻状電極体の負極のニッケル製タブを絶縁リングを介して電池ケースの底部に溶接し、グルーブしたのち封口板と正極のアルミニウム製タブとを溶接機で溶接した。その後、電池を真空乾燥機で乾燥し、乾燥雰囲気のグローブボックス中で電解液を2cc注入しエキセンプレスで封口した。
【0033】
ここで、図1に示す電池について説明すると、1は前記の正極で、2は前記の負極である。ただし、この図1では、繁雑化を避けるため、正極1や負極2の作製にあたって使用された集電体としてのアルミニウム箔や銅箔などは図示していない。そして、3はセパレータで、4は電解液である。
【0034】
5はステンレス鋼製の電池ケースであり、この電池ケース5は負極端子を兼ねている。電池ケース5の底部にはポリテトラフルオロエチレンシートからなる絶縁体6が配置され、電池ケース5の内周部にもポリテトラフルオロエチレンシートからなる絶縁体7が配置されていて、前記正極1、負極2およびセパレータ3からなる渦巻状電極体や、電解液4などは、この電池ケース5内に収容されている。
【0035】
8はステンレス鋼製の封口板であり、この封口板8の中央部にはガス通気孔8aが設けられている。9はポリプロピレン製の環状パッキング、10はチタン製の可撓性薄板で、11は環状のポリプロピレン製の熱変形部材である。上記の熱変形部材11は温度によって変性することにより、可撓性薄板10の破壊圧力を変える作用をする。
【0036】
12はニッケルメッキを施した圧延鋼製の端子板であり、この端子板12には切刃12aとガス排出孔12bとが設けられていて、電池内部にガスが発生して電池の内部圧力が上昇し、その内圧上昇によって可撓性薄板10が変形したときに、上記切刃12aによって可撓性薄板10を破壊し、電池内部のガスを上記ガス排出孔12bから電池外部に排出して、電池の破壊が防止できるように設計されている。
【0037】
13は絶縁パッキングで、14はリードとしてのアルミニウム製タブであり、このタブ14は正極1と封口板8とを電気的に接続しており、端子板12は封口板8との接触により正極端子として作用する。また、15は負極2と電池ケース5とを電気的に接続するリードとしてのニッケル製タブである。
【0038】
実施例2
正極活物質として用いるリチウムニッケルマンガン酸化物を以下に示すようにして合成した。
【0039】
酸化ニッケルと炭酸マンガンをNi/Mn=8/2(モル比)の割合になるように秤量したのち、充分混合し、その混合物に水酸化リチウムをLi/(Ni+Mn)=1.40(モル比)となるように添加し、メノウ製の乳鉢で粉砕しつつ混合した。これを酸素(O2 )気流中において500℃で2時間予備加熱した後、680℃で20時間加熱して焼成することによって、リチウムニッケルマンガン酸化物を合成した。このようにして合成したリチウムニッケルマンガン酸化物は、化学式で表すと、ほぼLi1.09Ni0.73Mn0.182 になる。
【0040】
このリチウムニッケルマンガン酸化物を正極活物質として用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
【0041】
実施例3
正極活物質として用いるリチウムニッケルマンガン酸化物を以下に示すように合成した。
【0042】
酸化ニッケルと炭酸マンガンをNi/Mn=7/3(モル比)の割合になるように秤量したのち、充分混合し、その混合物に水酸化リチウムをLi/(Ni+Mn)=1.45(モル比)となるように添加し、メノウ製の乳鉢で粉砕しつつ混合した。これを酸素(O2 )気流中において500℃で2時間予備加熱した後、680℃で20時間加熱して焼成することによって、リチウムニッケルマンガン酸化物を合成した。このようにして合成したリチウムニッケルマンガン酸化物は、化学式で表すと、ほぼLi1.13Ni0.61Mn0.262 になる。
【0043】
このリチウムニッケルマンガン酸化物を正極活物質として用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
【0044】
実施例4
正極活物質として用いるリチウムニッケルマンガン酸化物を以下に示すように合成した。
【0045】
酸化ニッケルと炭酸マンガンをNi/Mn=6/4(モル比)の割合になるように秤量したのち、充分混合し、その混合物に水酸化リチウムをLi/(Ni+Mn)=1.50(モル比)となるように添加し、メノウ製の乳鉢で粉砕しつつ混合した。これを酸素(O2 )気流中において500℃で2時間予備加熱した後、700℃で20時間加熱して焼成することによって、リチウムニッケルマンガン酸化物を合成した。このようにして合成したリチウムニッケルマンガン酸化物は、化学式で表すと、ほぼLi1.17Ni0.50Mn0.332 になる。
【0046】
このリチウムニッケルマンガン酸化物を正極活物質として用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
【0047】
比較例1
正極活物質として用いるリチウムニッケルマンガン酸化物を以下のように合成した。
【0048】
酸化ニッケルと炭酸マンガンをNi/Mn=5/5(モル比)の割合になるように秤量したのち、充分混合し、その混合物に水酸化リチウムをLi/(Ni+Mn)=1.55(モル比)となるように添加し、メノウ製の乳鉢で粉砕しつつ混合した。これを酸素(O2 )気流中において500℃で2時間予備加熱した後、680℃で20時間加熱して焼成することによって、リチウムニッケルマンガン酸化物を合成した。このようにして合成したリチウムニッケルマンガン酸化物は、化学式で表すと、ほぼLi1.20Ni0.40Mn0.402 になる。
