JP2006273687A - Hydrated hardened body containing reinforcing bar excellent in salt damage resistance - Google Patents
Hydrated hardened body containing reinforcing bar excellent in salt damage resistance Download PDFInfo
- Publication number
- JP2006273687A JP2006273687A JP2005098313A JP2005098313A JP2006273687A JP 2006273687 A JP2006273687 A JP 2006273687A JP 2005098313 A JP2005098313 A JP 2005098313A JP 2005098313 A JP2005098313 A JP 2005098313A JP 2006273687 A JP2006273687 A JP 2006273687A
- Authority
- JP
- Japan
- Prior art keywords
- reinforcing bar
- hydrated
- salt damage
- damage resistance
- hardened body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003014 reinforcing effect Effects 0.000 title claims abstract description 60
- 150000003839 salts Chemical class 0.000 title claims abstract description 30
- 239000002893 slag Substances 0.000 claims abstract description 50
- 238000009628 steelmaking Methods 0.000 claims abstract description 28
- 239000000843 powder Substances 0.000 claims abstract description 23
- 239000010881 fly ash Substances 0.000 claims abstract description 20
- 229910000975 Carbon steel Inorganic materials 0.000 claims abstract description 5
- 239000010962 carbon steel Substances 0.000 claims abstract description 5
- 239000004568 cement Substances 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 230000036571 hydration Effects 0.000 claims description 7
- 238000006703 hydration reaction Methods 0.000 claims description 7
- 239000011398 Portland cement Substances 0.000 claims description 4
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims description 4
- 239000011400 blast furnace cement Substances 0.000 claims description 4
- 150000004679 hydroxides Chemical class 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 230000007774 longterm Effects 0.000 abstract description 4
- 238000009434 installation Methods 0.000 abstract 1
- 239000004567 concrete Substances 0.000 description 27
- 230000007797 corrosion Effects 0.000 description 25
- 238000005260 corrosion Methods 0.000 description 25
- 239000000047 product Substances 0.000 description 14
- 239000002245 particle Substances 0.000 description 12
- 238000002156 mixing Methods 0.000 description 11
- 239000003513 alkali Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000001723 curing Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000003822 epoxy resin Substances 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000011150 reinforced concrete Substances 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000011362 coarse particle Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- BWKOZPVPARTQIV-UHFFFAOYSA-N azanium;hydron;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [NH4+].OC(=O)CC(O)(C(O)=O)CC([O-])=O BWKOZPVPARTQIV-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、海洋環境等の腐食の極めて厳しい環境で用いる構造物での利用に好適な耐塩害性に優れた鉄筋を有する水和硬化体に関するものである。 The present invention relates to a hydrated cured body having a reinforcing bar excellent in salt damage resistance suitable for use in a structure used in an extremely severe environment such as a marine environment.
鉄筋コンクリートは、コンクリート中の高アルカリによって鉄筋の表面に不動態皮膜が形成されるため鉄筋が防食され、長期に渡って強度と耐久性を発揮する構造部材である。 Reinforced concrete is a structural member that exhibits strength and durability over a long period of time, since a passive film is formed on the surface of the reinforcing bar due to the high alkali in the concrete, so that the reinforcing bar is anticorrosive.
しかしながら、近年のコンクリートは、骨材の入手事情が悪化し、例えば、アルカリ骨材反応を生じる可能性がある安山岩や、塩分を含む海砂等を骨材として使用せざるを得ない場合がある。良質な骨材を使用したコンクリートと比較して、これらの骨材を使用した場合、耐鉄筋腐食性に劣る等の問題があった。また良質な骨材を使用したコンクリートの場合であっても、これを海洋構造物に適用した際には、コンクリートを透過した塩化物イオンによって鉄筋表面の不動態皮膜が破壊されて鉄筋が腐食し、発生した錆に起因する体積膨張によってコンクリートが剥落する。当然のことながら、鉄筋と外界との間に存在するコンクリートの厚み(かぶり厚)を増大させることにより、塩化物イオンが鉄筋の表面に到達する時間を遅延させることができるが、コンクリートのかぶり厚の増大により構造物が大型化するためコストが増大するという問題がある。 However, in recent years, the availability of aggregates has deteriorated, and for example, andesite that may cause an alkali-aggregate reaction, sea sand containing salt, etc., may have to be used as an aggregate. . When these aggregates were used, there were problems such as inferior rebar corrosion resistance compared to concrete using high-quality aggregates. Even in the case of concrete using high-quality aggregates, when it is applied to offshore structures, the chloride film that permeates the concrete destroys the passive film on the surface of the reinforcing bars and corrodes the reinforcing bars. The concrete peels off due to volume expansion caused by the generated rust. Naturally, increasing the thickness of the concrete (covering thickness) between the reinforcing bar and the outside world can delay the time for chloride ions to reach the surface of the reinforcing bar. There is a problem that the cost increases because the structure becomes larger due to the increase in the size of the structure.
上記のような鉄筋コンクリートの塩害を克服する手段としては、例えば以下の(a)〜(c)の公知の技術が上げられる。 As means for overcoming the salt damage of reinforced concrete as described above, for example, the following known techniques (a) to (c) can be mentioned.
