JP2006272034A - Contamination gas treatment device and method using photocatalyst - Google Patents

Contamination gas treatment device and method using photocatalyst Download PDF

Info

Publication number
JP2006272034A
JP2006272034A JP2005090625A JP2005090625A JP2006272034A JP 2006272034 A JP2006272034 A JP 2006272034A JP 2005090625 A JP2005090625 A JP 2005090625A JP 2005090625 A JP2005090625 A JP 2005090625A JP 2006272034 A JP2006272034 A JP 2006272034A
Authority
JP
Japan
Prior art keywords
gas
filler
photocatalyst
oxidation
pollutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005090625A
Other languages
Japanese (ja)
Inventor
Hideki Kobayashi
秀樹 小林
Nobuhiro Oda
信博 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005090625A priority Critical patent/JP2006272034A/en
Publication of JP2006272034A publication Critical patent/JP2006272034A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently decompose/treat a contamination gas such as an odor gas and an exhaust gas containing a volatile organic compound utilizing a photocatalyst. <P>SOLUTION: A gas G to be treated containing a contaminant is introduced to a reaction part 3 arranged with a light irradiation part 35 for irradiating a filling material part 33 arranged with a filling material carried with the photocatalyst with a light. The gas G to be treated is brought into contact with scrubber water W flowing while forming a liquid film on a surface of the filling material in an atmosphere in which an oxidation auxiliary substance fed to the reaction part 3 exists and the contaminant in the gas G to be treated is decomposed by an oxidation reaction of the photocatalyst. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光触媒を用いた汚染ガス処理技術に関する。より詳しくは、装置及び方法処理技術に関する。より詳しくは、酸化助剤が存在する反応部で、汚染ガスと充填材表面に液膜を形成する水とを接触させながら、前記充填材表面の光触媒の酸化反応で汚染物質を分解する技術に関する。   The present invention relates to a contaminated gas treatment technique using a photocatalyst. More particularly, the present invention relates to an apparatus and a method processing technique. More specifically, the present invention relates to a technique for decomposing a pollutant by an oxidation reaction of a photocatalyst on the surface of the filler while contacting a pollutant gas with water that forms a liquid film on the surface of the filler in a reaction portion where an oxidation assistant exists. .

一般に、紫外線やオゾン等の酸化剤、あるいは、放電やマイクロ波熱分解などを用いた汚染ガスの浄化技術が普及している。   In general, an oxidant such as ultraviolet rays and ozone, or a purification technology for polluted gases using discharge, microwave pyrolysis, or the like is widely used.

しかし、紫外線やオゾンについては、それぞれ単独ではその酸化力に限界があり、放電やマイクロ波熱分解ではエネルギーの利用効率が低いので、いずれの方法においてもランニングコストが高いという問題がある。また、オゾンを用いる場合は、オゾンが人体に有害であることから、気密処置と廃オゾン処理のための活性炭設備を付設しなければならず、更に装置コストやランニングコストが高くなる。   However, each of ultraviolet rays and ozone alone has a limit in oxidizing power, and energy utilization efficiency is low in discharge and microwave pyrolysis, so that there is a problem that the running cost is high in either method. Further, when ozone is used, ozone is harmful to the human body. Therefore, an activated carbon facility for airtight treatment and waste ozone treatment must be provided, which further increases the apparatus cost and running cost.

一方、活性炭やシリカゲルなどの吸着剤を用いて、汚染ガス中の被処理物質を吸着する技術も開発されている。しかし、この技術では、吸着剤の吸着能力が一旦飽和に達してしまうと、浄化能力が急速に低下してしまう点や処理能力を高めるためには処置を大型化する必要があるという点などの問題を抱えている。   On the other hand, techniques for adsorbing substances to be treated in polluted gases using adsorbents such as activated carbon and silica gel have been developed. However, with this technology, once the adsorption capacity of the adsorbent reaches saturation, the purification capacity decreases rapidly, and the treatment needs to be enlarged to increase the processing capacity. I have a problem.

スクラバー水(洗浄水)を活用する汚染ガス浄化技術が知られている。例えば、特許文献1には、臭気ガスを効率よく脱臭処理するために、スクラバー装置内で臭気ガスとオゾン水を接触させて臭気物質を分解する技術が開示されている。特許文献2には、湿式ガススクラバーを利用するガス処理技術が開示されている。特許文献3には、電解スクラバー方式によって排ガスを浄化し、スクラバー水を電気分解により浄化してスクラバー水のクローズド化を行うことで、低ランニングコストの装置になることが開示されている。   Pollutant gas purification technology using scrubber water (wash water) is known. For example, Patent Document 1 discloses a technique for decomposing odorous substances by contacting odorous gas and ozone water in a scrubber device in order to efficiently deodorize odorous gas. Patent Document 2 discloses a gas processing technique using a wet gas scrubber. Patent Document 3 discloses that the exhaust gas is purified by an electrolytic scrubber system, and the scrubber water is purified by electrolysis so that the scrubber water is closed, resulting in a low running cost device.

続いて、浄化能力を長く維持でき、排オゾン処理などの付帯設備の必要が全くない光触媒と紫外線を用いた脱臭方法が、例えば、特許文献4や特許文献5などに開示されている。なお、光触媒は、紫外線が照射されると電子と正孔に励起して、有機物などの原因物質を酸化分解する作用があることが知られている。
特開2004−016465号公報。 特開平10−128041号公報。 特開2000−271429号公報。 特開平3−157125号公報。 特開2002−102656号公報。
Subsequently, a deodorization method using a photocatalyst and ultraviolet rays that can maintain the purification capability for a long time and does not require any incidental facilities such as exhaust ozone treatment is disclosed in, for example, Patent Document 4 and Patent Document 5. It is known that a photocatalyst has an action of oxidatively decomposing causative substances such as organic substances by being excited by electrons and holes when irradiated with ultraviolet rays.
Japanese Patent Application Laid-Open No. 2004-016465. JP-A-10-128041. JP 2000-271429 A. JP-A-3-157125. JP 2002-102656 A.

光触媒による酸化作用を汚染ガス処理に利用した従来の技術では、充填材の構造が光触媒の作用や機能を充分に活用できる構造とはなっていないなどの理由から、光触媒による汚染ガス処理能を充分に発揮せしめているとは言い難い。   In the conventional technology that uses the oxidation effect of photocatalyst for the treatment of pollutant gas, the structure of the filler does not have a structure that can fully utilize the action and function of the photocatalyst. It is hard to say that it is being demonstrated.

そこで、本発明では、臭気ガスや揮発性有機化合物(VOC;ベンゼン、トルエン、キシレン等)を含む排気ガスなどの汚染ガスを、光触媒を利用して効率よく分解処理することができる汚染ガス処理技術を提供することを主な目的とする。   Therefore, in the present invention, a pollutant gas treatment technique capable of efficiently decomposing pollutant gases such as exhaust gas containing odor gas and volatile organic compounds (VOC; benzene, toluene, xylene, etc.) using a photocatalyst. The main purpose is to provide

本発明は、光触媒が担持されたラシヒリングなどの充填材、とりわけ光透過性の充填材が配設されているとともに、該充填材に対して光を照射する光照射部が配置された反応部に対して、汚染物質を含む被処理ガスを導入し、前記反応部へ供給された酸化助剤が存在する雰囲気中で、前記被処理ガスと前記充填材表面に液膜を形成して流れる水とを接触させながら、前記光触媒の酸化反応によって前記汚染物質を分解する構成を備える汚染ガス処理装置を提供する。   The present invention provides a reaction part in which a filler such as a Raschig ring carrying a photocatalyst, in particular, a light transmissive filler, and a light irradiation part for irradiating light to the filler are arranged. On the other hand, in the atmosphere in which the gas to be treated containing contaminants is introduced and the oxidation assistant supplied to the reaction section is present, the gas to be treated and water flowing to form a liquid film on the surface of the filler, A pollutant gas processing apparatus having a configuration for decomposing the pollutant by an oxidation reaction of the photocatalyst while contacting with the photocatalyst is provided.

反応部へ供給される前記酸化助剤は、供給前段階あるいは供給時に、酸素濃度高める処理が行われたガスを用いることによって、酸素を要求する光触媒活性をさらに向上させることができる。   The oxidation auxiliary agent supplied to the reaction section can further improve the photocatalytic activity requiring oxygen by using a gas that has been subjected to a treatment for increasing the oxygen concentration at the stage before or at the time of supply.

本装置では、(1)被処理ガスと酸化助剤を混合して前記反応部へ導入する手段、(2)被処理ガスと水を混合して前記反応部へ導入する手段、(3)水と酸化助剤を混合して前記反応部へ導入する手段、のいずれかの手段を採用することによって、反応部へのガス供給手段を集約することができるなどの利点を得ることができる。   In this apparatus, (1) means for mixing a gas to be treated and an oxidation aid and introducing them into the reaction part, (2) means for mixing a gas to be treated and water and introducing them into the reaction part, (3) water By adopting any of the means for mixing and introducing the oxidation assistant into the reaction section, it is possible to obtain advantages such as the ability to consolidate the gas supply means to the reaction section.

また、本装置内に供給された酸化助剤用のガスの余剰ガス分を、気体精製膜を介して回収ガスと廃ガスとに分離し、前記回収ガスを酸化助剤として再利用するガス再利用手段を設けることによって、酸化助剤の利用効率を向上させることがで、ランニングコストの低下を実現できる。   In addition, the excess gas component of the oxidizing aid gas supplied into the apparatus is separated into recovered gas and waste gas through the gas purification membrane, and the recovered gas is reused as an oxidizing aid. By providing the utilization means, it is possible to improve the utilization efficiency of the oxidation aid, thereby realizing a reduction in running cost.

次に、本発明では、汚染物質を含む被処理ガスを、光触媒が担持された充填材が配設されているとともに、該充填材に対して光を照射する光照射部が配置されている反応部へ導入する工程と、前記反応部へ酸化助剤を供給する工程と、前記充填材へ水を供給する工程と、前記反応部へ供給された酸化助剤が存在する雰囲気中で、前記被処理ガスと前記充填材表面に液膜を形成して流れる水とを接触させながら、前記光触媒の酸化反応によって前記汚染物質を分解する工程と、を行う汚染ガス処理方法を提供する。   Next, in the present invention, a reaction gas in which a filler carrying a photocatalyst is disposed and a light irradiation unit for irradiating light to the filler is disposed on a gas to be treated containing a contaminant. In the atmosphere where the oxidation assistant supplied to the reaction section exists, the step of supplying the oxidation assistant to the reaction section, the step of supplying water to the filler, and the oxidation assistant supplied to the reaction section. And a step of decomposing the pollutant by an oxidation reaction of the photocatalyst while bringing a processing gas into contact with the flowing water that forms a liquid film on the surface of the filler.

この方法では、前記反応部へ供給する前段階あるいは供給と同時に、酸化助剤として作用するガスの酸素濃度を高めるガス処理工程を行うことによって、光触媒活性の向上を図り、また、酸化助剤として作用するガスの余剰ガスを回収ガスと廃ガスとに分離し、前記回収ガスを再利用するガス再利用工程を行うことによって、酸化助剤の利用効率の向上やランニングコストの低減を図る。   In this method, the photocatalytic activity is improved by performing a gas treatment step for increasing the oxygen concentration of the gas acting as an oxidation aid before or simultaneously with the supply to the reaction section, and also as an oxidation aid. By separating the surplus gas of the acting gas into recovered gas and waste gas, and performing a gas recycling step of reusing the recovered gas, the utilization efficiency of the oxidizing aid is reduced and the running cost is reduced.

本発明は、光触媒による酸化作用を用いて汚染ガスの浄化処理を行う場合において、光利用効率、光触媒作用効率、ガス利用効率などに優れている。   The present invention is excellent in light use efficiency, photocatalytic action efficiency, gas use efficiency, and the like, when a pollutant gas purification process is performed using an oxidation action by a photocatalyst.

以下、本発明の好適な実施形態について説明する。なお、以下に説明する実施形態は、本発明に係る汚染ガス処理装置の例、あるいは本発明に係る汚染ガス処理方法を実施できる装置例を示すものであり、これらの例示された実施形態により、本発明が狭く限定されることはない。   Hereinafter, preferred embodiments of the present invention will be described. The embodiment described below shows an example of a contaminated gas treatment apparatus according to the present invention or an apparatus example that can carry out the contaminated gas treatment method according to the present invention, and according to these illustrated embodiments, The present invention is not limited narrowly.

まず、図1は、本発明に係る汚染ガス処理装置及び方法の第一実施形態の構成を簡略に示す図である。   First, FIG. 1 is a diagram schematically showing a configuration of a first embodiment of a contaminated gas processing apparatus and method according to the present invention.

この図1に示す符号1は、スクラバー水Wの貯留槽を簡略に示している。この貯留槽1に一時貯留されているスクラバー水Wを、ポンプ2によって反応部3へ送液し、該反応部3上方の内部へ突出して開口する散水管31を介して、その下方に配置された散水分配板32へ注水する。   The code | symbol 1 shown in this FIG. 1 has shown the storage tank of the scrubber water W simply. The scrubber water W temporarily stored in the storage tank 1 is sent to the reaction unit 3 by the pump 2 and is disposed below the sprinkling pipe 31 that protrudes and opens inside the reaction unit 3. Water is poured into the sprinkling distribution plate 32.

この散水分配板32によって、その下方に配置された充填材部33内へスクラバー水Wが均一に分散された状態で供給される。このスクラバー水Wは、光触媒が担持された充填材(例えば、ラシヒリング充填材)の表面を、液膜を形成しながら流れる。   The water distribution plate 32 supplies the scrubber water W in a uniformly dispersed state into the filler portion 33 disposed below the water distribution plate 32. The scrubber water W flows on the surface of a filler (for example, Raschig ring filler) carrying a photocatalyst while forming a liquid film.

このとき、ガス供給管34を通じて、汚染ガスである被処理ガスGと酸化助剤として機能するガスFとが混合された状態で反応部3内へ供給される。このため、充填材部33は、これらのガスG、Fによって満たされた雰囲気となっているので、ガスG,Fは、スクラバー水Wの前記液膜中へ高い溶解速度を保って溶解する。   At this time, the gas to be treated G, which is a contaminated gas, and the gas F functioning as an oxidation assistant are mixed and supplied into the reaction unit 3 through the gas supply pipe 34. For this reason, since the filler part 33 has an atmosphere filled with these gases G and F, the gases G and F dissolve in the liquid film of the scrubber water W while maintaining a high dissolution rate.

また、充填材の近傍に配置された光照射管35から石英管36を通過して照射される光によって充填材表面の光触媒が励起され、液膜を形成するスクラバー水W中の被処理物質(即ち、被処理ガスGに含まれていた処理対象の物質)に対して酸化作用を及ぼし、該被処理物質を高い効率で分解する。   In addition, the photocatalyst on the surface of the filler is excited by the light irradiated through the quartz tube 36 from the light irradiation tube 35 disposed in the vicinity of the filler, and the substance to be treated (in the scrubber water W that forms a liquid film) That is, an oxidizing action is exerted on the substance to be treated contained in the gas to be treated G, and the substance to be treated is decomposed with high efficiency.

ここで、反応部3内に配設される充填材は、スクラバー水Wが液膜を形成しながら流下するように機能する材料であれば適宜採用でき、材料、形態とも特に限定されない。好適例を挙げると、ラシヒリング(Rashig Ring)状構造材のような充填材である。その理由は、ラシヒリングはその形状が中空であることにより単位表面積が大きくとれるので、被処理ガスGやガスFなどの溶解効率や光反射効率が高いためである。   Here, the filler disposed in the reaction section 3 can be appropriately adopted as long as it is a material that functions so that the scrubber water W flows down while forming a liquid film, and the material and form are not particularly limited. A preferred example is a filler such as a Rashig Ring-shaped structural material. The reason for this is that Raschig rings have a large unit surface area due to their hollow shape, so that the dissolution efficiency and light reflection efficiency of the gas to be processed G and gas F are high.

図2は、本発明に係る汚染ガス処理装置における反応部(特に、充填材部33周辺)の構成の一例を示す拡大図である。   FIG. 2 is an enlarged view showing an example of the configuration of the reaction section (particularly, around the filler section 33) in the contaminated gas treatment apparatus according to the present invention.

この図2で示された構成では、光照射部35を内包する石英管36,36の間のスペースに充填材部33が配設されている。この充填材部33は、上記ラシヒリング状構造材などから形成されている中空円筒状の充填材331が多数詰め込まれた構成が採用されている。   In the configuration shown in FIG. 2, the filler portion 33 is disposed in the space between the quartz tubes 36 and 36 that enclose the light irradiation portion 35. The filler portion 33 employs a configuration in which a large number of hollow cylindrical fillers 331 formed from the Raschig ring-shaped structural material or the like are packed.

以上のように、本発明は、充填材表面のスクラバー水Wの液膜を形成することによって、供給されたガス、即ち被処理ガスGと酸化助剤のガスFが前記液膜へ高速で溶解するという特徴を有する。また、本発明は、この液膜によって、臭気物質やVOCなどの被処理物質が高い接触効率で充填材表面の光触媒と接触するという特徴を有する。   As described above, the present invention forms the liquid film of the scrubber water W on the surface of the filler, so that the supplied gas, that is, the gas G to be processed and the gas F of the oxidation aid dissolve at high speed in the liquid film. It has the feature to do. Further, the present invention is characterized in that the liquid film makes contact with the photocatalyst on the surface of the filler with high contact efficiency by the liquid film.

さらには、充填材331を、光透過性を有する材料、より詳しくは、光触媒を励起する光を透過する性質の材料で形成することによって、光照射部35から充填材へ照射された光を透過させて、該充填材表面に担持された光触媒へと導くことができる。このような構成では、光を高い効率で利用できるので、エネルギー効率がよい。   Further, the filler 331 is formed of a light-transmitting material, more specifically, a material that transmits light that excites the photocatalyst, thereby transmitting the light irradiated from the light irradiation unit 35 to the filler. Thus, the photocatalyst supported on the surface of the filler can be guided. In such a configuration, since light can be used with high efficiency, energy efficiency is good.

ここで、前記光照射部35は、例えば、水素放電管、キセノン放電管、水銀ランプ、レーザー光源、発光ダイオード(LED)などの中から、使用する光触媒材料の励起に適する光源を適宜採用することができ、これらを、例えば、透明な石英管36の内側に配置しておくようにする。この光照射部35から出射された光は、石英管36を通過して、その内部の充填材へ照射される。   Here, the light irradiation unit 35 appropriately employs a light source suitable for excitation of the photocatalytic material to be used among hydrogen discharge tubes, xenon discharge tubes, mercury lamps, laser light sources, light emitting diodes (LEDs), and the like. These are arranged inside the transparent quartz tube 36, for example. The light emitted from the light irradiator 35 passes through the quartz tube 36 and is irradiated to the filler inside.

また、本発明において、酸化助剤として利用するガスFは、空気、酸素、オゾンのいずれを用いてもよいが、主にコスト面を考慮すれば、空気や酸素のいずれかを採用するのが望ましい。   In the present invention, the gas F used as an oxidation aid may be any of air, oxygen, and ozone. However, in consideration of cost, either air or oxygen is adopted. desirable.

特に空気Aを採用する場合では、これを反応部3内へ供給する前段階、あるいは供給時に、酸素富化膜(気体分離膜)やPSAなどに代表される酸素分離装置4を用いて酸素濃度を高めるためのガス処理工程を行って窒素を取り除くようにする。   In particular, when air A is employed, the oxygen concentration is measured using an oxygen separation device 4 typified by an oxygen-enriched membrane (gas separation membrane) or PSA before or during the supply of air A into the reaction unit 3. A nitrogen treatment is performed by performing a gas treatment process for increasing the temperature.

このように、酸化助剤として作用させるためのガスFは、予め酸素濃度を高めるためのガス処理工程を行ってから、反応部3の下方領域37へ送り込まれるようにするのが特に望ましい。   As described above, it is particularly desirable that the gas F for acting as an oxidation aid is sent to the lower region 37 of the reaction unit 3 after performing a gas treatment step for increasing the oxygen concentration in advance.

なお、酸素富化膜は、シリコンなどの薄膜の一方側の真空領域へ他方の側の酸素が窒素よりも早く通過するという原理により酸素を空気中から分離し、PSA(Pressure Swing Adsorption:圧力変動吸着)は、吸着材のガスに対する吸着特性の違いを利用して、目的とするガス(本発明では酸素)を空気中から連続的に分離することができる装置である。   The oxygen-enriched film separates oxygen from the air based on the principle that oxygen on the other side passes through a vacuum region on one side of a thin film such as silicon faster than nitrogen, and PSA (Pressure Swing Adsorption) Adsorption) is an apparatus that can continuously separate the target gas (oxygen in the present invention) from the air by utilizing the difference in adsorption characteristics of the adsorbent to the gas.

ここで、本発明で採用可能な光触媒は、特に制限はなく、酸化亜鉛、酸化タングステン、酸化チタン、酸化セリウムなどの金属酸化物、あるいは硫化亜鉛、硫化カドミウム、硫化水銀などの硫化金属を利用できる。   Here, the photocatalyst that can be employed in the present invention is not particularly limited, and metal oxides such as zinc oxide, tungsten oxide, titanium oxide, and cerium oxide, or metal sulfides such as zinc sulfide, cadmium sulfide, and mercury sulfide can be used. .

さらには、これらの金属に対して、窒素イオンや硫黄イオンなどの不純物イオンをドープした光触媒を採用することによって、380nm以上650nm以下の可視光領域でも光触媒能を発揮できる。これにより、紫外線照射装置以外の光照射装置も広く適用できるようになり、また、太陽光を光触媒の励起として利用できるという利点が生まれる。また、これらの金属に対して、白金等の金属を担持させたものを採用した場合には、光反応における効率を向上させることができるという利点がある。   Furthermore, by using a photocatalyst doped with impurity ions such as nitrogen ions and sulfur ions for these metals, the photocatalytic ability can be exhibited even in the visible light region of 380 nm to 650 nm. Thereby, light irradiation devices other than the ultraviolet irradiation device can be widely applied, and the advantage that sunlight can be used as excitation of the photocatalyst is born. Moreover, when what carried | supported metals, such as platinum, is employ | adopted with respect to these metals, there exists an advantage that the efficiency in photoreaction can be improved.

なお、反応部3の外筒部38をガラスやアクリル樹脂などの光透過性材料によって形成し、太陽光を反応部3内部へ採り込むことができるように工夫することで、光触媒の励起効率をさらに高めてもよい。強度面を考慮すれば、外筒部38は、アクリル樹脂のような強化樹脂で形成するのが望ましいだろう。   In addition, the outer cylinder part 38 of the reaction part 3 is formed of a light-transmitting material such as glass or acrylic resin, and by devising so that sunlight can be taken into the reaction part 3, the excitation efficiency of the photocatalyst is increased. It may be further increased. Considering the strength, it is desirable to form the outer cylinder portion 38 with a reinforced resin such as an acrylic resin.

光触媒材料の中でも酸化チタンは、その触媒表面に大きな酸化力を有するヒドロキシラジカルとスーパーオキサイドイオンが生成し、被処理水中の有機物を強力に酸化分解する機能を発揮し、その構造安定性や取り扱い上の安定性等の観点からも好適に利用できる。   Among photocatalyst materials, titanium oxide produces hydroxy radicals and superoxide ions that have a large oxidizing power on the catalyst surface and exerts the function of powerfully oxidizing and decomposing organic substances in the water to be treated. It can be suitably used also from the viewpoint of the stability and the like.

酸化チタンとしては、汎用の二酸化チタンの他、メタチタン酸、オルトチタン酸、含水酸化チタン、水和酸化チタン、水酸化チタン、及び過酸化チタン等のチタン酸化物や水酸化チタンが挙げられる。中でもアナタースやルチル結晶構造を有する酸化チタンは比較的安価であり、また、性能的にも優れている。   Examples of titanium oxide include titanium oxide such as metatitanic acid, orthotitanic acid, hydrous titanium oxide, hydrated titanium oxide, titanium hydroxide, and titanium peroxide, as well as general-purpose titanium dioxide, and titanium hydroxide. Among these, titanium oxide having anatase or rutile crystal structure is relatively inexpensive and has excellent performance.

充填材の表面に光触媒を担持させて光触媒層(光触媒膜)を形成する方法としては、光触媒を薄膜状態に形成できる方法であれば適宜採用できる。例えば、真空蒸着法、メッキ法、ゾルゲル法等を採用できる。また、微細粉末を固定化する方法も適用可能である。   As a method for forming the photocatalyst layer (photocatalyst film) by supporting the photocatalyst on the surface of the filler, any method that can form the photocatalyst in a thin film state can be adopted as appropriate. For example, a vacuum deposition method, a plating method, a sol-gel method, or the like can be employed. A method of immobilizing fine powder is also applicable.

次に、図1を再び参照すると、この図1中に符号5で示された装置は、ガス再利用工程に使用される装置であって、反応部3に付設されたガス精製膜装置である。このガス精製膜装置5は、反応部3内での余剰ガスFを再利用可能な回収ガスF11と再利用困難な廃ガスF12とに分離する役割を担う。 Next, referring again to FIG. 1, the apparatus denoted by reference numeral 5 in FIG. 1 is an apparatus used in the gas recycling process, and is a gas purification membrane apparatus attached to the reaction unit 3. . The gas purification membrane device 5 plays a role of separating the surplus gas F 1 in the reaction unit 3 into a reusable recovered gas F 11 and a waste gas F 12 that is difficult to recycle.

分離された回収ガスF11は、ガス供給部34を介して、あるいは酸素分離装置4を経た後にガス供給管34を介して、反応部3の内部へ再供給することによって、酸化助剤として作用させるガスFの利用効率の向上を図ることができる。 Collected gas F 11 separated through the gas supply unit 34, or through the gas supply pipe 34 after passing through the oxygen separation device 4, by re-supplied to the inside of the reaction unit 3, acts as an oxidizing aids The utilization efficiency of the gas F to be made can be improved.

以上のような処理を行う充填材部33において、気液接触によって酸化処理が施されてきた処理済の水Wは、反応部3の底部39の排出口391から取り出され、隣設された貯留槽1に返送され、再びスクラバー水Wとして利用される(図1参照)。 In the filler portion 33 that performs the above-described treatment, the treated water W 1 that has been subjected to the oxidation treatment by gas-liquid contact is taken out from the discharge port 391 at the bottom portion 39 of the reaction portion 3 and installed adjacently. It is returned to the storage tank 1 and used again as scrubber water W (see FIG. 1).

続いて、図3は、本発明に係る汚染ガス処理装置及び方法の第二実施形態の構成を簡略に示す図である。   Next, FIG. 3 is a diagram simply showing the configuration of the second embodiment of the contaminated gas processing apparatus and method according to the present invention.

この図3に示された第二実施形態では、被処理ガスGをスクラバー水Wへ混合して反応部3へ導入する手段が採用されている点が、図1に示された第一実施形態とその構成が異なっている。   In the second embodiment shown in FIG. 3, the first embodiment shown in FIG. 1 adopts a means for mixing the gas G to be processed into the scrubber water W and introducing it into the reaction unit 3. And its configuration is different.

この構成では、被処理ガスGをスクラバー水Wに含有させて、散水管31を介して反応部3内へ導入する。酸化助剤として利用するガスFはそのままガス供給部34へ、あるいは酸素分離装置4で処理してからガス供給管34へ送り、反応部3内へ供給する。その他の装置構成は、上記の第一実施形態と同様であるので、説明を割愛する。   In this configuration, the gas G to be treated is contained in the scrubber water W and introduced into the reaction unit 3 through the water spray pipe 31. The gas F used as an oxidizing aid is sent to the gas supply unit 34 as it is, or after being processed by the oxygen separation device 4, sent to the gas supply pipe 34 and supplied into the reaction unit 3. Since the other device configuration is the same as that of the first embodiment, description thereof is omitted.

次に、図4は、本発明に係る汚染ガス処理装置及び方法の第三実施形態の構成を簡略に示す図である。   Next, FIG. 4 is a figure which shows simply the structure of 3rd embodiment of the contaminated gas processing apparatus and method concerning this invention.

この図4に示された第三実施形態では、酸化助剤として利用するガスFをスクラバー水Wへ混合して反応部3へ導入する手段が採用されている点が、図1に示された第一実施形態とその構成が異なっている。この構成では、酸化助剤として利用するガスFをスクラバー水Wに含有させて、散水管31を介して反応部3内へ導入する。   In the third embodiment shown in FIG. 4, it is shown in FIG. 1 that the means for mixing the gas F used as an oxidation aid into the scrubber water W and introducing it into the reaction unit 3 is adopted. The configuration is different from the first embodiment. In this configuration, the gas F used as an oxidation aid is contained in the scrubber water W and introduced into the reaction unit 3 through the sprinkling pipe 31.

酸化助剤として利用するガスFは、そのままスクラバー水Wへ導入してもよいし、あるいは酸素分離装置4で処理してからスクラバー水Wへ導入してもよい。一方、被処理ガスGは、単独でガス供給管34へ送り、反応部3内へ供給する(図4参照)。なお、図示はしないが、スクラバー水Wへ被処理ガスGと酸化助剤として利用するガスFの両方を混合して、反応部3へ導入することも可能である。なお、その他の装置構成は、上記の第一実施形態と同様であるので、説明を割愛する。   The gas F used as an oxidation aid may be introduced into the scrubber water W as it is, or may be introduced into the scrubber water W after being processed by the oxygen separator 4. On the other hand, the gas G to be treated is sent alone to the gas supply pipe 34 and supplied into the reaction section 3 (see FIG. 4). Although not shown, it is possible to mix both the gas G to be treated and the gas F used as an oxidation aid into the scrubber water W and introduce them into the reaction unit 3. Since the other device configuration is the same as that of the first embodiment, description thereof is omitted.

以下に、実施例を挙げて更に詳しく説明するが、本発明はこれらの実施例により何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

本実験では、被処理ガス(G)としてメチルエチルケトンを含む空気を用いた。スクラバー水(W)として水道水を使用し、実施例では、オゾンガスと過酸化水素水を酸化助剤として用いた。   In this experiment, air containing methyl ethyl ketone was used as the gas to be treated (G). Tap water was used as the scrubber water (W). In the examples, ozone gas and hydrogen peroxide water were used as oxidation assistants.

充填材は、実施例1から4ではφ6×10mmの石英製ラシヒリングにゾルゲル法を用いてアナタース型の粉末酸化チタンを担持したものを用いた。一方、比較例1、2では、同法によってアナタース型の酸化チタンを非光透過性のハニカムに担持したものを用いた。なお、比較例のハニカム状光触媒と実施例のラシヒリング担持光触媒の酸化チタン量は同量となるように調整した。   In Examples 1 to 4, the filler used was an anatase-type powdered titanium oxide supported on a quartz Raschig ring of φ6 × 10 mm using a sol-gel method. On the other hand, in Comparative Examples 1 and 2, a material in which anatase-type titanium oxide was supported on a non-light-transmitting honeycomb by the same method was used. The amount of titanium oxide in the honeycomb-shaped photocatalyst of the comparative example and the Raschig ring-supported photocatalyst of the example was adjusted to be the same amount.

光源には主波長365nmの高圧水銀ランプを用いた。尚、高圧水銀ランプは発熱するため、石英ガラスを二重管として間に冷却水としての超純粋を通水した。   A high pressure mercury lamp having a main wavelength of 365 nm was used as the light source. Since the high-pressure mercury lamp generates heat, quartz glass was used as a double tube, and ultrapure water as cooling water was passed between them.

メチルエチルケトンを50ppm含む空気(この空気は酸化助剤として使用される)、即ち被処理ガスGは、1.0m/minの風量で反応部へ供給し、酸化助剤としてのオゾンガス又は酸素ガスは、濃度0.65g/mの濃度で0.5m/minで混合し、同酸化助剤としての過酸化水素は、濃度70mg/Lとなるようにスクラバー水へ添加した。なお、スクラバー水は5L/minで反応部へ散水した。 Air containing 50 ppm of methyl ethyl ketone (this air is used as an oxidation aid), that is, the gas G to be treated is supplied to the reaction section with an air flow rate of 1.0 m 3 / min, and ozone gas or oxygen gas as the oxidation aid is The mixture was mixed at a concentration of 0.65 g / m 3 and 0.5 m 3 / min, and hydrogen peroxide as the same oxidation aid was added to the scrubber water so as to have a concentration of 70 mg / L. The scrubber water was sprinkled into the reaction section at 5 L / min.

処理されたガスをサンプリングし、ガスクロマトグラフィーにて分析してメチルエチルケトンの除去率を求めた。なお、以下の「表1」に実施例1〜4と比較例1、2の処理方法をまとめた。また、「表2」には、本実験の結果をまとめた。   The treated gas was sampled and analyzed by gas chromatography to determine the methyl ethyl ketone removal rate. The following “Table 1” summarizes the processing methods of Examples 1 to 4 and Comparative Examples 1 and 2. Table 2 summarizes the results of this experiment.

Figure 2006272034
Figure 2006272034

Figure 2006272034
Figure 2006272034

前掲した「表2」に示された結果からわかるように、ハニカム状の光触媒を用いた比較例1の場合、ハニカム状の表面積が小さいことと、光透過性ではないために光が光触媒の全面に行き渡らないことなどの理由により、除去率が極端に低かった。また、酸化助剤としてオゾンを供給した比較例2では、オゾンから生成する活性酸素によって酸化力が向上し、比較例1と比べて除去率が2倍に向上した。   As can be seen from the results shown in the above-mentioned “Table 2”, in the case of the comparative example 1 using the honeycomb-shaped photocatalyst, the light is transmitted to the entire surface of the photocatalyst because the honeycomb-shaped surface area is small and it is not light transmissive. The removal rate was extremely low due to reasons such as not reaching to the area. Moreover, in the comparative example 2 which supplied ozone as an oxidation adjuvant, the oxidizing power improved with the active oxygen produced | generated from ozone, and the removal rate improved twice as compared with the comparative example 1. FIG.

一方、実施例1では、石英製ラシヒリングが吸収しきれない紫外光を別の酸化チタンへ供給できるため、光の利用効率が向上し、更に除去率の向上が見られた。   On the other hand, in Example 1, since the ultraviolet light that cannot be absorbed by the quartz Raschig ring can be supplied to another titanium oxide, the utilization efficiency of light was improved and the removal rate was further improved.

また、実施例2〜4のように、被処理ガス中に存在する空気とは別に、更に酸化助剤を反応部へ供給した実施例では、他の例に比較して、最も高い除去率を示した。これは、スクラバー水が液膜を形成しながら触媒表面を充填材の表面を流れて、触媒とスクラバー水へ溶解した被処理物質の接触と酸化剤の接触の効率が向上したことから、高い除去効率を示したと考えられる。   Further, as in Examples 2 to 4, in addition to the air present in the gas to be treated, in the example in which the oxidation assistant was further supplied to the reaction part, the highest removal rate was obtained compared to other examples. Indicated. This is because the scrubber water flows on the surface of the filler while forming a liquid film, and the efficiency of contact between the catalyst and the substance to be treated dissolved in the scrubber water and contact with the oxidant is improved. It is thought that efficiency was shown.

本発明は、光触媒による酸化作用を用いた汚染ガスの浄化処理技術として利用できる。とくに、光利用効率、光触媒作用効率、ガス利用効率などに優れている前記浄化処理技術として利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used as a purification treatment technique for polluted gases using an oxidation action by a photocatalyst. In particular, it can be used as the purification treatment technique which is excellent in light utilization efficiency, photocatalytic action efficiency, gas utilization efficiency, and the like.

本発明に係る汚染ガス処理装置及び方法の第一実施形態の構成を簡略に示す図である。It is a figure which shows simply the structure of 1st embodiment of the contaminated gas processing apparatus and method which concern on this invention. 本発明に係る汚染ガス処理装置における反応部(特に、充填材部周辺)の構成の一例を示す拡大図である。It is an enlarged view which shows an example of a structure of the reaction part (especially periphery of a filler part) in the contaminated gas processing apparatus which concerns on this invention. 本発明に係る汚染ガス処理装置及び方法の第二実施形態の構成を簡略に示す図である。It is a figure which shows simply the structure of 2nd embodiment of the contaminated gas processing apparatus and method which concern on this invention. 本発明に係る汚染ガス処理装置及び方法の第三実施形態の構成を簡略に示す図である。It is a figure which shows simply the structure of 3rd embodiment of the contaminated gas processing apparatus and method which concern on this invention.

符号の説明Explanation of symbols

3 反応部
4 酸素分離装置
5 ガス精製膜装置
33 充填材部
34 ガス供給管
35 光照射部
36 石英管
331 充填材
G 被処理ガス(汚染ガス)
F 酸化助剤として利用するガス
余剰ガス
11 再利用する回収ガス
12 廃ガス
W スクラバー水
3 Reaction unit 4 Oxygen separator 5 Gas purification membrane device 33 Filler unit 34 Gas supply pipe 35 Light irradiation unit 36 Quartz tube 331 Filler G Processed gas (contaminated gas)
F Gas used as oxidation aid F 1 Surplus gas F 11 Recycled recovery gas F 12 Waste gas W Scrubber water

Claims (9)

汚染物質を含む被処理ガスを、
光触媒が担持された充填材が配設されているとともに、該充填材に対して光を照射する光照射部が配置されている反応部へ導入し、
前記反応部へ供給された酸化助剤が存在する雰囲気中で、前記被処理ガスと前記充填材表面に液膜を形成して流れる水とを接触させながら、前記光触媒の酸化反応によって前記汚染物質を分解する汚染ガス処理装置。
Processed gas containing pollutants
The filler carrying the photocatalyst is disposed and introduced into the reaction section where the light irradiation section for irradiating the filler with light is disposed,
The pollutant is generated by an oxidation reaction of the photocatalyst while bringing the gas to be treated into contact with the flowing water in a liquid film formed on the surface of the filler in an atmosphere where the oxidation assistant supplied to the reaction section exists. Decomposing pollutant gas treatment equipment.
前記充填材は、ラシヒリングであることを特徴とする請求項1記載の汚染ガス処理装置。   The pollutant gas processing apparatus according to claim 1, wherein the filler is Raschig ring. 前記充填材は、光透過性であることを特徴とする請求項1又は2に記載の汚染ガス処理装置。   The contamination gas processing apparatus according to claim 1, wherein the filler is light transmissive. 前記酸化助剤は、酸素濃度高める処理が行われたガスであることを特徴とする請求項1から3のいずれか一項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 3, wherein the oxidation aid is a gas that has been subjected to a treatment for increasing oxygen concentration. 次の(1)から(3)のいずれかの手段が採用されたことを特徴とする請求項1に記載の汚染ガス処理装置。
(1)被処理ガスと酸化助剤を混合して前記反応部へ導入する手段。
(2)被処理ガスと水を混合して前記反応部へ導入する手段。
(3)水と酸化助剤を混合して前記反応部へ導入する手段。
The pollutant gas processing apparatus according to claim 1, wherein any one of the following (1) to (3) is employed.
(1) Means for mixing the gas to be treated and the oxidation aid and introducing them into the reaction section.
(2) Means for mixing the gas to be treated and water and introducing them into the reaction section.
(3) Means for mixing water and an oxidation aid and introducing them into the reaction section.
装置内に供給された酸化助剤ガスの余剰分を、気体精製膜を介して回収ガスと廃ガスとに分離し、前記回収ガスを酸化助剤として再利用するガス再利用手段を有することを特徴とする請求項1に記載の汚染ガス処理装置。   It has gas recycling means for separating the surplus of the oxidizing agent gas supplied into the apparatus into a recovered gas and a waste gas through a gas purification membrane, and reusing the recovered gas as an oxidizing agent. The pollutant gas processing apparatus according to claim 1, wherein 汚染物質を含む被処理ガスを、光触媒が担持された充填材が配設されているとともに、該充填材に対して光を照射する光照射部が配置されている反応部へ導入する工程と、
前記反応部へ酸化助剤を供給する工程と、
前記充填材へ水を供給する工程と、
前記反応部へ供給された酸化助剤が存在する雰囲気中で、前記被処理ガスと前記充填材表面に液膜を形成して流れる水とを接触させながら、前記光触媒の酸化反応によって前記汚染物質を分解する工程と、
を行う汚染ガス処理方法。
Introducing a gas to be treated containing a pollutant into a reaction section in which a filler carrying a photocatalyst is disposed and a light irradiation section for irradiating the filler with light;
Supplying an oxidizing aid to the reaction section;
Supplying water to the filler;
The pollutant is generated by an oxidation reaction of the photocatalyst while bringing the gas to be treated into contact with the flowing water in a liquid film formed on the surface of the filler in an atmosphere where the oxidation assistant supplied to the reaction section exists. Disassembling, and
Performing pollutant gas processing method.
前記反応部へ供給する前段階あるいは供給と同時に、酸化助剤として作用するガスの酸素濃度を高めるガス処理工程を行うことを特徴とする請求項7記載の汚染ガス処理方法。   8. The contaminated gas treatment method according to claim 7, wherein a gas treatment step for increasing the oxygen concentration of a gas acting as an oxidizing aid is performed before or simultaneously with the supply to the reaction section. 酸化助剤として作用するガスの余剰ガスを回収ガスと廃ガスとに分離し、前記回収ガスを再利用するガス再利用工程を行うことを特徴とする請求項7記載の汚染ガス処理方法。   8. The pollutant gas processing method according to claim 7, wherein a gas recycling step of separating surplus gas of the gas acting as an oxidizing aid into recovered gas and waste gas and reusing the recovered gas is performed.
JP2005090625A 2005-03-28 2005-03-28 Contamination gas treatment device and method using photocatalyst Pending JP2006272034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005090625A JP2006272034A (en) 2005-03-28 2005-03-28 Contamination gas treatment device and method using photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005090625A JP2006272034A (en) 2005-03-28 2005-03-28 Contamination gas treatment device and method using photocatalyst

Publications (1)

Publication Number Publication Date
JP2006272034A true JP2006272034A (en) 2006-10-12

Family

ID=37207296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005090625A Pending JP2006272034A (en) 2005-03-28 2005-03-28 Contamination gas treatment device and method using photocatalyst

Country Status (1)

Country Link
JP (1) JP2006272034A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101564580B1 (en) * 2015-06-26 2015-10-30 서익환 Scrubber for waste gases removing by combination of gas-liquid contact device with multi function
KR101564581B1 (en) * 2015-06-26 2015-10-30 서익환 Scrubber for waste gases removing by combination of gas-liquid contact device with multi function
KR101564578B1 (en) * 2015-06-26 2015-11-06 서익환 Scrubber for waste gases removing by combination of gas-liquid contact device with multi function
KR101564579B1 (en) * 2015-06-26 2015-11-06 서익환 Scrubber for waste gases removing by combination of gas-liquid contact device with multi function
KR102086738B1 (en) * 2019-09-20 2020-03-09 김종범 apparatus for removing odor using ozone and photocatalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101564580B1 (en) * 2015-06-26 2015-10-30 서익환 Scrubber for waste gases removing by combination of gas-liquid contact device with multi function
KR101564581B1 (en) * 2015-06-26 2015-10-30 서익환 Scrubber for waste gases removing by combination of gas-liquid contact device with multi function
KR101564578B1 (en) * 2015-06-26 2015-11-06 서익환 Scrubber for waste gases removing by combination of gas-liquid contact device with multi function
KR101564579B1 (en) * 2015-06-26 2015-11-06 서익환 Scrubber for waste gases removing by combination of gas-liquid contact device with multi function
WO2016208978A1 (en) * 2015-06-26 2016-12-29 주식회사 효진아이디에스 Waste gas-treating scrubber formed of combination of gas-liquid contact means having multiple functions so as to be appropriate for treating according to waste gas properties
WO2016208980A1 (en) * 2015-06-26 2016-12-29 주식회사 효진아이디에스 Waste gas-treating scrubber formed of combination of gas-liquid contact means having multiple functions so as to be appropriate for treating according to waste gas properties
WO2016208979A1 (en) * 2015-06-26 2016-12-29 주식회사 효진아이디에스 Waste gas-treating scrubber formed of combination of gas-liquid contact means having multiple functions so as to be appropriate for treating according to waste gas properties
WO2016208981A1 (en) * 2015-06-26 2016-12-29 주식회사 효진아이디에스 Waste gas-treating scrubber formed of combination of gas-liquid contact means having multiple functions so as to be appropriate for treating according to waste gas properties
KR102086738B1 (en) * 2019-09-20 2020-03-09 김종범 apparatus for removing odor using ozone and photocatalyst

Similar Documents

Publication Publication Date Title
Li et al. Recent advances in the chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase
Lu et al. Photocatalytic decomposition of gaseous 1, 2-dichlorobenzene on TiO2 films: Effect of ozone addition
JP2010036148A (en) Removal system for volatile organic compound by gas absorption tower
JP2006272034A (en) Contamination gas treatment device and method using photocatalyst
JP2008132413A (en) Combustion exhaust gas treatment apparatus and wastewater treatment method of wet type dust collector
CN103127811B (en) Stinking gas treatment method
ITMI20001405A1 (en) PHOTODEGRADATIVE PROCEDURE FOR THE DEPURATION OF CONTAMINATED WATERS
KR100502946B1 (en) Method of treating substance to be degraded and its apparatus
JP2006281005A (en) Apparatus and method for treating water using photocatalyst
JPH1199394A (en) Method for removing organic matter in water
JP2006026194A (en) Organic matter removing apparatus
JP2000325971A (en) Polluted water treatment method and apparatus
JP2005296859A (en) Harmful substance decomposition method and harmful substance decomposition apparatus
KR20200030238A (en) Method and system for ordor treatment using adsorption tower and electrolytic oxidation apparatus
JP2006281032A (en) Apparatus and method for treating organic substance-containing water
JP2006082081A (en) Accelerated oxidation treatment apparatus using ozone and photocatalyst
JP2003210938A (en) Exhaust-gas cleaning device
CN101306205A (en) Active composite catalyst air cleaning system
JP2001259664A (en) Method and device for cleaning contaminated water and polluted gas
JP4066041B2 (en) Water purification equipment
JP2006205098A (en) Apparatus for oxidative decomposition of hardly decomposable organic compound
KR20040059420A (en) Processing methode for air purification and equipment therefor
JP2005103520A (en) Pollutant decomposing method and apparatus used therein
KR101235015B1 (en) Volatile organic compound treatment system using honeycomb adsorptive element and ozone, and voc treatment method using it
JP3997949B2 (en) Purification method of contaminated water