【0049】
このリチウムニッケルマンガン酸化物を正極活物質として用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
【0050】
比較例2
正極活物質として以下のように合成したリチウムニッケル酸化物を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
【0051】
リチウムニッケル酸化物の合成はつぎの通りである。
【0052】
水酸化リチウム(LiOH・H2 O)と酸化ニッケル(III)(Ni2 3 )とをLi/Ni=1/1.25(モル比)の割合になるように秤量したのち、メノウ製の乳鉢で粉砕しつつ混合した。これを酸素(O2 )気流中において500℃で2時間予備加熱した後、680℃で20時間加熱して焼成することによって、リチウムニッケル酸化物を合成した。このようにして合成したリチウムニッケル酸化物は、化学式で表すと、ほぼLi1.0 Ni1.0 2 である。
【0053】
つぎに、上記実施例1〜4の電池および比較例1〜2の電池について、10回の充放電を行い、その後、負荷特性を測定した。充電は4.1Vの定電圧充電で1Cの電流制限を設けた。すなわち、この方法では4.1Vの電圧を電池に印加して電池電圧が4.1Vになるまで充電するが、充電初期に大きな電流が流れないようにするために1Cの電流制限を設けた。放電は2.75Vまで行った。充放電電流をC(放電率)で表示した場合、これらR5形では560mAを1Cとして充放電を行った。すなわち、1Cが560mAを表わし、0.2Cが112mAを表わす。
【0054】
表1に上記実施例1〜4の電池および比較例1〜2の電池の負荷特性を示す。負荷特性は0.2C(112mA)の電流で放電したときの容量を100%として、2C(1120mA)の電流で放電したときの容量をパーセントで表示している。
【0055】
【表1】

Figure 0003539518
【0056】
表1に示すように、LiNiO2 にLi2 MnO3 を固溶させ、Li(1+1/3y)Ni(1-y) Mn(2/3y)2 (0<y≦0.5)とすることによって、負荷特性が改善された。
【0057】
すなわち、正極活物質としてLi1.05Ni0.86Mn0.092 を用いた実施例1、正極活物質としてLi1.09Ni0.73Mn0.182 を用いた実施例2、正極活物質としてLi1.13Ni0.61Mn0.262 を用いた実施例3および正極活物質としてLi1.17Ni0.50Mn0.332 を用いた実施例4は、正極活物質としてLi1.20Ni0.40Mn0.402 を用いた比較例1や正極活物質としてLi1.0 Ni1.0 2 を用いた比較例2に比べて、(B/A)×100値が大きく、負荷特性が優れていた。なお、正極活物質としてLiCoO2 を用いた場合の0.2C時の容量は約400mAhであり、実施例1〜4はLiCoO2 を用いた場合よりも高容量であった。
【0058】
【発明の効果】
以上説明したように、本発明では、正極活物質として、LiNiO2 にLi2 MnO3 を固溶させ、Li(1+1/3y)Ni(1-y) Mn(2/3y)2 (0<y≦0.5)としたものを用いることによって、大気中で取り扱った場合でも、負荷特性の低下を招くことなく、負荷特性の良好なリチウム二次電池を提供することができた。また、本発明では、高価なコバルトの使用を要することなく、高容量化を達成することができた。
【図面の簡単な説明】
【図1】本発明に係るリチウム二次電池の一例を示す断面図である。
【符号の説明】
1 正極
2 負極
3 セパレータ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium secondary battery, and more particularly, to improvement of a positive electrode active material thereof.
[0002]
[Prior art]
As a positive electrode active material for a lithium secondary battery, a lithium composite oxide such as lithium cobalt oxide (LiCoO 2 ) or lithium nickel oxide (LiNiO 2 ) is known as a positive electrode active material capable of generating a high voltage.
[0003]
Many solid solutions have been proposed for each oxide. For example, for LiNiO 2 , a solid solution of Co (cobalt) such as LiNi 1-x Co x O 2 (eg, US Pat. No. 4,988,080) And solid solutions (such as Mn (manganese), Ti (titanium), V (vanadium), Fe (iron)) such as Li y Ni 1-x Me X O 2 (Me = Mn, Ti, V, Fe, etc.) For example, Japanese Patent Application Laid-Open No. 5-283076 has been proposed.
