JP3519466B2 - Method for treating positive electrode material and lithium secondary battery using the same - Google Patents

Method for treating positive electrode material and lithium secondary battery using the same

Info

Publication number
JP3519466B2
JP3519466B2 JP24698794A JP24698794A JP3519466B2 JP 3519466 B2 JP3519466 B2 JP 3519466B2 JP 24698794 A JP24698794 A JP 24698794A JP 24698794 A JP24698794 A JP 24698794A JP 3519466 B2 JP3519466 B2 JP 3519466B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
transition metal
metal oxide
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24698794A
Other languages
Japanese (ja)
Other versions
JPH0887997A (en
Inventor
和伸 松本
博行 戸城
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP24698794A priority Critical patent/JP3519466B2/en
Publication of JPH0887997A publication Critical patent/JPH0887997A/en
Application granted granted Critical
Publication of JP3519466B2 publication Critical patent/JP3519466B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池およ
びその設計に係わり、さらに詳しくはその正極材料の表
面状態に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery and its design, and more particularly to the surface condition of its positive electrode material.

【0002】[0002]

【従来の技術】リチウム二次電池用正極材料には、二硫
化チタン、リチウム金属等の他、リチウム遷移金属酸化
物である、リチウムコバルト酸化物やリチウムニッケル
酸化物が知られている。
2. Description of the Related Art As positive electrode materials for lithium secondary batteries, in addition to titanium disulfide, lithium metal and the like, lithium transition metal oxides such as lithium cobalt oxide and lithium nickel oxide are known.

【0003】[0003]

【発明が解決しようとする課題】しかし、このようなリ
チウム遷移金属酸化物は、放電容量の増大には好ましい
が、充放電によるサイクル特性で容量が劣化するという
問題があった。
However, although such a lithium transition metal oxide is preferable for increasing the discharge capacity, there is a problem that the capacity deteriorates due to the cycle characteristics due to charge and discharge.

【0004】[0004]

【課題を解決するための手段】かかる上記問題を解決す
るために、本発明者らが種々検討を行ったところ、リチ
ウム遷移金属酸化物粉末を室温でCO2ガスを含む雰囲
気中に一定時間放置し、このリチウム遷移金属酸化物粉
末を正極に用いることにより、良好なサイクル特性が達
成できることを見出したものである。リチウムニッケル
酸化物等のリチウム遷移金属酸化物を正極活物質として
用いた場合にサイクル特性が劣化する理由としては、電
解液と正極活物質の反応や、集電体と活物質の接着強度
の低下等の種々の要因が考えられるが、正極活物質に起
因する理由としては前者の電解液との反応をあげること
ができ、これには正極活物質の表面状態が大きく影響す
るものと考えられる。
In order to solve the above-mentioned problems, the inventors of the present invention have made various investigations. As a result, the lithium transition metal oxide powder was allowed to stand at room temperature in an atmosphere containing CO 2 gas for a certain period of time. However, it was found that good cycle characteristics can be achieved by using this lithium transition metal oxide powder for the positive electrode. The reason why the cycle characteristics deteriorate when a lithium transition metal oxide such as lithium nickel oxide is used as the positive electrode active material is that the reaction between the electrolytic solution and the positive electrode active material or the decrease in the adhesive strength between the current collector and the active material. Although various factors such as the above can be considered, the cause of the positive electrode active material is the former reaction with the electrolytic solution, and it is considered that the surface state of the positive electrode active material has a great influence on this.

【0005】ここで、C1SスペクトルのXPS測定
で、285eVのピ−クと289eVのピ−クはCO3
基の存在を示すものであると考えられる。
In the XPS measurement of the C1S spectrum, the peak of 285 eV and the peak of 289 eV are CO 3
It is considered to indicate the presence of a group.

【0006】即ち、通常のリチウム遷移金属酸化物の表
面状態は、酸素にH2O等が吸着しOH基となってお
り、この状態では強い酸化力を示すリチウム遷移金属酸
化物の正極活物質が電解液を酸化分解し、充放電時のサ
イクル特性を劣化させるものと考えられる。
That is, the surface state of a usual lithium transition metal oxide is an OH group in which H 2 O or the like is adsorbed by oxygen, and in this state, a positive electrode active material of the lithium transition metal oxide showing a strong oxidizing power. Is considered to cause oxidative decomposition of the electrolytic solution and deteriorate cycle characteristics during charge and discharge.

【0007】従って、正極活物質の表面にCO3基を化
学吸着させることによって、上記のようにC1Sスペク
トルのXPS測定で、285eVと289eVにピ−ク
を示す表面状態にすることができ、このCO3基が吸着
した層が上記の正極活物質と電解液との反応を抑制し、
良好なサイクル特性を達成することができるものと考え
られる。
Therefore, by chemically adsorbing a CO 3 group on the surface of the positive electrode active material, a surface state showing peaks at 285 eV and 289 eV can be obtained by XPS measurement of the C1S spectrum as described above. The layer on which the CO 3 group is adsorbed suppresses the reaction between the positive electrode active material and the electrolytic solution,
It is considered that good cycle characteristics can be achieved.

【0008】また、正極活物質の表面へのCO3基の吸
着量により285eVと289eVのピ−ク比が変化
し、285eVと289eVのピ−ク比が、0.4から
0.9の間にすることがより好ましい。
Further, the peak ratio of 285 eV and 289 eV changes depending on the amount of CO 3 groups adsorbed on the surface of the positive electrode active material, and the peak ratio of 285 eV and 289 eV is between 0.4 and 0.9. Is more preferable.

【0009】このような、C1SスペクトルのXPS測
定で、285eVと289eVにピ−クを示す正極材料
を作成するための方法としては、リチウム遷移金属酸化
物の合成時にCO2を含む雰囲気で高温で熱処理する方
法もあげられるが、最表面のみの化学吸着層を形成する
ためには、リチウム遷移金属酸化物をCO2ガスを含む
雰囲気中に一定時間放置する本発明の方法が好ましい。
As a method for producing such a positive electrode material showing peaks at 285 eV and 289 eV by XPS measurement of C1S spectrum, a high temperature in an atmosphere containing CO 2 at the time of synthesizing a lithium transition metal oxide is used. A method of heat treatment may be used, but in order to form the chemisorption layer only on the outermost surface, the method of the present invention in which the lithium transition metal oxide is allowed to stand in an atmosphere containing CO 2 gas for a certain period of time is preferable.

【0010】即ち、前者の合成時にCO2を含む雰囲気
で処理する方法では、まず、原料とCO2との化学反応
が起こり、正極活物質表面にLi2CO3等の副生物が生
成することが考えられる。
[0010] That is, in a method of treatment in an atmosphere containing CO 2 during the former synthesis, first, a chemical reaction occurs between the material and the CO 2, the by-products are produced, such as Li 2 CO 3 on the surface of the cathode active material Can be considered.

【0011】これは、処理温度が200℃から900℃
の高温で処理するために起こる反応と考えられる。
This is because the processing temperature is from 200 ° C to 900 ° C.
It is thought to be a reaction that occurs due to the treatment at high temperature.

【0012】一方、後者の処理方法は室温で処理するた
め、上記反応が起こらず、副生物の生成もない、いわゆ
る化学吸着によって吸着層が形成できる。
On the other hand, in the latter treatment method, since the treatment is carried out at room temperature, the above reaction does not occur, and by-products are not formed, so that an adsorption layer can be formed by so-called chemical adsorption.

【0013】次に、CO2ガスにより改質される表面層
の厚さの違いがある。前者の方法では、極表面層のみが
改質されるだけでなく、リチウム遷移金属酸化物の元の
物質のかなりの深さの表面層が反応し、充放電できない
ものとなり、電池特性に悪影響を及ぼす。
Next, there is a difference in the thickness of the surface layer modified by CO 2 gas. In the former method, not only the very surface layer is modified, but also the surface layer of the original material of the lithium transition metal oxide at a considerable depth reacts, which makes it impossible to charge and discharge, which adversely affects the battery characteristics. Exert.

【0014】一方、後者の方法では、CO2ガスの化学
吸着であり、XPS測定で検出可能な程度の極表面層に
限られている。従って、活物質の内部は、リチウム遷移
金属酸化物の元の物質のままで存在し、電池特性にはほ
とんど影響しない。
On the other hand, in the latter method, CO 2 gas is chemisorbed, and is limited to an extremely surface layer that can be detected by XPS measurement. Therefore, the inside of the active material remains as the original material of the lithium transition metal oxide, and has almost no effect on the battery characteristics.

【0015】また、リチウム遷移金属酸化物の中でもリ
チウムニッケル酸化物においては、サイクルによる容量
劣化が特に大きく、本発明の方法がより効果的である。
In addition, among lithium transition metal oxides, lithium nickel oxide has a particularly large capacity deterioration due to cycling, and the method of the present invention is more effective.

【0016】リチウムイオン二次電池の構成は、例えば
以下のように行う。正極には、例えばリチウムニッケル
酸化物の単独もしくは固溶体、あるいは他の酸化物を少
量混合したものを用いることができる。
The lithium ion secondary battery is constructed, for example, as follows. For the positive electrode, for example, lithium nickel oxide alone or as a solid solution, or a mixture of small amounts of other oxides can be used.