(a)犠牲陽極を用いてコンクリート中の鉄筋をカソードに分極し、防食する技術:犠牲陽極を用いてコンクリート中の鉄筋をカソードに分極する際に、鉄筋コンクリート構造物の海水浸漬面上の気中部である飛沫帯から海上大気部についてはコンクリートの乾燥により電気抵抗が高くなるために電気防食が困難であるが、ポンプで海水をくみ上げ、予め構造体の気中部の表面を覆った保水材で電解質となる海水を保持してコンクリートの電気抵抗を減じることにより、電気防食を有効にする技術である(例えば、特許文献1参照。)。 (A) Technology to polarize the reinforcement in the concrete to the cathode using the sacrificial anode and prevent corrosion: When the reinforcement in the concrete is polarized to the cathode using the sacrificial anode, the aerial part on the seawater immersion surface of the reinforced concrete structure From the splash zone, it is difficult to prevent corrosion due to the increase in electrical resistance due to the drying of the concrete, but the water is pumped up and the electrolyte is covered with a water retention material that covers the air surface of the structure in advance. This is a technology that makes the anticorrosion effective by holding the seawater to be reduced and reducing the electrical resistance of the concrete (see, for example, Patent Document 1).
(b)鉄筋の表面にエポキシ樹脂とシランカップリング処理層を積層する技術:鉄筋の表面にエポキシ樹脂とシランカップリング処理層を積層することにより、コンクリート中の鉄筋の耐塩害性を向上させる技術である(例えば、特許文献2参照。)。 (B) Technology for laminating an epoxy resin and a silane coupling treatment layer on the surface of the reinforcing bar: A technology for improving the salt damage resistance of the reinforcing steel in the concrete by laminating the epoxy resin and the silane coupling treatment layer on the surface of the reinforcing bar (For example, refer to Patent Document 2).
(c)鉄筋の表面に亜鉛・アルミニウムの擬似合金を溶射することにより、耐塩害性を向上させる技術:鉄筋の表面に亜鉛・アルミニウムの擬似合金を溶射することにより、耐塩害性を向上させる技術が知られている(例えば、特許文献3参照。)。
しかし、(a)犠牲陽極を用いてコンクリート中の鉄筋をカソードに分極し、防食する技術を実際の構造物で実施するためには極めて大掛かりな装置が必要となり、このような装置を長期間に渡って運転・管理・維持することは非常にコスト高である。 However, (a) using a sacrificial anode to polarize the reinforcing steel in the concrete to the cathode and to carry out the anticorrosion technology on an actual structure requires an extremely large device, and such a device is required for a long period of time. It is very expensive to operate, manage and maintain across.
また、(b)鉄筋の表面にエポキシ樹脂とシランカップリング処理層を積層する技術では、エポキシ樹脂が硬く破断伸びを数%程度しか有していないため、鉄筋を曲げた際に、エポキシ層にクラックや剥離が発生し、その部分の耐食性が失われてしまうという問題がある。またエポキシ樹脂で被覆した鉄筋は溶接性が悪く溶接欠陥が発生するだけでなく、溶接部は樹脂層が焼失するため耐食性が劣るという問題がある。 In addition, (b) in the technique of laminating an epoxy resin and a silane coupling treatment layer on the surface of the reinforcing bar, the epoxy resin is hard and has only a few percent elongation at break. There exists a problem that a crack and peeling generate | occur | produce and the corrosion resistance of the part will be lost. Further, the reinforcing bars coated with the epoxy resin not only have poor weldability but also have welding defects, and there is a problem that the corrosion resistance is inferior because the resin layer is burned out at the welded portion.
さらに、(c)鉄筋の表面に亜鉛・アルミニウムの擬似合金を溶射することにより、耐塩害性を向上させる技術では、溶射皮膜が金属間化合物を形成するため極めて脆く、鉄筋を曲げ加工した際には溶射皮膜にクラックが発生したり、溶射皮膜が剥落して、防食性が失われるという問題が生じる。 Furthermore, (c) In the technology that improves the salt damage resistance by spraying a zinc-aluminum pseudo-alloy on the surface of the reinforcing bar, the sprayed coating forms an intermetallic compound, so it is extremely brittle. However, there arises a problem that cracking occurs in the sprayed coating or the coating is peeled off and the corrosion resistance is lost.
このように従来の技術を用いてコンクリートやモルタル等の水和硬化体中の鉄筋の腐食を防止して、鉄筋を有する水和硬化体の塩害を克服することは困難である。 In this way, it is difficult to overcome the salt damage of a hydrated cured body having reinforcing bars by preventing corrosion of the reinforcing bars in the hydrated cured body such as concrete and mortar using conventional techniques.
したがって本発明の目的は、このような従来技術の課題を解決し、特別な装置を設置することなく、塩害環境の厳しい海洋においても長期の耐久性を有する構造物部材とすることができる耐塩害性に優れた鉄筋を有する水和硬化体を提供することにある。 Therefore, the object of the present invention is to solve the problems of the prior art, and to provide a salt-resistant damage that can be used as a structural member having long-term durability even in a sea where the salt damage environment is severe, without installing a special device. An object of the present invention is to provide a hydrated and cured body having a rebar having excellent properties.