[0004]
[Problems to be solved by the invention]
Among the positive electrode active material, solid solution LiNiO 2 and based on it is less expensive than LiCoO 2, moreover although large charge-discharge capacity equivalent to LiCoO 2 is advantageous in that it can be expected, compared to LiCoO 2 There is a problem that it is weak against moisture (moisture in the air) and the load characteristics deteriorate when handled in the air.
[0005]
Therefore, an object of the present invention is to provide a lithium secondary battery having improved resistance to moisture and good load characteristics even when handled in the atmosphere.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, Li 2 MnO 3 was dissolved in LiNiO 2 to form a solid solution of Li 1 + 1 / 3y Ni 1-y Mn 2 / 3y O 2 (however, By using a solid solution represented by 0 <y ≦ 0.5), a decrease in load characteristics can be prevented even when handled in the atmosphere, and a lithium secondary battery having good load characteristics can be obtained. This led to the completion of the present invention.
[0007]
The present invention will be described in further detail. When LiNiO 2 (lithium nickel oxide) is used as the positive electrode active material, the load characteristics are deteriorated because LiNiO 2 reacts with H 2 O (water) to cause another load. It is thought to be because it changes into a substance. In contrast, LiCoO 2 (lithium cobalt oxide) is unlikely to cause such a reaction. For example, if LiCoO 2 is dried at 250 ° C. even after immersion in water, the same load characteristics as before immersion can be obtained. However, once immersed in water, LiNiO 2 drops to a charge / discharge capacity of 50 to 70% at the time of 1C discharge before immersion even when dried.
[0008]
Therefore, the present inventors consider that LiNiO 2 is likely to react with water because of its crystal structure, and studied solid solutions with various compounds. As a result, a series of LiMO 2 (M is Mn such as Mn) It has been found that, by dissolving Li 2 MnO 3 having a chemical formula and structure different from that of the first transition metal) into LiNiO 2 , a reduction in load characteristics can be prevented even when handled in the air.
[0009]
The solid solution of LiNiO 2 and Li 2 MnO 3 used as the positive electrode active material in the present invention is different from the conventionally proposed positive electrode active material in the following points.
[0010]
For example, in the case where Me = Mn of Li y Ni 1-x Me X O 2 described in JP-A-5-283076, a LiMO 2 type compound is dissolved in LiNiO 2 , And a solid solution of Li 2 MnO 3 (Li 2 HO 3 type material). In the present invention, a solid solution of LiNiO 2 and LiMnO 3 used as a positive electrode active material is represented by a chemical formula of Li 1 + 1 / 3y Ni 1-y Mn 2 / 3y O 2 (where 0 <y ≦ 0.5). It differs from the above-mentioned Li y Ni 1-x Me x O 2 (basically, y is 1 and is a LiMO 2 type when Ni and Me are collectively expressed as M) by a difference in coefficient. Can be distinguished.
[0011]
The configuration of the lithium secondary battery of the present invention is performed, for example, as follows.
For the positive electrode, a solid solution of the above-mentioned LiNiO 2 and Li 2 MnO 2 (this is referred to as lithium nickel manganese oxide) is used, and an electron conduction aid such as flake graphite and acetylene black, and It is prepared by appropriately adding and mixing a binder such as vinylidene or polytetrafluoroethylene, and molding the obtained positive electrode mixture by an appropriate means. Usually, a positive electrode active material, an electron conduction auxiliary agent, and polyvinylidene fluoride are added to N-methylpyrrolidone and mixed to prepare a coating solution containing the positive electrode mixture, and the coating solution is made of aluminum foil, stainless steel foil, or the like. The positive electrode is prepared by applying the composition on a metal foil, drying and pressing to form a sheet. In particular, when polyvinylidene fluoride is used as a binder, it is easily dissolved in N-methylpyrrolidone and easily formed into a coating solution.
[0012]
As the negative electrode active material, lithium metal or a lithium-containing compound is used, and as the lithium-containing compound, there are a lithium alloy and others. Examples of the lithium alloy include lithium-aluminum, lithium-lead, lithium-indium, lithium-gallium, lithium-indium-gallium, and the like. Examples of the lithium-containing compound other than the lithium alloy include a carbon material having a turbostratic structure, graphite, tungsten oxide, and lithium iron composite oxide. Some of them do not contain lithium at the time of production, but when they act as a negative electrode active material, they are in a state containing lithium by chemical means, electrochemical means, or the like.
[0013]
The production of the negative electrode is performed by substantially the same means as in the case of the positive electrode. For example, it is produced by appropriately adding and mixing a binder such as polyvinylidene fluoride or polytetrafluoroethylene to the above-mentioned negative electrode active material, and molding the obtained negative electrode mixture by an appropriate means. Normally, a negative electrode active material and a binder are added to and mixed with N-methylpyrrolidone to prepare a coating solution containing the negative electrode mixture, and the coating solution is applied on a metal foil such as a copper foil or a stainless steel foil. After drying and pressing, the negative electrode is manufactured by pressing to form a sheet.
