JP2006263876A - Polishing device, polishing method, and manufacturing method for semiconductor device - Google Patents

Polishing device, polishing method, and manufacturing method for semiconductor device Download PDF

Info

Publication number
JP2006263876A
JP2006263876A JP2005086940A JP2005086940A JP2006263876A JP 2006263876 A JP2006263876 A JP 2006263876A JP 2005086940 A JP2005086940 A JP 2005086940A JP 2005086940 A JP2005086940 A JP 2005086940A JP 2006263876 A JP2006263876 A JP 2006263876A
Authority
JP
Japan
Prior art keywords
polishing
dressing
wafer
film thickness
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005086940A
Other languages
Japanese (ja)
Inventor
Hiroshi Oshita
博史 大下
Tsuguo Watanabe
嗣男 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2005086940A priority Critical patent/JP2006263876A/en
Publication of JP2006263876A publication Critical patent/JP2006263876A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide polishing device and polishing method for realizing high flattening, and a manufacturing method for a semiconductor device by using the polishing method. <P>SOLUTION: This polishing device 4 has a polishing surface plate 8, polishing cloth 7 mounted on the polishing surface plate 8 to polish a wafer 17, a dresser 9 for dressing the surface of the polishing cloth 7 and an inclined angle measuring means 10 for measuring an inclined angle of the surface of the polishing cloth 7. The inclined angle measuring means 10 may have a film thickness measuring part 13 for measuring film thickness of the polishing cloth 7 and an inclined angle calculating part 14 for calculating the inclined angle from the film thickness. The film thickness measuring part 13 may have an eddy current sensor 15. It is desirable that a dressing condition control part 11 for controlling the condition of dressing according to the inclined angle is connected to the inclined angle measuring means 10 and the part 11 is a mechanism for transmitting control data to the dresser 9. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、研磨装置、研磨方法および半導体装置の製造方法に関する。   The present invention relates to a polishing apparatus, a polishing method, and a method for manufacturing a semiconductor device.

半導体装置の製造工程には、半導体ウェハの上に導電体膜を形成して配線層を形成する工程や、配線層の上に層間絶縁膜を形成する工程などがある。これらの工程では、半導体ウェハの表面に凹凸が生じることから、この表面を平坦化する技術が重要となっている。   The manufacturing process of a semiconductor device includes a process of forming a conductor film on a semiconductor wafer to form a wiring layer, and a process of forming an interlayer insulating film on the wiring layer. In these steps, unevenness is generated on the surface of the semiconductor wafer, so that a technique for flattening the surface is important.

表面の凹凸を平坦化する技術としては、従来より、化学的機械的研磨(Chemical Mechanical Polishing)法がある。化学的機械的研磨法は、半導体ウェハの表面を研磨面に押し付けた状態で、液体に砥粒が分散された研磨剤(スラリー)を用いて研磨する技術である。以下、従来の化学的機械的研磨装置による研磨方法について説明する。   Conventionally, there is a chemical mechanical polishing method as a technique for flattening the unevenness of the surface. The chemical mechanical polishing method is a technique in which polishing is performed using an abrasive (slurry) in which abrasive grains are dispersed in a liquid while the surface of a semiconductor wafer is pressed against a polishing surface. Hereinafter, a polishing method using a conventional chemical mechanical polishing apparatus will be described.

従来の化学的機械的研磨装置は、上面に研磨布を取り付けた研磨定盤と、研磨対象となる半導体ウェハを保持する保持台と、研磨布の表面を粗くするドレッサとを備えている。例えば、研磨の前に、まず、ドレッサによって研磨布の表面を毛羽立たせるドレッシング(コンディショニングとも言う。以下、本明細書において同じ。)を行う。次に、保持台によって被研磨面が研磨布に向くように半導体ウェハを保持した後、この保持台を研磨定盤の上に下降させる。そして、研磨布の上に研磨剤を滴下しながら、被研磨面を研磨布に押し付けた状態で、研磨定盤と保持台の両方を回転させて研磨を行う。   A conventional chemical mechanical polishing apparatus includes a polishing surface plate having a polishing cloth attached to the upper surface, a holding table for holding a semiconductor wafer to be polished, and a dresser for roughening the surface of the polishing cloth. For example, before polishing, first, dressing (also referred to as conditioning. The same applies in this specification) is performed in which the surface of the polishing cloth is fluffed with a dresser. Next, the semiconductor wafer is held by the holding table so that the surface to be polished faces the polishing cloth, and then the holding table is lowered onto the polishing surface plate. Then, polishing is performed by rotating both the polishing surface plate and the holding table in a state where the surface to be polished is pressed against the polishing cloth while dropping the polishing agent on the polishing cloth.

このような化学的機械的研磨法による研磨工程では、面内での研磨速度を均一にすることによって、表面の凹凸を解消して高い平坦性を実現することができる。   In the polishing process using such a chemical mechanical polishing method, by making the in-plane polishing rate uniform, surface irregularities can be eliminated and high flatness can be realized.

ここで、研磨速度の制御は、従来より、被研磨面の押付圧力、保持台の回転数、研磨定盤の回転数および研磨剤の流量を調整することによって行ってきた。例えば、電磁力により研磨定盤の傾斜角度を制御することによって、研磨定盤の回転で生じる研磨布のうねりをなくして被研磨面の押付圧力を均一にする方法が提案されている(例えば、特許文献1参照。)。しかしながら、こうした方法には限界があり、十分な平坦化を図ることができないという問題があった。   Here, the polishing rate has been conventionally controlled by adjusting the pressing pressure of the surface to be polished, the rotational speed of the holding table, the rotational speed of the polishing surface plate, and the flow rate of the abrasive. For example, by controlling the inclination angle of the polishing surface plate by electromagnetic force, there has been proposed a method for eliminating the undulation of the polishing cloth caused by the rotation of the polishing surface plate and making the pressing pressure of the surface to be polished uniform (for example, (See Patent Document 1). However, there is a problem that such a method has a limit and cannot be sufficiently flattened.

特開2000−317824号公報JP 2000-317824 A

本発明はこのような問題点に鑑みてなされたものである。即ち、本発明の目的は、高い平坦化を実現することのできる研磨装置を提供することにある。   The present invention has been made in view of such problems. That is, an object of the present invention is to provide a polishing apparatus that can realize high planarization.

また、本発明の目的は、高い平坦化を実現することのできる研磨方法を提供することにある。   Moreover, the objective of this invention is providing the grinding | polishing method which can implement | achieve high planarization.

さらに、本発明の目的は、高い平坦化を実現することのできる研磨方法を用いた半導体装置の製造方法を提供することにある。   Furthermore, an object of the present invention is to provide a semiconductor device manufacturing method using a polishing method capable of realizing high planarization.

本発明の他の目的および利点は、以下の記載から明らかとなるであろう。   Other objects and advantages of the present invention will become apparent from the following description.

本願の第1の発明は、研磨定盤と、この研磨定盤に取り付けられて被研磨部材を研磨する研磨布と、この研磨布の表面をドレッシングするドレッサと、研磨布の表面の傾斜角を測定する傾斜角測定手段とを有することを特徴とする研磨装置に関する。   The first invention of the present application provides a polishing surface plate, a polishing cloth attached to the polishing surface plate for polishing a member to be polished, a dresser for dressing the surface of the polishing cloth, and an inclination angle of the surface of the polishing cloth. The present invention relates to a polishing apparatus having an inclination angle measuring means for measuring.

また、本願の第2の発明は、研磨定盤に取り付けられた研磨布にウェハを押し付けた状態で、研磨定盤とウェハを回転させながらウェハの表面を研磨する工程と、研磨布の表面の傾斜角を求める工程と、この傾斜角からドレッシング条件に関する制御データを作成する工程と、この制御データにしたがって、研磨定盤とドレッサを回転させながら研磨布のドレッシングを行う工程とを有することを特徴とする研磨方法に関する。   The second invention of the present application includes a step of polishing the surface of the wafer while rotating the polishing surface plate and the wafer in a state where the wafer is pressed against the polishing cloth attached to the polishing surface plate, A step of obtaining an inclination angle, a step of creating control data regarding dressing conditions from the inclination angle, and a step of dressing the polishing cloth while rotating the polishing platen and the dresser according to the control data. The present invention relates to a polishing method.

さらに、本願の第3の発明は、半導体ウェハの上に被処理膜を形成する工程と、本発明の研磨方法によって被処理膜を研磨する工程とを有することを特徴とする半導体装置の製造方法に関する。   Furthermore, a third invention of the present application has a step of forming a film to be processed on a semiconductor wafer and a step of polishing the film to be processed by the polishing method of the present invention. About.

本発明によれば、研磨布の傾斜角を測定し、その結果に応じてドレッシングの条件を最適化することによって、研磨布の面内膜厚均一性を良好にすることができるので、被研磨面に対する研磨速度の面内ばらつきを小さくして高い平坦性を実現することができる。   According to the present invention, the in-plane film thickness uniformity of the polishing cloth can be improved by measuring the inclination angle of the polishing cloth and optimizing the dressing conditions in accordance with the result. High flatness can be realized by reducing in-plane variation of the polishing rate with respect to the surface.

上述したように、化学的機械的研磨法による研磨工程の前には、研磨布に対してドレッシングが行われる。これは、研磨布の表面が研磨で平滑化されることによって、研磨速度が低下するのを防ぐことを目的としている。   As described above, dressing is performed on the polishing cloth before the polishing process by the chemical mechanical polishing method. This is intended to prevent the polishing rate from being lowered by the surface of the polishing cloth being smoothed by polishing.

ドレッシングは、図1に示すように、研磨定盤1に取り付けられた研磨布2に、ダイヤモンド粒子を接着したドレッサ3を押し付け、この状態で研磨定盤1とドレッサ3をともに回転させて行う。ドレッシングを行うことによって、研磨布が研磨剤を良好に保持できるようになるので、研磨速度を回復させて研磨効率を向上させることができる。   As shown in FIG. 1, dressing is performed by pressing a dresser 3 to which diamond particles are adhered against a polishing cloth 2 attached to a polishing surface plate 1, and rotating the polishing surface plate 1 and the dresser 3 together in this state. By performing dressing, the polishing cloth can hold the abrasive well, so that the polishing rate can be recovered and the polishing efficiency can be improved.

本発明者は、鋭意研究した結果、ドレッシングを終えた後の研磨布の傾斜角θと研磨速度の面内ばらつきとの間に相関関係があることを見出した。図2にその一例を示す。   As a result of intensive studies, the present inventor has found that there is a correlation between the inclination angle θ of the polishing pad after dressing and the in-plane variation of the polishing rate. An example is shown in FIG.

図2では、傾斜角が−0.0025度程度で研磨速度の面内ばらつきは最小となるが、これより傾斜角が大きくなったり、小さくなったりするとばらつきは次第に大きくなる。   In FIG. 2, the in-plane variation of the polishing rate is minimized when the inclination angle is about −0.0025 degrees, but the variation gradually increases as the inclination angle becomes larger or smaller than this.

具体的には、傾斜角がプラス側に大きくなると、研磨布2の膜厚は外周部へ行くほど大きくなる(図3(a))。反対に、傾斜角がマイナス側に大きくなると、研磨布2の膜厚は外周部へ行くほど小さくなる(図3(b))。このため、図3(a)の状態の研磨布で研磨した場合、ウェハの被研磨面にかかる圧力は外周部へ行くほど大きくなるので、研磨速度は外周部で速くなる。一方、図3(b)の状態の研磨布で研磨した場合、半導体ウェハの被研磨面にかかる圧力は外周部へ行くほど小さくなるので、研磨速度は外周部で遅くなる。   Specifically, when the inclination angle increases to the plus side, the film thickness of the polishing pad 2 increases toward the outer peripheral portion (FIG. 3A). On the other hand, when the inclination angle increases toward the minus side, the film thickness of the polishing pad 2 decreases toward the outer periphery (FIG. 3B). For this reason, when polishing with the polishing cloth in the state of FIG. 3A, the pressure applied to the surface to be polished of the wafer increases toward the outer peripheral portion, so that the polishing rate increases at the outer peripheral portion. On the other hand, when polishing is performed with the polishing cloth in the state of FIG. 3B, the pressure applied to the surface to be polished of the semiconductor wafer becomes smaller toward the outer peripheral portion, so that the polishing rate becomes slower at the outer peripheral portion.

図4は、ウェハ面内における研磨速度のばらつきを示す図である。図4において、イ´は、図2で傾斜角−0.0103度(測定点イ)の研磨布で研磨した場合に対応している。また、ロ´は、図2で傾斜角+0.0014度(測定点ロ)の研磨布で研磨した場合に対応している。   FIG. 4 is a diagram showing variations in the polishing rate within the wafer surface. In FIG. 4, “a” corresponds to the case of polishing with a polishing cloth having an inclination angle of −0.0103 degrees (measurement point a) in FIG. 2. In addition, “b” corresponds to the case of polishing with a polishing cloth having an inclination angle of +0.0014 degrees (measurement point B) in FIG.

以上より、本発明者は、研磨布の傾斜角を測定し、その結果に応じてドレッシングの条件を最適化することによって、研磨布の面内膜厚均一性を良好にすることができるので、被研磨面に対する研磨速度の面内ばらつきを小さくすることが可能になると考え、本発明に至った。   From the above, the inventor can improve the in-plane film thickness uniformity of the polishing cloth by measuring the inclination angle of the polishing cloth and optimizing the dressing conditions according to the result. The inventors have considered that it is possible to reduce in-plane variation in the polishing rate with respect to the surface to be polished, and have reached the present invention.

ここで、研磨布の面内膜厚均一性は、次のようにして求められる。すなわち、研磨布の膜厚を所定の複数の個所について測定する。そして、膜厚の最大値をtmax、最小値をtmin、平均値をtaveとすると、面内膜厚均一性(%)={(tmax−tmin)/2tave}×100の関係が成立する。 Here, the in-plane film thickness uniformity of the polishing cloth is obtained as follows. That is, the film thickness of the polishing cloth is measured at a plurality of predetermined locations. Then, assuming that the maximum value of the film thickness is t max , the minimum value is t min , and the average value is t ave , the in-plane film thickness uniformity (%) = {(t max −t min ) / 2t ave } × 100 A relationship is established.

一方、研磨速度は、次のようにして求められる。すなわち、研磨布の所定個所における膜厚を研磨前後で測定し、各個所での膜厚の減少量の平均値を算出する。この平均値を研磨時間で割った値が研磨速度である。   On the other hand, the polishing rate is obtained as follows. That is, the film thickness at a predetermined portion of the polishing cloth is measured before and after polishing, and the average value of the amount of decrease in film thickness at each portion is calculated. A value obtained by dividing the average value by the polishing time is the polishing rate.

図5は、本実施の形態における研磨装置の平面図である。この研磨装置に適用可能なウェハとしては、例えば、ダマシン法による配線形成工程において、配線溝または配線孔に導電体膜を埋め込む前の半導体ウェハや、下層の配線層などの段差を反映して、層間絶縁膜の表面に凹凸の生じた半導体ウェハなどが挙げられる。これらにおいては、導電体膜や層間絶縁膜が被研磨部材となる。   FIG. 5 is a plan view of the polishing apparatus in the present embodiment. As a wafer applicable to this polishing apparatus, for example, in a wiring formation process by a damascene method, a semiconductor wafer before embedding a conductor film in a wiring groove or a wiring hole, or a step such as a lower wiring layer is reflected, Examples thereof include a semiconductor wafer having irregularities on the surface of an interlayer insulating film. In these, the conductor film and the interlayer insulating film are the members to be polished.

図5において、研磨装置4は、研磨室5およびウェハ収納室6を備える。また、研磨室5は、研磨布7が取り付けられた研磨定盤8と、ドレッサ9と、傾斜角測定手段10と、ドレッシング条件制御部11とを有する。一方、ウェハ収納室6は、ウェハ搬送手段12と、ウェハ載置台21とを有する。但し、ウェハ搬送手段12は、後述するように、研磨室5とウェハ収納室6との間でウェハ17を搬送可能な手段であるとする。尚、本実施の形態においては、ウェハ載置台21に代えて、例えば、ウェハを収納可能なカセットなどを設置してもよい。   In FIG. 5, the polishing apparatus 4 includes a polishing chamber 5 and a wafer storage chamber 6. The polishing chamber 5 includes a polishing surface plate 8 to which a polishing cloth 7 is attached, a dresser 9, an inclination angle measuring means 10, and a dressing condition control unit 11. On the other hand, the wafer storage chamber 6 includes a wafer transfer means 12 and a wafer mounting table 21. However, the wafer transfer means 12 is assumed to be a means capable of transferring the wafer 17 between the polishing chamber 5 and the wafer storage chamber 6 as will be described later. In the present embodiment, instead of the wafer mounting table 21, for example, a cassette or the like that can store a wafer may be installed.

傾斜角測定手段10は、研磨布7の表面の傾斜角を測定可能な手段である。例えば、図5のように、研磨布7の膜厚を測定する膜厚測定部13と、膜厚測定部13で得られたデータから傾斜角を算出する傾斜角算出部14とを有するものとすることができる。ここで、膜厚測定部13は、研磨布7の中心から外周方向に向かって渦電流センサ15が取り付けられた構造とすることができる。また、膜厚測定部13に回転部16を接続し、回転部16を矢印の方向に回転させることによって、測定時にのみ膜厚測定部13が研磨布7の上に移動する機構とすることができる。尚、膜厚測定部13には、渦電流センサ15に代えて、例えばレーザ変位計などが取り付けられていてもよい。また、傾斜角測定手段10は、研磨室5内に複数個設けられていてもよい。   The tilt angle measuring means 10 is a means capable of measuring the tilt angle of the surface of the polishing pad 7. For example, as shown in FIG. 5, a film thickness measuring unit 13 that measures the film thickness of the polishing pad 7 and an inclination angle calculating unit 14 that calculates an inclination angle from data obtained by the film thickness measuring unit 13 can do. Here, the film thickness measuring unit 13 can have a structure in which the eddy current sensor 15 is attached from the center of the polishing pad 7 toward the outer peripheral direction. Further, by connecting the rotating unit 16 to the film thickness measuring unit 13 and rotating the rotating unit 16 in the direction of the arrow, the film thickness measuring unit 13 may move on the polishing cloth 7 only at the time of measurement. it can. For example, a laser displacement meter may be attached to the film thickness measurement unit 13 instead of the eddy current sensor 15. A plurality of inclination angle measuring means 10 may be provided in the polishing chamber 5.

傾斜角測定手段10は、ドレッシング条件制御部11に接続している。ドレッシング条件制御部11は、得られた傾斜角に応じてドレッシングの条件を制御する部分であり、より詳しくは、傾斜角測定手段10で得られた測定データからドレッシング条件に関する制御データを作成する部分である。そして、ドレッシング条件制御部11はドレッサ9に接続していて、作成した制御データにしたがってドレッシングが行われる。   The tilt angle measuring means 10 is connected to the dressing condition control unit 11. The dressing condition control unit 11 is a part that controls the dressing condition according to the obtained inclination angle, and more specifically, a part that creates control data related to the dressing condition from the measurement data obtained by the inclination angle measuring means 10. It is. The dressing condition control unit 11 is connected to the dresser 9 and dressing is performed according to the created control data.

ウェハ搬送手段11は、研磨室5とウェハ収納室6との間でウェハ17を搬送する手段である。例えば、図5のように、ウェハ17を保持するウェハ保持部18と、ウェハ保持部18に接続する回転部19とを有し、回転部19が矢印の方向に回転することによって、研磨室5とウェハ収納室6との間でウェハ保持部18が移動可能な機構とすることができる。また、ウェハ保持部18も回転可能であって、研磨の際には、研磨定盤8とウェハ保持部18の両方が回転するようになっている。   The wafer transfer means 11 is a means for transferring the wafer 17 between the polishing chamber 5 and the wafer storage chamber 6. For example, as illustrated in FIG. 5, the polishing chamber 5 includes a wafer holding unit 18 that holds the wafer 17 and a rotating unit 19 that is connected to the wafer holding unit 18, and the rotating unit 19 rotates in the direction of the arrow. It is possible to provide a mechanism in which the wafer holder 18 can move between the wafer storage chamber 6 and the wafer storage chamber 6. The wafer holding unit 18 is also rotatable, and both the polishing surface plate 8 and the wafer holding unit 18 are rotated during polishing.