このような課題を解決するための本発明の特徴は以下の通りである。
(1)鉄筋を内部に有する水和硬化体が、少なくとも製鋼スラグと高炉スラグ微粉末とを含有し、前記鉄筋が炭素鋼であることを特徴とする耐塩害性に優れた鉄筋を有する水和硬化体。
(2)かぶりが20mm以上であることを特徴とする(1)に記載の耐塩害性に優れた鉄筋を有する水和硬化体。
(3)鉄筋の長さ方向に垂直な断面において水和硬化体の面積に対する前記鉄筋の面積率が0.2〜10%であることを特徴とする(1)または(2)に記載の耐塩害性に優れた鉄筋を有する水和硬化体。
(4)水和硬化体における高炉スラグ微粉末の含有量が100〜600kg/m3であることを特徴とする(1)ないし(3)のいずれかに記載の耐塩害性に優れた鉄筋を有する水和硬化体。
(5)水和硬化体が、さらにフライアッシュを含有することを特徴とする(1)ないし(4)のいずれかに記載の耐塩害性に優れた鉄筋を有する水和硬化体。
(6)水和硬化体におけるフライアッシュの含有量が50〜300kg/m3であることを特徴とする(5)に記載の耐塩害性に優れた鉄筋を有する水和硬化体。
(7)水和硬化体が、さらにアルカリ土類金属の酸化物、水酸化物、ポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント、エコセメントから選ばれる1種または2種以上を含有することを特徴とする(1)ないし(6)のいずれかに記載の耐塩害性に優れた鉄筋を有する水和硬化体。
The features of the present invention for solving such problems are as follows.
(1) A hydrated hardened body having rebar inside contains at least steelmaking slag and blast furnace slag fine powder, and the rebar is carbon steel. Cured body.
(2) The hydrated cured product having a reinforcing bar excellent in salt damage resistance according to (1), wherein the fog is 20 mm or more.
(3) The area ratio of the reinforcing bar to the area of the hydrated cured body in a cross section perpendicular to the longitudinal direction of the reinforcing bar is 0.2 to 10%, and the resistance to resistance according to (1) or (2) Hydrated hardened body with rebars with excellent salt damage.
(4) The rebar excellent in salt damage resistance according to any one of (1) to (3), wherein the content of fine blast furnace slag powder in the hydrated cured body is 100 to 600 kg / m 3. Hydrated cured product.
(5) The hydrated cured product having a reinforcing bar excellent in salt damage resistance according to any one of (1) to (4), wherein the hydrated cured product further contains fly ash.
(6) The hydrated cured product having a reinforcing bar excellent in salt damage resistance according to (5), wherein the content of fly ash in the hydrated cured product is 50 to 300 kg / m 3 .
(7) The hydrated cured product further contains one or more selected from oxides of alkaline earth metals, hydroxides, Portland cement, blast furnace cement, silica cement, fly ash cement, and eco cement. A hydrated and cured product having a reinforcing bar excellent in salt damage resistance according to any one of (1) to (6).
本発明によれば、内部の鉄筋に対する防食性に優れた水和硬化体が得られる。このため、塩害により従来の鉄筋コンクリートが短期間で崩壊するような海洋環境においても、長期間の使用が可能な構造物を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the hydration hardening body excellent in the corrosion resistance with respect to an internal reinforcement is obtained. For this reason, the structure which can be used for a long term can be provided also in the marine environment where the conventional reinforced concrete collapses in a short period by salt damage.
本発明では、水和硬化体の配合原料を最適化することにより、従来のセメント等を結合材として用いたコンクリートよりも緻密な組織を有する水和硬化体を得て、これを鉄筋と組み合わせることで、塩害環境の厳しい海洋においても長期の耐久性を有する構造物部材として使用できることを見出し、本発明を完成した。まず水和硬化体の配合原料について説明する。 In the present invention, by optimizing the blended raw material of the hydrated cured body, a hydrated cured body having a finer structure than concrete using a conventional cement or the like as a binder is obtained, and this is combined with a reinforcing bar. Thus, the present invention has been completed by finding that it can be used as a structural member having long-term durability even in the ocean where the salt damage environment is severe. First, the blended raw material of the hydrated cured product will be described.
水和硬化体は、少なくとも製鋼スラグと高炉スラグ微粉末とを含有する。 The hydrated hardened body contains at least steelmaking slag and blast furnace slag fine powder.
水和硬化体の原料のうち、製鋼スラグは骨材および結合材として作用する。骨材として作用させるための製鋼スラグの粒度分布は、コンクリート用の細骨材や粗骨材に相当するような粒度とし、粒径が0.075mm以上程度、また最大粒径が40mm以下程度とすることが好ましい。また、結合材として作用させるための製鋼スラグは微粉であることが好ましく、粒径が0.15mm未満程度であることが好ましい。したがって、結合材としての粒径と骨材としての粒径をそれぞれ満足するスラグ粒子が含まれている適当な粒度分布を有する製鋼スラグ(例えば、或る条件で粉砕処理した製鋼スラグやその粉砕処理後に篩分した製鋼スラグ)を使用することが望ましい。 Among the raw materials of the hydrated cured body, the steelmaking slag acts as an aggregate and a binder. The particle size distribution of the steelmaking slag for acting as an aggregate is a particle size corresponding to fine aggregate or coarse aggregate for concrete, the particle size is about 0.075 mm or more, and the maximum particle size is about 40 mm or less. It is preferable to do. Moreover, it is preferable that the steelmaking slag for making it act as a binder is a fine powder, and it is preferable that a particle size is less than about 0.15 mm. Accordingly, a steelmaking slag having an appropriate particle size distribution containing slag particles satisfying the particle size as a binder and the particle size as an aggregate (for example, steelmaking slag pulverized under a certain condition and its pulverization treatment). It is desirable to use steelmaking slag that is sieved later.
製鋼スラグは長期間に渡り弱アルカリ性を持続することから、鉄筋の耐腐食性に対して極めて高い効果を発揮する。これは製鋼スラグの塩基度(CaO/SiO2)が大きいほど効果が高い。なお、水和硬化体の材料として使用する製鋼スラグの塩基度は、通常1〜3の範囲である。また、製鋼スラグは通常の砂利等の骨材と異なりアルカリ骨材反応を起こさないため、水和硬化体そのものの耐久性が優れるだけでなく、アルカリ骨材反応に起因するひび割れも抑制できるので、ひび割れを介した酸素や塩化物イオンの浸透が起こらず、水和硬化体中の鉄筋の防食の観点からも好ましい。 Since steelmaking slag remains weakly alkaline for a long period of time, it exhibits an extremely high effect on the corrosion resistance of reinforcing steel. The effect is higher as the basicity (CaO / SiO 2 ) of the steelmaking slag is larger. In addition, the basicity of the steelmaking slag used as a material of a hydrated hardening body is the range of 1-3 normally. In addition, steelmaking slag does not cause an alkali aggregate reaction unlike aggregates such as ordinary gravel, so not only the durability of the hydrated hardened body itself is excellent, but also cracks due to the alkali aggregate reaction can be suppressed, Penetration of oxygen and chloride ions through cracks does not occur, which is preferable from the viewpoint of corrosion prevention of reinforcing bars in the hydrated cured body.
水和硬化体の原料として高炉スラグ微粉末を用いるのは、潜在水硬性を有する高炉スラグ微粉末が製鋼スラグによりアルカリ刺激を受け効率的に水和反応するためだけでなく、従来のコンクリートよりも硬化物が緻密な組織を有するため、水和硬化体中の鉄筋の腐食に有害な酸素や塩化物イオンの透過を著しく抑制できるからである。また、高炉スラグ微粉末と製鋼スラグ中の遊離CaO(free-CaO)が反応し、製鋼スラグの水和膨張を抑制するためである。高炉スラグ微粉末としてはJIS A 6206「コンクリート用高炉スラグ微粉末」を特に好ましく用いることができる。 The reason why blast furnace slag fine powder is used as a raw material for the hydrated hardened body is not only because the blast furnace slag fine powder having latent hydraulic properties is subjected to alkali stimulation by steelmaking slag, but efficiently hydrates, compared to conventional concrete. This is because, since the cured product has a dense structure, permeation of oxygen and chloride ions, which are harmful to corrosion of reinforcing bars in the hydrated cured body, can be remarkably suppressed. Moreover, it is because the blast furnace slag fine powder and free CaO (free-CaO) in steelmaking slag react and suppress the hydration expansion of steelmaking slag. As the blast furnace slag fine powder, JIS A 6206 “Blast furnace slag fine powder for concrete” can be particularly preferably used.
高炉スラグ微粉末の水和硬化体中の配合量は、100〜600kg/m3であることが好ましい。100kg/m3未満ではコンクリート代替として必要な18N/mm2以上の圧縮強度が得られない場合があり、600kg/m3を超えると強度の増加はほとんど無く不経済となるためである。高炉スラグ微粉末のより好ましい配合量は、200〜400kg/m3である。 The blending amount of the blast furnace slag fine powder in the hydrated cured product is preferably 100 to 600 kg / m 3 . If it is less than 100 kg / m 3 , the compressive strength of 18 N / mm 2 or more necessary as a concrete substitute may not be obtained, and if it exceeds 600 kg / m 3 , there is almost no increase in strength and it becomes uneconomical. A more preferable blending amount of the blast furnace slag fine powder is 200 to 400 kg / m 3 .
水和硬化体は、さらにフライアッシュを含有することが好ましい。 The hydrated cured body preferably further contains fly ash.
水和硬化体の原料としてフライアッシュを用いるのは、製鋼スラグ中のCa成分とフライアッシュが効率的に反応することによりフライアッシュのポゾラン反応が進むためである。また、フライアッシュと製鋼スラグ中の遊離CaOが反応し、製鋼スラグの水和膨張を抑制するためである。さらに、フライアッシュの適量の配合でワーカビリティを向上させる効果もある。フライアッシュはJIS A 6201「コンクリート用フライアッシュ」を用いることが好ましいが、原粉および加圧流動床灰の使用等も可能である。 The reason why fly ash is used as a raw material for the hydrated cured body is that the po component of fly ash proceeds by the efficient reaction between the Ca component in the steelmaking slag and the fly ash. Moreover, it is for the free CaO in fly ash and steelmaking slag to react, and to suppress the hydration expansion of steelmaking slag. Furthermore, there is an effect of improving workability by blending an appropriate amount of fly ash. As fly ash, JIS A 6201 “Fly ash for concrete” is preferably used, but it is also possible to use raw powder and pressurized fluidized bed ash.