[0014]
The preferable weight ratio between the positive electrode active material and the negative electrode active material is slightly different depending on the material used as the negative electrode active material. However, when graphite is used as the negative electrode active material, the positive electrode active material / negative electrode active material (weight ratio) is 2 to 3 times. The battery having the above range is preferable because of its large charge / discharge capacity.
[0015]
Examples of the electrolytic solution include 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolan, diethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate. An organic electrolyte obtained by dissolving one or more electrolytes such as LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiClO 4 , LiPF 6 , and LiBF 4 in a single solvent or a mixture of two or more solvents. Used. If the amount of electrolyte filled in the battery is too large, it causes liquid leakage, etc.If it is too small, it will not reach the electrodes and the load characteristics of the battery will deteriorate, so the total amount of the positive electrode mixture and the negative electrode mixture On the other hand, it is preferably about 0.1 to 0.5% by weight.
[0016]
As the separator, a separator having high strength and a high liquid retention rate of an electrolyte is preferable. From such a viewpoint, a polypropylene microporous film or polyethylene having a thickness of 10 to 50 μm and an opening ratio of 30 to 70% is preferable. And the like are preferred.
[0017]
In preparing the positive electrode, the electron conduction aid such as flaky graphite added to the positive electrode active material is preferably 1 to 9% by weight, particularly 2 to 7% by weight, based on the positive electrode active material. The binder such as polyvinylidene fluoride added to the substance is preferably 1 to 5% by weight, particularly preferably 1 to 4% by weight based on the positive electrode active material. The amounts of the electron conduction aid and the binder are based on 100% by weight of the positive electrode active material.
[0018]
In preparing the negative electrode, the amount of the binder such as polyvinylidene fluoride added to the negative electrode active material is preferably 5 to 20% by weight based on the negative electrode active material. The amount of the binder is also an amount based on 100% by weight of the negative electrode active material.
[0019]
The application of the coating liquid at the time of producing electrodes such as a positive electrode and a negative electrode is preferably performed by an applicator, a reverse roll, a die coat, or the like. In particular, when applying a thin layer having a thickness of about several tens of μm, it is preferable to apply a reverse roll or die coat. In producing the electrode, it is also possible to change the composition of the coating liquid and perform a multilayer coating in which coating liquids having different compositions are applied in layers.
[0020]
The battery structure is explosion-proof to prevent the battery from exploding if gas is generated inside a rectangular or cylindrical battery case made of metal such as iron (with nickel plating on the surface) or stainless steel. It is preferable to provide a vent (explosion-proof safety valve).
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.
[0022]
Example 1
As the negative electrode active material, artificial graphite synthesized at 2800 ° C. was used, and as the positive electrode active material, lithium hydroxide (LiOH · H 2 O), nickel oxide (III) (Ni 2 O 3 ), and manganese carbonate (MnCO 3 ) were used. Lithium nickel manganese oxide composed of a solid solution of LiNiO 2 and Li 2 MnO 3 synthesized by heat treatment was used. The synthesis of the lithium nickel manganese oxide was performed as described below.
[0023]
After weighing nickel oxide and manganese carbonate so as to have a ratio of Ni / Mn = 9/1 (molar ratio), they are mixed well, and lithium hydroxide becomes Li / (Ni + Mn) = 1.35 (molar ratio). And crushed and mixed in an agate mortar. This was preheated in an oxygen (O 2 ) stream at 500 ° C. for 2 hours, and then heated at 680 ° C. for 20 hours and fired to synthesize lithium nickel manganese oxide. The lithium nickel manganese oxide synthesized in this manner is approximately Li 1.05 Ni 0.86 Mn 0.09 O 2 when represented by a chemical formula.
[0024]
Using the above lithium nickel manganese oxide as a positive electrode active material, 91 parts by weight of the lithium nickel manganese oxide, 6 parts by weight of flake graphite as an electron conduction aid, and 3 parts of polyvinylidene fluoride as a binder. Parts by weight were added and mixed.
[0025]
The mixing of the flaky graphite into the lithium nickel manganese oxide was performed in an atmosphere at a relative humidity of 70% and a temperature of 25 ° C. for about 3 hours. Polyvinylidene fluoride is mixed by dissolving polyvinylidene fluoride in N-methylpyrrolidone in advance, adding a mixture of lithium nickel manganese oxide and flaky graphite, and further adding N-methylpyrrolidone. Was adjusted to prepare a coating solution.
[0026]
This coating solution was placed on an aluminum foil having a thickness of 20 μm, and the coating solution was applied by rubbing off the coating solution with an applicator provided with a fixed gap (200 μm), and dried to form a coating film. Similarly, a coating liquid was applied to the back surface of the aluminum foil, and dried under vacuum to form a coating film. This electrode body was pressed and then cut into a width of 28 mm to produce a sheet-like positive electrode.
[0027]
For the negative electrode, artificial graphite was used as a negative electrode active material. To 90 parts by weight of the artificial graphite, 10 parts by weight of polyvinylidene fluoride (dissolved in N-methylpyrrolidone in advance) as a binder was added and mixed. -Methylpyrrolidone was added to adjust the viscosity to prepare a coating solution, and the coating solution was applied to a copper foil having a thickness of 18 μm in the same manner as in the case of the positive electrode, dried, pressed, and then pressed to a width of 30 mm. The sheet was cut to produce a sheet-shaped negative electrode.
[0028]
The weight ratio of the positive electrode and the negative electrode active material produced as described above was positive electrode active material / negative electrode active material = 2.0.
[0029]
As the electrolytic solution, an organic electrolytic solution obtained by dissolving 1 mol / l of LiPF6 in a mixed solution (1: 1 by volume) of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was used.
[0030]
Using the above battery constituent materials, an R5 type (outer diameter: 14.95 mm, height: 39.7 mm) cylindrical lithium secondary battery having the structure shown in FIG. 1 was produced.
[0031]
In producing the battery, strip-shaped aluminum tabs and nickel tabs were resistance-welded to portions where the aluminum foil at the positive electrode end and the copper foil at the negative electrode end were exposed, respectively. It was spirally wound with a separator made of a microporous film made of polyethylene having a thickness of 25 μm to produce a spiral electrode body.
[0032]
Next, the nickel tab of the negative electrode of the spiral electrode body was welded to the bottom of the battery case via an insulating ring, and after grooved, the sealing plate and the aluminum tab of the positive electrode were welded by a welding machine. Thereafter, the battery was dried with a vacuum drier, and 2 cc of the electrolyte was injected into a glove box in a dry atmosphere, and sealed with an eccentric press.
[0033]
Here, the battery shown in FIG. 1 will be described. 1 is the positive electrode and 2 is the negative electrode. However, FIG. 1 does not show an aluminum foil, a copper foil, or the like as a current collector used in manufacturing the positive electrode 1 or the negative electrode 2 in order to avoid complication. Reference numeral 3 denotes a separator, and reference numeral 4 denotes an electrolytic solution.
[0034]
Reference numeral 5 denotes a stainless steel battery case, which also serves as a negative electrode terminal. An insulator 6 made of a polytetrafluoroethylene sheet is arranged at the bottom of the battery case 5, and an insulator 7 made of a polytetrafluoroethylene sheet is also arranged at the inner periphery of the battery case 5. The spiral electrode body composed of the negative electrode 2 and the separator 3, the electrolyte 4, and the like are accommodated in the battery case 5.
[0035]
Reference numeral 8 denotes a sealing plate made of stainless steel, and a gas ventilation hole 8a is provided in the center of the sealing plate 8. 9 is an annular packing made of polypropylene, 10 is a flexible thin plate made of titanium, and 11 is a thermally deformable member made of an annular polypropylene. The heat deformable member 11 has a function of changing the breaking pressure of the flexible thin plate 10 by being denatured by the temperature.
[0036]
Reference numeral 12 denotes a nickel-plated rolled steel terminal plate. The terminal plate 12 is provided with a cutting blade 12a and a gas discharge hole 12b, and gas is generated inside the battery to reduce the internal pressure of the battery. When the flexible thin plate 10 is deformed due to the rise of the internal pressure, the flexible thin plate 10 is broken by the cutting blade 12a, and the gas inside the battery is discharged from the gas exhaust hole 12b to the outside of the battery. It is designed to prevent battery destruction.
[0037]
Reference numeral 13 denotes an insulating packing, 14 denotes an aluminum tab as a lead, and the tab 14 electrically connects the positive electrode 1 to the sealing plate 8. The terminal plate 12 contacts the sealing plate 8 to form a positive terminal. Act as Reference numeral 15 denotes a nickel tab as a lead for electrically connecting the negative electrode 2 and the battery case 5.
[0038]
Example 2
A lithium nickel manganese oxide used as a positive electrode active material was synthesized as described below.
[0039]
Nickel oxide and manganese carbonate were weighed so as to have a ratio of Ni / Mn = 8/2 (molar ratio), mixed well, and lithium hydroxide was added to the mixture with Li / (Ni + Mn) = 1.40 (molar ratio). ) And pulverized in an agate mortar and mixed. This was preheated in an oxygen (O 2 ) stream at 500 ° C. for 2 hours, and then heated at 680 ° C. for 20 hours and fired to synthesize lithium nickel manganese oxide. The lithium nickel manganese oxide synthesized in this manner is substantially represented by Li 1.09 Ni 0.73 Mn 0.18 O 2 when represented by a chemical formula.