また、図5では、ドレッサ9にも回転部20を接続しており、ドレッシング時に回転部20を矢印の方向に回転させることによって、ドレッサ9が研磨布7の上に移動するようにしている。さらに、ドレッサ9も回転可能であって、ドレッシングの際には、研磨定盤8とドレッサ9の両方が回転するようになっている。   In FIG. 5, the rotating unit 20 is also connected to the dresser 9, and the dresser 9 is moved onto the polishing pad 7 by rotating the rotating unit 20 in the direction of the arrow during dressing. Further, the dresser 9 is also rotatable, and both the polishing surface plate 8 and the dresser 9 are rotated during dressing.

尚、図5において、研磨室5は複数個設けることができる。その場合、ウェハ収納室6は1個のみであってもよいし、研磨室の数に応じて複数個設けられていてもよい。   In FIG. 5, a plurality of polishing chambers 5 can be provided. In that case, only one wafer storage chamber 6 may be provided, or a plurality of wafer storage chambers 6 may be provided according to the number of polishing chambers.

図6は、本実施の形態における研磨方法を説明するフローチャートである。以下に、図5の研磨装置を用いて、図6の研磨方法を実施する例について説明する。   FIG. 6 is a flowchart for explaining the polishing method in the present embodiment. Hereinafter, an example in which the polishing method of FIG. 6 is performed using the polishing apparatus of FIG. 5 will be described.

まず、研磨定盤8に取り付けられた研磨布7にウェハ17を押し付けた状態で、研磨布7とウェハ17を回転させながらウェハ17表面の研磨を行う(処理101)。   First, the surface of the wafer 17 is polished while rotating the polishing cloth 7 and the wafer 17 in a state where the wafer 17 is pressed against the polishing cloth 7 attached to the polishing surface plate 8 (processing 101).

次に、予め決められた枚数のウェハの研磨を終えたところで、傾斜角測定手段10によって研磨布7の表面の傾斜角を求める(処理102)。ここで、予め決められた枚数とは、場合に応じて適宜設定することができる。例えば、ウェハ1枚を研磨する度に傾斜角を測定してもよいし、1カセットに収納された全てのウェハの研磨を終える度に傾斜角を測定してもよい。   Next, when polishing of a predetermined number of wafers is completed, the inclination angle of the surface of the polishing pad 7 is obtained by the inclination angle measuring means 10 (process 102). Here, the predetermined number of sheets can be set as appropriate according to circumstances. For example, the inclination angle may be measured every time one wafer is polished, or the inclination angle may be measured every time polishing of all the wafers stored in one cassette is completed.

処理102は、具体的には次のようにして行われる。まず、ウェハ搬送手段12によって、ウェハ17を研磨室5からウェハ収納室6へ搬送する。次いで、膜厚測定部13を研磨布7の上面に移動させて、研磨布7の所定個所における膜厚を測定する。その後、傾斜角算出部14によって、膜厚データから傾斜角が算出される。   Specifically, the process 102 is performed as follows. First, the wafer 17 is transferred from the polishing chamber 5 to the wafer storage chamber 6 by the wafer transfer means 12. Next, the film thickness measuring unit 13 is moved to the upper surface of the polishing pad 7 to measure the film thickness at a predetermined location on the polishing pad 7. Thereafter, the tilt angle calculation unit 14 calculates the tilt angle from the film thickness data.

算出された傾斜角は、測定データとしてドレッシング条件制御部11に伝達される。ドレッシング条件制御部11では、測定データからドレッシング条件に関する制御データが作成される(処理103)。   The calculated inclination angle is transmitted to the dressing condition control unit 11 as measurement data. The dressing condition control unit 11 creates control data related to the dressing condition from the measurement data (process 103).

次に、作成された制御データにしたがって、ドレッサ9を用いて研磨布7のドレッシングを行う(処理104)。   Next, dressing of the polishing pad 7 is performed using the dresser 9 in accordance with the generated control data (processing 104).

具体的には、回転部16を回転させて、膜厚測定部13を研磨室5の所定の位置に退避させた後、回転部20を回転させることによって、ドレッサ9を研磨布7の上面に移動してドレッシングを行う。   Specifically, the rotating unit 16 is rotated to retract the film thickness measuring unit 13 to a predetermined position in the polishing chamber 5, and then the rotating unit 20 is rotated so that the dresser 9 is placed on the upper surface of the polishing pad 7. Move and dress.

ドレッシングを終えた後は、再び回転部20を回転させて、ドレッサ9を研磨室5の所定の位置に退避させた後、ウェハ搬送手段12によって、ウェハ収納室6から研磨室5へウェハ17を搬送する。次いで、ウェハ17を研磨布7の上に下降させて研磨を行う(処理105)。   After the dressing is completed, the rotating unit 20 is rotated again to retract the dresser 9 to a predetermined position in the polishing chamber 5, and then the wafer 17 is transferred from the wafer storage chamber 6 to the polishing chamber 5 by the wafer transfer means 12. Transport. Next, the wafer 17 is lowered onto the polishing cloth 7 to perform polishing (processing 105).

以上の処理102〜処理105を所定回数繰り返した後に研磨工程を終了する。   The polishing process is terminated after the above processes 102 to 105 are repeated a predetermined number of times.

次に、図7を用いて、図6における処理103をさらに詳しく説明する。   Next, the process 103 in FIG. 6 will be described in more detail with reference to FIG.

まず、傾斜角測定手段10から伝達された測定データによって、傾斜角が許容範囲内であるか否かが判定される(処理103a)。ここで、傾斜角の許容範囲は適宜設定することができるが、例えば、図2の関係で、研磨速度の面内ばらつきが15%以下となる傾斜角の範囲を許容範囲とすることができる。   First, it is determined from the measurement data transmitted from the tilt angle measuring means 10 whether or not the tilt angle is within an allowable range (processing 103a). Here, the allowable range of the tilt angle can be set as appropriate. For example, the range of the tilt angle where the in-plane variation of the polishing rate is 15% or less can be set as the allowable range in the relationship of FIG.

傾斜角が許容範囲を超える場合には、ドレッシングの条件を変更して新たに制御データを作成する(処理103b)。ここで、ドレッシングの条件としては、例えば、ドレッサの回転数D(rpm)または研磨定盤の回転数P(rpm)などを挙げることができる。   If the inclination angle exceeds the allowable range, the dressing conditions are changed and new control data is created (process 103b). Here, as the dressing conditions, for example, the rotational speed D (rpm) of the dresser or the rotational speed P (rpm) of the polishing surface plate can be cited.

例えば、傾斜角がプラス側に大きすぎる場合には、ドレッサの回転数Dを変えずに、研磨定盤の回転数Pを大きくする。この場合、研磨定盤の回転数Pを変えずに、ドレッサの回転数Dを小さくしてもよい。一方、傾斜角がマイナス側に大きすぎる場合には、ドレッサの回転数Dを変えずに、研磨定盤の回転数Pを小さくする。この場合、研磨定盤の回転数Pを変えずに、ドレッサの回転数Dを大きくしてもよい。   For example, when the inclination angle is too large on the plus side, the rotational speed P of the polishing surface plate is increased without changing the rotational speed D of the dresser. In this case, the rotational speed D of the dresser may be reduced without changing the rotational speed P of the polishing surface plate. On the other hand, when the inclination angle is too large on the minus side, the rotational speed P of the polishing surface plate is decreased without changing the rotational speed D of the dresser. In this case, the rotational speed D of the dresser may be increased without changing the rotational speed P of the polishing surface plate.

一方、傾斜角が許容範囲内である場合には、ドレッシング条件を変更する必要はない。すなわち、予め決められたドレッサの回転数および研磨定盤の回転数で制御データが作成される(処理103c)。   On the other hand, when the inclination angle is within the allowable range, it is not necessary to change the dressing conditions. That is, control data is created with the predetermined number of rotations of the dresser and the number of rotations of the polishing surface plate (process 103c).

上記の実施の形態においては、研磨工程とドレッシング工程とを別々に行う場合について説明したが、本発明はこれに限られるものではない。本発明においては、研磨工程とドレッシング工程とが同時に行われてもよい。例えば、図5の研磨装置において、ウェハ17の研磨を行っている間に、研磨布7の空いている個所でドレッシングを行ってもよい。この場合、膜厚測定部13を研磨布7の上面に設置した状態でドレッシングと研磨を行うことにより、ウェハ毎にリアルタイムでドレッシング条件を最適化することが可能となる。   In the above embodiment, the case where the polishing process and the dressing process are performed separately has been described, but the present invention is not limited to this. In the present invention, the polishing step and the dressing step may be performed simultaneously. For example, in the polishing apparatus shown in FIG. 5, dressing may be performed at an empty portion of the polishing pad 7 while the wafer 17 is being polished. In this case, dressing conditions can be optimized in real time for each wafer by performing dressing and polishing in a state where the film thickness measuring unit 13 is installed on the upper surface of the polishing pad 7.

以上述べたように、本発明の研磨装置および研磨方法によれば、研磨布の表面における傾斜角を求めることによってドレッシング条件を最適化することができるので、研磨布の面内膜厚均一性を良好にして、被研磨面に対する研磨速度の面内ばらつきを小さくすることが可能になる。したがって、本発明による研磨方法を用いて半導体装置を製造することにより、半導体ウェハの表面を高い精度で平坦化することができるので、電気的特性や信頼性に優れた半導体装置を製造することができる。また、半導体装置の製造工程における歩留まりを向上させることもできる。   As described above, according to the polishing apparatus and the polishing method of the present invention, since the dressing conditions can be optimized by obtaining the inclination angle on the surface of the polishing pad, the in-plane film thickness uniformity of the polishing pad can be improved. This makes it possible to reduce the in-plane variation of the polishing rate with respect to the surface to be polished. Therefore, by manufacturing the semiconductor device using the polishing method according to the present invention, the surface of the semiconductor wafer can be flattened with high accuracy, so that a semiconductor device having excellent electrical characteristics and reliability can be manufactured. it can. In addition, the yield in the manufacturing process of the semiconductor device can be improved.

尚、本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において、種々変形して実施することができる。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

ドレッシングの説明図である。It is explanatory drawing of dressing. 研磨布の傾斜角と研磨速度の面内ばらつきとの関係を示す図である。It is a figure which shows the relationship between the inclination | tilt angle of polishing cloth, and the in-plane dispersion | variation in polishing rate. 傾斜角度の異なる研磨布の断面図であり、(a)は傾斜角がプラス側に大きい場合、(b)は傾斜角がマイナス側に大きい場合である。It is sectional drawing of the polishing cloth from which an inclination angle differs, (a) is a case where an inclination angle is large on the plus side, (b) is a case where an inclination angle is large on the minus side. 半導体ウェハの面内における研磨速度のばらつきを示す図である。It is a figure which shows the dispersion | variation in the grinding | polishing speed in the surface of a semiconductor wafer. 本実施の形態における研磨装置の平面図である。It is a top view of the polish device in this embodiment. 本実施の形態における研磨方法を説明するフローチャートである。It is a flowchart explaining the grinding | polishing method in this Embodiment. 図6の処理103を説明するフローチャートである。It is a flowchart explaining the process 103 of FIG.

符号の説明Explanation of symbols

1,8 研磨定盤
2,7 研磨布
3,9 ドレッサ
4 研磨装置
5 研磨室
6 ウェハ収納室
10 傾斜角測定手段
11 ドレッシング条件制御部
12 ウェハ搬送手段
13 膜厚測定部
14 傾斜角算出部
15 渦電流センサ
16,19,20 回転部
17 ウェハ
18 ウェハ保持部
21 ウェハ載置台
DESCRIPTION OF SYMBOLS 1,8 Polishing surface plate 2,7 Polishing cloth 3,9 Dresser 4 Polishing apparatus 5 Polishing chamber 6 Wafer storage chamber 10 Inclination angle measurement means 11 Dressing condition control part 12 Wafer conveyance means 13 Film thickness measurement part 14 Inclination angle calculation part 15 Eddy current sensor 16, 19, 20 Rotating unit 17 Wafer 18 Wafer holding unit 21 Wafer mounting table

Claims (8)

研磨定盤と、
前記研磨定盤に取り付けられて被研磨部材を研磨する研磨布と、
前記研磨布の表面をドレッシングするドレッサと、
前記研磨布の表面の傾斜角を測定する傾斜角測定手段とを有することを特徴とする研磨装置。
A polishing surface plate;
A polishing cloth attached to the polishing surface plate to polish the member to be polished;
A dresser for dressing the surface of the polishing cloth;
A polishing apparatus comprising: an inclination angle measuring means for measuring an inclination angle of the surface of the polishing cloth.
前記傾斜角測定手段は、前記研磨布の膜厚を測定する膜厚測定部と、
前記膜厚から傾斜角を算出する傾斜角算出部とを有する請求項1に記載の研磨装置。
The tilt angle measuring means includes a film thickness measuring unit that measures the film thickness of the polishing cloth,
The polishing apparatus according to claim 1, further comprising an inclination angle calculation unit that calculates an inclination angle from the film thickness.
前記膜厚測定部は渦電流センサを有する請求項1または2に記載の研磨装置。   The polishing apparatus according to claim 1, wherein the film thickness measurement unit includes an eddy current sensor. 前記膜厚測定部はレーザ変位計を有する請求項1または2に記載の研磨装置。   The polishing apparatus according to claim 1, wherein the film thickness measuring unit includes a laser displacement meter. 前記傾斜角に応じて前記ドレッシングの条件を制御するドレッシング条件制御部をさらに有する請求項1〜4に記載の研磨装置。   The polishing apparatus according to claim 1, further comprising a dressing condition control unit that controls the dressing condition according to the inclination angle. 研磨定盤に取り付けられた研磨布にウェハを押し付けた状態で、前記研磨定盤と前記ウェハを回転させながら前記ウェハの表面を研磨する工程と、
前記研磨布の表面の傾斜角を求める工程と、
前記傾斜角からドレッシング条件に関する制御データを作成する工程と、
前記制御データにしたがって、前記研磨定盤とドレッサを回転させながら前記研磨布のドレッシングを行う工程とを有することを特徴とする研磨方法。
Polishing the surface of the wafer while rotating the polishing surface plate and the wafer while pressing the wafer against a polishing cloth attached to the polishing surface plate;
Obtaining a tilt angle of the surface of the polishing cloth;
Creating control data relating to dressing conditions from the tilt angle;
A polishing method comprising: dressing the polishing cloth while rotating the polishing platen and a dresser according to the control data.
前記ドレッシング条件は、前記研磨定盤の回転数または前記ドレッサの回転数である請求項6に記載の研磨方法。   The polishing method according to claim 6, wherein the dressing condition is a rotation speed of the polishing surface plate or a rotation speed of the dresser. 半導体ウェハの上に被処理膜を形成する工程と、
請求項6または7に記載の研磨方法によって前記被処理膜を研磨する工程とを有することを特徴とする半導体装置の製造方法。
Forming a film to be processed on a semiconductor wafer;
A method for manufacturing a semiconductor device, comprising: polishing the film to be processed by the polishing method according to claim 6.
JP2005086940A 2005-03-24 2005-03-24 Polishing device, polishing method, and manufacturing method for semiconductor device Pending JP2006263876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086940A JP2006263876A (en) 2005-03-24 2005-03-24 Polishing device, polishing method, and manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086940A JP2006263876A (en) 2005-03-24 2005-03-24 Polishing device, polishing method, and manufacturing method for semiconductor device

Publications (1)

Publication Number Publication Date
JP2006263876A true JP2006263876A (en) 2006-10-05

Family

ID=37200372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086940A Pending JP2006263876A (en) 2005-03-24 2005-03-24 Polishing device, polishing method, and manufacturing method for semiconductor device

Country Status (1)

Country Link
JP (1) JP2006263876A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255188A (en) * 2008-04-14 2009-11-05 Nikon Corp Polishing apparatus
JP2010036299A (en) * 2008-08-05 2010-02-18 Ebara Corp Polishing method and device
JP2017121672A (en) * 2016-01-05 2017-07-13 不二越機械工業株式会社 Method for polishing workpiece and method for dressing polishing pad
WO2019208712A1 (en) * 2018-04-26 2019-10-31 株式会社荏原製作所 Polishing device provided with polishing pad surface property measuring device, and polishing system
JP2019193970A (en) * 2018-04-26 2019-11-07 株式会社荏原製作所 Polishing apparatus comprising surface texture measurement device for abrasive pad, and polishing system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255188A (en) * 2008-04-14 2009-11-05 Nikon Corp Polishing apparatus
JP2010036299A (en) * 2008-08-05 2010-02-18 Ebara Corp Polishing method and device
JP2017121672A (en) * 2016-01-05 2017-07-13 不二越機械工業株式会社 Method for polishing workpiece and method for dressing polishing pad
WO2019208712A1 (en) * 2018-04-26 2019-10-31 株式会社荏原製作所 Polishing device provided with polishing pad surface property measuring device, and polishing system
JP2019193970A (en) * 2018-04-26 2019-11-07 株式会社荏原製作所 Polishing apparatus comprising surface texture measurement device for abrasive pad, and polishing system
JP7269074B2 (en) 2018-04-26 2023-05-08 株式会社荏原製作所 Polishing device and polishing system equipped with polishing pad surface texture measuring device
TWI830730B (en) * 2018-04-26 2024-02-01 日商荏原製作所股份有限公司 Grinding device and grinding system equipped with surface properties measuring device of polishing pad
US11958161B2 (en) 2018-04-26 2024-04-16 Ebara Corporation Polishing apparatus having surface-property measuring device of polishing pad and polishing system

Similar Documents

Publication Publication Date Title
US8292691B2 (en) Use of pad conditioning in temperature controlled CMP
JP4799817B2 (en) Semiconductor wafer surface flattening device
US8622783B2 (en) Method and system for controlling chemical mechanical polishing by controllably moving a slurry outlet
TW520534B (en) System and method for polishing and planarizing semiconductor wafers using reduced surface area polishing pads and variable partial pad-wafer overlapping techniques
US8388409B2 (en) Substrate polishing apparatus
JP2013525126A (en) Closed loop control for improved polishing pad profile
JP2004358653A (en) Polishing pad having optimized grooves and method of forming same
TW200403129A (en) Polishing pad for endpoint detection and related methods
JP2003511873A (en) Semiconductor wafer polishing method and system
US7121921B2 (en) Methods for planarizing microelectronic workpieces
JP2011098436A (en) Chemical mechanical polishing device and chemical mechanical polishing method
JP6181622B2 (en) Polishing apparatus and polishing method
JP2006263876A (en) Polishing device, polishing method, and manufacturing method for semiconductor device
US20080242196A1 (en) Method and system for controlling chemical mechanical polishing by taking zone specific substrate data into account
US7166015B2 (en) Apparatus and method for controlling fluid material composition on a polishing pad
KR102618420B1 (en) Apparatus and method for planarizing substrate
JP2003151934A (en) Cmp system and method of adjusting polishing pad for cmp
US7018269B2 (en) Pad conditioner control using feedback from a measured polishing pad roughness level
JP2017162928A (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2001260001A (en) Method and device for flattening semiconductor device
JP2006332322A (en) Dressing method of polishing pad, and polisher
JP2001237206A (en) Flattening method
JPH0911117A (en) Flattening method and apparatus
JP2003282493A (en) Polishing machine and polishing method
JP3575944B2 (en) Polishing method, polishing apparatus, and method of manufacturing semiconductor integrated circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126