フライアッシュの水和硬化体中の配合量は、50〜300kg/m3であることが好ましい。50kg/m3未満では製鋼スラグの水和膨張を抑制する効果が低く、300kg/m3を超えると水を加えて練混ぜた後のフレッシュな状態の粘性が高くなり、ワーカビリティが悪化するため、また製鋼スラグの水和膨張を抑制する効果も変わらず不経済であるためである。フライアッシュのより好ましい配合量は、50〜150kg/m3である。この範囲の配合量では、製鋼スラグの水和膨張抑制効果に加えて、大きなワーカビリティ向上効果が得られる。 The blending amount of fly ash in the hydrated cured product is preferably 50 to 300 kg / m 3 . If it is less than 50 kg / m 3 , the effect of suppressing the hydration expansion of steelmaking slag is low, and if it exceeds 300 kg / m 3 , the viscosity of the fresh state after adding water and kneading increases, and workability deteriorates. Moreover, it is because the effect which suppresses the hydration expansion of steelmaking slag is also uneconomical. A more preferable blending amount of fly ash is 50 to 150 kg / m 3 . When the blending amount is within this range, in addition to the effect of suppressing the hydration expansion of steelmaking slag, a great workability improvement effect can be obtained.
水和硬化体の原料として、アルカリ土類金属の酸化物、水酸化物、および各種セメントから選ばれる1種または2種以上を含有することが好ましい。 As a raw material of the hydrated cured product, it is preferable to contain one or more selected from alkaline earth metal oxides, hydroxides, and various cements.
水和硬化体の原料として、アルカリ土類金属の酸化物、水酸化物、および各種セメントから選ばれる1種または2種以上を使用する場合、高炉スラグ微粉末に対して、質量比で1%以上配合することが好ましい。これは、高炉スラグ微粉末が有する潜在水硬性を効率的に発現させるためのアルカリ刺激材として配合するものであり、製鋼スラグのアルカリ刺激だけでは不足する場合に配合することが望ましい。1mass%以上としたのは、1mass%未満ではアルカリ刺激としての効果が低いためである。上限は特に設定しないが、アルカリ土類金属の酸化物、水酸化物の場合、100mass%を超えて配合してもアルカリ刺激効果が変わらず不経済となる。アルカリ土類金属の酸化物、水酸化物配合の場合、好ましくは、5〜20mass%の配合とする。なお、各種セメントの場合は、高炉スラグ微粉末に対するアルカリ刺激だけでなく、セメント自体の水硬性も発揮されるため、100mass%を超えて配合しても圧縮強度が増加する効果を有する。各種セメント配合の場合、好ましくは10〜150mass%の配合とする。 When one or more selected from alkaline earth metal oxides, hydroxides, and various cements are used as the raw material for the hydrated cured product, the mass ratio is 1% with respect to the blast furnace slag fine powder. It is preferable to mix the above. This is blended as an alkali stimulating material for efficiently expressing the latent hydraulic properties of the blast furnace slag fine powder, and is desirably blended when only the alkali stimulation of the steelmaking slag is insufficient. The reason why it is set to 1 mass% or more is that if it is less than 1 mass%, the effect as alkali stimulation is low. Although the upper limit is not particularly set, in the case of an oxide or hydroxide of an alkaline earth metal, even if it exceeds 100 mass%, the alkali stimulating effect does not change and it becomes uneconomical. In the case of blending an alkaline earth metal oxide or hydroxide, the blending is preferably 5 to 20 mass%. In addition, in the case of various cements, not only the alkali stimulation with respect to the blast furnace slag fine powder but also the hydraulic properties of the cement itself are exhibited, so that even if blended in excess of 100 mass%, the compressive strength is increased. In the case of blending various cements, the blending is preferably 10 to 150 mass%.
なお、各種セメントとは、JIS R 5210「ポルトランドセメント」、JIS R 5211「高炉セメント」、JIS R 5212「シリカセメント」、JIS R 5213「フライアッシュセメント」、JIS R 5214「エコセメント」のことである。 The various cements are JIS R 5210 “Portland Cement”, JIS R 5211 “Blast Furnace Cement”, JIS R 5212 “Silica Cement”, JIS R 5213 “Fly Ash Cement”, and JIS R 5214 “Eco Cement”. is there.
次に、水和硬化体中の鉄筋について説明する。 Next, the reinforcing bars in the hydrated cured body will be described.
鉄筋に用いる鋼材としては炭素鋼を用いるものとする。本発明の鉄筋を有する水和硬化体は通常の炭素鋼を鉄筋として用いても、十分な耐塩害性を有するものである。 Carbon steel is used as the steel material used for the reinforcing bars. The hydrated and cured body having a reinforcing bar of the present invention has sufficient salt damage resistance even when ordinary carbon steel is used as the reinforcing bar.
鉄筋の表面から水和硬化体外面までの厚さであるかぶり(以下、「かぶり厚」と記載する。)は、20mm以上とすることが好ましい。かぶり厚が20mm未満の場合には、外界から浸透する腐食因子である塩化物イオンを十分に遮断できない場合があるからである。 The fog from the surface of the reinforcing bar to the outer surface of the hydrated cured body (hereinafter referred to as “cover thickness”) is preferably 20 mm or more. This is because when the cover thickness is less than 20 mm, chloride ions that are corrosion factors penetrating from the outside may not be sufficiently blocked.
水和硬化体に占める鉄筋の割合が、鉄筋の長さ方向に垂直な断面において、水和硬化体部分の断面積に対して鉄筋の断面積が0.2〜10%の面積率となるように配筋することが好ましい。本発明の鉄筋を有する水和硬化体で構造物を製造する場合、構造物の断面において硬化体の断面積に対して鉄筋の断面積が0.2%未満の場合には、鉄筋配合による耐力の増強効果が得られず好ましくない。また、構造物の断面において硬化体の断面積に対して鉄筋の断面積が10%を超える場合には、資材コストに見合った効果が得られないだけでなく、作業効率が著しく低下するので好ましくない。 The ratio of the reinforcing bars in the hydrated hardened body is such that the cross-sectional area of the reinforcing bars is 0.2 to 10% of the cross-sectional area of the hydrated hardened body part in the cross section perpendicular to the length direction of the reinforcing bars. It is preferable to arrange bars. When manufacturing a structure with a hydrated and cured body having a reinforcing bar of the present invention, if the cross-sectional area of the reinforcing bar is less than 0.2% of the cross-sectional area of the cured body in the cross section of the structure, the yield strength of the reinforcing bar combination This is not preferable because the effect of enhancing the resistance is not obtained. Moreover, when the cross-sectional area of the reinforcing bar exceeds 10% with respect to the cross-sectional area of the cured body in the cross-section of the structure, it is preferable because not only an effect commensurate with the material cost can be obtained, but also the work efficiency is significantly reduced. Absent.
水和硬化体は、上記の原料を配合して、水を加えて混練して、所定の型枠等に打ち込んで養生して製造する。打ち込みの際に鉄筋を配筋して、鉄筋を有する水和硬化体とする。 The hydrated cured body is produced by blending the above raw materials, adding water, kneading, driving into a predetermined mold or the like, and curing. Reinforcing bars are placed during driving to obtain a hydrated hardened body having reinforcing bars.
水和硬化体の養生方法は、所定の強度が確保できれば、水中養生、現場養生、蒸気養生等の通常用いられる何れの方法をも用いることができる。 As a curing method for the hydrated cured body, any method that is usually used, such as underwater curing, on-site curing, and steam curing, can be used as long as a predetermined strength can be secured.
製鋼スラグは表1に示す化学成分、物性値(最大粒径、粗粒率、細骨材率、表乾密度)のものを用いた。粗粒率とはJIS A 0203に記載の番号3115の粗粒率のことである。細骨材率とは全粒度の製鋼スラグ量に対する粒径5mm以下の製鋼スラグ量の絶対容積比を百分率で表した値である。 Steelmaking slags having the chemical components and physical properties shown in Table 1 (maximum particle size, coarse particle rate, fine aggregate rate, surface dry density) were used. The coarse particle ratio is the coarse particle ratio of No. 3115 described in JIS A 0203. The fine aggregate rate is a value representing the absolute volume ratio of the amount of steelmaking slag having a particle size of 5 mm or less with respect to the amount of steelmaking slag of all particle sizes as a percentage.
高炉スラグ微粉末はJIS A 6206「コンクリート用高炉スラグ微粉末」における高炉スラグ微粉末4000を、フライアッシュはJIS A 6201「コンクリート用フライアッシュ」におけるII種を使用した。アルカリ刺激材は、JIS R 5201に適合する普通ポルトランドセメントまたは、JIS R 9001に適合する工業用消石灰・特号を使用した。混和剤は、JIS A 6204に適合するポリカルボン酸系の高性能AE減水剤を使用した。 Blast furnace slag fine powder used was blast furnace slag fine powder 4000 in JIS A 6206 “Blast furnace slag fine powder for concrete”, and fly ash used type II in JIS A 6201 “Fly ash for concrete”. As the alkali stimulating material, ordinary Portland cement conforming to JIS R 5201 or industrial slaked lime / special name conforming to JIS R 9001 was used. As the admixture, a polycarboxylic acid-based high-performance AE water reducing agent conforming to JIS A 6204 was used.
表2の配合により水和硬化体原料を練混ぜ、養生してコンクリートNo.1〜8の圧縮強度測定用のテストピースを製作した。圧縮強度の測定は、JIS A 1108「コンクリートの圧縮強度試験方法」にしたがって行った。養生条件は標準養生28日とした。圧縮強度の測定結果を表2に合わせて示す。 According to the formulation shown in Table 2, the hydrated cured material is kneaded, cured, and concrete No. Test pieces for measuring compressive strength of 1 to 8 were produced. The compressive strength was measured according to JIS A 1108 “Method for testing compressive strength of concrete”. The curing conditions were standard curing 28 days. The measurement results of the compressive strength are shown together in Table 2.
また、表2の水和硬化体原料の配合で、表3に示すJIS G 3112記載のSD490に相当する化学成分と機械的特性を有する鉄筋を、鉄筋の長さ方向に垂直方向での水和硬化体の断面積に対して2%になるような条件でかぶり厚を10〜40mmに変化させて配し、100×100×400mmの型枠に打込んだ。供試体は脱枠後20℃の水中で材齢28日まで養生を行い、かぶり厚を制御した面を残し、他の面を全てエポキシ樹脂で被覆した。60℃の3%NaCl水溶液に3日間浸漬した後に60℃、50%RHの恒温恒湿槽で4日間乾燥することを1サイクルとする、乾湿繰り返しによる腐食促進試験を行った。腐食促進試験を100サイクル実施した後に水和硬化体を破壊して鉄筋を取り出し、鉄筋を10mass%の二水素クエン酸アンモニウム水溶液で除錆し、腐食面積率と最大腐食深さをマイクロメーターで測定した。同様の試験を表4に記載の組成を有する従来のコンクリート(コンクリートNo.9〜12)に対しても、かぶり厚を変化させて行った。 In addition, with the composition of the hydrated cured body raw material shown in Table 2, reinforcing bars having chemical components and mechanical properties corresponding to SD490 described in JIS G 3112 shown in Table 3 are hydrated in a direction perpendicular to the length direction of the reinforcing bars. The cover thickness was changed to 10 to 40 mm under the condition of 2% with respect to the cross-sectional area of the cured body, and it was driven into a 100 × 100 × 400 mm mold. After removing the frame, the specimen was cured in water at 20 ° C. until the age of 28 days, leaving a surface with a controlled cover thickness, and all other surfaces were coated with an epoxy resin. A corrosion acceleration test by repeated wet and dry tests was performed in which one cycle consists of dipping in a 3% NaCl aqueous solution at 60 ° C. for 3 days and then drying in a constant temperature and humidity bath at 60 ° C. and 50% RH for 4 days. After 100 cycles of accelerated corrosion test, break the hydrated hardened body and take out the reinforcing bar, remove the reinforcing bar with 10 mass% ammonium dihydrogen citrate aqueous solution, and measure the corrosion area ratio and maximum corrosion depth with a micrometer. did. A similar test was performed on the conventional concrete (concrete Nos. 9 to 12) having the composition shown in Table 4 while changing the cover thickness.
これらの鉄筋を有する(有筋の)水和硬化体の腐食促進試験の結果を表5に示す。 Table 5 shows the results of the accelerated corrosion test of the (reinforced) hydrated cured body having these reinforcing bars.
水和硬化体の原料として、少なくとも製鋼スラグと高炉スラグ微粉末と水を用いたものは、かぶり厚が20mm以上の場合にはいずれも良好な耐食性を示し、腐食促進試験100サイクル後においても硬化体中の鉄筋には何ら腐食が認められなかった(本発明例1〜10)。一方、かぶり厚が10mmの場合には腐食が認められた(本発明例11)が、後述する比較例に比べてかぶり厚が半分以下であるにもかかわらず、腐食の程度は軽減されていた。また、普通セメント或いは高炉セメントB種を用いた従来のコンクリートを用いた場合は、かぶり厚20mmでいずれの水和硬化体中の鉄筋も全面に腐食し、耐食性が劣っていた(比較例1、3、5、7)。さらに、従来のコンクリートにおいてかぶり厚を倍の40mmと深くしたものについては腐食の程度はいずれも軽減されたが、依然全ての硬化体中の鉄筋に腐食が認められ、十分な耐食性が得られなかった(比較例2、4、6、8)。 As a raw material of the hydrated cured body, at least steelmaking slag, blast furnace slag fine powder and water show good corrosion resistance when the cover thickness is 20 mm or more, and harden even after 100 cycles of corrosion acceleration test. No corrosion was observed on the reinforcing bars in the body (Invention Examples 1 to 10). On the other hand, corrosion was observed when the cover thickness was 10 mm (Example 11 of the present invention), but the degree of corrosion was reduced despite the cover thickness being less than half that of the comparative example described later. . In addition, when conventional concrete using ordinary cement or blast furnace cement type B was used, the rebar in any hydrated hardened body was corroded over the entire surface with a cover thickness of 20 mm, and the corrosion resistance was poor (Comparative Example 1, 3, 5, 7). Furthermore, although the degree of corrosion was reduced for the conventional concrete whose cover thickness was 40 mm deep, the corrosion was still observed in all the reinforcing bars in the hardened body, and sufficient corrosion resistance was not obtained. (Comparative Examples 2, 4, 6, 8).
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005098313A JP4882257B2 (en) | 2005-03-30 | 2005-03-30 | Hydrated hardened body with rebar having excellent salt resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005098313A JP4882257B2 (en) | 2005-03-30 | 2005-03-30 | Hydrated hardened body with rebar having excellent salt resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006273687A true JP2006273687A (en) | 2006-10-12 |
JP4882257B2 JP4882257B2 (en) | 2012-02-22 |
Family
ID=37208783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005098313A Active JP4882257B2 (en) | 2005-03-30 | 2005-03-30 | Hydrated hardened body with rebar having excellent salt resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4882257B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008195544A (en) * | 2007-02-08 | 2008-08-28 | Jfe Steel Kk | Steel-reinforced hydraulically hardened body excellent in carbonation resistance |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0740331A (en) * | 1993-07-27 | 1995-02-10 | High Frequency Heattreat Co Ltd | Production of salt-resistant concrete columnar body |
JPH08259294A (en) * | 1995-03-20 | 1996-10-08 | Nippon Steel Corp | Polymer cement composition for repairing concrete structure |
JPH10152364A (en) * | 1996-11-21 | 1998-06-09 | Nkk Corp | Hydration curing product utilizing steel-making slag |
JP2000303599A (en) * | 1999-04-19 | 2000-10-31 | Asahi Glass Co Ltd | Lightweight cellular concrete panel and installing method therefor |
JP2001270746A (en) * | 2000-03-28 | 2001-10-02 | Kawasaki Steel Corp | Method for producing slag hardened body |
JP2001322842A (en) * | 2000-05-09 | 2001-11-20 | Kawasaki Steel Corp | Underwater hardening body using steelmaking slag as raw material |
JP2002059076A (en) * | 2000-06-09 | 2002-02-26 | Sumitomo Metal Ind Ltd | Method for corrosion-preventive surface treatment, and steel material surface-treated for corrosion protection and its use |
JP2003165751A (en) * | 2001-11-28 | 2003-06-10 | Nkk Corp | Hydraulic composition and hydrated hardened body |
JP2003306359A (en) * | 2002-04-17 | 2003-10-28 | Jfe Steel Kk | Cement composition and hydrated hardened body |
JP2004051425A (en) * | 2002-07-19 | 2004-02-19 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2004051426A (en) * | 2002-07-19 | 2004-02-19 | Denki Kagaku Kogyo Kk | Cement admixture, cement composition and mortar or concrete prepared using this |
JP2004149333A (en) * | 2002-10-29 | 2004-05-27 | Port & Airport Research Institute | Concrete structure suitable for deposition and breeding of marine life and method for suppressing corrosion of steel bar in concrete structure |
JP2004292295A (en) * | 2003-03-28 | 2004-10-21 | Jfe Steel Kk | Hardened body of slag |
JP2004299922A (en) * | 2003-03-28 | 2004-10-28 | Nippon Steel Corp | Method for producing set object |
-
2005
- 2005-03-30 JP JP2005098313A patent/JP4882257B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0740331A (en) * | 1993-07-27 | 1995-02-10 | High Frequency Heattreat Co Ltd | Production of salt-resistant concrete columnar body |
JPH08259294A (en) * | 1995-03-20 | 1996-10-08 | Nippon Steel Corp | Polymer cement composition for repairing concrete structure |
JPH10152364A (en) * | 1996-11-21 | 1998-06-09 | Nkk Corp | Hydration curing product utilizing steel-making slag |
JP2000303599A (en) * | 1999-04-19 | 2000-10-31 | Asahi Glass Co Ltd | Lightweight cellular concrete panel and installing method therefor |
JP2001270746A (en) * | 2000-03-28 | 2001-10-02 | Kawasaki Steel Corp | Method for producing slag hardened body |
JP2001322842A (en) * | 2000-05-09 | 2001-11-20 | Kawasaki Steel Corp | Underwater hardening body using steelmaking slag as raw material |
JP2002059076A (en) * | 2000-06-09 | 2002-02-26 | Sumitomo Metal Ind Ltd | Method for corrosion-preventive surface treatment, and steel material surface-treated for corrosion protection and its use |
JP2003165751A (en) * | 2001-11-28 | 2003-06-10 | Nkk Corp | Hydraulic composition and hydrated hardened body |
JP2003306359A (en) * | 2002-04-17 | 2003-10-28 | Jfe Steel Kk | Cement composition and hydrated hardened body |
JP2004051425A (en) * | 2002-07-19 | 2004-02-19 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2004051426A (en) * | 2002-07-19 | 2004-02-19 | Denki Kagaku Kogyo Kk | Cement admixture, cement composition and mortar or concrete prepared using this |
JP2004149333A (en) * | 2002-10-29 | 2004-05-27 | Port & Airport Research Institute | Concrete structure suitable for deposition and breeding of marine life and method for suppressing corrosion of steel bar in concrete structure |
JP2004292295A (en) * | 2003-03-28 | 2004-10-21 | Jfe Steel Kk | Hardened body of slag |
JP2004299922A (en) * | 2003-03-28 | 2004-10-28 | Nippon Steel Corp | Method for producing set object |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008195544A (en) * | 2007-02-08 | 2008-08-28 | Jfe Steel Kk | Steel-reinforced hydraulically hardened body excellent in carbonation resistance |
Also Published As
Publication number | Publication date |
---|---|
JP4882257B2 (en) | 2012-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101309612B1 (en) | Composition for cross-section repairment of reinforced concrete structures and repairing method for cross-section of reinforced concrete structures using the same | |
KR101472485B1 (en) | Geo-polymer mortar cement composition using the same construction methods | |
KR101312085B1 (en) | Method to repair section damaged of reinforced concrete structures | |
JP2005067903A (en) | Repairing material for controlling salt damage and repairing method for structure | |
JP6755730B2 (en) | Method for suppressing neutralization of hardened cement and suppressing chloride ion permeation | |
JP5259094B2 (en) | Hydrated hardened body with rebar and excellent resistance to neutrality | |
JP4796424B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP4882257B2 (en) | Hydrated hardened body with rebar having excellent salt resistance | |
JP4882259B2 (en) | Hydrated hardened body with rebar having excellent salt resistance | |
JP6735624B2 (en) | Concrete surface modifier and method for improving surface quality of concrete using the same | |
JP4882258B2 (en) | Hydrated hardened body with rebar having excellent salt resistance | |
JP4827585B2 (en) | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance | |
JP2006273689A (en) | Hydrated hardened body containing reinforcing bar excellent in salt damage resistance | |
JP4796402B2 (en) | Hydrated cured body and method for producing the same | |
JP2017206418A (en) | PC grout and PC grout injection method | |
JP5740909B2 (en) | Adhesive holding material for cement material and method for repairing concrete structure using the holding material | |
JP4791200B2 (en) | Hydrated cured body and method for producing the same | |
KR101914904B1 (en) | Concrete repairing method using geopolymer reaction and zinc | |
JP5651055B2 (en) | Cement admixture and cement composition | |
JP4791231B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP4827548B2 (en) | Hydrated cured body | |
JP2006273692A (en) | Hydrated hardened body containing reinforcing bar excellent in salt damage resistance | |
JP5766859B1 (en) | Sulfur-resistant cement hardened body | |
JP2006273693A (en) | Hydrated hardened body containing reinforcing bar excellent in salt damage resistance | |
JP2007269557A (en) | Hydrated hardened body having reinforcing rod excellent in neutralization resistance and salt damage resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110726 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110915 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111108 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111121 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4882257 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |