JP2006264027A - 溶液製膜方法 - Google Patents

溶液製膜方法 Download PDF

Info

Publication number
JP2006264027A
JP2006264027A JP2005083464A JP2005083464A JP2006264027A JP 2006264027 A JP2006264027 A JP 2006264027A JP 2005083464 A JP2005083464 A JP 2005083464A JP 2005083464 A JP2005083464 A JP 2005083464A JP 2006264027 A JP2006264027 A JP 2006264027A
Authority
JP
Japan
Prior art keywords
film
casting
dope
solvent
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005083464A
Other languages
English (en)
Inventor
Tomoaki Nagahara
知明 永原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005083464A priority Critical patent/JP2006264027A/ja
Publication of JP2006264027A publication Critical patent/JP2006264027A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】 光学ムラ及び横ダンムラの発生が抑制されているTACフィルムを得る。
【解決手段】 TACと溶媒と添加剤とからドープを調製する。流延ダイ30から回転ドラム31上に吐出速度20m/分で流延する。ドープは、流延ビード38を形成して回転ドラム31上で流延膜39となる。流延ビード背面38aの近傍領域Aのガス濃度を30%とする。減圧チャンバ36により流延ビード背面38aの減圧度を大気圧−500Paとする。流延膜39が回転ドラム31上で自己支持性を有するものとなった後に剥ぎ取りフィルムを得る。
【選択図】 図2

Description

本発明は、溶液製膜方法に関し、さらに詳しくは液晶表示装置等に使用する偏光板保護フィルム、光学補償フィルム或いは写真感光材料のベースフィルムなどに好適に用いられるフィルムを製造する溶液製膜方法に関するものである。
セルロースアシレート、特に57.5%〜62.5%の平均酢化度を有するセルローストリアセテート(以下、TACと称する)から形成されるTACフィルムは、その強靭性と難燃性とから写真感光材料のフィルム用支持体として利用されている。また、TACフィルムは光学等方性に優れていることから、近年市場の拡大している液晶表示装置の偏光板の保護フィルム,光学補償フィルム(例えば、視野角拡大フィルムなど)などの光学フィルムに用いられている。
TACフィルムは、通常溶液製膜方法により製造されている。溶液製膜方法は、溶融製膜方法などの他の製造方法と比較して、光学的性質などの物性に優れたフィルムを製造することができる。溶液製膜方法は、ポリマーをジクロロメタンや酢酸メチルを主溶媒とする混合溶媒に溶解した高分子溶液(以下、ドープと称する)を調製する。そのドープを流延ダイより流延ビードを形成させて支持体上に流延して流延膜を形成する。その流延膜が支持体上で自己支持性を有するものとなった後に、支持体から膜(以下、この膜を湿潤フィルムと称する)として剥ぎ取り、乾燥させた後にフィルムとして巻き取る(例えば、非特許文献1参照。)。
また、近年ではTACフィルムは、液晶表示装置などを構成する光学フィルムとして用いられている。この場合には、薄手(例えば、40μm)のフィルムが求められている。さらに、コスト低減のため生産性の向上、すなわち流延速度(ドープ吐出速度)を速めることも求められている。しかしながら、前記方法でフィルムを製造する場合には流延ビードが安定して連続的に形成されない場合がある。そこで、流延ビードの周囲の風の強さ、支持体の移動速度(移行速度)と流延量の関係などを最適化する方法が挙げられている。特に、流延ビードの周囲の風の強さ(最大風速)を規定することにより流延ビードを安定して形成させる方法が知られている(例えば、特許文献1参照。)。
発明協会公開技報公技番号2001−1745号 特開2002−028943号公報
しかしながら、前記特許文献1記載の方法では、流延ビード近傍の空気の流れが略無風状態としているため、流延ビード近傍の空気のガス(主に揮発性有機溶媒が気化したもの)濃度が上昇する問題が生じている。このガス成分が所望の濃度に到達すると、液化する場合がある。液化した溶媒が流延ビードに付着して流延膜を不良品とするおそれがある。また、流延ビードの支持体接触面(以下、流延ビード背面と称する)側を減圧にしている場合には、流延ビードの形成は安定する。しかしながら、この場合にはガスの液化が容易に起こりやすくなり、液化溶媒が流延膜に付着したり、減圧チャンバに付着して減圧の不均一化を招いたりする問題が生じる場合がある。このような場合には製造されるフィルムの面状に不良が生じて光学ムラが発生したり、フィルムの幅方向にムラ(以下、横ダンムラと称する)が生じたりする問題がある。
本発明の目的は、流延時に流延故障を引き起こさず、光学ムラ及び横ダンムラの発生が抑制されているフィルムを製造する溶液製膜方法を提供することである。
本発明の溶液製膜方法は、流延ダイから支持体上にドープから流延ビードを形成して流延し、前記流延ビードの流延背面から減圧チャンバを用いて、前記流延ビード背面を減圧にする溶液製膜方法において、前記減圧チャンバの前記流延ドープ近傍のガス濃度を80%以下にする。
前記減圧チャンバの減圧度が大気圧に対して−1500Pa以上−200Pa以下の範囲とすることが好ましい。前記ドープの吐出速度が、7m/分以上40m/分以下の範囲であることが好ましい。前記ドープを構成するポリマーが、セルロースアシレートであることが好ましい。
本発明の溶液製膜方法によれば、流延ダイから支持体上にドープから流延ビードを形成して流延し、前記流延ビードの流延背面から減圧チャンバを用いて、前記流延ビード背面を減圧にする溶液製膜方法において、前記減圧チャンバの前記流延ドープ近傍のガス濃度を80%以下にするから、ガス成分の液化を防止でき、前記ガス成分が液化して前記流延ビードに付着する故障を引き起こすことを防止できる。前記方法により得られるフィルムは光学ムラ及び横ダンムラの発生が抑制されている。
以下に、本発明の実施態様について詳細に説明する。ただし、本発明はここに挙げる実施態様に限定されるものではない。
[原料]
セルロースアシレートは、セルロースの水酸基への置換度が下記式(I)〜(III)の全てを満足するセルロースアシレートを用いることが好ましい。以下、下記式を満たすセルロースアシレートをTACと称する。
(I) 2.5≦A+B≦3.0
(II) 0≦A≦3.0
(III) 0≦B≦2.9
但し、式中A及びBは、セルロースの水酸基の水素原子に対するアシル基の置換度を表わし、Aはセルロースの水酸基の水素原子に対するアセチル基の置換度、またBはセルロースの水酸基の水素原子に対する炭素原子数3〜22のアシル基の置換度である。なお、TACの90質量%以上が0.1mm〜4mmの粒子を用いることが好ましい。また、本発明に用いられるポリマーはセルロースアシレートに限定されるものではない。なお、セルロースアシレートは、リンター綿,パルプ綿のどちらから得られたものでも良いが、リンター綿から得られたものが好ましい。
ドープを調製する溶媒としては、芳香族炭化水素(例えば、ベンゼン,トルエンなど)、ハロゲン化炭化水素(例えば、ジクロロメタン,クロロベンゼンなど)、アルコール(例えば、メタノール,エタノール,n−プロパノール,n−ブタノール,ジエチレングリコールなど)、ケトン(例えば、アセトン,メチルエチルケトンなど)、エステル(例えば、酢酸メチル,酢酸エチル,酢酸プロピルなど)及びエーテル(例えば、テトラヒドロフラン,メチルセロソルブなど)などが挙げられる。なお、本発明において、ドープとはポリマーを溶媒に溶解または分散して得られるポリマー溶液,分散液を意味している。
これらの中でも炭素原子数1〜7のハロゲン化炭化水素が好ましく用いられ、ジクロロメタンが最も好ましく用いられる。TACの溶解性、流延膜の支持体からの剥ぎ取り性、フィルムの機械的強度など及びフィルムの光学特性などの物性の観点から、ジクロロメタンの他に炭素原子数1〜5のアルコールを1種ないし数種類混合することが好ましい。アルコールの含有量は、溶媒全体に対し2質量%〜25質量%が好ましく、5質量%〜20質量%がより好ましい。アルコールの具体例としては、メタノール,エタノール,n−プロパノール,イソプロパノール,n−ブタノールなどが挙げられるが、メタノール,エタノール,n−ブタノールあるいはこれらの混合物が好ましく用いられる。
最近、環境に対する影響を最小限に抑えるため、ジクロロメタンを用いない溶媒組成も提案されている。炭素原子数が4〜12のエーテル、炭素原子数が3〜12のケトン、炭素原子数が3〜12のエステル、炭素数1〜12のアルコールが好ましく用いられる。通常、これらを適宜混合して用いる。例えば、酢酸メチル,アセトン,エタノール,n−ブタノールの混合溶媒が挙げられる。これらのエーテル、ケトン,エステル及びアルコールは、環状構造を有していてもよい。エーテル、ケトン,エステル及びアルコールの官能基(すなわち、−O−,−CO−,−COO−及び−OH)のいずれかを2つ以上有する化合物も、溶媒として用いることができる。
セルロースアシレートの詳細については、特願2004−264464号の[0140]段落から[0195]段落に記載されている。これらの記載も本発明にも適用できる。また、溶媒及び可塑剤,劣化防止剤,紫外線吸収剤(UV剤),光学異方性コントロール剤,レターデーション制御剤,染料,マット剤,剥離剤,剥離促進剤などの添加剤、同じく特願2004−264464号の[0196]段落から[0516]段落に詳細に記載されている。
[ドープ製造方法]
前記原料を用いてまずドープを製造する。始めに溶媒を溶解タンクに送る。次にTACを計量しながら溶解タンクに送り込む。その後予め調製されている添加剤溶液を必要量溶解タンクに送り込む。なお、添加剤は溶液として送り込む方法の他に、例えば添加剤が常温で液体の場合には、その液体の状態で溶解タンクに送り込むことも可能である。また、添加剤が固体の場合には、ホッパなどを用いて溶解タンクに送り込むことも可能である。添加剤を複数種類添加する場合には、添加剤溶液に複数種類の添加剤を溶解させておくこともできる。または、多数の添加剤溶液タンクを用いてそれぞれに添加剤が溶解している溶液を入れて、それぞれ独立した配管により溶解タンクに送り込むこともできる。
溶解タンクに入れる順番は、溶媒(混合溶媒の場合も含めた意味で用いる)、TAC、添加剤に限定されるものではない。例えば、TACを計量しながら溶解タンクに送り込んだ後に、好ましい量の溶媒を送液することもできる。また、添加剤は必ずしも溶解タンクに予め入れる必要はなく、後の工程でTACと溶媒との混合物(以下、これらの混合物もドープと称する)に混合させることもできる。
溶解タンクには、ジャケットと、モータにより回転する第1攪拌翼が備えられている。さらに、モータにより回転する第2攪拌翼が取り付けられていることが好ましい。なお、第1攪拌翼は、アンカー翼であることが好ましく、第2攪拌翼は、ディゾルバータイプのものを用いることが好ましい。ジャケットに伝熱媒体を流して溶解タンク内を−10℃〜55℃の範囲に温度調整することが好ましい。第1攪拌翼,第2攪拌翼を適宜選択して回転させることでTACが溶媒中で膨潤した膨潤液を得る。
膨潤液は、ポンプにより加熱装置に送る。加熱装置は、ジャケット付き配管であることが好ましく、さらに、膨潤液を加圧できる構成であることが好ましい。膨潤液を加熱または加圧加熱条件下として、TACなどを溶媒に溶解させてドープを得る。なお、この場合に膨潤液の温度を40℃〜120℃の範囲に加熱してドープを調製する方法(以下、加熱溶解法と称する)を行うことが好ましい。また、膨潤液を−100℃〜−30℃の温度に冷却する冷却溶解法を行うこともできる。加熱溶解法及び冷却溶解法を適宜選択して行うことでTACを溶媒に充分溶解させることが可能となる。ドープの温度を温調機により略室温とした後に、濾過装置により濾過を行いドープ中の不純物を取り除く。濾過装置の濾過フィルタの平均孔径が100μm以下であることが好ましい。また、濾過流量は、50L/hr以上であることが好ましい。
ところで、前記のように一旦膨潤液を調製し、その後に膨潤液をドープとする方法は、TACの濃度を上昇させるほど時間がかかりコストの点で問題が生じる場合がある。その場合には、目的とするTAC濃度より低濃度のドープを調製し、その後に目的とする濃度のドープを調製する濃縮工程を行うことが好ましい。このような方法を行う際には、濾過装置で濾過されたドープをフラッシュ装置に送液する。フラッシュ装置内でドープ中の溶媒の一部を蒸発させる。蒸発した溶媒は、凝縮器により液体とした後に回収装置で回収する。回収された溶媒は再生装置によりドープ調製用の溶媒として再生を行い再利用される。この再利用はコストの点で効果がある。
濃縮されたドープは、ポンプによりフラッシュ装置から抜き出される。さらに、ドープに発生している気泡を抜くために泡抜き処理を行うことが好ましい。泡抜きは、公知のいずれの方法を適用しても良く、例えば超音波照射法が挙げられる。その後にドープは、濾過装置に送液されて異物が除去される。なお、濾過する際のドープの温度は、0℃〜200℃であることが好ましい。これらの方法により、TAC濃度が5質量%〜40質量%、好ましくは10質量%〜30質量%、最も好ましくは15質量%〜25質量%のドープを製造することができる。
TACフィルムを得る溶液製膜法での、ドープの素材、原料、添加剤の溶解方法及び添加方法、濾過方法、脱泡などのドープの製造方法については、特願2004−264464号の[0517]段落から[0616]段落が詳しい。これらの記載も本発明に適用できる。
[溶液製膜方法]
図1にフィルム製造ライン10を示す。フィルム製造ライン10には、濾過装置11と流延室12とテンタ式乾燥機13とが備えられている。さらに耳切装置14と乾燥室15と冷却室16と巻取室17とが配されている。
ストックタンク20には前記方法で調製されているドープ21が入れられている。また、モータ22で回転する攪拌翼23が取り付けられている。攪拌翼23を回転させることでドープ21を常に均一にしている。ストックタンク20は、ポンプ24を介して濾過装置11と接続している。ストックタンク20内のドープ21に可塑剤、紫外線吸収剤などの添加剤を混合させることもできる。
流延ダイ30の材質は析出硬化型のステンレス鋼を用いることが好ましい。その熱膨張
率が2×10-5(℃-1)以下の素材を用いることが好ましい。また、電解質水溶液での強制腐食試験でSUS316製と略同等の耐腐食性を有するものを用いることもできる。さらに、その素材はジクロロメタン、メタノール、水の混合液に3ヵ月浸漬しても気液界面にピッティング(孔開き)が生じない耐腐食性を有するものを用いる。さらに、鋳造後1ヶ月以上経過したものを研削加工して流延ダイ30を作製することが好ましい。これにより流延ダイ30内をドープが一様に流れ、後述する流延膜にスジなどが生じることが防止される。
流延ダイ30の接液面の仕上げ精度は表面粗さで1μm以下、真直度はいずれの方向にも1μm/m以下のものを用いることが好ましい。スリットのクリアランスは自動調整により0.5mm〜3.5mmの範囲で調整可能なものを用いる。流延ダイ30のリップ先端の接液部の角部分について、Rはスリット全巾に亘り50μm以下のものを用いる。また、流延ダイ30内での剪断速度は1(1/sec)〜5000(1/sec)となるように調整されているものを用いることが好ましい。
流延ダイ30の幅は特に限定されるものではないが、最終製品となるフィルムの幅の1.01倍〜1.3倍程度のものを用いることが好ましい。また、製膜中は、所定の温度に保持されるように流延ダイ30に温調機を取り付けることが好ましい。また、流延ダイ30にはコートハンガー型のものを用いることが好ましい。さらに、厚み調整ボルト(ヒートボルト)を流延ダイ30の幅方向に所定の間隔で設けてヒートボルトによる自動厚み調整機構を取り付けることがより好ましい。ヒートボルトは予め設定されるプログラムによりポンプ(高精度ギアポンプが好ましい)24の送液量に応じてプロファイルを設定し製膜を行うことが好ましい。また、フィルム製造ライン10中に図示しない厚み計(例えば、赤外線厚み計)のプロファイルに基づく調整プログラムによってフィードバック制御を行っても良い。流延エッジ部を除いて任意の2点の厚み差は1μm以内に調整し、幅方向厚みの最小値で最も大きな差が3μm以下となるように調整することが好ましい。また、厚み精度は±1.5μm以下に調整されているものを用いることが好ましい。
流延ダイ30のリップ先端には、硬化膜が形成されていることがより好ましい。硬化膜の形成方法は、特に限定されるものではないが、セラミックスコーティング、ハードクロムメッキ、窒化処理方法などが挙げられる。硬化膜としてセラミックスを用いる場合には、研削でき気孔率が低く脆くなく耐腐食性が良く、かつ流延ダイ30と密着性が良く、ドープと密着性がないものが好ましい。具体的には、タングステン・カーバイド(WC),Al23,TiN,Cr23などが挙げられるが特に好ましくはWCを用いることである。WCコーティングは、溶射法で行うことができる。
流延ダイ30のスリット端に流出するドープが、局所的に乾燥固化することを防止するために溶媒供給装置(図示しない)をスリット端に取り付けることが好ましい。ドープを可溶化する溶媒(例えば、ジクロロメタン86.5質量部,アセトン13質量部,n−ブタノール0.5質量部の混合溶媒)を流延ビードの両端部及びスリットと外気との両気液界面に供給することが好ましい。端部の片側それぞれに0.1mL/min〜1.0mL/minの範囲で供給することが流延膜中に異物が混合することを防止できるために好ましい。なお、この液を供給するポンプの脈動率は5%以下のものを用いることが好ましい。
流延ダイ30の下方には、支持体である回転ドラム31が設けられている。回転ドラム31は図示しない駆動装置により回転する。また、回転ドラム31の表面温度を所定の値にするために、回転ドラム31に伝熱媒体循環装置32が取り付けられている。回転ドラム31内には伝熱媒体流路(図示しない)が形成されており、その中を所定の温度に保持されている伝熱媒体が通過することにより、回転ドラム31の温度を所定の値に保持できる。回転ドラム31の表面温度は特に限定されるものではないが、−20℃〜40℃であることが好ましい。
回転ドラム31の幅は特に限定されるものではないが、ドープの流延幅の1.05倍〜1.5倍の範囲のものを用いることが好ましい。表面粗さは0.05μm以下となるように研磨したものを用いることが好ましい。材質は、ステンレス製であることが好ましく、十分な耐腐食性と強度とを有するようにSUS316製であることがより好ましい。
なお、支持体として回転ドラム31に変えて回転ローラに掛け渡されて移動する流延バンドを用いることもできる。なお、支持体(回転ドラム31や流延バンド)の表面欠陥は最小限に抑制する必要がある。具体的には、30μm以上のピンホールを皆無とし、10μm以上30μm未満のピンホールを1個/m2以下とし、10μm未満のピンホールを2個/m2以下とすることが好ましい。
流延ダイ30、回転ドラム31などは流延室12に収められている。流延室12には、その中の温度を所定の値に保つため温調設備33が取り付けられている。流延室12の温度が−10℃〜57℃であることが好ましい。また、揮発している有機溶媒を凝縮回収するための凝縮器(コンデンサ)34が設けられている。凝縮液化した溶媒を回収する回収装置35も備えられている。凝縮器34で凝縮液化した有機溶媒は、回収装置35により回収される。その溶媒は再生装置(図示しない)で再生された後に、ドープ調製用溶媒として再利用される。また、流延する際に形成される流延ビードの背面部の圧力調整を行うために減圧チャンバ36が流延ダイ30に取り付けられている。減圧チャンバ36には、減圧装置37が取り付けられており、減圧度を調整可能なものとしている。なお、流延ダイ30,減圧チャンバ36及び減圧装置37については、後に詳細に説明する。
渡り部50には、送風機51が備えられている。また、テンタ式乾燥機13の下流には耳切装置14が設けられている。切り取られたフィルム52の側端部(耳と称される)の屑を細かく切断処理するクラッシャ53が耳切装置14に接続されている。
乾燥室15には、多数のローラ54が備えられている。また蒸発して発生した溶媒ガスを吸着回収するための吸着回収装置55を備えている。また、乾燥室15と冷却室16との間に調湿室(図示しない)を設けても良い。冷却室16の下流には、フィルム52の帯電圧を所定の範囲(例えば、−3kV〜+3kV)となるように調整するための強制除電装置(除電バー)56が設けられていることが好ましい。図1においては、強制除電装置56は、冷却室16の下流側とされている形態を図示しているが、この位置に限定されるものではない。さらに、本実施形態においては、フィルム52の両縁にエンボス加工でナーリングを付与するためのナーリング付与ローラ57が強制除電装置56の下流側に適宜設けられていることが好ましい。また、巻取室17の内部には、フィルム52を巻き取るための巻取ローラ58と、その巻き取り時のテンションを制御するためのプレスローラ59とが備えられている。
次に、以上のようなフィルム製造ライン10を使用してフィルムを製造する方法の一例を以下に説明する。ドープ21は、攪拌翼23の回転により常に均一化されている。ドープ21には、この攪拌の際にも可塑剤,紫外線吸収剤などの添加剤を混合させることもできる。
ドープ21は、ポンプ24により濾過装置11に送られて濾過される。その後に図2に示すように流延ダイ30から流延ビード38を形成して回転ドラム31上に流延される。ドープ21と流延速度(ドープ吐出速度)が7m/分以上40m/分以下の範囲であることが好ましく、より好ましくは10m/分以上35m/分以下の範囲であり、最も好ましくは15m/分以上30m/分以下の範囲である。ドープ吐出速度が7m/分未満であると生産性の向上が図れず、コスト高の原因となる。また、40m/分を超えると、均一な流延ビード38を安定して連続的に形成することが困難となる場合がある。
回転ドラム31の速度変動を3%以下とし、回転ドラム31が一回転する際に生じる幅方向の蛇行は3mm以下とすることが好ましい。流延ダイ30直下における回転ドラム31について、上下方向の位置変動が500μm以下となるように調整することが好ましい。また、流延室12の温度は、温調設備33により−10℃〜57℃とされていることが好ましい。なお、流延室12内で蒸発した溶媒は回収装置35により回収された後に、再生させてドープ調製用溶媒として再利用される。
流延ダイ30から回転ドラム31にかけては流延ビード38が形成され、回転ドラム31上に流延膜39が形成される。流延時のドープ21の温度は、−10℃〜57℃であることが好ましい。また、流延ビード38を安定させるために、流延ビード38の支持体接触面(以下、流延ビード背面と称する)38aが減圧チャンバ36により所望の圧力値に調整されている。流延ビード背面38aは、大気圧に対して−1500Pa以上−200Paの範囲で減圧することが好ましく、より好ましくは−1300Pa以上−300Pa以下の範囲であり、最も好ましくは−1200Pa以上−500Pa以下の範囲とすることである。−1500Paより減圧度を上げる(すなわち、より高真空とする)と、流延ビード背面38aからの溶媒の揮発が過大になりすぎ、流延ビード38の回転ドラム31への流延が均一且つ連続的に行われないおそれがある。また、−200Paより減圧度を下げると、流延ビード背面38aを減圧にすることにより、流延ビード38の形成を良好なものとする効果が減じるおそれがある。
また、本発明では、減圧チャンバ36の流延ビード38近傍のガス濃度を調整する。図2に示されている流延ビード背面38a近傍の減圧チャンバ36の領域Aのガス濃度を80%以下とすることが好ましく、より好ましくは70%以下とすることであり、最も好ましくは60%以下とすることである。ガス濃度を80%以下とするガス(揮発性有機溶媒)が結露することによる流延故障を防止できる。ガス濃度の調整は、ドープ21を構成する有機溶媒(場合によっては添加剤も含む)の蒸気圧から算出される液化温度以上に減圧チャンバ36の温度調整をする方法が挙げられる。または、流延ビード38に同伴風が生じないように、また且つ組成が調整されている空気を領域Aに供給する方法も挙げられる。
領域Aのガス濃度の下限値は特に限定されるものではない。しかしながら、ガス濃度があまりに低いと、流延ビード背面38aから溶媒の揮発が進行しすぎるおそれがある。この場合には、略固化状態で回転ドラム31上に流延ビード背面38aが接地される。そのため、流延膜39の支持体接触面の面状不良を引き起こす原因となる。そこで、ガス濃度は5%以上であることが好ましく、より好ましくは10%以上であり、最も好ましくは20%以上である。
さらに、減圧チャンバ36にはジャケット(図示しない)を取り付けて、内部温度が所定の温度を保つように温度制御されることが好ましい。減圧チャンバ36の温度は特に限定されるものではないが、用いられている有機溶媒の凝縮点以上にすることが好ましい。また、流延ビード38の形状を所望のものに保つため流延ダイ30のエッジ部に吸引装置(図示しない)を取り付けることが好ましい。このエッジ吸引風量は、1L/min〜100L/minの範囲であることが好ましい。
支持体である回転ドラム31と減圧チャンバ36との隙間CL(mm)を狭くすることで同伴風など大気の流れの不安定化を抑制することができる。隙間CL(mm)は、狭いほど大気の安定化を図ることができる。回転ドラム31は、その回転ムラに伴う回転ドラム表面31aの高さの変動を伴う。そこで、隙間CL(mm)は、0.05mm以上であることが好ましい。また、上限値は、3mm以下であれば大気の安定化を図ることができるが、より好ましくは0.7mm以下であり、最も好ましくは0.5mm以下である。
流延膜39は、自己支持性を有するものとなった後に、湿潤フィルム60として剥取ローラ61で支持されながら回転ドラム31から剥ぎ取られる。その後に多数のローラが設けられている渡り部50を搬送させた後にテンタ式乾燥機13に送り込む。渡り部50では、送風機51から所望の温度の乾燥風を送風することで湿潤フィルム60の乾燥を進行させる。このとき乾燥風の温度が、20℃〜250℃であることが好ましい。なお、渡り部50では下流側のローラ62の回転速度を上流側のローラ62の回転速度より速くすることにより湿潤フィルム60にドローテンション(搬送方向のテンション)を付与させることも可能である。
テンタ式乾燥機13に送られている湿潤フィルム60は、その両縁がクリップで把持されて搬送されながら乾燥される。また、テンタ式乾燥機13の内部を温度ゾーンに区画分割して、その区画毎に乾燥条件を調整することが好ましい。テンタ式乾燥機13を用いて湿潤フィルム60を幅方向に延伸させることも可能である。このように、渡り部50及び/またはテンタ式乾燥機13で湿潤フィルム60の流延方向と幅方向との少なくとも1方向を0.5%〜300%延伸することが好ましい。
湿潤フィルム60は、テンタ式乾燥機13で所定の残留溶媒量まで乾燥された後にフィルム52として送り出される。フィルム52の両側端部が、耳切装置14により切断される。切断されたフィルムは、図示しないカッターブロワによりクラッシャ53に送られる。クラッシャ53によりフィルムの側端部は、粉砕されてチップとなる。このチップをドープ調製用に再利用することがコストの点から有利である。なお、このフィルムの両縁を切断する工程は、省略することもできるが、前記流延工程から前記フィルムを巻き取る工程までのいずれかで行うことが好ましい。
次にフィルム52は、多数のローラ54が備えられている乾燥室15に送られる。乾燥室15内の温度は、特に限定されるものではないが、50℃〜160℃の範囲であることが好ましい。乾燥室15においては、フィルム52は、ローラ54に巻き掛けられながら搬送されて溶媒が揮発して乾燥される。ここで揮発した溶媒(溶媒ガス)は、吸着回収装置55により吸着回収される。吸着回収装置55により溶媒成分が除去された空気は、乾燥室15の内部に乾燥風として再度送風される。なお、乾燥室15は、乾燥温度を変えるために複数の区画に分割されていることがより好ましい。また、耳切装置14と乾燥室15との間に予備乾燥室(図示しない)を設け、フィルム52を予備乾燥すると、乾燥室15においてフィルム温度が急激に上昇することによるフィルム52の形状変化を抑制できる。
フィルム52は、冷却室16では略室温まで冷却される。なお、乾燥室15と冷却室16との間に調湿室(図示しない)を設けても良い。調湿室でフィルム52に所望の湿度及び温度に調整された空気を吹き付ける。これにより、フィルム52のカールの発生や巻き取る際の巻き取り不良の発生を抑制できる。
強制除電装置(除電バー)56により、フィルム52が搬送されている間の帯電圧が所定の範囲(例えば、−3kV〜+3kV)とされる。図1では冷却室16の下流側に設けられている例を図示しているがその位置に限定されるものではない。さらに、ナーリング付与ローラ57を設けて、フィルム52の両縁にエンボス加工でナーリングを付与することが好ましい。なお、ナーリングされた箇所の凹凸が、1μm〜200μmであることが好ましい。
最後に、フィルム52を巻取室17内の巻取ローラ58で巻き取る。この際には、プレスローラ59で所望のテンションを付与しつつ巻き取ることが好ましい。なお、テンションは巻取開始時から終了時まで徐々に変化させることがより好ましい。巻き取られるフィルム52は、長手方向(搬送方向)に少なくとも100m以上とすることが好ましい。また、幅方向が600mm以上であることが好ましく、1400mm以上1800mm以下であることがより好ましい。また、本発明は、1800mmより大きい場合にも効果がある。フィルムの厚みは、15μm以上100μm以下の薄いフイルムを製造する際にも適用できる。
本発明の溶液製膜方法において、ドープを流延する際に、2種類以上のドープを同時積層共流延又は逐次積層共流延させる。さらに両共流延を組み合わせても良い。同時積層共流延を行う際には、フィードブロックを取り付けた流延ダイを用いても良いし、マルチマニホールド型流延ダイを用いても良い。共流延により多層からなるフィルムは、空気面側の層の厚さと支持体側の層の厚さとの少なくともいずれか一方が、フィルム全体の厚みの0.5%〜30%であることが好ましい。さらに、同時積層共流延を行う場合に、ダイスリットから支持体にドープを流延する際に、高粘度ドープが低粘度ドープで包み込まれることが好ましい。また、同時積層共流延を行なう場合に、ダイスリットから支持体にかけて形成される流延ビードのうち、外界と接するドープが内部のドープよりもアルコールの組成比が大きいことが好ましい。
流延ダイ、減圧チャンバ、支持体などの構造、共流延、剥離法、延伸、各工程の乾燥条件、ハンドリング方法、カール、平面性矯正後の巻取り方法から、溶媒回収方法、フィルム回収方法まで、特願2004−264464号の[0617]段落から[0889]段落に詳しく記述されている。これらの記載も本発明に適用できる。
[性能・測定法]
(カール度・厚み)
巻き取られたセルロースアシレートフィルムの性能及びそれらの測定法は、特願2004−264464号の[0112]段落から[0139]段落に記載されている。これらも本発明にも適用できる。
[表面処理]
前記セルロースアシレートフィルムの少なくとも一方の面が表面処理されていることが好ましい。前記表面処理が真空グロー放電処理、大気圧プラズマ放電処理、紫外線照射処理、コロナ放電処理、火炎処理、酸処理またはアルカリ処理の少なくとも一種であることが好ましい。
[機能層]
(帯電防止・硬化層・反射防止・易接着・防眩)
前記セルロースアシレートフィルムの少なくとも一方の面が下塗りされていても良い。
さらに前記セルロースアシレートフィルムをベースフィルムとして、他の機能性層を付与した機能性材料として用いることが好ましい。前記機能性層が帯電防止層、硬化樹脂層、反射防止層、易接着層、防眩層及び光学補償層から選択される少なくとも1層を設けることが好ましい。
前記機能性層が、少なくとも一種の界面活性剤を0.1mg/m2〜1000mg/m2含有することが好ましい。また、前記機能性層が、少なくとも一種の滑り剤を0.1mg/m2〜1000mg/m2含有することが好ましい。さらに、前記機能性層が、少なくとも一種のマット剤を0.1mg/m2〜1000mg/m2含有することが好ましい。さらには、前記機能性層が、少なくとも一種の帯電防止剤を1mg/m2〜1000mg/m2含有することが好ましい。セルロースアシレートフィルムに、種々様々な機能、特性を実現するための表面処理機能性層の付与方法は、上記以外にも、特願2004−264464号の[0890]段落から[1087]段落に詳細な条件、方法も含めて記載されている。これらも本発明に適用できる。
(用途)
前記セルロースアシレートフィルムは、特に偏光板保護フィルムとして有用である。セルロースアシレートフィルムを偏光子に貼り合わせた偏光板を、液晶層に通常は2枚設けて液晶表示装置を作製する。但し、液晶層と偏光板との配置位置は限定されるものではなく、公知のどの位置でも良い。特願2004−264464号には、液晶表示装置として、TN型,STN型,VA型,OCB型,反射型、その他の例が詳しく記載されている。この方法は、本発明にも適用できる。また、同出願には光学的異方性層を付与した、セルロースアシレートフィルムや、反射防止、防眩機能を付与したセルロースアシレートフィルムについての記載もある。更には適度な光学性能を付与し二軸性セルロースアシレートフィルムとして光学補償フィルムとしての用途も記載されている。これは、偏光板保護フィルムと兼用して使用することもできる。これらの記載は、本発明にも適用できる。特願2004−264464号の[1088]段落から[1265]段落に詳細が記載されている。
また、本発明の製造方法により光学特性に優れるセルローストリアセテートフィルム(TACフィルム)を得ることができる。前記TACフィルムは、偏光板保護フィルムや写真感光材料のベースフィルムとして用いることができる。さらにテレビ用途などの液晶表示装置の視野角依存性を改良するための光学補償フィルムとしても使用可能である。特に偏光板の保護膜を兼ねる用途に効果的である。そのため、従来のTNモードだけでなくIPSモード、OCBモード、VAモードなどにも用いられる。また、前記偏光板保護膜用フィルムを用いて偏光板を構成しても良い。
以下に実施例1を挙げるが、本発明はこれらに限定されるものではない。説明は本発明に係る実験1で詳細に行う。本発明に係る実験2及び実験3並びに比較例である実験4ないし実験6の実験条件及び実験結果は後に表1にまとめて示す。
実験1のドープ調製に使用した原料の質量部を下記に示す。
[組成]
セルローストリアセテート(置換度2.84、 粘度平均重合度306、含水率0.2質量%、ジクロロメタン溶液中6質量%の粘度 315mPa・s、平均粒子径1.5mmであって標準偏差0.5mmである粉体) 100質量部
ジクロロメタン(第1溶媒) 320質量部
メタノール(第2溶媒) 83質量部
1−ブタノール(第3溶媒) 3質量部
可塑剤A(トリフェニルフォスフェート) 7.6質量部
可塑剤B(ジフェニルフォスフェート) 3.8質量部
UV剤a:2(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール 0.7質量部
UV剤b:2(2’−ヒドロキシ−3’,5’−ジ−tert−アミルフェニル)−5−クロルベンゾトリアゾール 0.3質量部
クエン酸エステル混合物(クエン酸、モノエチルエステル、ジエチルエステル、トリエチルエステル混合物) 0.006質量部
微粒子(二酸化ケイ素(平均粒径15nm)、モース硬度 約7) 0.05質量部
[セルローストリアセテート]
なお、ここで使用したセルローストリアセテートは、残存酢酸量が0.1質量%以下であり、Ca含有率が58ppm、Mg含有率が42ppm、Fe含有率が0.5ppmであり、遊離酢酸40ppm、さらに硫酸イオンを15ppm含むものであった。また6位水酸基の水素に対するアセチル基の置換度は0.91であった。また、全アセチル基中の32.5%が6位の水酸基の水素が置換されたアセチル基であった。また、このTACをアセトンで抽出したアセトン抽出分は8質量%であり、その重量平均分子量/数平均分子量比は2.5であった。また、得られたTACのイエローインデックスは1.7であり、ヘイズは0.08、透明度は93.5%であり、Tg(ガラス転移温度;DSCにより測定)は160℃、結晶化発熱量は6.4J/gであった。このTACは、綿から採取したセルロースを原料として合成されたものである。以下の説明において、これを綿原料TACと称する。
攪拌羽根を有する4000Lのステンレス製溶解タンクで前記複数の溶媒を混合してよく攪拌し、混合溶媒とした。なお、溶媒の各原料としては、すべてその含水率が0.5質量%以下のものを使用した。次に、TACのフレーク状粉体をホッパから徐々に添加した。TAC粉末は、溶解タンクに投入されて、最初は5m/secの周速で攪拌するディゾルバータイプの偏芯攪拌機および、中心軸にアンカー翼を有して周速1m/secで攪拌する条件下で30分間分散した。分散開始時の温度は25℃であり、最終到達温度は48℃となった。さらに、予め調製された添加剤溶液を添加剤タンク送液して全体が2000kgとなるようにした。添加剤溶液の分散を終了した後に、高速攪拌は停止した。そして、アンカー翼の周速を0.5m/secとしてさらに100分間攪拌し、TACフレークを膨潤させて膨潤液を得た。膨潤終了までは窒素ガスにより溶解タンク内を0.12MPaになるように加圧した。この際の溶解タンクの内部は、酸素濃度が2vol%未満であり防爆上で問題のない状態を保った。また膨潤液中の水分量は0.3質量%であった。
膨潤液を溶解タンクからポンプを用いてジャケット付配管に送液した。ジャケット付き配管で膨潤液を50℃まで加熱して、更に2MPaの加圧下で90℃まで加熱し、完全溶解した。このときの加熱時間は15分であった。次に溶解された液を温調機で36℃まで温度を下げ、公称孔径8μmの濾材を有する濾過装置を通過させドープ(以下、濃縮前ドープと称する)を得た。この際、濾過装置における1次側圧力は1.5MPa、2次側圧力を1.2MPaとした。高温にさらされるフィルタ、ハウジング及び配管はハステロイ(商品名)合金製で耐食性の優れたものを利用し保温加熱用の伝熱媒体を流通させるジャケットを備えたものを使用した。
このようにして得られた濃縮前ドープを80℃で常圧とされたフラッシュ装置内でフラッシュ蒸発させて、蒸発した溶媒を凝縮器で回収した。フラッシュ後のドープの固形分濃度は、22.5質量%となった。なお、凝縮された溶媒はドープ調製用溶媒として再利用すべく回収装置で回収した。その後に再生装置で再生した後に溶媒タンクに送液した。回収装置,再生装置では、蒸留や脱水を行った。フラッシュ装置のフラッシュタンクには攪拌軸にアンカー翼を備えた攪拌機を設け、その攪拌機により周速0.5m/secでフラッシュされたドープを攪拌して脱泡を行った。このフラッシュタンク内のドープの温度は25℃であり、タンク内におけるドープの平均滞留時間は50分であった。このドープを採取して25℃で測定した剪断粘度は、剪断速度10(sec-1)で450Pa・sであった。
次に、このドープに弱い超音波を照射することにより泡抜きを実施した。その後、ポンプを用いて1.5MPaに加圧した状態で、濾過装置を通過させた。濾過装置では、最初公称孔径10μmの焼結繊維金属フィルタを通過させ、ついで同じく10μmの焼結繊維フィルタを通過させた。それぞれの1次側圧力は1.5MPa,1.2MPaであり、2次側圧力は1.0MPa,0.8MPaであった。濾過後のドープ温度を36℃に調整して2000Lのステンレス製ストックタンク20内にドープ21を送液して貯蔵した。ストックタンク20は中心軸にアンカー翼23を備えた攪拌機を有しており、周速0.3m/secで常時攪拌を行った。なお、濃縮前ドープからドープを調製する際に、ドープ接液部には、腐食などの問題は全く生じなかった。前記方法で製造されたドープをドープAと称する。
図1に示すフィルム製造ライン10を用いてフィルムを製造した。ストックタンク20内のドープ21を高精度のギアポンプ24で濾過装置11へ送った。このギアポンプ24は、ポンプ24の1次側を増圧する機能を有しており、1次側の圧力が0.8MPaになるようにインバーターモータによりギアポンプ24の上流側に対するフィードバック制御を行い送液した。ギアポンプ24は容積効率99.2%、吐出量の変動率0.5%以下の性能であるものを用いた。また、吐出圧力は1.5MPaであった。そして、濾過装置11を通ったドープ21を流延ダイ30に送液した。
流延ダイ30は、幅が1.8mであるものを用いた。また、乾燥されたフィルムの膜厚が40μmとなるように、流延ダイ30の吐出口のドープ21の流量を調整して流延を行った。また流延ダイ30の吐出口からのドープ21の流延幅を1700mmとした。ドープ21の温度を36℃に調整するために、流延ダイ30にジャケット(図示しない)を設けて、流延ダイ30の温度を30℃〜40℃となるように調整した。
流延ダイ30と配管とはすべて、製膜中には36℃に保温した。流延ダイ30は、コートハンガータイプのダイを用いた。流延ダイ30に厚み調整ボルトを20mmピッチに設け、ヒートボルトによる自動厚み調整機構を具備しているものを使用した。このヒートボルトは、予め設定したプログラムによりギアポンプ24の送液量に応じたプロファイルを設定することもでき、フィルム製造ライン10に設置した赤外線厚み計(図示しない)のプロファイルに基づいた調整プログラムによってフィードバック制御も可能な性能を有するものを用いた。端部20mmを除いたフィルムにおいては、50mm離れた任意の2点の厚み差は1μm以内であり、幅方向における厚みのばらつきが3μm/m以下となるように調整した。また、全体厚みは±1.5%以下に調整した。
流延ダイ30の1次側には、この部分を減圧するための減圧チャンバ36を設置した。減圧チャンバ36と回転ドラム表面31aとのクリアランスCLを0.5mmとした。減圧チャンバ36の温度は、35℃〜50℃となるように調整した。流延ダイ吐出口におけるビードの前面部、背面部にはラビリンスパッキン(図示しない)を設けた。また、流延ダイ30のダイ吐出口の両端には開口部を設けた。さらに、流延ダイ30には、流延ビードの両縁の乱れを調整するためのエッジ吸引装置(図示しない)を取り付けた。
流延ダイ30の材質は、析出硬化型のステンレス鋼であり、熱膨張率が2×10-5(℃-1)以下の素材であった。電解質水溶液での強制腐食試験でSUS316製と略同等の耐腐食性を有する素材であった。また、ジクロロメタン,メタノール,水の混合液に3ヶ月浸漬しても気液界面にピッティング(孔開き)が生じない耐腐食性を有していた。流延ダイ30の接液面の仕上げ精度は表面粗さで1μm以下、真直度はいずれの方向にも1μm/m以下であり、スリットのクリアランスは1.5mmに調整した。流延ダイ30のリップ先端の接液部の角部分については、Rはスリット全巾に亘り50μm以下になるように加工されているものを用いた。流延ダイ30内部でのドープ21の剪断速度は1(1/sec)〜5000(1/sec)の範囲であった。また、流延ダイ30のリップ先端には、溶射法によりWC(タングステンカーバイト)コーティングをおこない硬化膜を設けた。
さらに流延ダイ30の吐出口には、流出するドープ21が局所的に乾燥固化することを防止するために、ドープ21を可溶化するための混合溶媒(ジクロロメタン:メタノール=50質量部:50質量部)を流延ビード38の両則端部と吐出口との界面部に対し、それぞれ0.5ml/minずつ供給した。混合溶媒を供給するポンプの脈動率は5%以下であった。また、減圧チャンバ36により流延ビード背面38a側の圧力を大気圧−500Paとした。そして、領域Aのガス濃度が30%となるように減圧チャンバの温度などを調整した。なお、ガス濃度の測定は、領域Aのガスを採取しイノーバー社製の気体ガスクロマトグラフィー法で測定した。減圧チャンバ36の内部温度を所定の温度で一定にするためにジャケット(図示しない)を取り付けた。そのジャケット内には35℃に調整された伝熱媒体を供給した。前記エッジ吸引装置は、1L/min〜100L/minの範囲となるようにエッジ吸引風量を調整することができるものであり、本実施例ではこれを30L/min〜40L/minの範囲となるように適宜調整した。
支持体として直径が3m,幅が1.5mの回転ドラム31を用いた。回転ドラム31の表面材質は、クロムメッキ処理されており、十分な耐腐食性と強度を有するものを用いた。また、表面粗さが0.05μm以下になるように研磨した。回転ドラム31に液流路を形成した。その液流路に伝熱媒体を供給する伝熱媒体循環装置32を取り付けた。回転ドラム31の表面温度を0℃以下に保持した。また、回転ドラム31が1回転する際の流延ダイ30のリップと回転ドラム31との最近接距離(通常はドープを流延する位置である)の変動が500μm以下となるように配置した。また、回転ドラム31は、風圧変動抑制手段(図示しない)を有した流延室12内に設置した。この回転ドラム31上に流延ダイ30からドープ21を吐出速度20m/分で流延した。
回転ドラム31には、表面欠陥がないものが好ましく、30μm以上のピンホールは皆無であり、10μm〜30μmのピンホールは1個/m2以下、10μm未満のピンホールは2個/m2以下であるものを用いた。
流延室12の温度は、温調設備33を用いて35℃に保った。流延膜39には、乾燥風を送り乾燥した。乾燥風の飽和温度は、−8℃付近であった。回転ドラム31上での乾燥雰囲気における酸素濃度は5vol%に保持した。なお、この酸素濃度を5vol%に保持するために空気を窒素ガスで置換した。また、流延室12内の溶媒を凝縮回収するために、凝縮器(コンデンサ)34を設け、その出口温度を−10℃に設定した。
流延後5秒間は乾燥風が、直接に流延ビード38及び流延膜39に当たらないように遮風板(図示しない)を設置して、流延ダイ30直近の静圧変動を±1Pa以下に抑制した。流延膜39中の溶媒比率が乾量基準で200質量%になった時点で回転ドラム31から剥取ローラ61で支持しながら湿潤フィルム60として剥ぎ取った。なお、この乾量基準による溶媒含有率は、サンプリング時におけるフィルム重量をx、そのサンプリングフィルムを乾燥した後の重量をyとするとき{(x−y)/y}×100で算出される値である。剥取不良を抑制するために回転ドラム31の速度に対して剥取速度(剥取ローラドロー)は103%〜120%の範囲で適切に調整した。乾燥により発生した溶媒ガスは−10℃の凝縮器34で凝縮液化して回収装置35で回収した。回収された溶媒は、水分量が0.5%以下となるように調整した。溶媒が除去された乾燥風は、再度加熱して乾燥風として再利用した。
湿潤フィルム60を渡り部50のローラ62を介して搬送し、テンタ式乾燥機13に送った。この渡り部50では送風機51から乾燥風を湿潤フィルム60に送風した。また、ローラ62の表面材質はテフロン(登録商標)製のものを用い、表面温度が20℃以下となるように調整した。
テンタ式乾燥機13に送られた湿潤フィルム60は、クリップでその両端を固定されながらテンタ式乾燥機13の乾燥ゾーン内を搬送され、この間に乾燥風により乾燥された。クリップは、20℃の伝熱媒体の供給により冷却した。クリップの搬送は、チェーンで行い、そのスプロケットの速度変動は0.5%以下であった。また、テンタ式乾燥機13内を3ゾーンに分け、それぞれのゾーンの乾燥風温度を上流側から90℃,110℃,120℃とした。乾燥風のガス組成は−10℃における飽和ガス濃度とした。テンタ式乾燥機13の出口ではフィルム52内の残留溶媒量が10質量%となるように、乾燥ゾーンの条件を調整した。テンタ式乾燥機13内では搬送しつつ幅方向に延伸も行った。なお、この延伸前の湿潤フィルム60の幅を100%としたとき、延伸後の幅が105%となるように延伸した。テンタ式乾燥機13内での延伸率は、クリップによる噛み込み開始位置から10mm以上離れた位置の任意の2点における各実質延伸率の差異が10%以下であり、かつ20mm離れた任意の2点の延伸率の差は5%以下であった。また、テンタ式乾燥機13の入口から出口までの長さに対する、クリップ挟持開始位置から挟持解除位置までの長さの割合は90%とした。テンタ式乾燥機13内で蒸発した溶媒は−10℃の温度で凝縮させ液化して回収した。凝縮回収用に凝縮器(コンデンサ)を設け、その出口温度は−8℃に設定した。そして凝縮溶媒は、含まれる水分量が0.5質量%以下に調整されて再使用された。そして、テンタ式乾燥機13からフィルム52として送り出した。
そして、テンタ式乾燥機13の出口から30秒以内にフィルム52の両端の耳切を耳切装置14で行った。NT型カッターにより両側50mmの耳をカットし、カットした耳はカッターブロワ(図示しない)によりクラッシャ53に風送して平均80mm2程度のチップに粉砕した。このチップは、再度ドープ調製用原料としてTACフレークと共にドープ製造の際の原料として利用した。テンタ式乾燥機13の乾燥雰囲気における酸素濃度は5vol%に保持した。なお、酸素濃度を5vol%に保持するため空気を窒素ガスで置換した。後述する乾燥室15で高温乾燥させる前に、100℃の乾燥風が供給されている予備乾燥室(図示しない)でフィルム52を予備加熱した。
フィルム52を乾燥室15で高温乾燥した。乾燥室15を4区画に分割して、上流側から120℃,130℃,130℃,130℃の乾燥風を送風機(図示しない)から給気した。フィルム52のローラ54による搬送テンションを100N/mとして、最終的に残留溶媒量が0.3質量%になるまで約10分間乾燥した。ローラ54のラップ角度(フィルムの巻き掛け中心角)は、90度および180度とした。ローラ54の材質はアルミ製もしくは炭素鋼製であり、表面にはハードクロム鍍金を施したものを用いた。ローラ54には、その表面形状がフラットなものとブラストによりマット化加工したものとを用いた。ローラ54の回転によるフィルム位置の振れは、全て50μm以下であった。また、テンション100N/mでのローラ撓みは、0.5mm以下となるように選定した。
乾燥室15内に含まれる溶媒ガスは、吸着回収装置55を用いて吸着回収除去した。ここに使用した吸着剤は活性炭であり、脱着は乾燥窒素を用いて行った。回収した溶媒は、水分量を0.3質量%以下に調整してドープ調製用溶媒として再利用した。乾燥風には、溶媒ガスの他、可塑剤,UV吸収剤,その他の高沸点物が含まれるので冷却除去する冷却器およびプレアドソーバでこれらを除去して再生循環使用した。そして、最終的に屋外排出ガス中のVOC(揮発性有機化合物)は10ppm以下となるよう、吸脱着条件を設定した。また、全蒸発溶媒のうち、凝縮法で回収する溶媒量は90質量%であり、残りのものの大部分は吸着回収により回収した。
乾燥されたフィルム52を第1調湿室(図示しない)に搬送した。乾燥室15と第1調湿室との間の渡り部には、110℃の乾燥風を給気した。第1調湿室には、温度50℃、露点が20℃の空気を給気した。さらに、フィルム52のカールの発生を抑制する第2調湿室(図示しない)にフィルム52を搬送した。第2調湿室では、フィルム52に直接90℃,湿度70%の空気をあてた。
調湿後のフィルム52は、冷却室16で30℃以下に冷却した後に耳切装置(図示しない)で再度両端の耳切りを行った。搬送中のフィルム52の帯電圧は、常時−3kV〜+3kVの範囲となるように強制除電装置(除電バー)56を設置して調整をおこなった。さらにフィルム52の両端にナーリング付与ローラ57でナーリングの付与を行った。ナーリングはフィルム52の片側からエンボス加工を行うことで付与し、ナーリングを付与する幅は10mmであり、凹凸の高さがフィルム52の平均厚みよりも平均12μm高くなるようにナーリング付与ローラによる押し圧を設定した。
そして、フィルム52を巻取室17に搬送した。巻取室17の空調は、室内温度28℃,湿度70%に保持した。巻取室17の内部には、フィルム52の帯電圧が−1.5kV〜+1.5kVとなるようにイオン風除電装置(図示しない)も設置した。このようにして得られたフィルム(厚さ40μm)52の製品幅は、1475mmとなった。巻取ローラ58の径は169mmのものを用いた。巻き始めテンションは300N/mであり、巻き終わりが200N/mになるようなテンションパターンとした。巻き取り全長は4000mであった。巻き取りの際の巻きズレの変動幅(オシレート幅と称することもある)を±5mmとした、巻取ローラ58に対する巻きズレ周期を400mとした。また、巻取ローラ58に対するプレスローラ59の押し圧は、50N/mに設定した。巻き取り時のフィルム52の温度は25℃、含水量は1.4質量%、残留溶媒量は0.3質量%であった。全工程を通しても平均乾燥速度は20質量%(乾量基準溶媒)/minであった。巻き緩み、シワもなく、10Gでの衝撃テストにおいても巻きずれが生じなかった。ロール外観も良好であった。
フィルム52のフィルムロールを25℃、55%RHの貯蔵ラックに1ヶ月保管して、さらに上記と同様に検査した結果、いずれも有意な変化は認められなかった。さらにロール内においても接着も認められなかった。また、フィルム52を製膜した後に、回転ドラム31上には流延膜39の剥げ残りは全く見られなかった。
フィルム52の厚みムラを次の方法で測定して、以下の評価を行った。測定方法は、フィルム52を25℃,60RH%下でアンリツ電気社製、電子マイクロメーターを用いて、5箇所を測定した。測定値の平均値と偏差とから相対標準偏差RSD(=偏差/平均値×100%)を算出した。そして相対標準偏差からフィルムの厚みムラを4段階評価で行った。
5%未満・・厚みの均一性に極めて優れている(◎)。
5%以上10%未満・・厚み均一性に優れている(○)。
10%以上15%未満・・若干の厚みムラが生じているが製品としては問題が無い(△)。
15%以上・・厚みムラが生じており、製品として用いることができない(×)。
また、フィルム52の横ダンムラの評価は蛍光により行い、下記の4段階評価を行った。
横ダンムラの発生が極めて抑制されている(◎)。
横ダンムラの発生が抑制されている(○)。
横ダンムラが生じているが製品としては問題が無い(△)。
横ダンムラが生じており、製品として用いることができない(×)。
Figure 2006264027
本発明に係る実験1ないし実験3では、ガス濃度を80%以下としたので、流延ビードに溶媒などが付着することが抑制され、光学ムラが無く且つ横ダンムラの発生も抑制されたフィルムを得ることができた。
また、得られたフィルムの平面性の評価も行った。試料としてフィルムの全幅×1.5mを反射光,透過光にて角度を変えて検査し、平面性を評価した。また表面形状に関しては暗室にてスライドスコープでフィルムを検査すると共に、ベース面状投影機でも評価した。結果は本発明に係る実験1ないし実験3で得られたフィルムは平面性に優れていた。
本発明に係る溶液製膜方法を実施するためのフィルム製造ラインの概略図である。 図1の要部拡大図である。
符号の説明
10 フィルム製造ライン
21 ドープ
30 流延ダイ
31 回転ドラム
36 減圧チャンバ
38 流延ビード
38a 流延ビード背面
39 流延膜
52 フィルム

Claims (4)

  1. 流延ダイから支持体上にドープから流延ビードを形成して流延し、前記流延ビードの流延背面から減圧チャンバを用いて、前記流延ビード背面を減圧にする溶液製膜方法において、
    前記減圧チャンバの前記流延ドープ近傍のガス濃度を80%以下にすることを特徴とする溶液製膜方法。
  2. 前記減圧チャンバの減圧度が大気圧に対して−1500Pa以上−200Pa以下の範囲とすることを特徴とする請求項1記載の溶液製膜方法。
  3. 前記ドープの吐出速度が、7m/分以上40m/分以下の範囲であることを特徴とする請求項1または2記載の溶液製膜方法。
  4. 前記ドープを構成するポリマーが、セルロースアシレートであることを特徴とする請求項1ないし3いずれか1つ記載の溶液製膜方法。
JP2005083464A 2005-03-23 2005-03-23 溶液製膜方法 Pending JP2006264027A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083464A JP2006264027A (ja) 2005-03-23 2005-03-23 溶液製膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083464A JP2006264027A (ja) 2005-03-23 2005-03-23 溶液製膜方法

Publications (1)

Publication Number Publication Date
JP2006264027A true JP2006264027A (ja) 2006-10-05

Family

ID=37200500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083464A Pending JP2006264027A (ja) 2005-03-23 2005-03-23 溶液製膜方法

Country Status (1)

Country Link
JP (1) JP2006264027A (ja)

Similar Documents

Publication Publication Date Title
JP4607795B2 (ja) 溶液製膜方法及び減圧装置
JP4889335B2 (ja) 溶液製膜方法
JP4607779B2 (ja) ポリマーフイルムの製造方法
JP4792357B2 (ja) ポリマーフィルムの製造方法
JP4749741B2 (ja) テンタ式乾燥機及び溶液製膜方法
JP5042074B2 (ja) 溶液製膜方法及び溶液製膜設備
JP2006076280A (ja) ドープの製造方法及び装置、並びに製膜方法
JP4769610B2 (ja) 溶液製膜方法
JP4833012B2 (ja) ポリマーフイルムの製造方法及び装置
JP2006265405A (ja) セルロースエステルフィルム及びその製造方法
JP2006188052A (ja) 溶液製膜方法
JP5571300B2 (ja) 溶液製膜方法及び溶液製膜設備
JP5416909B2 (ja) 溶液製膜設備及び溶液製膜方法
JP4496114B2 (ja) 溶液製膜方法
JP2006193327A (ja) フイルム巻取装置及びフイルム巻取方法
JP4841273B2 (ja) 溶液製膜方法
JP2006241208A (ja) ドープの評価方法及び溶液製膜方法
JP2006306025A (ja) 溶液製膜方法
JP2006159464A (ja) 溶液製膜方法及びセルロースエステルフィルム
JP2008132778A (ja) 積層フイルムの製造方法及びその製造設備
JP2006117904A (ja) ドープの製造方法及び装置、並びに製膜方法
JP2006264027A (ja) 溶液製膜方法
JP2006248136A (ja) 溶液製膜方法
JP4496115B2 (ja) 溶液製膜方法
JP2006095846A (ja) 溶液製膜方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070112