[0040]
A lithium secondary battery was manufactured in the same manner as in Example 1, except that this lithium nickel manganese oxide was used as a positive electrode active material.
[0041]
Example 3
A lithium nickel manganese oxide used as a positive electrode active material was synthesized as shown below.
[0042]
Nickel oxide and manganese carbonate were weighed so as to have a ratio of Ni / Mn = 7/3 (molar ratio), mixed well, and lithium hydroxide was added to the mixture with Li / (Ni + Mn) = 1.45 (molar ratio). ) And pulverized in an agate mortar and mixed. This was preheated in an oxygen (O 2 ) stream at 500 ° C. for 2 hours, and then heated at 680 ° C. for 20 hours and fired to synthesize lithium nickel manganese oxide. The lithium nickel manganese oxide synthesized in this manner is approximately Li 1.13 Ni 0.61 Mn 0.26 O 2 when represented by a chemical formula.
[0043]
A lithium secondary battery was manufactured in the same manner as in Example 1, except that this lithium nickel manganese oxide was used as a positive electrode active material.
[0044]
Example 4
A lithium nickel manganese oxide used as a positive electrode active material was synthesized as shown below.
[0045]
Nickel oxide and manganese carbonate were weighed so as to have a ratio of Ni / Mn = 6/4 (molar ratio), mixed well, and lithium hydroxide was added to the mixture with Li / (Ni + Mn) = 1.50 (molar ratio). ) And pulverized in an agate mortar and mixed. This was preheated at 500 ° C. for 2 hours in an oxygen (O 2 ) gas stream, and then heated at 700 ° C. for 20 hours and fired to synthesize lithium nickel manganese oxide. The lithium nickel manganese oxide synthesized in this manner is substantially expressed as Li 1.17 Ni 0.50 Mn 0.33 O 2 by a chemical formula.
[0046]
A lithium secondary battery was manufactured in the same manner as in Example 1, except that this lithium nickel manganese oxide was used as a positive electrode active material.
[0047]
Comparative Example 1
A lithium nickel manganese oxide used as a positive electrode active material was synthesized as follows.
[0048]
Nickel oxide and manganese carbonate were weighed so as to have a ratio of Ni / Mn = 5/5 (molar ratio), mixed well, and lithium hydroxide was added to the mixture with Li / (Ni + Mn) = 1.55 (molar ratio). ) And pulverized in an agate mortar and mixed. This was preheated in an oxygen (O 2 ) stream at 500 ° C. for 2 hours, and then heated at 680 ° C. for 20 hours and fired to synthesize lithium nickel manganese oxide. The lithium nickel manganese oxide synthesized in this manner is approximately Li 1.20 Ni 0.40 Mn 0.40 O 2 when represented by a chemical formula.
[0049]
A lithium secondary battery was manufactured in the same manner as in Example 1, except that this lithium nickel manganese oxide was used as a positive electrode active material.
[0050]
Comparative Example 2
A lithium secondary battery was manufactured in the same manner as in Example 1, except that a lithium nickel oxide synthesized as follows was used as the positive electrode active material.
[0051]
The synthesis of lithium nickel oxide is as follows.
[0052]
Lithium hydroxide (LiOH.H 2 O) and nickel oxide (III) (Ni 2 O 3 ) were weighed so that the ratio of Li / Ni = 1 / 1.25 (molar ratio), and then agate was manufactured. Mix while crushing in a mortar. This was preheated in an oxygen (O 2 ) stream at 500 ° C. for 2 hours, and then heated at 680 ° C. for 20 hours and calcined to synthesize lithium nickel oxide. The lithium nickel oxide synthesized in this manner is approximately Li 1.0 Ni 1.0 O 2 when represented by a chemical formula.
[0053]
Next, the batteries of Examples 1 to 4 and the batteries of Comparative Examples 1 and 2 were charged and discharged 10 times, and then the load characteristics were measured. The charging was performed at a constant voltage of 4.1 V and a current limit of 1 C was provided. That is, in this method, a voltage of 4.1 V is applied to the battery to charge the battery until the battery voltage becomes 4.1 V. However, a current limit of 1 C is provided in order to prevent a large current from flowing at the beginning of charging. Discharge was performed up to 2.75V. When the charging / discharging current is represented by C (discharge rate), charging / discharging was performed with 560 mA as 1 C in these R5 types. That is, 1C represents 560 mA, and 0.2C represents 112 mA.
[0054]
Table 1 shows the load characteristics of the batteries of Examples 1 to 4 and the batteries of Comparative Examples 1 and 2. In the load characteristics, the capacity at the time of discharging at a current of 2 C (1120 mA) is expressed as a percentage, with the capacity at the time of discharging at a current of 0.2 C (112 mA) being 100%.