【0017】そしてこれに、りん片状黒鉛、アセチレン
ブラックなどのような電子伝導助剤と、例えばポリフッ
化ビニリデン(以下、PVDFと略す)やポリテトラフ
ルオロエチレンなどのような結着剤を加えて混合し、得
られた正極合剤を適宜の手段で成形することによって作
製される。通常は、N−メチルピロリドン(以下、NM
Pと略す)に活物質と電子伝導助剤とPVDFとを溶解
した塗液を、Al、ステンレスなどの金属箔上に塗布し
乾燥、プレスした電極を用いる。とくに、PVDFをバ
インダーに用いたときは、効果が顕著であった。
Then, an electron conduction aid such as flaky graphite or acetylene black, and a binder such as polyvinylidene fluoride (hereinafter abbreviated as PVDF) or polytetrafluoroethylene are added thereto. It is prepared by mixing and molding the obtained positive electrode mixture by an appropriate means. Usually, N-methylpyrrolidone (hereinafter, NM
An electrode obtained by applying a coating liquid in which an active material, an electron conduction aid and PVDF are dissolved in (abbreviated as P) onto a metal foil such as Al or stainless steel, and drying and pressing is used. In particular, the effect was remarkable when PVDF was used as the binder.

【0018】負極にはリチウム金属またはリチウム含有
化合物が用いられるが、そのリチウム含有化合物として
はリチウム合金とそれ以外のものがある。上記リチウム
合金としては、たとえばリチウム−アルミニウム、リチ
ウム−鉛、リチウム−インジウム、リチウム−ガリウ
ム、リチウム−インジウム−ガリウムなどがあげられ
る。 リチウム合金以外のリチウム含有化合物として
は、例えば乱層構造を有する炭素材料、黒鉛、タングス
テン酸化物、リチウム鉄複合酸化物などがあげられる。
これらは製造時にはリチウムを含んでいないものもある
が、負極として作用するときには、化学的手段、電気化
学的手段によりリチウムを含有した状態になる。
Lithium metal or a lithium-containing compound is used for the negative electrode. Examples of the lithium-containing compound include lithium alloys and others. Examples of the lithium alloy include lithium-aluminum, lithium-lead, lithium-indium, lithium-gallium, lithium-indium-gallium and the like. Examples of lithium-containing compounds other than lithium alloys include carbon materials having a turbostratic structure, graphite, tungsten oxide, lithium iron composite oxide, and the like.
Some of these do not contain lithium at the time of production, but when they act as a negative electrode, they are in a state of containing lithium by chemical means or electrochemical means.

【0019】なお、正極と負極の重量比率は、用いる材
料により異なり、例えば、正極にリチウムコバルト酸化
物、負極に黒鉛を用いた系では1.9以下で電池の充放
電容量が大きな値となり、正極にリチウムニッケル酸化
物を、負極に黒鉛を用いた系では、材料の拡散係数等の
違いから、2.0から3.0とすると電池において容量
の大きなものが得られる点で望ましい。
The weight ratio of the positive electrode and the negative electrode depends on the materials used. For example, in a system using lithium cobalt oxide for the positive electrode and graphite for the negative electrode, the charge / discharge capacity of the battery becomes a large value at 1.9 or less, In a system in which lithium nickel oxide is used for the positive electrode and graphite is used for the negative electrode, it is desirable to set 2.0 to 3.0 in order to obtain a large capacity battery in view of the difference in the diffusion coefficient of the material.

【0020】また、正極材料、負極材料には、それぞれ
リテンションと呼ばれる充電容量と放電容量の差があ
る。例えば、リチウムニッケル酸化物では、1回目の電
池の充電で抜けたリチウムのうちある割合のリチウム
は、通常の放電状態では活物質内に戻らず、1.5V近
くまで放電しないと元に戻らない。
Further, the positive electrode material and the negative electrode material each have a difference in charge capacity and discharge capacity called retention. For example, in the case of lithium nickel oxide, a certain proportion of the lithium that is lost after the first charge of the battery does not return to the active material in a normal discharge state, and does not return until it is discharged to nearly 1.5V. .

【0021】これは1回目の電池の充電で入ったリチウ
ムのうちある割合のリチウムは、炭素材料に取り込まれ
てしまうために起こる現象と考えられ、このため電池と
して容量を大きくするには、この正極と負極のリテンシ
ョンの割合(%)(充放電できる容量に対しての充放電
できない不可逆な容量の比)を一致させることが、電池
において容量の大きなものが得られる点で好ましい。
It is considered that this is a phenomenon that a certain proportion of lithium in the lithium charged in the first charging of the battery is taken into the carbon material. Therefore, in order to increase the capacity of the battery, It is preferable that the retention ratio (%) of the positive electrode and the negative electrode (ratio of irreversible capacity that cannot be charged / discharged to capacity that can be charged / discharged) be matched in order to obtain a battery having a large capacity.

【0022】また、同じ黒鉛材料でも、例えば人造黒鉛
と天然黒鉛では、リテンションの割合(%)が異なる。
従って、リテンションの割合(%)が異なる炭素材料を
2種以上混合して、リチウム遷移金属酸化物のリテンシ
ョンの割合(%)にあわせることも効果的な方法であ
る。また、逆にリチウムニッケル酸化物等にリチウムマ
ンガン酸化物等を混合して、負極のリテンションに合わ
せる方法もある。
Even with the same graphite material, for example, artificial graphite and natural graphite have different retention ratios (%).
Therefore, it is also an effective method to mix two or more kinds of carbon materials having different retention rates (%) and adjust the retention rate (%) of the lithium transition metal oxide. On the contrary, there is also a method in which lithium manganese oxide or the like is mixed with lithium nickel oxide or the like to adjust the retention of the negative electrode.

【0023】電解液としては、例えば1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、プロピレンカー
ボネート、エチレンカーボネート、γ−ブチロラクト
ン、テトラヒドロフラン、1,3−ジオキソラン、ジエ
チレンカーボネート、ジメチルカーボネート、エチルメ
チルカーボネートなどの単独または2種以上の混合溶媒
を用いることができ、電解液量は、多くすると漏液等の
原因になり、少ないと電極に浸透できず、負荷特性が悪
くなる。この点から、正極と負極活物質量の合計に対し
て重量%で0.1から0.5重量%が好ましい。
Examples of the electrolytic solution include 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, diethylene carbonate, dimethyl carbonate and ethylmethyl. It is possible to use a single solvent such as carbonate or a mixed solvent of two or more kinds. If the amount of the electrolytic solution is large, it may cause leakage or the like, and if it is small, the electrode cannot penetrate into the electrode and the load characteristics are deteriorated. From this point, 0.1 to 0.5% by weight is preferable in terms of weight% with respect to the total amount of the positive electrode and the negative electrode active material.

【0024】電解質としては、例えばLiCF3SO3
LiC49SO3、LiClO4、LiPF6、LiBF4
などの電解質の1種または2種以上を溶解させた有機電
解液が用いられる。
As the electrolyte, for example, LiCF 3 SO 3 ,
LiC 4 F 9 SO 3 , LiClO 4 , LiPF 6 , LiBF 4
An organic electrolyte solution in which one or more electrolytes are dissolved is used.

【0025】セパレータとしては、強度が充分でしかも
電解液を多く保持できるものがよく、この点から、10
から50μmの30から70%の開口率のポリプロピレ
ン製またはポリエチレン製セパレータが好ましい。
As the separator, one having sufficient strength and capable of holding a large amount of electrolytic solution is preferable. From this point, 10
Separator made of polypropylene or polyethylene having an opening ratio of 30 to 70% of 50 to 50 μm is preferable.

【0026】正極材料に混合する電子伝導助剤は例えば
りん片状黒鉛を1ないし9重量%、特に2ないし6重量
%が、結着剤としては例えばPVDFを1ないし5重量
%、特に1ないし3重量%混合するのが好ましい。負極
も同様に、結着剤を5重量%ないし20重量%混合する
のが好ましい。
The electron conduction aid mixed with the positive electrode material is, for example, 1 to 9% by weight, particularly 2 to 6% by weight of flake graphite, and the binder is, for example, 1 to 5% by weight, particularly 1 to 5% by weight of PVDF. It is preferable to mix 3% by weight. Similarly, for the negative electrode, it is preferable to mix the binder in an amount of 5 to 20% by weight.

【0027】電極の塗布は、今回はアプリケータを用い
たが、数十ミクロンの塗布には、リバースロールやダイ
コートが好ましい。又、異なる組成の塗液を重ねて塗る
重層コートも可能である。正極材料を変えて、リチウム
コバルト酸化物を下層に、リチウムニッケル酸化物を上
層に、また、PVDFをバインダーにしたものと、ポリ
ウレタンをバインダーにしたものとを重層しても良い。
Although an applicator was used for coating the electrodes this time, a reverse roll or die coating is preferable for coating several tens of microns. Also, a multilayer coating in which coating liquids having different compositions are applied in layers is possible. The positive electrode material may be changed, and lithium cobalt oxide may be used as a lower layer, lithium nickel oxide may be used as an upper layer, and PVDF as a binder and polyurethane as a binder may be stacked.

【0028】電池の構造は、例えばニッケルめっき鉄、
ステンレスなどの角形や円筒形の容器に内部でガスが発
生した場合に電池の破裂を防止するための防爆ベントが
設けられている。
The structure of the battery is, for example, nickel-plated iron,
An explosion-proof vent is provided in a rectangular or cylindrical container such as stainless steel to prevent the battery from bursting when gas is generated inside.

【0029】充電器には、定電圧で最大電流を制御し、
充電するものを用いる。また、電池パックには、通常信
頼性確保のために、過大電流が流れたときのためにヒュ
ーズなどの保護回路が設けられたものを用いる。
The charger controls the maximum current with a constant voltage,
Use what is charged. Further, as the battery pack, in order to ensure reliability, a battery pack provided with a protection circuit such as a fuse when an excessive current flows is usually used.

【0030】[0030]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to only those examples.

【0031】〈実施例1〉負極材料には、2800℃で
合成した人造黒鉛を用いた。又、正極材料には、水酸化
リチウム(LiOH・H2O)と酸化ニッケル(Ш)
(Ni23)とを熱処理して合成したリチウムニッケル
酸化物(LiNiO2として通常表わすが、LiとNi
の比は化学量論組成から若干ずれている)を用いた。
Example 1 As a negative electrode material, artificial graphite synthesized at 2800 ° C. was used. In addition, as the positive electrode material, lithium hydroxide (LiOH.H 2 O) and nickel oxide (Ш) are used.
Lithium nickel oxide synthesized by heat treating (Ni 2 O 3 ) (normally expressed as LiNiO 2 ,
(The ratio of the values slightly deviates from the stoichiometric composition).

【0032】上記の合成は以下のように行った。The above synthesis was carried out as follows.

【0033】水酸化リチウムと酸化ニッケルとをLi/
Ni=1/1.05(モル比)の割合になるように秤量
した後、メノウ製の乳鉢で粉砕しつつ混合した。これを
酸素(O2)気流中において500℃で2時間予備加熱
した後、700℃で20時間加熱して焼成した。
Li / hydroxide of lithium hydroxide and nickel oxide
After weighing so as to have a ratio of Ni = 1 / 1.05 (molar ratio), they were pulverized and mixed in an agate mortar. This was preheated in an oxygen (O 2 ) stream at 500 ° C. for 2 hours and then heated at 700 ° C. for 20 hours to be fired.

【0034】上記のように熱処理することによって合成
したリチウムニッケル酸化物を正極活物質として用い
た。なお、合成したリチウムニッケル酸化物は水分に対
して弱いため、粉砕などの取扱いは、Arガスの雰囲気
で行った。
Lithium nickel oxide synthesized by heat treatment as described above was used as a positive electrode active material. Since the synthesized lithium nickel oxide is weak against moisture, handling such as pulverization was performed in an Ar gas atmosphere.

【0035】得られた、リチウムニッケル酸化物の粉末
をCO2ガス100%の雰囲気で60分間放置した。
The obtained lithium nickel oxide powder was left to stand in an atmosphere of 100% CO 2 gas for 60 minutes.

【0036】次に、それぞれの材料を以下のようにし
て、シート状電極を作製した。なお、正極と負極の重量
比は、活物質の重量比で正極/負極=2.0とした。
Next, a sheet electrode was prepared by using the respective materials as follows. In addition, the weight ratio of the positive electrode and the negative electrode was set to positive electrode / negative electrode = 2.0 in terms of the weight ratio of the active material.

【0037】上記の正極材料に、電子伝導助剤としてり
ん片状黒鉛を6重量%、結着剤としてPVDFを3重量
%混合した。混合は、PVDFをNMPに予め溶解し、
これに正極材料とりん片状黒鉛を加え、NMPを加えて
粘度を調整した塗液を作製した。
6% by weight of flake graphite as an electron conduction aid and 3% by weight of PVDF as a binder were mixed with the above positive electrode material. For mixing, pre-dissolve PVDF in NMP,
A positive electrode material and scaly graphite were added to this, and NMP was added to prepare a coating liquid having a viscosity adjusted.

【0038】この塗液を20μm厚のAl箔の上に乗
せ、一定の隙間を設けたアプリケーターで塗液を擦り切
り塗布し乾燥した。同様に、Al箔の裏面も塗布し、真
空乾燥した。この電極をプレスし、幅28mmに裁断し
て、正極シート状電極を作製した。
This coating solution was placed on an Al foil having a thickness of 20 μm, and the coating solution was rubbed off with an applicator having a constant gap, and dried. Similarly, the back surface of the Al foil was also applied and vacuum dried. This electrode was pressed and cut into a width of 28 mm to produce a positive electrode sheet-shaped electrode.

【0039】負極も同様に、人造黒鉛に結着剤としてP
VDFを10重量%混合し、NMPを加えて粘度を調整
し、18μm厚のCu箔の上に塗布し、シート状電極を
作製した。
Similarly, the negative electrode also contains P as a binder for artificial graphite.
10% by weight of VDF was mixed, NMP was added to adjust the viscosity, and the composition was applied on a Cu foil having a thickness of 18 μm to prepare a sheet electrode.

【0040】電解液は、エチレンカーボネート(EC)
とエチルメチルカーボネート(EMC)の混合溶液(体
積比で1:1)に1 mol/lのLiPF6を溶解し
た有機電解液を用いた。
The electrolytic solution is ethylene carbonate (EC).
An organic electrolytic solution was used in which 1 mol / l of LiPF 6 was dissolved in a mixed solution of 1 mol / l of ethyl methyl carbonate (EMC) (volume ratio 1: 1).

【0041】以上の電池構成材料を用い、R5形(1
4.95mm径39.7mm長)の形状で試作した。試
作したリチウムイオン二次電池の断面図を第1図に示
す。
Using the above battery constituent materials, R5 type (1
A prototype having a shape of 4.95 mm diameter and 39.7 mm length) was produced. A cross-sectional view of a prototype lithium-ion secondary battery is shown in FIG.

【0042】それぞれの電極の端のAl箔またはCu箔
を露出させた部分に、短冊状のAlまたはNiのタブを
抵抗溶接し、厚さ25μmのポリエチレン製セパレータ
ーを挟んで捲回した。
A strip-shaped tab of Al or Ni was resistance-welded to the exposed portion of the Al foil or Cu foil at the end of each electrode, and a polyethylene separator having a thickness of 25 μm was sandwiched and wound.

【0043】負極のNiタブを絶縁リングを介して缶底
に溶接し、缶の上部に絶縁リングを挿入、グルーブした
のち封口体と正極のAlタブを溶接機で接着した。電池
を真空乾燥機で乾燥し、乾燥雰囲気のグローブボックス
中で電解液を2cc注入した後、封口した。
The Ni tab of the negative electrode was welded to the bottom of the can through the insulating ring, the insulating ring was inserted into the upper part of the can, and after grooved, the sealing body and the Al tab of the positive electrode were bonded by a welding machine. The battery was dried with a vacuum dryer, and 2 cc of the electrolytic solution was injected into the glove box in a dry atmosphere, and then the cell was sealed.

【0044】図1において、1は正極であり、2は負極
である。3は微孔性ポリエチレンフィルムからなるセパ
レータで、4はステンレス鋼製の正極タブを溶接した封
口体であり、5はステンレス鋼製の負極缶である。
In FIG. 1, 1 is a positive electrode and 2 is a negative electrode. 3 is a separator made of a microporous polyethylene film, 4 is a sealing body made by welding a positive electrode tab made of stainless steel, and 5 is a negative electrode can made of stainless steel.

【0045】前記の負極タブは、5に溶接されている。The negative electrode tab is welded to 5.

【0046】〈比較例1〉正極材料を、CO2ガスで処
理しなかったほかは、実施例1と同様にして、電池を作
製した。
Comparative Example 1 A battery was prepared in the same manner as in Example 1 except that the positive electrode material was not treated with CO 2 gas.

【0047】〈実施例2〉負極材料には、2800℃で
合成した人造黒鉛を用いた。また、正極材料には、水酸
化リチウム(LiOH・H2O)と酸化コバルト(Co3
4)とを熱処理して合成したリチウムコバルト酸化物
(LiCoO2として通常表わす)を用いた。 なお、
正極と負極の重量比は、活物質の重量比で正極/負極=
1.8とした。 上記以外は、実施例1と同様にして、
電池を作製した。
Example 2 As a negative electrode material, artificial graphite synthesized at 2800 ° C. was used. Further, the positive electrode material includes lithium hydroxide (LiOH.H 2 O) and cobalt oxide (Co 3
A lithium cobalt oxide (usually referred to as LiCoO 2 ) synthesized by heat treatment with O 4 ) was used. In addition,
The weight ratio of the positive electrode and the negative electrode is the weight ratio of the active material: positive electrode / negative electrode =
It was set to 1.8. Except for the above, in the same manner as in Example 1,
A battery was made.

【0048】〈比較例2〉正極材料を、CO2ガスで処
理しなかったほかは、実施例2と同様にして、電池を作
製した。
Comparative Example 2 A battery was prepared in the same manner as in Example 2 except that the positive electrode material was not treated with CO 2 gas.

【0049】次に、実施例1と2、比較例1と2の電池
について、充放電を行った。
Next, the batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were charged and discharged.

【0050】充電は4.2Vの定電圧充電で1Cの電流
制限を設けた。放電は2.75Vまで行った。充放電電
流をCで表示した場合、R5形で560mAを1Cとし
て充放電を行った。
Charging was carried out at a constant voltage of 4.2 V and a current limit of 1 C was set. The discharge was performed up to 2.75V. When the charging / discharging current was expressed by C, charging / discharging was performed with R5 type at 560 mA of 1C.

【0051】表1に、上記実施例、比較例の各サイクル
後の容量を示す。
Table 1 shows the capacities of the above Examples and Comparative Examples after each cycle.

【0052】[0052]

【表1】 [Table 1]

【0053】表1に示すように、黒鉛/リチウムニッケ
ル酸化物系の電池で、実施例1は比較例1に比べて充放
電による容量劣化が小さく、比較例1は20サイクル以
降で容量劣化が大きくなった。
As shown in Table 1, in a graphite / lithium nickel oxide battery, Example 1 showed less capacity deterioration due to charge / discharge than Comparative Example 1, and Comparative Example 1 showed capacity deterioration after 20 cycles. It got bigger.

【0054】図2に実施例のCO2ガス処理したリチウ
ムニッケル酸化物のXPS測定を示す。285eVと2
89eVにピークを持つことが判る。また、各ピークの
比は、0.42であった。なお、比較例1では、このよ
うなピークは見られなかった。
FIG. 2 shows the XPS measurement of the lithium nickel oxide treated with CO 2 gas in the example. 285 eV and 2
It can be seen that it has a peak at 89 eV. The ratio of each peak was 0.42. In Comparative Example 1, such a peak was not seen.

【0055】また、表1に示すように、黒鉛/リチウム
コバルト酸化物系の電池で、実施例2は比較例2に比べ
て充放電による容量劣化が小さく、比較例2は50サイ
クル以降で容量劣化が大きくなった。
Further, as shown in Table 1, in the battery of graphite / lithium cobalt oxide system, Example 2 has less capacity deterioration due to charge / discharge as compared with Comparative Example 2, and Comparative Example 2 has capacity after 50 cycles. Deterioration has increased.

【0056】図3に実施例のCO2ガス処理したリチウ
ムコバルト酸化物のXPS測定を示す。285eVと2
89eVにピークを持つ正極活物質であることが判る。
また、各ピークの比は、0.70であった。なお、比較
例2では、このようなピークは見られなかった。
FIG. 3 shows the XPS measurement of the lithium cobalt oxide treated with CO 2 gas in the example. 285 eV and 2
It can be seen that the positive electrode active material has a peak at 89 eV.
The ratio of each peak was 0.70. In Comparative Example 2, such a peak was not seen.

【0057】XPSの測定条件は、ESCA LB m
ark2でMg Kα 12kV−10mAで行った。
The measurement conditions of XPS are ESCA LB m
It was performed with Mg Kα 12 kV-10 mA at ark2.

【0058】[0058]

【発明の効果】以上説明したように、リチウム遷移金属
酸化物粉末を正極に用いるリチウム二次電池において、
このリチウム遷移金属酸化物粉末を室温でCO2ガスを
含む雰囲気中に一定時間放置することにより、サイクル
特性の向上ができることが明らかとなった。
As described above, in the lithium secondary battery using the lithium transition metal oxide powder for the positive electrode,
It has been clarified that the cycle characteristics can be improved by allowing the lithium transition metal oxide powder to stand at room temperature in an atmosphere containing CO 2 gas for a certain period of time.

【図面の簡単な説明】[Brief description of drawings]

【第1図】本発明に係るリチウム二次電池の一例を示す
断面図である。
FIG. 1 is a cross-sectional view showing an example of a lithium secondary battery according to the present invention.

【第2図】実施例1で用いる正極活物質のXPS測定の
スペクトルを概略的に示す図である。
FIG. 2 is a diagram schematically showing an XPS measurement spectrum of the positive electrode active material used in Example 1.

【第3図】実施例2で用いる正極活物質のXPS測定の
スペクトルを概略的に示す図である。
FIG. 3 is a diagram schematically showing an XPS spectrum of the positive electrode active material used in Example 2.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極キャップ 5 負極缶 1 positive electrode 2 Negative electrode 3 separator 4 Positive electrode cap 5 negative electrode can

フロントページの続き (56)参考文献 特開 平5−182667(JP,A) 特開 平6−150975(JP,A) 特開 平4−329268(JP,A) 特開 平6−140077(JP,A) 特開 平6−124700(JP,A) 特開 平6−338323(JP,A) 特開 昭59−134567(JP,A) 特開 平7−249431(JP,A) 特開 平8−162164(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 H01M 4/04 H01M 4/58 H01M 10/40 Continuation of front page (56) Reference JP-A-5-182667 (JP, A) JP-A-6-150975 (JP, A) JP-A-4-329268 (JP, A) JP-A-6-140077 (JP , A) JP 6-124700 (JP, A) JP 6-338323 (JP, A) JP 59-134567 (JP, A) JP 7-249431 (JP, A) JP 8-162164 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/02 H01M 4/04 H01M 4/58 H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウム遷移金属酸化物を正極に用いた
リチウム二次電池において、該リチウム遷移金属酸化物
粉末を室温で、CO2ガスを含む雰囲気中に放置するこ
とを特徴とするリチウム二次電池用正極材料の処理方
法。
1. A lithium secondary battery using a lithium transition metal oxide as a positive electrode, wherein the lithium transition metal oxide powder is left at room temperature in an atmosphere containing CO 2 gas. A method for treating a positive electrode material for a battery.
【請求項2】 室温でCO2ガスを含む雰囲気中に放置
されたリチウム遷移金属酸化物粉末用いて作製された正
極を用いたことを特徴とするリチウム二次電池。
2. A lithium secondary battery comprising a positive electrode prepared by using a lithium transition metal oxide powder left at room temperature in an atmosphere containing CO 2 gas.
【請求項3】 リチウム遷移金属酸化物を正極に用いた
リチウム二次電池において、該リチウム遷移金属酸化物
がC1sスペクトルのXPS測定で285eVと289
eVのピーク比が0.4〜0.9である極表面層と、元
のリチウム遷移金属酸化物のままである内部からなるこ
とを特徴とするリチウム二次電池。
3. A lithium secondary battery using a lithium transition metal oxide as a positive electrode, wherein the lithium transition metal oxide is 285 eV and 289 in XPS measurement of C1s spectrum.
A lithium secondary battery comprising an extremely surface layer having a peak ratio of eV of 0.4 to 0.9 and an interior which is still the original lithium transition metal oxide.
【請求項4】 リチウム遷移金属酸化物を正極に用いた
リチウム二次電池において、該リチウム遷移金属酸化物
粉末が室温で、CO2ガスを含む雰囲気中に放置される
ことにより、C1sスペクトルのXPS測定で285e
Vと289eVのピーク比が0.4〜0.9である極表
面層と、元のリチウム遷移金属酸化物のままである内部
からなることを特徴とするリチウム二次電池。
4. A lithium secondary battery using a lithium transition metal oxide as a positive electrode, wherein the lithium transition metal oxide powder is left at room temperature in an atmosphere containing CO 2 gas to obtain XPS of C1s spectrum. 285e by measurement
A lithium secondary battery comprising an extremely surface layer having a peak ratio of V to 289 eV of 0.4 to 0.9, and an interior that remains the original lithium transition metal oxide.
【請求項5】 リチウム遷移金属酸化物がリチウムニッ
ケル酸化物であることを特徴とする請求項2乃至4記載
のリチウム二次電池。
5. The lithium secondary battery according to claim 2, wherein the lithium transition metal oxide is lithium nickel oxide.
JP24698794A 1994-09-14 1994-09-14 Method for treating positive electrode material and lithium secondary battery using the same Expired - Lifetime JP3519466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24698794A JP3519466B2 (en) 1994-09-14 1994-09-14 Method for treating positive electrode material and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24698794A JP3519466B2 (en) 1994-09-14 1994-09-14 Method for treating positive electrode material and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH0887997A JPH0887997A (en) 1996-04-02
JP3519466B2 true JP3519466B2 (en) 2004-04-12

Family

ID=17156692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24698794A Expired - Lifetime JP3519466B2 (en) 1994-09-14 1994-09-14 Method for treating positive electrode material and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3519466B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5433484B2 (en) * 2010-04-02 2014-03-05 日立ビークルエナジー株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JPH0887997A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
JP3539518B2 (en) Lithium secondary battery
EP1391959B1 (en) Non-aqueous electrolyte secondary battery
JP3982165B2 (en) Solid electrolyte battery
JP6521883B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
US11081687B2 (en) Positive-electrode active material and battery including positive-electrode active material
KR20100094363A (en) Nonaqueous electrolyte secondary battery
US20130316242A1 (en) Non-aqueous electrolyte secondary battery and production method thereof
JP2006066341A (en) Nonaqueous electrolyte secondary cell
JP2002042889A (en) Nonaqueous electrolyte secondary battery
WO2017013718A1 (en) Non-aqueous electrolyte battery and battery pack
JP2022518395A (en) Compositions and Methods for Prelithiumized Energy Storage Devices
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP7358363B2 (en) Method for manufacturing coated positive electrode active material and lithium ion secondary battery
US20120141884A1 (en) Nonaqueous electrolyte lithium ion secondary battery
JP2003115324A (en) Nonaqueous electrolyte battery
JP2004095306A (en) Non-aqueous electrolyte secondary battery
JP4202009B2 (en) Nonaqueous electrolyte secondary battery
WO2020194439A1 (en) Electrode group, battery, and battery pack
JP2003168427A (en) Nonaqueous electrolyte battery
US8372541B2 (en) Non-aqueous electrolyte secondary battery
WO2003067688A1 (en) Nonaqueous electrolyte secondary cell
JP3519466B2 (en) Method for treating positive electrode material and lithium secondary battery using the same
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP7017108B2 (en) Active materials, electrodes and lithium-ion secondary batteries
JP3704514B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term