[0055]
[Table 1]
Figure 0003539518
[0056]
As shown in Table 1, Li 2 MnO 3 is dissolved in LiNiO 2 to form a solid solution, and Li (1 + 1 / 3y) Ni (1-y) Mn (2 / 3y) O 2 (0 <y ≦ 0.5) As a result, the load characteristics were improved.
[0057]
That is, Example 1 using Li 1.05 Ni 0.86 Mn 0.09 O 2 as the positive electrode active material, Example 2 using Li 1.09 Ni 0.73 Mn 0.18 O 2 as the positive electrode active material, and Li 1.13 Ni 0.61 Mn 0.26 as the positive electrode active material the O 2 as examples 3 and a positive electrode active material was used with a Li 1.17 Ni 0.50 Mn 0.33 O 2 example 4 Comparative example 1 and the positive electrode active using Li 1.20 Ni 0.40 Mn 0.40 O 2 as the positive electrode active material Compared with Comparative Example 2 using Li 1.0 Ni 1.0 O 2 as the substance, the value of (B / A) × 100 was large and the load characteristics were excellent. The capacity at 0.2 C when LiCoO 2 was used as the positive electrode active material was about 400 mAh, and Examples 1 to 4 had higher capacities than when LiCoO 2 was used.
[0058]
【The invention's effect】
As described above, in the present invention, Li 2 MnO 3 is dissolved in LiNiO 2 as a positive electrode active material, and Li (1 + 1 / 3y) Ni (1-y) Mn (2 / 3y) O 2 ( The use of the battery with 0 <y ≦ 0.5) provided a lithium secondary battery having good load characteristics without deteriorating load characteristics even when handled in the air. Further, according to the present invention, high capacity can be achieved without using expensive cobalt.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of a lithium secondary battery according to the present invention.
[Explanation of symbols]
1 positive electrode 2 negative electrode 3 separator

Claims (1)

負極活物質としてリチウムまたはリチウム含有化合物を用いるリチウム二次電池において、正極活物質としてLi 1+1/3y Ni 1-y Mn 2/3y 2 (ただし、0<y≦0.5)で表されるLiNiO2 とLi2 MnO3 との固溶体を用いたことを特徴とするリチウム二次電池。In a lithium secondary battery using lithium or a lithium-containing compound as a negative electrode active material, Li 1 + 1 / 3y Ni 1-y Mn 2 / 3y O 2 (where 0 <y ≦ 0.5) is used as a positive electrode active material. lithium secondary battery, characterized by using a solid solution of LiNiO 2 and Li 2 MnO 3, which is.
JP22728795A 1995-08-11 1995-08-11 Lithium secondary battery Expired - Fee Related JP3539518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22728795A JP3539518B2 (en) 1995-08-11 1995-08-11 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22728795A JP3539518B2 (en) 1995-08-11 1995-08-11 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0955211A JPH0955211A (en) 1997-02-25
JP3539518B2 true JP3539518B2 (en) 2004-07-07

Family

ID=16858454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22728795A Expired - Fee Related JP3539518B2 (en) 1995-08-11 1995-08-11 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3539518B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063838A1 (en) 2007-11-12 2009-05-22 Gs Yuasa Corporation Active material for lithium rechargeable battery, lithium rechargeable battery, and process for producing the same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146662A (en) * 2001-11-13 2003-05-21 Nikki Chemcal Co Ltd Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same
US7393476B2 (en) 2001-11-22 2008-07-01 Gs Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP5256816B2 (en) * 2007-03-27 2013-08-07 学校法人神奈川大学 Cathode material for lithium-ion batteries
KR101430616B1 (en) * 2007-12-18 2014-08-14 삼성에스디아이 주식회사 Cathode and lithium battery using the same
FR2932175B1 (en) * 2008-06-05 2011-06-03 Commissariat Energie Atomique POSITIVE ELECTRODE MATERIAL FORMED OF A LAMELLAR TYPE OXIDE FOR LITHIUM ACCUMULATOR.
KR101762980B1 (en) 2009-09-30 2017-07-28 도다 고교 가부시끼가이샤 Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
WO2011068172A1 (en) * 2009-12-04 2011-06-09 日産自動車株式会社 Positive electrode material for electrical device, and electrical device produced using same
JP5733550B2 (en) * 2010-02-26 2015-06-10 トヨタ自動車株式会社 Lithium ion secondary battery
WO2011114842A1 (en) * 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP5152246B2 (en) * 2010-04-23 2013-02-27 株式会社豊田自動織機 Cathode active material for lithium ion secondary battery and lithium ion secondary battery
JP5682172B2 (en) 2010-08-06 2015-03-11 Tdk株式会社 Active material, method for producing active material, and lithium ion secondary battery
JP2012190772A (en) * 2011-02-25 2012-10-04 Idemitsu Kosan Co Ltd All-solid lithium ion battery, and positive electrode mixture
US9586834B2 (en) 2011-03-30 2017-03-07 Toda Kogyo Corporation Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP2013060319A (en) * 2011-09-13 2013-04-04 Toyota Industries Corp Lithium manganese (iv) nickel (iii)-based oxide, positive electrode active material for lithium ion secondary battery containing the oxide, lithium ion secondary battery using the material, and vehicle carrying the battery
CN102522590B (en) * 2011-12-26 2014-09-17 华为技术有限公司 Non-aqueous organic electrolyte, lithium ion secondary battery containing non-aqueous organic electrolyte, preparation method of lithium ion secondary battery and terminal communication equipment
JP6156713B2 (en) 2012-03-07 2017-07-05 日産自動車株式会社 Positive electrode active material, positive electrode for electric device and electric device
JP6112380B2 (en) 2012-03-07 2017-04-12 日産自動車株式会社 Positive electrode active material, positive electrode for electric device and electric device
WO2013146723A1 (en) 2012-03-27 2013-10-03 Tdk株式会社 Active material for lithium ion secondary batteries, and lithium ion secondary battery
JP6003157B2 (en) 2012-03-30 2016-10-05 戸田工業株式会社 Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6085994B2 (en) 2012-04-27 2017-03-01 日産自動車株式会社 Method for producing non-aqueous electrolyte secondary battery
EP2882029A4 (en) 2012-08-02 2015-07-29 Nissan Motor Nonaqueous organic electrolyte secondary cell
JP2014041720A (en) 2012-08-21 2014-03-06 Idemitsu Kosan Co Ltd All solid lithium ion battery and positive electrode mixture
JP6287097B2 (en) * 2012-12-05 2018-03-07 日本ゼオン株式会社 Slurry composition for composite particles for positive electrode and method for producing composite particles for positive electrode
CN103259009B (en) * 2013-04-18 2019-06-14 恩力能源科技有限公司 A kind of water-system alkali metal ion electrochemical energy storing device
JP6156078B2 (en) 2013-11-12 2017-07-05 日亜化学工業株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6524651B2 (en) 2013-12-13 2019-06-05 日亜化学工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
CN105900276B (en) 2014-01-09 2020-04-03 日产自动车株式会社 Method for manufacturing lithium ion secondary battery
DE102017207683A1 (en) 2016-05-09 2017-11-09 Nichia Corporation A process for producing a nickel-cobalt composite hydroxide and a process for producing an active material of a positive electrode for an anhydrous electrolyte secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3334179B2 (en) * 1992-09-14 2002-10-15 松下電器産業株式会社 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP3064655B2 (en) * 1992-02-07 2000-07-12 松下電器産業株式会社 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063838A1 (en) 2007-11-12 2009-05-22 Gs Yuasa Corporation Active material for lithium rechargeable battery, lithium rechargeable battery, and process for producing the same
EP2278642A1 (en) 2007-11-12 2011-01-26 GS Yuasa International Ltd. Method for producing an active material for lithium secondary battery and a lithium secondary battery

Also Published As

Publication number Publication date
JPH0955211A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
JP3539518B2 (en) Lithium secondary battery
EP1391959B1 (en) Non-aqueous electrolyte secondary battery
JP5341837B2 (en) Positive electrode, non-aqueous electrolyte battery and battery pack
EP1022797A1 (en) Polymer electrolyte battery and polymer electrolyte
JP2002008658A (en) Lithium titanium compound oxide for lithium secondary battery electrode active material, and its manufacturing method
JP3768046B2 (en) Lithium secondary battery
JPH1145720A (en) Lithium secondary battery
JP2005019149A (en) Lithium secondary battery
JPH11288712A (en) Nonaqueous secondary battery and its manufacture
JP4069988B2 (en) Lithium ion secondary battery
JP4636650B2 (en) Non-aqueous secondary battery
JP4878690B2 (en) Lithium secondary battery
JP3699589B2 (en) Positive electrode paste composition, positive electrode manufacturing method, positive electrode, and lithium secondary battery using the same
JP2013080726A (en) Positive electrode, nonaqueous electrolyte battery, and battery pack
JPH11354125A (en) Lithium secondary battery
JP3449679B2 (en) Lithium secondary battery
JP3704514B2 (en) Lithium secondary battery
JPH10255760A (en) Lithium secondary battery
JP3519466B2 (en) Method for treating positive electrode material and lithium secondary battery using the same
JP2003077478A (en) Lithium ion secondary battery
JPH11329443A (en) Lithium secondary battery
JPH10233216A (en) Lithium secondary battery
JP3895914B2 (en) Lithium secondary battery
JPH0888024A (en) Lithium secondary battery
JPH1074505A (en) Manufacture of lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees