WO2019208712A1 - Polishing device provided with polishing pad surface property measuring device, and polishing system - Google Patents

Polishing device provided with polishing pad surface property measuring device, and polishing system Download PDF

Info

Publication number
WO2019208712A1
WO2019208712A1 PCT/JP2019/017691 JP2019017691W WO2019208712A1 WO 2019208712 A1 WO2019208712 A1 WO 2019208712A1 JP 2019017691 W JP2019017691 W JP 2019017691W WO 2019208712 A1 WO2019208712 A1 WO 2019208712A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
surface texture
polishing pad
measuring device
dressing
Prior art date
Application number
PCT/JP2019/017691
Other languages
French (fr)
Japanese (ja)
Inventor
啓佑 神木
丸山 徹
本島 靖之
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019071994A external-priority patent/JP7269074B2/en
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to CN201980026985.6A priority Critical patent/CN112004640B/en
Priority to US17/048,674 priority patent/US11958161B2/en
Priority to SG11202010259SA priority patent/SG11202010259SA/en
Priority to KR1020207033357A priority patent/KR20210002580A/en
Publication of WO2019208712A1 publication Critical patent/WO2019208712A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing apparatus provided with a surface texture measuring device for measuring the surface texture of a polishing pad used for polishing a substrate such as a semiconductor wafer, and a polishing system including such a polishing apparatus.
  • CMP chemical mechanical polishing
  • a polishing apparatus is used to polish a substrate such as a semiconductor wafer in sliding contact with the polishing pad while supplying a polishing liquid to the polishing pad.
  • the polishing liquid is a slurry containing abrasive grains such as silica (SiO 2 ) and ceria (CeO 2 ).
  • a polishing apparatus that performs the above-described CMP (chemical mechanical polishing) includes a polishing table having a polishing pad and a substrate holding device called a carrier or top ring for holding a semiconductor wafer (substrate). . While holding the substrate by the substrate holding device using such a polishing apparatus, the substrate is pressed against the polishing pad with a predetermined pressure to polish the insulating film, metal film, etc. on the substrate. ing.
  • CMP chemical mechanical polishing
  • polishing pad When the substrate is polished, abrasive grains and polishing debris adhere to the surface of the polishing pad, and the surface shape and state of the polishing pad change to deteriorate the polishing performance. For this reason, as the polishing of the substrate is repeated, the polishing rate decreases and uneven polishing occurs. Therefore, dressing (conditioning) of the polishing pad is performed using a dresser in order to regenerate the surface shape and state of the deteriorated polishing pad.
  • the surface shape and state of the polishing pad that is, the surface property of the polishing pad is one of the factors that determine the CMP performance. Therefore, it is desirable to directly measure the surface properties of the polishing pad and reflect this measurement value in the dressing conditions. Therefore, in the conventional polishing apparatus, the dressing conditions are determined using an apparatus for directly measuring the surface properties of the polishing pad.
  • an apparatus for measuring the surface property of the polishing pad is referred to as a “surface property measuring device”.
  • Patent Document 1 describes a surface property measuring apparatus that irradiates a surface of a polishing pad with laser light, receives reflected light from the polishing pad, and obtains a reflection intensity for each reflection angle.
  • the polishing apparatus described in Patent Document 1 obtains the surface properties of the polishing pad based on the reflection intensity distribution obtained from the surface texture measuring device, and sets the dressing conditions based on the surface properties of the obtained polishing pad. decide.
  • the dressing conditions are changed according to the surface texture of the polishing pad obtained using the surface texture measuring device, the surface texture of the polishing pad is maintained in a state necessary for ensuring CMP performance. Can do. Furthermore, since the surface properties of the polishing pad can be directly measured, CMP processing in an abnormal state can be prevented.
  • the surface texture measuring apparatus is not permanently installed in the polishing apparatus.
  • the surface texture measuring device is attached to the polishing device every time it is intended to measure the surface texture of the polishing pad, and is removed after measuring the surface texture of the polishing pad.
  • FIG. 30 is a schematic diagram showing an example of a surface texture measuring apparatus attached to a conventional polishing apparatus.
  • the polishing apparatus has a holding plate 215 configured to be detachably attachable to the surface texture measuring device 230, and the holding plate 215 is suspended from a frame (not shown) of the polishing apparatus. It has been.
  • the operator attaches the surface texture measuring device 230 to the lower end of the holding plate 215 after stopping the operation of the polishing apparatus.
  • the operator removes the surface texture measuring device 230 from the holding plate 215, and then the operation of the polishing device is started.
  • the measurement of the surface property of the polishing pad 202 is performed as an independent work separated from the operation of the polishing apparatus. Therefore, in order to measure the surface properties of the polishing pad 202 with a conventional polishing apparatus, it is necessary to temporarily stop the operation of the polishing apparatus, so that the throughput of the polishing apparatus decreases. Further, the attaching / detaching operation of the surface texture measuring device 230 is very troublesome for the operator and takes time. Therefore, a polishing device capable of automatically measuring the surface texture of the polishing pad 202 is desired.
  • an object of the present invention is to provide a polishing apparatus capable of automatically measuring the surface properties of a polishing pad and improving the throughput of the polishing apparatus. Furthermore, the present invention provides a polishing system including such a polishing apparatus.
  • One aspect of the present invention is a surface texture measuring device that measures the surface texture of a polishing pad, a support arm that supports the surface texture measuring device, and connected to the support arm, and the surface texture measuring device is measured from a retracted position. And a moving unit for automatically moving the position to the position.
  • the moving unit includes a fixed block fixed to the polishing apparatus, a rotating block connected to the support arm, and the rotating block rotatable with respect to the fixed block.
  • a rotating shaft to be connected and a rotating mechanism for rotating the rotating block are provided.
  • the turning mechanism is a piston cylinder mechanism including a piston connected to the turning block and a cylinder that accommodates the piston so as to freely advance and retract.
  • the rotating shaft is fixed to the rotating block, and the rotating mechanism is a motor connected to the rotating shaft.
  • a preferred embodiment of the present invention is a position adjustment that automatically adjusts the posture of the surface texture measuring device so that the lower surface of the surface texture measuring device moved to the measurement position is parallel to the surface of the polishing pad.
  • the position adjusting mechanism is fixed to the upper surface of the surface texture measuring device, and extends through a through hole formed in the support table.
  • An adjustment pin, the adjustment pin having a diameter smaller than the diameter of the through hole, extending through the through hole formed in the support base, and more than the through hole And a pin head having a size larger than the diameter of the through hole.
  • the surface texture measuring device includes a nozzle that injects pressurized gas obliquely with respect to the polishing surface of the polishing pad.
  • the surface texture measuring device has a casing that houses a measurement structure for measuring the surface texture of the polishing pad, and a notch is formed in a lower portion of the casing.
  • the nozzle is configured to inject the pressurized gas so that the pressurized gas flows toward the opening of the notch.
  • a preferred aspect of the present invention further includes a displacement mechanism for displacing the position of the surface texture measuring device with respect to the polishing pad along the support arm, the displacement mechanism including an elongated hole extending along the support arm; A support shaft inserted into the elongated hole, and the support shaft is in contact with a shaft main body connected to the surface texture measuring device and a step portion formed inside the elongated hole, And a shaft head for supporting a surface texture measuring device connected to the shaft body.
  • the displacement mechanism further includes a piston coupled to the surface texture measuring device, and a cylinder that accommodates the piston so as to be able to advance and retract.
  • the cylinder of the displacement mechanism is fixed to the support arm. It is characterized by being.
  • the rotating block includes a first plate connected to the support arm and a second plate connected to the fixed block, and the second plate is formed by a rotating pin. The first plate is pivotally connected to the first plate.
  • a preferred embodiment of the present invention further comprises a dresser for dressing the surface of the polishing pad, the surface texture measuring device is attached to the dresser, and the support arm rotates a dresser shaft connected to the dresser.
  • a dresser arm that freely supports, and the moving mechanism includes a lift actuator that moves the dresser shaft up and down relative to the dresser arm, and a rotary actuator that swings a support shaft connected to the dresser arm. It is characterized by.
  • the surface texture measuring device measures the surface texture of the polishing pad while dressing the polishing pad.
  • the dressing member provided in the dresser has a ring shape having a through hole extending from the upper surface to the lower surface thereof, and the surface texture measuring device includes the through hole of the dressing member. And measuring the surface properties of the polishing pad.
  • a plurality of the surface texture measuring devices are attached to the dresser.
  • some of the plurality of surface texture measuring devices measure the pad surface texture by irradiating the polishing pad with laser light and receiving reflected light reflected from the surface of the polishing pad. It is a surface texture measuring device.
  • some of the plurality of surface texture measuring devices are surface texture measuring devices that measure pad surface properties from image information on the surface of the polishing pad acquired by an imaging device. .
  • the dressing member provided in the dresser has a ring shape having a through hole extending from the upper surface to the lower surface, and one of the plurality of surface texture measuring devices is the dressing member. The surface property of the polishing pad is measured through the through hole.
  • One aspect of the present invention includes the above polishing apparatus, and a processing system to which data on the surface property of the polishing pad obtained using the surface texture measuring apparatus of the polishing apparatus is input.
  • An input unit for inputting surface property data of the polishing pad output from a polishing apparatus, and a process for determining dressing conditions of the polishing device based on the surface property data of the polishing pad input to the input unit And an output unit that outputs the dressing conditions determined by the processing unit to the polishing apparatus, and the polishing apparatus dresses the polishing pad based on the dressing conditions output from the output unit
  • the polishing system is configured as described above.
  • the processing system further includes a storage unit that stores teacher data for determining the dressing condition in advance, and the processing unit of the processing system is based on the teacher data.
  • the dressing conditions of the polishing apparatus are determined.
  • the polishing apparatus transmits the surface property data of the polishing pad acquired after dressing the polishing pad to the input unit of the processing system, and the processing unit of the processing system transmits the dressing to the dressing It is characterized in that the necessity of dressing, the necessity of additional dressing, and the replacement of the dresser are determined based on the surface property data of the subsequent polishing pad.
  • the polishing apparatus transmits the surface property data of the polishing pad acquired during dressing of the polishing pad to an input unit of the processing system, and the processing unit of the processing system The dressing conditions are changed during dressing of the polishing pad based on data on surface properties of the polishing pad during dressing.
  • the processing system is connected to the polishing apparatus via a network.
  • the surface texture measuring device can be automatically moved to the measurement position by the moving unit to measure the surface texture of the polishing pad. Therefore, the throughput of the polishing apparatus can be improved. Furthermore, since it is not necessary for the operator to perform the attaching / detaching operation of the surface texture measuring device, the burden on the operator can be reduced.
  • FIG. 1 is a schematic diagram illustrating a polishing apparatus according to an embodiment.
  • FIG. 2 is a schematic view showing a polishing apparatus according to another embodiment.
  • FIG. 3 is a schematic diagram showing an example of the internal structure (measurement structure) of the surface texture measuring apparatus shown in FIGS. 1 and 2.
  • FIG. 4 is a schematic diagram showing another example of the internal structure (measurement structure) of the surface texture measuring apparatus shown in FIGS. 1 and 2.
  • FIG. 5 is a schematic diagram showing still another example of the internal structure (measurement structure) of the surface texture measuring apparatus shown in FIGS. 1 and 2.
  • FIG. 6 is a perspective view schematically showing an example of a surface texture measuring device arranged inside the polishing apparatus.
  • FIG. 7A is a front view of the surface texture measuring apparatus shown in FIG. FIG.
  • FIG. 7B is a bottom view of the surface texture measuring apparatus shown in FIG. 7A.
  • FIG. 8 is a cross-sectional view taken along line AA in FIG. 7A.
  • FIG. 9 is an enlarged schematic view showing the periphery of the surface texture measuring apparatus shown in FIG.
  • FIG. 10 is a view showing the surface texture measuring apparatus moved to the measurement position by the rotation mechanism shown in FIG.
  • FIG. 11 is a view showing the surface texture measuring apparatus moved to the retracted position by the rotation mechanism shown in FIG.
  • FIG. 12 is a schematic diagram illustrating another example of the rotation mechanism.
  • FIG. 13 is a schematic diagram showing a state in which the surface texture measuring device is moved to the maintenance position.
  • FIG. 14A is a schematic front view of an attitude adjustment mechanism according to an embodiment.
  • FIG. 14B is a BB line arrow view of FIG. 14A.
  • 15A is a cross-sectional view taken along the line CC of FIG. 14A.
  • FIG. 15B is a partial cross-sectional view of the posture adjustment mechanism corresponding to FIG. 15A when the surface texture measuring device is moved to the retracted position.
  • 16 is a perspective view schematically showing the displacement mechanism shown in FIG. 17 is a cross-sectional view taken along the line DD of FIG.
  • FIG. 18 is a schematic diagram showing another embodiment of the displacement mechanism.
  • FIG. 19 is a schematic diagram illustrating an example of an internal structure (measurement structure) of the imaging apparatus illustrated in FIG.
  • FIG. 20 is a schematic view showing another embodiment of the surface texture measuring device.
  • FIG. 21 is a schematic view showing a polishing apparatus according to still another embodiment.
  • FIG. 22 is an enlarged schematic view of the dresser shown in FIG.
  • FIG. 23 is a plan view schematically showing how the dresser shown in FIG. 21 swings on the polishing pad.
  • FIG. 24A is a schematic view showing a modification of the dresser of the polishing apparatus shown in FIG.
  • FIG. 24B is a top view of the dresser shown in FIG. 24A.
  • FIG. 25 is a schematic diagram showing a modification of the dresser shown in FIGS. 24A and 24B.
  • FIG. 26 is a schematic diagram showing an embodiment of a polishing system including a polishing apparatus provided with a surface texture measuring device.
  • FIG. 27A is a schematic diagram illustrating an example of a plurality of measurement points of the surface texture measuring device.
  • FIG. 27B is an image diagram showing an outline of the operation of the polishing system when processing a plurality of pieces of image information of the polishing pad measured at each measurement point shown in FIG. 27A.
  • FIG. 28 is a schematic diagram showing another example in which the polishing system is constructed as artificial intelligence using a neural network form.
  • FIG. 29 is a schematic diagram illustrating an example in which the control unit of the polishing apparatus has an artificial intelligence function.
  • FIG. 30 is a schematic view showing an example of a surface texture measuring apparatus attached to a conventional polishing apparatus.
  • FIG. 1 is a schematic diagram illustrating a polishing apparatus according to an embodiment.
  • the polishing apparatus (CMP apparatus) shown in FIG. 1 includes a polishing table 1 and a carrier 10 that holds a substrate W such as a semiconductor wafer that is an object to be polished and presses it against a polishing pad on the polishing table.
  • the polishing table 1 is connected via a table shaft 1a to a polishing table rotation motor (not shown) disposed below the table 1a, and is rotatable around the table shaft 1a.
  • a polishing pad 2 is attached to the upper surface of the polishing table 1, and the surface of the polishing pad 2 constitutes a polishing surface 2a for polishing the substrate W.
  • a polishing liquid supply nozzle (not shown) is installed above the polishing table 1, and the polishing liquid (slurry) is supplied to the polishing pad 2 on the polishing table 1 by the polishing liquid supply nozzle. .
  • the carrier 10 is connected to a shaft 11, and the shaft 11 moves up and down with respect to the carrier arm 12.
  • the entire carrier 10 is moved up and down relative to the carrier arm 12 by the vertical movement of the shaft 11.
  • the shaft 11 is rotated by driving a motor (not shown), and the carrier 10 is rotated around the axis of the shaft 11.
  • the carrier 10 can hold a substrate W such as a semiconductor wafer on its lower surface.
  • the carrier arm 12 is configured to be rotatable, and the carrier 10 holding the substrate W on the lower surface can be moved above the polishing table 1 from the substrate receiving position by the rotation of the carrier arm 12.
  • the carrier 10 holds the substrate W on the lower surface and presses the substrate W against the surface (polishing surface) of the polishing pad 2.
  • the polishing table 1 and the carrier 10 are respectively rotated, and a polishing liquid (slurry) is supplied onto the polishing pad 2 from a polishing liquid supply nozzle provided above the polishing table 1.
  • a polishing liquid containing silica (SiO 2 ), ceria (CeO 2 ) or the like as abrasive grains is used as the polishing liquid.
  • SiO 2 may be mentioned as an insulating film.
  • the metal film include a Cu film, a W film, a Ta film, and a Ti film.
  • the polishing apparatus includes a dressing apparatus 20 for dressing the polishing pad 2.
  • the dressing device 20 includes a dresser arm 21 and a dresser 22 that is rotatably attached to the dresser arm 21.
  • the lower part of the dresser 22 is constituted by a dressing member 22a.
  • the dressing member 22a has a circular dressing surface, and hard particles are fixed to the dressing surface by electrodeposition or the like. Examples of the hard particles include diamond particles and ceramic particles.
  • a motor (not shown) is built in the dresser arm 21, and the dresser 22 is rotated by this motor.
  • the dresser arm 21 is connected to an elevating mechanism (not shown), and the dressing member 22 a presses the polishing surface 2 a of the polishing pad 2 when the dresser arm 21 is lowered by the elevating mechanism.
  • the dressing apparatus 20 is connected to a control unit 23, and the dressing conditions are controlled by the control unit 23.
  • the control unit 23 is configured to control the operation of the entire polishing apparatus including the dressing apparatus 20.
  • the polishing apparatus includes a polishing pad surface property measuring device 30 that measures surface properties such as the surface shape and surface state of the polishing pad 2.
  • the surface texture measuring device 30 is configured to measure the pad surface texture by irradiating the polishing pad 2 with laser light and receiving the reflected light reflected by the surface of the polishing pad 2.
  • the surface property measuring device 30 of the polishing pad is connected to the calculation unit 40.
  • the reflected light distribution from the pad surface obtained by the surface texture measuring device 30 of the polishing pad is calculated by the calculation unit 40 into the pad surface property value, and the result is calculated.
  • the data is transferred to the control unit 23.
  • the control unit 23 determines the dressing condition based on the received pad surface property value.
  • the dressing device 20 dresses the pad surface by the dresser 22 by operating according to the dressing conditions determined by the control unit 23.
  • FIG. 2 is a schematic view showing a polishing apparatus according to another embodiment.
  • the polishing apparatus illustrated in FIG. 2 includes a polishing unit and a dressing apparatus 20 including the polishing table 1 and the carrier 10 to which the polishing pad 2 is attached, as in the polishing apparatus illustrated in FIG. Further, the polishing apparatus shown in FIG. 2 includes a surface texture measuring device 30 and a calculation unit 40, similarly to the polishing apparatus shown in FIG. The computing unit 40 is connected to the display device 41.
  • illustration of the control unit 23 is omitted, but the polishing apparatus illustrated in FIG. 2 also includes the control unit 23 in the same manner as the polishing apparatus illustrated in FIG. 1.
  • the reflected light distribution from the pad surface obtained by the surface texture measuring device 30 is calculated to the pad surface texture value by the calculation unit 40, and the result is displayed on the display device 41.
  • FIG. 3 is a schematic diagram showing an example of the internal structure (measurement structure) of the surface texture measuring device 30 shown in FIGS. 1 and 2.
  • the surface texture measuring device 30 includes a light source 31 that emits laser light, a light projecting unit 32 that guides the laser light emitted from the light source 31 to the surface of the polishing pad 2 on the polishing table 1, And a light receiving unit 33 that receives the reflected light reflected by the surface of the polishing pad 2. Therefore, the laser light emitted from the light source 31 is guided to the surface of the polishing pad 2 through the light projecting unit 32, and the reflected light reflected by the surface of the polishing pad 2 is received by the light receiving unit 33.
  • the light receiving unit 33 is connected to the calculation unit 40 (see FIGS. 1 and 2).
  • FIG. 4 is a schematic diagram showing another example of the internal structure (measurement structure) of the surface texture measuring device 30 shown in FIGS. 1 and 2.
  • the surface property measuring apparatus 30 for a polishing pad includes a light source 31 that emits laser light, a light projecting unit 32 that guides the laser light emitted from the light source 31 in a predetermined direction, and a light projecting unit 32.
  • a polarizer 35 an ND filter (a neutral density filter) 36
  • a mirror 37 which are sequentially arranged along the optical path of the laser light projected from.
  • the mirror 37 is configured to change the optical path by reflecting the laser light projected from the light projecting unit 32 in order to adjust the angle at which the laser light is incident on the polishing pad 2.
  • a band pass filter 38 is disposed in front of the light receiving unit 33 in the optical path of the reflected light reflected from the surface of the polishing pad 2. Accordingly, the laser light emitted from the light source 31 is s-polarized by the polarizer 35 and then incident on the mirror 37 whose angle is adjusted in advance by adjusting the amount of light by the ND filter 36. Then, the laser beam is reflected by the mirror 37, the optical path is changed, and is incident on the surface of the polishing pad 2. The reflected light reflected by the surface of the polishing pad 2 is allowed to pass through only a specific wavelength band by the band pass filter 38, and the reflected light of the specific wavelength band is received by the light receiving unit 33.
  • the light receiving unit 33 shown in FIGS. 3 and 4 is, for example, a linear or planar charge coupled device having a dimension capable of receiving at least up to the fourth order diffracted light or the seventh order diffracted light of the laser light reflected from the polishing pad 2.
  • CCD CCD
  • CMOS phase-trapping metal oxide semiconductor
  • the laser light applied to the surface of the polishing pad 2 is not only regularly reflected, but also reflected at a wide angle through a diffraction phenomenon according to the pad surface properties. That is, not only the specular reflection component but also laser light reflected at a wide angle is received and analyzed to obtain pad surface property information. In order to receive the laser beam reflected at these wide angles, a linear or planar light receiving element is required.
  • the pad surface properties that influence the CMP performance are desirably included in the 7th-order diffracted light, and practically up to the 4th-order diffracted light. Therefore, it is preferable to use a light receiving element having a size capable of receiving diffracted light in this range as the light receiving unit 33 of the surface texture measuring device 30.
  • the surface texture measuring device 30 is configured to measure the pad surface texture by irradiating the polishing pad 2 with laser light and receiving the reflected light reflected by the surface of the polishing pad 2.
  • the surface texture measuring device 30 includes an arbitrary imaging device that acquires an image of the surface of the polishing pad 2 (that is, the polishing surface 2a), and measures the pad surface properties from the image information of the pad surface acquired by the imaging device. It may be configured to.
  • the imaging device include an imaging device provided with a CCD image sensor, an imaging device provided with a CMOS image sensor, and an imaging device provided with a TDI (time delay and integration) image sensor.
  • the imaging device may be a video camera device that acquires continuous images (that is, moving images) over time.
  • Laser light is emitted from the light source 31 to irradiate the surface of the polishing pad 2 with the laser light.
  • Information on the surface of the polishing pad 2 is measured by receiving the laser beam reflected by the surface of the polishing pad 2.
  • the reflection intensity distribution obtained by the surface property measuring apparatus 30 of the polishing pad is converted into a spatial wavelength spectrum on the surface of the polishing pad by Fourier transform.
  • the calculating part 40 calculates a pad surface property value by calculating a spatial wavelength spectrum.
  • the calculation obtains the pad surface property value by dividing the total reflection intensity in a predetermined spatial wavelength region by the total reflection intensity in a wider spatial wavelength region.
  • the reflection intensity distribution is a distribution of received light intensity at each light receiving position in a linear or planar light receiving element.
  • a linear or planar CMOS element or CCD element which is a light receiving element, includes a large number of light receiving pixels and can detect the light receiving intensity for each pixel.
  • the light receiving position changes according to the reflection angle when the irradiated laser light is reflected on the pad surface, and the light receiving intensity changes depending on the pad surface property. That is, by capturing the reflection intensity for each reflection angle according to the pad surface property, a characteristic reflection intensity distribution corresponding to the pad surface property is obtained.
  • the spatial wavelength spectrum is a spectrum obtained by Fourier transforming the reflection intensity distribution, and indicates the distribution of received light intensity for each spatial wavelength on the pad surface. For example, when the measured pad surface has a shape mainly composed of a combination of the wavelength A and the wavelength B, the spatial wavelength spectrum has main peaks at the wavelength A and the wavelength B.
  • the spatial wavelength spectrum is set so that a sufficiently wide wavelength region is obtained for diffracted light of the order or less including the pad surface properties that affect the CMP performance. It has been found that the order of diffracted light to be acquired is preferably 7th order diffracted light, and practically 4th order diffracted light.
  • the obtained spatial wavelength spectrum generally includes random noise for the entire wavelength region. Therefore, by calculating the ratio of the integrated value of the reflected intensity in the predetermined spatial wavelength region to the integrated value of the reflected intensity in the wider spatial wavelength region, the influence of noise is excluded, and only the reflected intensity in the predetermined spatial wavelength region is obtained. Use a method to evaluate
  • the ratio of the integrated value of the reflection intensity in a predetermined spatial wavelength region to the integrated value in a wider spatial wavelength region is obtained, and this is defined as a “wavelength constituent ratio” as an index characterizing the pad surface properties.
  • a larger wavelength composition ratio indicates that the reflection intensity in a predetermined spatial wavelength region is relatively higher, which indicates that the measured pad surface contains more predetermined spatial wavelength components. . Since it has been examined in advance that the magnitude of the predetermined spatial wavelength component has a strong relationship with the CMP performance, the CMP performance can be estimated from the measured wavelength composition ratio of the pad surface.
  • the control unit 23 obtains the pad surface property value obtained by the calculation unit 40, and calculates a suitable dressing condition by the closed loop control based on the value.
  • the dressing condition is calculated so that the pad surface property value changes within a predetermined range set in advance.
  • the control unit 23 obtains a relational expression indicating a relation between the dressing condition and the pad surface property value in advance, and obtains a suitable dressing condition from the same expression.
  • the dressing conditions are mainly the polishing pad rotation speed, the dresser rotation speed, the dressing load, the dresser swing speed, and the like.
  • the determined dressing conditions are transmitted to the dressing apparatus 20, and dressing of the polishing pad 2 is performed by applying predetermined dressing conditions.
  • the relationship between the dressing load and the pad surface property is acquired in advance, that is, how much the surface property value increases when the dressing load is increased or Compare the ideal pad surface property value determined in advance with the measured pad surface property value, and if there is a deviation, the dressing load is calculated based on the above relationship. , Set to a direction approaching the ideal pad surface property value.
  • the pad surface property value obtained by the calculation unit 40 may be used for abnormality detection.
  • the pad surface property value and its change over time are measured, and if this is outside the predetermined range, it is determined that the pad surface property is abnormal, 1) an abnormality is reported, and 2) dresser replacement is required. Report something, etc.
  • the dressing condition is determined by calculating a difference between the measured pad surface property value and a predetermined desired pad surface property value as a desired pad surface property change amount, a dressing load, a dresser rotational speed,
  • the dressing is obtained by substituting the desired pad surface property change amount into a regression equation created by previously obtaining the relationship between the change amount of at least one item of the polishing pad rotation speed and the dresser rocking speed and the change amount of the pad surface property.
  • At least one item of load, dresser rotational speed, polishing pad rotational speed, and dresser swing speed is obtained.
  • a regression equation representing the relationship between dressing conditions (dressing load, dresser rotation speed, polishing pad rotation speed, dresser rocking speed, etc.) and pad surface property values (wavelength composition ratio) is obtained in advance.
  • dR is the amount of change in pad surface property value (wavelength composition ratio)
  • dL is the amount of change in dressing load
  • a and B are constants.
  • the surface property of the pad can be kept constant from the initial use to the final use of the pad.
  • the surface property of the pad changes depending on the amount of pad wear and the sharpness of the dresser from the beginning to the end of use of the pad, and the CMP performance also changes according to the change. Keeping the surface properties of the pad constant leads to keeping the CMP performance constant.
  • the display device 41 compares the surface property value of the polishing pad 2 obtained by the calculation unit 40 with a preset pad surface property value, and then displays the state of the dresser 22 and the state of the polishing pad 2. It is configured to display at least one.
  • the display device 41 is configured to display at least one of the state of the dresser 22 and the state of the polishing pad 2 based on the surface properties of the polishing pad 2 obtained by the arithmetic unit 40 without making a comparison as described above. May be.
  • the polishing apparatus was out of range after comparing the surface property value of the polishing pad obtained by the computing unit 40 (see FIGS. 1 and 2) with a preset range of the pad surface property value.
  • an abnormality determination unit that determines that the surface property of the polishing pad is abnormal may be provided. If the abnormality determining unit determines that there is an abnormality, the display device 41 (see FIG. 2) reports the abnormality.
  • the following are typical types of abnormal pad surface properties. 1) An abnormal point (defect) exists on the pad surface. 2) The dressing of the polishing pad is insufficient. 3) The dresser has reached the end of its life. 4) The pad has reached the end of its life.
  • the surface texture measuring device 30 includes an optical fiber 34, a polarizer 35, an ND filter 36, a mirror 37, a bandpass filter 38, and the like, so that the measurement accuracy can be further improved and the installation flexibility can be increased. It can also be increased.
  • the laser light emitted from the light source 31 by the polarizer 35 is made S-polarized and then incident on the polishing pad 2, whereby the reflectance on the surface of the polishing pad can be increased.
  • the laser light can be incident on the polishing pad 2 after the ND filter 36 is used to reduce the light amount of the laser light and adjust it to a desired light amount.
  • a band pass filter 38 in the optical path of the reflected light reflected from the surface of the polishing pad 2, only the reflected light within ⁇ 5 nm with respect to the wavelength of the laser light of the light source 31 is allowed to pass.
  • a laser beam having a wavelength of 635 nm is used as the laser beam of the light source 31.
  • the band pass filter 38 only the reflected light within ⁇ 5 nm with respect to the wavelength of the laser light of the light source 31 is allowed to pass, thereby reducing the influence of ambient environmental light that becomes noise. The effect of being able to be obtained.
  • the internal structure (measurement structure) of the surface texture measuring device 30 is not limited to the embodiment shown in FIGS.
  • the surface texture measuring device 30 may include an optical fiber that guides the laser light emitted from the light source 31 in a desired direction. Thereby, the installation freedom degree of the optical system of the surface property measuring apparatus 30 of a polishing pad can be raised.
  • the mirror 37 of the surface texture measuring device 30 may be configured such that the tilt angle thereof can be changed. By changing the tilt angle of the mirror 37, the angle at which the laser beam is incident on the polishing pad 2 can be adjusted.
  • the light source 31 and / or the light receiving unit 33 may be configured to be swingable.
  • the surface texture measuring device 30 may include a plurality of light sources 31 or a plurality of light receiving units 33.
  • FIG. 5 is a schematic diagram showing still another example of the internal structure (measurement structure) of the surface texture measuring device 30 shown in FIGS. 1 and 2.
  • a surface texture measuring device 30 shown in FIG. 5 has an imaging device 39 that acquires image information of the surface texture of the polishing pad 2 instead of the light source 31 and the light receiving unit 33.
  • the imaging device 39 is, for example, a digital camera including a charge coupled device (CCD) image sensor or a phase-trapping metal oxide semiconductor (CMOS) image sensor.
  • CMOS phase-trapping metal oxide semiconductor
  • the imaging device 39 may be a digital camera provided with a TDI image sensor, or may be a video camera that takes a moving image.
  • the imaging device 39 is connected to the control unit 23 via the calculation unit 40.
  • the imaging surface 39a of the imaging device 39 faces the polishing surface 2a of the polishing pad 2. That is, the imaging surface 39 a of the imaging device 39 is parallel to the polishing surface 2 a of the polishing pad 2.
  • the imaging device 39 may be arranged such that the imaging surface 39a is inclined with respect to the polishing surface 2a of the polishing pad 2 (see the imaging device 39 indicated by a two-dot chain line in FIG. 5). ).
  • the surface texture measuring device 30 may include a light source that illuminates the polished surface 2 a taken by the imaging device 39.
  • the surface texture image information of the polishing pad 2 acquired by the imaging device 39 is sent to the calculation unit 40, and the calculation unit 40 calculates the pad surface property value.
  • the control unit 23 obtains the surface property value obtained by the calculation unit 40, and calculates a suitable dressing condition by closed loop control based on the value.
  • the polishing apparatus was out of range after comparing the surface property value of the polishing pad obtained by the computing unit 40 (see FIGS. 1 and 2) with a preset range of the pad surface property value. In some cases, an abnormality may be reported.
  • FIG. 6 is a perspective view schematically showing an example of the surface texture measuring device 30 arranged inside the polishing apparatus.
  • 7A is a front view of the surface texture measuring device 30 shown in FIG. 6, and
  • FIG. 7B is a bottom view of the surface texture measuring device 30 shown in FIG. 7A.
  • FIG. 8 is a cross-sectional view taken along line AA of FIG. 7A.
  • the surface texture measuring device 30 has a casing 43.
  • the casing 43 accommodates a measurement structure for measuring the surface properties of the polishing pad 2 therein.
  • the measurement structure housed in the casing 43 includes, for example, the light source 31, the light receiving unit 33, the polarizer 35, the ND filter 36, the mirror 37, the band pass filter 38, and the imaging described with reference to FIGS.
  • the device 39 or the like is the cased in the casing 43.
  • a cutout 44 is formed in the lower portion of the casing 43.
  • the notch 44 has a trapezoidal shape defined by two opposing inclined surfaces 44a and 44b and a connection surface 44c that connects the inclined surfaces 44a and 44b.
  • a filter 47a having translucency is disposed on one inclined surface 44a, and the polishing pad 2 is irradiated with laser light emitted from the light source 31 through the filter 47a.
  • a light-transmitting filter 47b is also disposed on the other inclined surface 44b, and the light receiving unit 33 receives reflected light from the polishing pad 2 through the filter 47b.
  • the filters 47a and 47b include a transparent film or transparent glass.
  • the connection surface 44c extends linearly from one inclined surface 44a to the other inclined surface 44b.
  • the surface texture measuring device 30 has positioning plates 77 and 78 fixed to the side surface of the casing 43.
  • the positioning plates 77 and 78 come into contact with the polishing surface 2a of the polishing pad 2.
  • the distance from the polishing surface 2a of the polishing pad 2 in the vertical direction to the measurement structure of the surface property measuring device 30 and the angle of the surface property measuring device 30 with respect to the polishing surface 2a can always be kept constant. .
  • the surface texture measuring device 30 may include a nozzle 45 having a tip that protrudes from the connection surface 44c.
  • the nozzle 45 of the surface texture measuring device 30 is connected to a pressurized gas supply line (not shown), and pressurized gas (for example, pressurized nitrogen or pressurized air) is supplied to the polishing pad 2 from the pressurized gas supply line. It is comprised so that it may spray on the grinding
  • the pressurized gas blown from the nozzle 45 removes a liquid such as a polishing liquid or a dressing liquid on the polishing surface 2a. Thereby, the surface texture measuring device 30 can accurately measure the surface texture of the polishing pad 2.
  • the nozzle 45 has an arbitrary shape.
  • the nozzle 45 may be a cylindrical nozzle having the same flow path diameter from the front end to the rear end, or a throat portion where the flow passage diameter is gradually reduced, and an enlargement where the flow passage diameter is gradually increased downstream of the throat portion.
  • a laval nozzle having a portion may be used.
  • the nozzle 45 may be a nozzle having a shape in which the flow path diameter gradually decreases or expands toward the tip of the nozzle 45.
  • the nozzle 45 is disposed to be inclined with respect to the polishing surface 2 a of the polishing pad 2, and the pressurized gas injected from the nozzle 45 is inclined to the polishing surface 2 a of the polishing pad 2. collide.
  • the nozzle 45 is disposed so as to be inclined at an inclination angle ⁇ with respect to a plane P parallel to the polishing surface 2 a of the polishing pad 2 so that the pressurized gas flows toward the opening of the notch 44 formed in the casing 43. ing.
  • the liquid removed by the pressurized gas ejected from the nozzle 45 is prevented from adhering to the filters 47a and 47b disposed on the inclined surfaces 44a and 44b of the notch 44, respectively.
  • the purpose of injecting the pressurized gas from the inclined nozzle 45 is to remove the liquid such as the polishing liquid or the dressing liquid on the polishing surface 2a while the liquid removed by the pressurized gas is scattered, and the filter It is to prevent adhesion to 47a, 47b and the like. Therefore, the inclination angle ⁇ of the nozzle 45 is set to an optimum inclination angle for achieving the above object.
  • the optimum inclination angle is determined based on, for example, the pressure of the pressurized gas injected from the nozzle 45, the flow velocity, and the like.
  • the optimum tilt angle may be determined based on experiments performed by changing the pressure and / or flow rate of the pressurized gas. This optimum inclination angle is, for example, 60 °.
  • the nozzle 45 may be rotatably attached to the casing 43. In this case, the inclination angle ⁇ of the nozzle 45 can be changed to the optimum inclination angle according to the pressure and flow rate of the pressurized gas.
  • FIG. 9 is an enlarged schematic view showing the periphery of the surface texture measuring device 30 shown in FIG.
  • the surface texture measuring device 30 for measuring the surface texture of the polishing pad 2 is supported by a support arm 50, and the support arm 50 is attached to a moving unit 53 fixed to the polishing apparatus.
  • the moving unit 53 is a unit for moving the surface texture measuring device 30 from the retracted position to the measuring position or from the measuring position to the retracted position. That is, the position of the surface texture measuring device 30 is automatically changed from the retracted position to the measured position or from the measured position to the retracted position by the moving unit 53.
  • the measurement position of the surface texture measuring device 30 is defined as the position where the surface texture measuring device 30 is in contact with the polishing pad 2 in order to measure the surface texture of the polishing pad 2.
  • the measurement position of the surface texture measuring device 30 is a position where the positioning plates 77 and 78 of the surface texture measuring device 30 are in contact with the polishing surface 2a of the polishing pad 2, as shown in FIG. 7A.
  • the retracted position of the surface texture measuring device 30 is defined as a position where the surface texture measuring device 30 is separated from the polishing pad 2.
  • the moving unit 53 includes a fixed block 55 fixed to the polishing apparatus, a rotating block 56 connected to the support arm 50, and the rotating block 56 being rotatable with respect to the fixed block 55. And a rotation mechanism 60 for rotating the rotation block 56 around the axis of the rotation shaft 58.
  • the fixing block 55 is fixed to the frame 48 of the polishing apparatus with a fixing tool (not shown) such as a screw.
  • the support arm 50 that supports the surface texture measuring device 30 is connected to a support plate 52 fixed to a rotation block 56 by a fixing tool (not shown) such as a screw, and rotates via the support plate 52. Connected to block 56.
  • the support plate 52 may be formed integrally with the rotation block 56.
  • the support arm 50 may be directly connected to the rotation block 56. In this case, the support plate 52 is omitted from the moving unit 53.
  • the rotation block 56 is connected to the fixed block 55 via the rotation shaft 58. More specifically, the fixed block 55 is formed with a concave portion 55 a, and the rotating block 56 is formed with a convex portion 56 a that is inserted into the concave portion 55 a of the fixed block 55. A through hole (not shown) into which the rotation shaft 58 is inserted is formed in the convex portion 56a.
  • the fixed block 55 has two through holes (not shown) formed on both sides of the concave portion 55a of the fixed block 55, respectively.
  • the two through holes formed in the fixed block 55 are aligned with the through holes formed in the convex portion 56a of the rotating block 56. Can be arranged on a line.
  • the rotation shaft 58 is inserted into the two through holes formed on both sides of the concave portion 55a of the fixed block 55 and the convex portion 56a. Insert into the formed through-hole. Thereby, the rotation block 56 is rotatably connected to the fixed block 55.
  • FIG. 10 is a view showing the surface texture measuring device 30 moved to the measurement position by the turning mechanism 60 shown in FIG. 9, and FIG. 11 is a view showing the surface moved to the retracted position by the turning mechanism 60 shown in FIG. It is a figure which shows the property measuring apparatus.
  • the rotation mechanism 60 includes a piston 62 connected to a rotation block 56 and a piston cylinder configured to accommodate the piston 62 so as to be able to advance and retract.
  • the tip of the piston 62 is connected to the rotation block 56 via a bracket 70 fixed to the lower surface of the rotation block 56.
  • a through hole (not shown) into which a pin 67 can be inserted is formed at the tip of the piston 62, and a through hole 68 into which the pin 72 inserted into the through hole of the piston 62 can be inserted into the bracket 70.
  • the pin 67 is inserted into the through hole of the piston 62 and the through hole 68 of the bracket, so that the piston 62 is attached to the bracket 70. It connects with the rotation block 56 via.
  • a bracket 70 fixed to the lower surface of the rotation block 56 is rotatably connected to the piston 62.
  • the cylinder 63 is supported by a base 49 extending from the frame 48 of the polishing apparatus.
  • a fluid supply line (not shown) is connected to the cylinder 63, and fluid (for example, pressurized nitrogen or pressurized air) is supplied to the cylinder 63 through the fluid supply line.
  • the control unit 23 moves the piston 62 up and down by controlling the supply of fluid to the cylinder 63.
  • an on-off valve (not shown) is disposed in the fluid supply line, and the control unit 23 controls the operation of the on-off valve to move the piston 62 up and down. More specifically, when raising the piston 62, the control unit 23 opens the on-off valve and supplies the fluid to the cylinder 63. When lowering the piston 62, the controller 23 closes the on-off valve and stops the supply of fluid to the cylinder 63.
  • the controller 23 When measuring the surface property of the polishing pad 2, the controller 23 lowers the piston 62 of the rotation mechanism 60. Thereby, the rotation block 56 and the support arm 50 are rotated in the direction in which the surface texture measuring device 30 is moved downward, and the positioning plates 77 and 78 of the surface texture measuring device 30 are in contact with the polishing pad 2. In this way, the control unit 23 can move the surface texture measuring device 30 to the measurement position shown in FIG. 10 by operating the rotation mechanism 60. In this state, the surface properties of the polishing pad 2 described above are measured, and the dressing conditions are determined. When the controller 23 detects an abnormality of the polishing pad 2 from the surface texture measurement value obtained from the surface texture measuring device 30, the controller 23 reports the abnormality and stops the operation of the polishing apparatus. Also good.
  • the control unit 23 raises the piston 62 of the rotation mechanism 60. Thereby, the rotation block 56 and the support arm 50 are rotated in the direction in which the surface texture measuring device 30 is moved upward, and the surface texture measuring device 30 is separated from the polishing pad 2 (see FIG. 11). In this way, the control unit 23 moves the surface texture measuring device 30 from the measurement position shown in FIG. 10 to the retracted position shown in FIG. 11 by operating the rotation mechanism 60.
  • the control unit 23 moves the surface property measuring device 30 from the retracted position shown in FIG. 11 to the measuring position shown in FIG. 10 by operating the rotation mechanism 60.
  • FIG. 12 is a schematic diagram showing another example of the rotation mechanism.
  • a rotation mechanism 60 shown in FIG. 12 has a motor 59 connected to a rotating shaft 58, and the motor 59 is electrically connected to the control unit 23.
  • the motor 59 is supported by a base 49 extending from the frame 48 of the polishing apparatus.
  • the rotation shaft 58 is fixed to the rotation block 56.
  • the rotary shaft 58 has a key (not shown), and a key groove that engages with the key is formed in the convex portion 56 a of the rotation block 56. By inserting the key of the rotating shaft 58 into the key groove of the rotating block 56, the rotating shaft 58 is fixed to the rotating block 56 by the engagement between the key and the key groove.
  • the control unit 23 controls the operation of the motor 59 to rotate the rotating shaft 58, whereby the rotating block 56 rotates with respect to the fixed block 55. Since the rotation block 56 is connected to the support arm 50 and the surface texture measuring device 30 via the support plate 52, the operation of the motor 59 moves the surface texture measuring device 30 from the retracted position (see FIG. 11) to the measurement position. (See FIG. 10) or vice versa.
  • the rotation block 56 includes a first plate 64 coupled to the support arm 50 via a support plate 52, and a second plate 65 coupled to the fixed block 55 via a rotation shaft 58. You may comprise.
  • the first plate 64 is rotatably connected to the second plate 65 via a rotation pin 66.
  • the first plate 64 is connected to the second plate 65 by a hinge mechanism 88 including a rotation pin 66.
  • the hinge mechanism 88 includes a first joint 89 fixed to the upper surface of the first plate 64, a second joint 90 fixed to the upper surface of the second plate 65, and the first joint 89 rotating with respect to the second joint 90.
  • the rotary pin 66 is movably connected.
  • FIG. 13 is a schematic diagram showing a state in which the surface texture measuring device 30 is moved to the maintenance position.
  • the maintenance position is a position where the surface texture measuring device 30 is far away from the polishing pad 2 in order to perform maintenance or replacement of the polishing pad 2.
  • the hinge mechanism 88 is operated so that the support arm 50 extends in the vertical direction. Thereby, since the surface texture measuring apparatus 30 is positioned far from the polishing pad 2, the maintenance or replacement of the polishing pad 2 can be easily performed.
  • the polishing apparatus has a fixture that prevents the movement of the support arm 50 when the surface texture measuring device 30 is moved to the maintenance position.
  • the fixing tool prevents the support arm 50 moved to the maintenance position from falling unintentionally.
  • fixtures include hooks or clamps that are engageable with the support arm 50 moved to the maintenance position.
  • the control unit 23 controls the operation of the rotation mechanism 60 of the moving unit 53 to move the surface texture measuring device 30 from the retracted position to the measuring position. By using it, the surface texture of the polishing pad 2 can be automatically acquired.
  • the controller 23 determines dressing conditions based on the acquired surface properties.
  • the control unit 23 may issue an abnormality based on the acquired surface properties. As described above, since it is not necessary to perform the attaching / detaching operation of the surface texture measuring device which has been conventionally required, the throughput of the polishing device can be improved and the burden on the operator can be reduced.
  • the polishing apparatus automatically positions the surface texture measuring device 30 such that the lower surface of the surface texture measuring device 30 is parallel to the surface of the polishing pad 2 when the surface texture measuring device 30 moves to the measurement position. You may have the attitude
  • FIG. 14A is a schematic front view of the posture adjustment mechanism according to the embodiment, and FIG. 14B is a view taken along line BB in FIG. 14A.
  • 15A is a cross-sectional view taken along the line CC of FIG. 14A, and FIG. 15B is a cross-sectional view of a part of the posture adjustment mechanism corresponding to FIG. 15A when the surface texture measuring device 30 is moved to the retracted position. is there.
  • the posture adjustment mechanism 70 is fixed to the support base 72 connected to the support arm 50 and the upper surface of the surface texture measuring device 30, and passes through the through hole formed in the support base 72.
  • at least one adjustment pin 73 extending in the direction.
  • four adjustment pins 73 are fixed to the upper surface of the surface texture measuring device 30.
  • the support base 72 is directly fixed to the lower surface of the support arm 50.
  • the support base 72 has a flange portion 72a at the lower portion thereof, and four through holes 74 are formed at the four corners of the flange portion 72a.
  • Each adjustment pin 73 extends through each through hole 74 formed in the flange portion 72 a of the support base 72.
  • the adjustment pin 73 has a pin main body 73a having a diameter Da smaller than the diameter Dp of the through hole 74, and a pin head 73b formed on the top of the pin main body 73a.
  • the pin head 73 b is located above the through hole 74. More specifically, the pin head 73b is located between the support arm 50 and the flange portion 72a of the support base 72 (see FIG. 14A).
  • the pin head 73 b has a diameter Db larger than the diameter Dp of the through hole 74.
  • the control unit 23 moves the surface texture measuring device 30 to the retracted position, the lower surface of the pin head 73b comes into contact with the upper surface of the flange portion 72a of the support base 72, thereby the surface texture measuring device. 30 is supported by the support arm 50 via the support base 72.
  • the controller 23 moves the surface texture measuring device 30 to the measurement position and brings the positioning plates 77 and 78 of the surface texture measuring device 30 into contact with the polishing surface 2 a of the polishing pad 2
  • the lower surface of the pin head 73 b is on the support base 72. Separated from the flange portion 72a.
  • the surface texture measuring device 30 is supported on the polishing surface 2a of the polishing pad 2 by its own weight. Therefore, the posture of the surface texture measuring device 30 is adjusted by the posture adjusting mechanism 70 so that the lower surface thereof is parallel to the polishing surface 2 a of the polishing pad 2.
  • the polishing apparatus may have a displacement mechanism 80 that adjusts the horizontal position of the surface texture measuring device 30 along the support arm 50.
  • the displacement mechanism 80 is a mechanism for moving the position in the horizontal direction of the surface texture measuring device 30 along the longitudinal direction of the support arm 50.
  • FIG. 16 is a perspective view schematically showing the displacement mechanism 80 shown in FIG. 17 is a cross-sectional view taken along the line DD of FIG.
  • the displacement mechanism 80 includes a long hole 81 extending along the longitudinal direction of the support arm 50 and a support shaft 82 inserted into the long hole 81.
  • a stepped portion 81 a is formed inside the elongated hole 81.
  • the support shaft 82 includes a shaft main body 82 a connected to the surface texture measuring device 30 and a shaft head 82 b that contacts the stepped portion 81 a of the elongated hole 81.
  • the support shaft 82 is a bolt that is screwed into a screw hole (not shown) formed on the upper surface of the support base 72, and the surface texture measuring device via the support base 72 and the posture adjustment mechanism 70. 30.
  • the support shaft 82 may be referred to as a bolt 82
  • the shaft main body 82a may be referred to as a bolt main body 82a
  • the shaft head 82b may be referred to as a bolt head 82b.
  • the bolt body 82a of the bolt 82 has a diameter that is perpendicular to the longitudinal direction of the elongated hole 81 and smaller than the width of the stepped portion 81a in the horizontal direction, and the bolt head 82b of the bolt 82 has the elongated hole 81. It has a larger diameter than the width of the step portion 81a. Further, the diameter of the bolt head 82b is smaller than the width of the upper portion of the long hole 81 where the step portion 81a is not formed.
  • the bolt body 82 a can pass through the elongated hole 81 without contacting the stepped portion 81 a of the elongated hole 81.
  • the bolt head 82b cannot contact the step portion 81a of the elongated hole 81 and pass through the step portion 81a.
  • the bolt 82 When the surface texture measuring device 30 is supported by the support arm 50, the bolt 82 is inserted into the elongated hole 81 from above the support arm 50 with the support base 72 being in contact with the lower surface of the support arm 50, and the support base 72. Screw into the screw hole formed in The surface texture measuring device 30 is connected to the support arm 50 via the support base 72 by screwing the bolt 82 into the screw hole of the support base 72 until the bolt head 82b of the bolt 82 contacts the stepped portion 81a. By further screwing the bolt 82 into the screw hole of the support base 72, the support base 72 is firmly fixed to the support arm 50 by the bolt 82, and thereby the horizontal direction of the support base 72 (that is, the surface texture measuring device 30). The position is fixed.
  • the bolt 82 When adjusting (that is, changing) the horizontal position of the surface texture measuring device 30, the bolt 82 is loosened, and the support base 72 (that is, the surface texture measuring device 30) is moved to the desired position along the elongated hole 81. Move. Thereafter, the bolt 82 is screwed into the screw hole of the support base 72 again, and the horizontal position of the surface texture measuring device 30 is fixed.
  • the surface texture measuring device 30 since the position of the surface texture measuring device 30 in the horizontal direction can be adjusted by the displacement mechanism 80, the surface texture measuring device 30 can be at an arbitrary position (that is, a desired position) of the polishing pad 2. The surface property can be measured.
  • FIG. 18 is a schematic diagram showing another embodiment of the displacement mechanism 80.
  • the configuration of the present embodiment that is not specifically described is the same as the configuration of the displacement mechanism 80 shown in FIGS. 16 and 17, and thus redundant description thereof is omitted.
  • the position of the support base 72 is not fixed to the support arm 50 by a support shaft (bolt) 82. More specifically, the shaft head 82 b of the support shaft 82 is only in contact with the stepped portion 81 a, and the long hole 81 extends along the support arm 50 along the support base 72 (that is, the surface texture measuring device 30). It functions as a guide hole for moving. Furthermore, the displacement mechanism 80 includes a piston cylinder mechanism 83 having a piston 85 connected to the surface texture measuring device 30 and a cylinder 86 that accommodates the piston 85 so as to be able to advance and retract. In the present embodiment, the tip of the piston 85 is connected to the side surface of the support base 72, and the cylinder 86 is fixed to the lower surface of the support arm 50. Further, the cylinder 86 is connected to a fluid supply line (not shown).
  • the piston 85 can be advanced and retracted along the support arm 50 by a pressurized fluid (for example, pressurized nitrogen or pressurized air) supplied from the fluid supply line to the cylinder 86.
  • a pressurized fluid for example, pressurized nitrogen or pressurized air
  • the control unit 23 controls the supply of the pressurized fluid supplied to the cylinder 86 to automatically change the horizontal position of the surface texture measuring device 30.
  • the position of the horizontal direction of the surface texture measuring apparatus 30 can be adjusted automatically.
  • the displacement mechanism 80 may have a ball screw mechanism for changing the horizontal position of the surface texture measuring device 30 instead of the piston cylinder mechanism 83. Even in this case, the controller 23 can automatically adjust the horizontal position of the surface texture measuring device 30 by controlling the operation of the ball screw mechanism.
  • the controller 23 moves the surface property measuring device 30 to the measurement position (see FIG. 10) during the polishing of the substrate W or the dressing of the polishing pad 2, and measures the surface property of the rotating polishing pad 2. Also good.
  • the surface texture measuring device 30 has the filters 47a and 47b (see FIG. 7B) disposed on the inclined surfaces 44a and 44b of the casing 43, respectively.
  • a fluid such as a polishing liquid (slurry) or a dressing liquid is supplied onto the polishing pad 2, and this fluid may enter the inside of the casing 43 by the filters 47 a and 47 b. Is prevented.
  • the filters 47a and 47b can prevent the measurement structure such as the light source 31 and the light receiving unit 33 from being contaminated by the fluid. Furthermore, when the surface texture measuring device 30 has a nozzle 45 (see FIG. 8) that is disposed to be inclined with respect to the polishing surface 2a of the polishing pad 2, by the pressurized gas injected from the nozzle 45, The fluid on the polishing surface 2 a is blown off from the notch 44 to the outside of the surface texture measuring device 30. As a result, even when the substrate W is being polished or dressed, it is possible to more effectively prevent the fluid from adhering to the filters 47a and 47b and to measure the accurate surface properties of the polishing pad 2.
  • FIG. 19 is a schematic diagram showing an example of the internal structure (measurement structure) of the imaging device 39 shown in FIG. 19 also illustrates a part of the casing 43 of the surface texture measuring device 30 that houses the imaging device 39.
  • a part of the casing 43 shown in FIG. 19 shows a modification of the notch 44 formed in the lower part of the casing 43 that houses the imaging device 39.
  • An imaging apparatus 39 shown in FIG. 19 includes an image sensor having a photographing surface 39a, a lens mechanism 24 that forms a surface image of the polishing pad 2 on the photographing surface 39a, and an aperture 29.
  • the lens mechanism 24 includes a lens 25 and a focus mechanism (not shown) that moves the lens 25 between the surface of the polishing pad 2 and the imaging surface 39a. By moving the lens 25 by the focus mechanism, an image of the surface of the polishing pad 2 is formed on the imaging surface 39a.
  • the aperture 29 is disposed between the photographing surface 39a and the lens 25.
  • the aperture 29 is used to adjust the visual field size of the imaging device 39 and to remove noise from the background.
  • an aperture 29 may be provided in the surface texture measuring device 30 shown in FIGS.
  • the aperture 29 is disposed between the polishing surface 2 a and the light receiving unit 33 on the optical path formed between the light projecting unit 32 and the light receiving unit 33.
  • the aperture 29 is used to adjust the diffraction width (the order of the diffracted light) of the laser light reflected from the polishing pad 2 and to remove noise from the background.
  • the notch 44 formed in the lower part of the casing 43 of the surface texture measuring device 30 includes two opposing inclined surfaces 44a and 44b and side surfaces 44d and 44e extending upward from the inclined surfaces 44a and 44b. And a connection surface 44c that connects the side surfaces 44d and 44e.
  • the side surfaces 44d and 44e extend in the vertical direction.
  • the side surfaces 44d and 44e are referred to as vertical surfaces 44d and 44e, respectively.
  • the imaging device 39 cannot acquire accurate image information of the surface properties of the polishing pad 2. Therefore, pressurized gas is ejected from the nozzle 45 described above to remove the liquid on the polishing surface 2 a photographed by the imaging device 39.
  • the nozzle 45 protrudes from one inclined surface 44a.
  • An opening 27 is formed on one vertical surface 44d, and another opening 28 is formed on the other vertical surface 44e.
  • the openings 27 and 28 are located between the polishing surface 2 a and the lens 25.
  • the opening 27 is configured to inject gas (for example, CDA (clean dry air), dry air, nitrogen, or the like) toward the opening 28, and the opening 28 is configured to allow the gas injected from the opening 27 to flow in. ing.
  • gas curtain from the opening 27 toward the opening 28 can be formed.
  • the gas curtain formed between the opening 27 and the opening 28 prevents the liquid scattered by the pressurized gas ejected from the nozzle 45 from reaching the lens 25. Therefore, the imaging device 39 can acquire accurate image information of the polishing surface 2a of the polishing pad 2.
  • the opening 27 is parallel to the paper surface of FIG. 19 and is located on a vertical plane passing through the nozzle 45, and the gas from the opening 27 and the pressurized gas from the nozzle 45 are the paper surface of FIG. 19. It is injected in the direction parallel to.
  • the opening 27 may be shifted in the horizontal direction from a vertical plane passing through the nozzle 45 in parallel with the paper surface of FIG.
  • the gas from the opening 27 and / or the pressurized gas from the nozzle 45 may be injected in a direction different from the direction parallel to the paper surface of FIG.
  • a part (for example, the lower part) of the inclined surface 44b facing the nozzle 45 may be formed in a curved surface shape.
  • a part of the surface of the inclined surface 44b formed into a curved surface smoothly discharges the liquid blown off from the polishing surface 2a by the pressurized gas injected from the nozzle 45 to the outside of the casing 43 of the surface texture measuring device 30. It functions as a guide surface. Or you may provide the notch for making it easy to discharge
  • FIG. 20 is a schematic diagram showing another embodiment of the surface texture measuring device 30.
  • the configuration of the present embodiment that is not particularly described is the same as the configuration of the surface texture measuring device 30 according to the above-described embodiment, and thus redundant description is omitted.
  • the surface texture measuring device 30 includes a barrier 69 connected to the side surface of the casing 43.
  • the barrier 69 is attached to the side surface of the positioning plate 78.
  • the lower surface of the barrier 69 contacts the polishing surface 2a of the polishing pad 2 when the surface texture measuring device 30 is moved to the measurement position (see FIG. 10).
  • the barrier 69 functions as a fence for preventing fluid such as polishing liquid or dressing liquid supplied on the polishing surface 2 a of the polishing pad 2 from reaching the surface property measuring device 30.
  • the barrier 69 according to the present embodiment has an arc shape and guides the fluid flowing on the polishing surface 2a toward the surface texture measuring device 30 along the arc shape of the barrier 69, so that the fluid is on the surface. Reaching the property measuring device 30 is inhibited.
  • the barrier 69 may be attached to the support arm 50.
  • FIG. 21 is a schematic diagram showing a polishing apparatus according to still another embodiment.
  • FIG. 22 is an enlarged schematic view showing the dresser shown in FIG. 21, and
  • FIG. 23 is a plan view schematically showing how the dresser shown in FIG. 21 swings on the polishing pad.
  • the configuration of the present embodiment that is not particularly described is the same as the configuration of the above-described embodiment, and the same or corresponding members are denoted by the same reference numerals, and redundant description thereof is omitted.
  • the polishing apparatus shown in FIG. 21 includes a polishing unit and a dressing apparatus 20 including the polishing table 1, the carrier 10 and the like to which the polishing pad 2 is attached, like the polishing apparatus shown in FIG.
  • a dressing device 20 shown in FIG. 21 includes a dresser arm 21, a dresser 22 rotatably attached to the dresser arm 21, a dresser shaft 91 connected to the dresser 22, and an air cylinder provided at the upper end of the dresser shaft 91. 93.
  • the dresser shaft 91 is rotatably supported by the dresser arm 21 and is rotated by a motor (not shown) disposed in the dresser arm 21. As the dresser shaft 91 rotates, the dresser 22 rotates about its axis.
  • the dressing member 22a provided in the lower part of the dresser 22 has a ring shape, but the dressing member 22a may have a circular shape.
  • the air cylinder 93 is connected to a gas supply source (not shown), and is a device that applies a dressing load to the polishing pad 22 to the dresser 22.
  • the dressing load can be adjusted by the air pressure supplied to the air cylinder 93.
  • the dresser 22 can be separated from the polishing surface 2 a of the polishing pad 2 by the air cylinder 93.
  • the air cylinder 93 functions as a lift actuator that moves the dresser shaft 91 and the dresser 22 up and down relative to the dresser arm 21.
  • the ball screw mechanism may be used as a lift actuator that moves the dresser shaft 91 and the dresser 22 up and down relative to the dresser arm 21.
  • the dressing apparatus 20 includes a support shaft 98 connected to the dresser arm 21 and a motor (rotation actuator) 96 that rotates the support shaft 98.
  • the dresser arm 21 is driven by a motor 96 and is configured to swing around a support shaft 98.
  • the dressing of the polishing surface 2a of the polishing pad 2 is performed as follows.
  • the polishing table 1 and the polishing pad 2 are rotated by a polishing table rotating motor (not shown), and a dressing liquid (for example, pure water) is supplied to the polishing surface 2a of the polishing pad 2 from a dressing liquid supply nozzle (not shown).
  • a dressing liquid for example, pure water
  • the dresser 22 is rotated around its axis.
  • the dresser 22 is pressed against the polishing surface 2a by the air cylinder 93 to bring the lower surface of the dressing member 22a into sliding contact with the polishing surface 2a.
  • the dresser arm 21 is swung to move the dresser 22 on the polishing pad 2 in the substantially radial direction of the polishing pad 2. As shown in FIG.
  • the polishing table 1 and the polishing pad 2 thereon are rotated about the origin (the center point of the polishing pad 2) O.
  • the dresser 22 rotates (i.e., swings) by a predetermined angle around a point C corresponding to the center position of the support shaft 98 shown in FIG.
  • the polishing pad 2 is scraped off by a rotating dresser 22, whereby dressing of the polishing surface 2 a is performed.
  • the polishing apparatus has a surface texture measuring device 30 attached to the dresser 22.
  • the surface texture measuring device 30 shown in FIG. 22 is fixed to the tip of a sub arm 95 attached to the outer peripheral surface of the dresser 22.
  • the sub arm 95 has a substantially L-shaped cross section, and the surface texture measuring device 30 is fixed to the tip of the sub arm 95.
  • the end of the sub arm 95 is fixed to the outer peripheral surface of the dresser 22.
  • the support arm that supports the surface texture measuring device 30 is the dresser arm 21, and the surface texture measuring device 30 is supported by the dresser arm 21 via the sub arm 95, the dresser 22, and the dresser shaft 91. .
  • the surface texture measuring device 30 shown in FIG. 22 may have the internal structure (measurement structure) described with reference to FIG. 3 or FIG. 4, or described with reference to FIG. 5 and FIG. An imaging device 39 may be included.
  • the internal structure described with reference to FIG. 3 or 4 may be simply referred to as “the measurement structure”.
  • the surface texture measuring device 30 may have a housing 43 that houses the measurement structure or the imaging device 39.
  • the shape of the housing 43 is arbitrary, but may be the housing 43 described with reference to FIGS. 7A and 7B, for example. Alternatively, the housing 43 may have a cylindrical shape.
  • the surface texture measuring device 30 may be accommodated in the sub arm 95.
  • the measurement structure or the imaging device 39 is disposed in the sub arm 95, and an opening is formed at the tip of the sub arm 95.
  • the laser light projected from the light projecting unit 32 reaches the surface of the polishing pad 2 through the opening formed in the sub arm 95, and The reflected light reflected from the surface is received by the light receiving unit 33 through an opening formed in the sub arm 95.
  • the imaging device 39 acquires image information on the surface of the polishing pad 2 through the opening formed in the sub arm 95.
  • the surface texture measuring device 30 may have the nozzle 45 described with reference to FIG.
  • the nozzle 45 is configured to blow a pressurized gas (for example, pressurized nitrogen or pressurized air) onto the polishing surface 2 a of the polishing pad 2, and the pressurized gas blown from the nozzle 45.
  • a pressurized gas supply line for supplying pressurized gas to the nozzle 45 is connected to the dresser shaft 91 via, for example, a rotary joint, and the inside of the dresser shaft 91, the dresser 22, and the sub arm 95. Is supplied to the surface texture measuring device 30 through the flow path formed in the above.
  • the surface texture measuring device 30 is separated from the polishing surface 2 a when the dressing member 22 a of the dresser 22 is brought into contact with the polishing surface 2 a of the polishing pad 2.
  • the position of the surface texture measuring device 30 when the dressing member 22a of the dresser 22 contacts the polishing surface 2a of the polishing pad 2 is the measurement position. Since the surface texture measuring device 30 is fixed to the tip of the sub arm 95, the distance between the surface texture measuring device 30 at the measurement position and the polishing surface 2a of the polishing pad 2 is always constant. Therefore, the surface texture measuring device 30 can measure the accurate pad surface texture of the polishing surface 2a of the polishing pad 2.
  • the air cylinder (elevating actuator) 93 can move the dresser 22 above the polishing surface 2a of the polishing pad 2.
  • the position where the dressing member 22a of the dresser 22 is spaced upward from the polishing surface 2a of the polishing pad 2 is the retreat position, and the moving mechanism for moving the surface texture measuring device 30 from the measurement position to the retreat position is an air This is a cylinder 93.
  • the dresser 22 and the surface texture measuring device 30 are moved upward from the polishing surface 2 a of the polishing pad 2 by the air cylinder 93, the dresser 22 and the surface texture measuring device 30 are moved to a motor (rotary actuator) 96.
  • the retracted position of the surface texture measuring device 30 is a position on the side of the polishing pad 2, and the moving mechanism is composed of a combination of an air cylinder 93 and a motor 96.
  • the surface texture measuring device 30 may be brought into contact with the polishing surface 2a.
  • the position where the surface texture measuring device 30 is in contact with the polishing pad 2 is the measurement position of the surface texture measuring device 30.
  • the surface texture measuring device 30 is preferably connected to the sub arm 95 via the posture adjusting mechanism 70 described with reference to FIGS. 14A and 14B.
  • the posture adjustment mechanism 70 adjusts the posture of the surface texture measuring device 30 in contact with the polishing surface 2 a so that the lower surface thereof is parallel to the polishing surface 2 a of the polishing pad 2.
  • the retracted position of the surface texture measuring device 30 is a position where the surface texture measuring device 30 is separated from the polishing surface 2a of the polishing pad 2, or the dresser 22 and the surface texture measuring device 30 move to the side of the polishing pad 2. Is the position.
  • the measurement of the pad surface texture by the surface texture measuring device 30 may be performed by moving the surface texture measuring device 30 to the measurement position during polishing of the substrate W or during dressing of the polishing pad 2.
  • the surface texture measuring device 30 measures the surface texture of the polishing pad 2 while rotating together with the dresser 22.
  • the polishing apparatus includes a rotary encoder 92 that can measure the rotation angle of the dresser 22 via a dresser shaft 91.
  • the rotary encoder 92 can detect the relative position of the rotating surface texture measuring device 30 with respect to the polishing pad 2. More specifically, the surface texture measuring device 30 rotates with the dresser 22 during dressing of the polishing pad 2. In this case, the surface texture measuring device 30 alternately passes above the polishing pad 2 before being dressed by the dresser 22 and above the polishing pad 2 after being dressed by the dresser 22.
  • the surface texture measuring device 30 measures the surface texture of the polishing pad 2 at predetermined time intervals, and transmits the measured value to the control unit 23 (see FIG. 1) every time the surface texture of the polishing pad 2 is measured. ing.
  • the rotary encoder 92 is also connected to the control unit 23, and the rotary encoder 92 transmits the relative position of the surface texture measuring device 30 to the polishing pad 2 to the control unit 23.
  • the control unit 23 divides the plurality of pad surface property values acquired by the surface property measuring device 30 into a pad surface property value before dressing and a pad surface property value after dressing. .
  • the control part 23 compares the pad surface property value after dressing with the pad surface property value before dressing, and calculates suitable dressing conditions based on the comparison.
  • the dressing conditions are calculated so that the difference between the pad surface property values before and after dressing changes within a predetermined range set in advance.
  • the control unit 23 obtains a relational expression indicating the relationship between the dressing condition and the difference between the pad surface property values before and after the dressing in advance, and obtains a suitable dressing condition based on the relational expression.
  • the position of the surface texture measuring device 30 when the dressing member 22a is separated upward from the surface of the polishing pad 2 may be set as the measurement position.
  • the retracted position of the surface texture measuring device 30 is the position of the surface texture measuring device 30 when the dressing member 22a is further away from the surface of the polishing pad 2, or the dresser 22 and the surface texture measuring device 30 are polished. This is the position moved to the side of the pad 2.
  • the dressing member 22a and the surface texture measuring device 30 are separated from the surface of the polishing pad 2, and without rotating the dresser 22, from the peripheral edge to the center of the polishing pad 2 via the dresser arm 21. Move.
  • the surface texture measuring device 30 measures the surface texture of the polishing pad 2 at a predetermined time interval while moving from the peripheral edge to the center of the polishing pad 2 together with the dresser 22, and transmits the measured value to the controller 23. .
  • the controller 23 calculates a suitable dressing condition based on the pad surface property value transmitted from the surface property measuring device 30.
  • FIG. 24A is a schematic view showing a modification of the dresser of the polishing apparatus shown in FIG. 21, and FIG. 24B is a top view of the dresser shown in FIG. 24A.
  • the configuration of the present embodiment that is not particularly described is the same as the configuration of the dresser 22 illustrated in FIG. 21, and thus redundant description thereof is omitted.
  • a plurality of (two in the illustrated example) surface property measuring devices 30A and 30B are attached to the dresser 22 of the polishing apparatus shown in FIGS. 24A and 24B.
  • the surface texture measuring devices 30 ⁇ / b> A and 30 ⁇ / b> B are arranged symmetrically with respect to the center of the dresser 22.
  • the sub arm 95 that connects each surface texture measuring device 30 to the dresser 22 has a substantially J-shape, and the end of the sub arm 95 is fixed to the upper surface of the dresser 22.
  • the two surface texture measuring devices 30A and 30B are attached to the dresser 22, but three or more surface texture measuring devices may be attached to the dresser 22.
  • three or more surface texture measuring devices may be attached to the dresser 22.
  • four surface texture measuring devices may be arranged every 90 ° along the outer peripheral surface of the dresser 22.
  • the surface texture measuring devices 30A and 30B may be simply referred to as “surface texture measuring device 30” unless it is necessary to distinguish between them.
  • Each surface texture measuring device 30 may have the same measurement structure or different measurement structures.
  • some of the plurality of surface texture measuring devices 30 are surface texture measuring devices having the measurement structure described with reference to FIG. 3 or FIG.
  • the surface texture measuring device (for example, the surface texture measuring device 30B) may be a surface texture measuring device having the imaging device 39 described with reference to FIGS.
  • each surface texture measuring device 30 transmits the measured value to the control unit 23 every time the surface texture of the polishing pad 2 is measured. Based on the relative position of each surface texture measuring device 30 with respect to the polishing pad 2, the controller 23 obtains a plurality of surface texture measurement values acquired by each surface texture measuring device 30 as pad surface texture values before dressing, and after dressing. The pad surface properties are divided into values. Then, the control unit 23 compares pad surface property values before and after dressing, and calculates suitable dressing conditions based on the comparison.
  • the control unit 23 can calculate more suitable dressing conditions.
  • FIG. 25 is a schematic diagram showing a modification of the dresser shown in FIGS. 24A and 24B.
  • the configuration that is not particularly described is the same as the configuration of the embodiment illustrated in FIGS. 24A and 24B, and thus redundant description thereof is omitted.
  • the dressing member 22a provided in the dresser 22 has a ring shape. That is, the dressing member 22a has a through hole 22b extending from the upper surface to the lower surface.
  • a concave portion is formed in a portion of the lower surface of the dresser 22 where the dressing member 22a is not provided (in this embodiment, the central portion of the lower surface of the dresser 22), and the surface texture measuring device 30C is fitted into the concave portion. Yes.
  • the surface texture measuring device 30C may have the internal structure (measurement structure) described with reference to FIG. 3 or FIG. 4, or the imaging device 39 described with reference to FIG. 5 and FIG. You may have.
  • the surface texture measurement device 30 ⁇ / b> C may include a housing that houses the measurement structure or the imaging device 39.
  • the housing has a cylindrical shape.
  • the surface texture measuring device 30 ⁇ / b> C is attached to the dresser 22 by engaging the screw formed on the outer peripheral surface of the housing with the screw groove provided on the wall surface of the recess formed on the lower surface of the dresser 22.
  • the surface texture measuring device 30C measures the surface texture of the polishing pad 2 through the through hole 22b of the dressing member 22a. For example, when the surface texture measuring device 30C has the above-described measurement structure, the laser light projected from the light projecting unit 32 reaches the surface of the polishing pad 2 through the through hole 22b formed in the dressing member 22a. The reflected light reflected by the surface of the polishing pad 2 is received by the light receiving unit 33 through the through hole 22b. When the surface texture measuring device 30C includes the imaging device 39, the imaging device 39 acquires image information on the surface of the polishing pad 2 through the through hole 22b formed in the dressing member 22a.
  • the surface texture measuring device 30C may have the nozzle 45 described with reference to FIG.
  • the nozzle 45 is configured to blow a pressurized gas (for example, pressurized nitrogen or pressurized air) onto the polishing surface 2 a of the polishing pad 2, and the pressurized gas blown from the nozzle 45.
  • a pressurized gas for example, pressurized nitrogen or pressurized air
  • the pressurized gas supply line for supplying the pressurized gas to the nozzle 45 is connected to the dresser shaft 91 via, for example, a rotary joint, and the flow formed in the dresser shaft 91 and the dresser 22 is, for example. It is supplied to the surface texture measuring device 30C via the path.
  • one surface texture measuring device 30C among the plurality of surface texture measuring devices 30A-30C attached to the dresser 22 is arranged inside the dresser 22.
  • the surface texture measuring device 30C measures the surface texture of the polishing pad 2 while the dresser 22 is dressing the polishing pad 2, for example.
  • the surface texture measuring device 30C is also connected to the control unit 23.
  • the surface texture measuring device 30C measures the surface texture of the polishing pad 2 at predetermined time intervals during dressing of the polishing pad 2, and the measured value. (Pad surface property value) is transmitted to the controller 23.
  • the surface texture measuring devices 30A and 30B measure the pad surface texture values before and after dressing, and transmit the measured values (pad surface texture values) to the control unit 23. Therefore, the control unit 23 can acquire the pad surface property value before and after dressing acquired by the surface texture measuring devices 30A and 30B and the pad surface property value during dressing acquired by the surface texture measuring device 30C. it can. As a result, the control unit 23 can calculate more suitable dressing conditions based on the pad surface property value during dressing in addition to the pad surface property value before and after dressing.
  • FIG. 26 is a schematic diagram showing an embodiment of a polishing system including a polishing apparatus provided with a surface texture measuring device 30.
  • the polishing system 100 shown in FIG. 26 receives the surface property data of the polishing pad 2 obtained using the polishing device described with reference to FIGS. 1 to 25 and the surface property measuring device 30 of the polishing device.
  • a polishing process generation system 101 A polishing process generation system 101 shown in FIG. 26 includes a repeater 102 that is connected to a polishing apparatus so that information can be transmitted and received, and a processing system 105 that is connected to the repeater 102 so that information can be transmitted and received. Therefore, the polishing apparatus is connected to the processing system 105 via the repeater 102 so that information can be transmitted and received.
  • the polishing apparatus includes an output unit 15 that outputs various types of information such as surface property data of the polishing pad 2.
  • the polishing apparatus acquires the reflection intensity distribution of the polishing pad 2 using the surface texture measuring apparatus 30.
  • the polishing apparatus outputs the obtained reflection intensity distribution as data representing the surface properties of the polishing pad 2 from the output unit 15.
  • the polishing apparatus obtains the surface texture value of the polishing pad based on the reflection intensity distribution obtained from the surface texture measuring device 30, and uses the surface texture value as data representing the surface texture of the polishing pad 2. You may output from the output part 15. FIG.
  • the polishing device uses the image information of the polishing pad 2 obtained from the imaging device 39 as data representing the surface property of the polishing pad 2.
  • Examples of the image information of the polishing pad 2 acquired by the imaging device 39 include a frame image, a TDI image, a strobe image, and a video image.
  • a plurality of imaging devices 39 may be arranged in the casing 43 of the surface texture measuring device 30 to acquire a three-dimensional image of the polished surface 2a.
  • the processing system 105 includes an input unit 107 to which various information such as surface property data of the polishing pad 2 is input, and the dressing condition of the polishing apparatus based on the surface property data of the polishing pad 2 input to the input unit 107. And an output unit 110 that outputs various types of information such as dressing conditions determined by the processing unit 108 to the polishing apparatus.
  • the processing system 105 includes a transmission / reception unit in which an input unit 107 and an output unit 110 are integrated.
  • the processing system 105 includes a storage unit 111, and the storage unit 111 can store various types of information such as surface property data of the polishing pad 2 input to the input unit 107.
  • the processing unit 108 of the processing system 105 calculates the surface property value of the polishing pad 2 based on the surface property data of the polishing pad 2 such as the reflection intensity distribution input to the input unit 107, and based on this value, Calculate suitable dressing conditions.
  • the processing unit 108 inputs to the input unit 107. Based on the surface property value of the polished polishing pad 2, a suitable dressing condition is calculated.
  • the processing unit 108 adds the image information of the polishing pad 2 input to the input unit 107. Based on this, a suitable dressing condition is calculated.
  • the processing unit 108 obtains, for example, a relational expression indicating a relationship between the dressing condition and the pad surface property value in advance, and obtains a suitable dressing condition based on the relational expression.
  • the dressing conditions are mainly the polishing pad rotation speed, the dresser rotation speed, the dressing load, the dresser swing speed, and the like.
  • the determined dressing conditions are output from the output unit 110 of the processing system 105 to the polishing apparatus via the repeater 102.
  • the polishing apparatus has an input unit 16 into which various information such as dressing conditions output from the processing system 105 is input.
  • the polishing apparatus has a transmission / reception unit in which the input unit 16 and the output unit 15 are integrally formed.
  • the control unit 23 of the polishing apparatus performs dressing of the polishing pad 2 according to the dressing conditions input to the input unit 16.
  • the polishing process generation system 101 of the polishing system 100 includes a repeater 102 disposed between the processing system 105 and the polishing apparatus.
  • the repeater 102 is a gateway such as a router, for example.
  • the surface property data of the polishing pad 2 output from the output unit 15 of the polishing apparatus is transmitted to the input unit 107 of the processing system 105 via the relay 102.
  • the dressing conditions output from the output unit 110 of the processing system 105 are transmitted to the input unit 16 of the polishing apparatus via the repeater 102.
  • the repeater 102 receives various information such as dressing conditions output from the processing system 105 and an input unit 134 to which various information such as surface property data of the polishing pad 2 output from the output unit 15 of the polishing apparatus is input. And an output unit 136 that outputs to the input unit 16 of the polishing apparatus.
  • the repeater 102 includes a transmission / reception unit in which an input unit 134 and an output unit 136 are integrally formed. Further, the repeater 102 outputs various information such as surface property data of the polishing pad 2 input from the input unit 134 to the input unit 107 of the processing system 105 and from the output unit 110 of the processing system 105. And an input unit 138 for inputting various information such as the outputted dressing conditions.
  • the repeater 102 includes a processing unit 140, and the processing unit 140 controls transmission / reception of information between the polishing apparatus and the repeater 102 and transmission / reception of information between the repeater 102 and the processing system 105. To do.
  • the polishing apparatus can be connected to the repeater 102 by wireless communication (for example, high-speed WiFi (registered trademark)) or wired communication, and the repeater 102 is wirelessly connected to the processing system 105 (for example, high-speed WiFi (registered trademark)). Or it can be connected by wired communication.
  • the polishing apparatus is connected to the processing system 105 and a network (for example, the Internet) via the relay 102.
  • the polishing system 100 may use the pad surface property value obtained by the processing system 105 or input to the processing system 105 for abnormality detection.
  • the processing unit 108 of the processing system 105 determines that the pad surface property is abnormal and polishes the abnormal signal when the pad surface property value or its change with time is out of the range of a predetermined value (threshold value). Output to the device.
  • the polishing apparatus issues an abnormality. In this case, the operation of the polishing apparatus may be stopped.
  • the polishing system 100 indicates whether or not the polishing pad 2 needs to be dressed based on the surface property value of the polishing pad 2 obtained by the processing system 105 or input to the processing system 105. , The need for additional dressing that indicates whether additional dressing of the polishing pad 2 needs to be performed, and dresser replacement may be determined.
  • the processing system 105 outputs information such as the necessity of dressing, the necessity of additional dressing, and replacement of the dresser to the polishing apparatus, and the polishing apparatus operates according to the input information.
  • the polishing apparatus acquires the surface property data of the polishing pad 2 after dressing the polishing pad 2, and outputs this data to the processing system 105.
  • the processing system 105 determines whether or not the polishing pad 2 needs to be dressed (that is, the necessity of dressing) based on the surface property data after dressing.
  • the processing system 105 outputs the determined dressing necessity to the polishing apparatus, and the polishing apparatus controls the operation of the dresser based on the input dressing necessity. That is, when information indicating that dressing is necessary is input to the polishing apparatus, the polishing apparatus performs dressing of the polishing pad. At this time, the polishing apparatus dresses the polishing pad under suitable dressing conditions output from the processing system 105.
  • the polishing apparatus starts polishing the next substrate W without performing dressing of the polishing pad.
  • the surface property measuring device 30 of the polishing apparatus can acquire the surface property data of the polishing pad 2 during polishing of the substrate W or during dressing of the polishing pad 2. Therefore, the polishing apparatus transmits the surface property data of the polishing pad 2 acquired during the dressing of the polishing pad 2 to the processing system 105, and the processing unit 108 of the processing system 105 performs the surface property of the polishing pad 2 during dressing. Based on the data, the dressing conditions are changed during dressing of the polishing pad 2. The changed dressing conditions are sent to the polishing apparatus, and the polishing apparatus performs dressing of the polishing pad according to the changed dressing conditions.
  • the processing unit 108 of the processing system 105 may have an artificial intelligence (AI) function.
  • the processing unit 108 uses an artificial intelligence function to predict a suitable dressing condition, the necessity for dressing, the necessity for additional dressing, and the replacement timing of the dresser.
  • the processor 108 performs machine learning or deep learning to evaluate the pad surface properties and pad surface condition so that the processing system 105 can provide suitable dressing conditions, pad surface dressing requirements, additional dressing requirements.
  • the necessity and the dresser replacement time are predicted and output to the polishing apparatus.
  • the processing system 105 continuously accumulates the image information acquired by the pad surface measuring device 30 in the storage unit 111, and can use the accumulated image information as learning data, teacher data, and a learning data set. .
  • processing system 105 may be a cloud computing system or a fog computing system constructed outside the factory where the polishing apparatus is installed, or a cloud computing constructed within the factory where the polishing apparatus is installed. It may be a system or a fog computing system.
  • Such a polishing system 100 is constructed using a neural network form or a quantum computing form as artificial intelligence.
  • data for example, reflection intensity distribution, image information, etc.
  • the processing system 105 performs machine learning or deep learning using an artificial intelligence function, predicts suitable dressing conditions, the necessity of dressing, the necessity of additional dressing, and the timing of dresser replacement, and outputs them to the polishing apparatus. To do.
  • Teacher data is used in machine learning or deep learning.
  • the processing system 105 includes a storage unit 111, and the storage unit 111 stores teacher data to be compared with the surface property data of the polishing pad 2 input to the input unit 107 in advance.
  • the teacher data includes, for example, the data value of the polishing pad 2 for determining the dressing condition, the threshold value of the data of the polishing pad 2 that requires replacement of the polishing pad 2, and polishing that requires additional polishing or replacement of the polishing pad.
  • the image information of the pad 2 is included.
  • Teacher data used for machine learning or deep learning is, for example, normal data, abnormal data, or reference data.
  • the processing unit 108 of the processing system 105 When the data representing the surface properties of the polishing pad 2 input from the polishing apparatus is out of the normal determination conditions of the learned model obtained, the processing unit 108 of the processing system 105 has an abnormality in the polishing pad 2. It is determined that the abnormality is occurring, and abnormality information is output to the polishing apparatus.
  • the polishing system 100 receives data representing the surface properties of the polishing pad 2 as an input and outputs a pad surface diagnosis result as an output.
  • a combination of data representing the surface properties of the polishing pad 2 and normal / abnormal diagnosis can be used as teacher data.
  • the polishing system 100 constructed as artificial intelligence using a neural network form or a quantum computing form can receive a large amount of information. Can be processed. Therefore, the polishing apparatus acquires image information of the polishing pad 2 at a plurality of measurement points on the substrate W using the surface texture measuring apparatus 30.
  • FIG. 27A is a schematic diagram illustrating an example of a plurality of measurement points of the surface texture measuring device 30, and FIG. 27B illustrates a case where a plurality of pieces of image information of the polishing pad 2 measured at each measurement point illustrated in FIG. 27A is processed. It is an image figure which shows the outline
  • the surface texture measuring device 30 acquires image information of the polishing pad 2 at 13 measurement points S including the center CP of the substrate W.
  • the polishing apparatus inputs the image information of the plurality of polishing pads 2 acquired by the surface texture measuring apparatus 30 and the coordinates of the substrate W from which the image information has been acquired, to the processing unit 108. .
  • the processing unit 108 reads the learned model stored in the storage unit 111, performs processing using the learned model on the input image information of the polishing pad 2, and diagnoses the pad surface property corresponding to each coordinate To do. Furthermore, the processing unit 108 outputs pad surface diagnostic results such as suitable dressing conditions, necessity of dressing, necessity of additional dressing, dresser replacement time, and abnormality of the polishing pad 2 to the polishing apparatus.
  • the polishing system 100 shown in FIG. 26 can output a pad surface diagnosis result at a relatively high speed even when a plurality of pieces of image information of the polishing pad 2 are input. Furthermore, since a plurality of pieces of image information are accumulated as additional teacher data in the storage unit 111, the polishing system 100 can improve the accuracy of the pad surface diagnosis result in a relatively short time.
  • FIG. 28 is a schematic diagram showing another example in which the polishing system 100 is constructed as artificial intelligence using a neural network form (or quantum computing form).
  • the configuration of the present embodiment that is not specifically described is the same as that of the polishing system 100 shown in FIG.
  • the processing unit 140 of the repeater 102 has an artificial intelligence function (AI).
  • the repeater 102 further includes a storage unit 142 that stores various types of information such as teacher data.
  • data for example, reflection intensity distribution, image information, etc.
  • the machine 102 performs machine learning or deep learning using the artificial intelligence function, predicts suitable dressing conditions, the necessity of dressing, the necessity of additional dressing, and the dresser replacement time, and outputs them to the polishing apparatus.
  • the repeater 102 is disposed near the polishing apparatus, and the polishing system 100 is constructed as an edge computing system. That is, in the polishing system 100 according to the present embodiment, the repeater 102 displays pad surface diagnosis results such as suitable dressing conditions, necessity of dressing, necessity of additional dressing, dresser replacement time, and abnormality of the polishing pad 2. It can be processed at high speed and output to a polishing apparatus. For example, even when image information of the polishing pad 2 is acquired at a plurality of measurement points S as shown in FIG. 27A and the image information is input to the repeater 102, the repeater 102 of the polishing system 100 does not have a plurality of pieces of image information. Can be processed at a high speed, and the pad surface diagnosis result can be output to the polishing apparatus immediately. Therefore, even when the dressing conditions are changed during dressing, the repeater 102 can output suitable dressing conditions based on the image information to the polishing apparatus.
  • information that does not need to be processed at high speed can be transmitted from the polishing apparatus to the processing system 105 via the relay 102.
  • the processing unit 140 of the repeater 102 does not need to execute extra information processing, and can process a plurality of pieces of image information at a higher speed.
  • FIG. 29 is a schematic diagram showing an example in which the control unit of the polishing apparatus has an artificial intelligence function. As shown in FIG. 29, the control unit 23 of the polishing apparatus may have an artificial intelligence function.
  • the polishing apparatus has a storage unit 7, and the storage unit 7 stores various types of information such as teacher data.
  • Data representing the surface property of the polishing pad 2 acquired by the surface property measuring device 30 is input to the control unit 23 of the polishing device, and the control unit 23 uses the artificial intelligence function. Then, machine learning or deep learning is performed to predict suitable dressing conditions, the necessity of dressing, the necessity of additional dressing, and the timing of dresser replacement. Further, the control unit 23 controls the operation of the polishing apparatus according to the predicted suitable dressing conditions, the necessity of dressing, the necessity of additional dressing, and the dresser replacement time.
  • control unit 23 predicts that additional dressing is necessary, the control unit 23 further performs additional dressing after the dressing is completed.
  • the control unit 23 predicts a suitable dressing condition for the additional dressing, and dresses the polishing pad 2 according to the suitable dressing condition.
  • the present invention can be used for a polishing apparatus provided with a surface texture measuring device for measuring the surface texture of a polishing pad used for polishing a substrate such as a semiconductor wafer, and a polishing system including such a polishing apparatus.

Abstract

The present invention relates to a polishing device provided with a surface property measuring device for measuring a surface property of a polishing pad used to polish a substrate such as a semiconductor wafer, and a polishing system including such a polishing device. The polishing device is provided with a surface property measuring device (30) for measuring a surface property of a polishing pad (2), a support arm (50) for supporting the surface property measuring device (30), and a movement unit (53) which is linked to the support arm (50) to automatically move the surface property measuring device (30) from a retracted position to a measuring position.

Description

研磨パッドの表面性状測定装置を備えた研磨装置および研磨システムPolishing apparatus and polishing system provided with a surface texture measuring device of a polishing pad
 本発明は、半導体ウエハ等の基板の研磨に用いられる研磨パッドの表面性状を測定する表面性状測定装置を備えた研磨装置、およびこのような研磨装置を含む研磨システムに関する。 The present invention relates to a polishing apparatus provided with a surface texture measuring device for measuring the surface texture of a polishing pad used for polishing a substrate such as a semiconductor wafer, and a polishing system including such a polishing apparatus.
 近年、半導体デバイスの高集積化・高密度化に伴い、回路の配線がますます微細化し、多層配線の層数も増加している。回路の微細化を図りながら多層配線を実現しようとすると、下側の層の表面凹凸を踏襲しながら段差がより大きくなるので、配線層数が増加するに従って、薄膜形成における段差形状に対する膜被覆性(ステップカバレッジ)が悪くなる。したがって、多層配線するためには、このステップカバレッジを改善し、然るべき過程で平坦化処理しなければならない。また光リソグラフィの微細化とともに焦点深度が浅くなるため、半導体デバイスの表面の凹凸段差が焦点深度以下に収まるように半導体デバイス表面を平坦化処理する必要がある。 In recent years, with higher integration and higher density of semiconductor devices, circuit wiring has become increasingly finer and the number of layers of multilayer wiring has increased. When trying to realize multilayer wiring while miniaturizing the circuit, the step becomes larger while following the surface unevenness of the lower layer, so as the number of wiring layers increases, the film coverage to the step shape in thin film formation (Step coverage) deteriorates. Therefore, in order to carry out multilayer wiring, it is necessary to improve the step coverage and perform a flattening process in an appropriate process. Further, since the depth of focus becomes shallower as the optical lithography becomes finer, it is necessary to planarize the surface of the semiconductor device so that the uneven steps on the surface of the semiconductor device are kept below the depth of focus.
 従って、半導体デバイスの製造工程においては、半導体デバイス表面の平坦化技術がますます重要になっている。この平坦化技術のうち、最も重要な技術は、化学的機械研磨(CMP(Chemical Mechanical Polishing))である。この化学的機械研磨は、研磨装置を用いて、研磨液を研磨パッドに供給しつつ半導体ウエハなどの基板を研磨パッドに摺接させて研磨を行うものである。研磨液は、例えば、シリカ(SiO)やセリア(CeO)等の砥粒を含んだスラリーである。 Accordingly, in the semiconductor device manufacturing process, a planarization technique for the surface of the semiconductor device is becoming increasingly important. Among the planarization techniques, the most important technique is chemical mechanical polishing (CMP). In this chemical mechanical polishing, a polishing apparatus is used to polish a substrate such as a semiconductor wafer in sliding contact with the polishing pad while supplying a polishing liquid to the polishing pad. The polishing liquid is a slurry containing abrasive grains such as silica (SiO 2 ) and ceria (CeO 2 ).
 上述したCMP(化学的機械研磨)を行う研磨装置は、研磨パッドを有する研磨テーブルと、半導体ウエハ(基板)を保持するためのキャリア又はトップリング等と称される基板保持装置とを備えている。このような研磨装置を用いて基板保持装置により基板を保持しつつ、この基板を研磨パッドに対して所定の圧力で押圧して、基板上の絶縁膜や金属膜等を研磨することが行われている。 A polishing apparatus that performs the above-described CMP (chemical mechanical polishing) includes a polishing table having a polishing pad and a substrate holding device called a carrier or top ring for holding a semiconductor wafer (substrate). . While holding the substrate by the substrate holding device using such a polishing apparatus, the substrate is pressed against the polishing pad with a predetermined pressure to polish the insulating film, metal film, etc. on the substrate. ing.
 基板の研磨を行なうと、研磨パッドの表面には砥粒や研磨屑が付着し、また、研磨パッドの表面形状や状態が変化して研磨性能が劣化してくる。このため、基板の研磨を繰り返すに従い、研磨速度が低下し、また、研磨むらが生じてしまう。そこで、劣化した研磨パッドの表面形状や状態を再生するために、ドレッサーを用いて研磨パッドのドレッシング(コンディショニング)を行っている。 When the substrate is polished, abrasive grains and polishing debris adhere to the surface of the polishing pad, and the surface shape and state of the polishing pad change to deteriorate the polishing performance. For this reason, as the polishing of the substrate is repeated, the polishing rate decreases and uneven polishing occurs. Therefore, dressing (conditioning) of the polishing pad is performed using a dresser in order to regenerate the surface shape and state of the deteriorated polishing pad.
 研磨パッドの表面形状や状態、すなわち、研磨パッドの表面性状は、CMP性能を決定付ける要因の一つである。したがって、研磨パッドの表面性状を直接的に測定して、この測定値をドレッシング条件に反映させることが望ましい。そこで、従来の研磨装置では、研磨パッドの表面性状を直接的に測定するための装置を用いて、ドレッシング条件を決定している。本明細書では、研磨パッドの表面性状を測定する装置を、「表面性状測定装置」と称する。 The surface shape and state of the polishing pad, that is, the surface property of the polishing pad is one of the factors that determine the CMP performance. Therefore, it is desirable to directly measure the surface properties of the polishing pad and reflect this measurement value in the dressing conditions. Therefore, in the conventional polishing apparatus, the dressing conditions are determined using an apparatus for directly measuring the surface properties of the polishing pad. In this specification, an apparatus for measuring the surface property of the polishing pad is referred to as a “surface property measuring device”.
 特許文献1は、レーザ光を研磨パッドの表面に照射し、研磨パッドからの反射光を受光して、反射角度毎の反射強度を得る表面性状測定装置を記載している。特許文献1に記載される研磨装置は、表面性状測定装置から得られた反射強度分布に基づいて、研磨パッドの表面性状を入手し、得られた研磨パッドの表面性状に基づいて、ドレッシング条件を決定する。この研磨装置によれば、表面性状測定装置を用いて得られた研磨パッドの表面性状に応じてドレッシング条件を変更するので、研磨パッドの表面性状をCMP性能の確保に必要な状態に維持することができる。さらに、研磨パッドの表面性状を直接的に測定することができるので、異常状態でのCMP加工を防止することができる。 Patent Document 1 describes a surface property measuring apparatus that irradiates a surface of a polishing pad with laser light, receives reflected light from the polishing pad, and obtains a reflection intensity for each reflection angle. The polishing apparatus described in Patent Document 1 obtains the surface properties of the polishing pad based on the reflection intensity distribution obtained from the surface texture measuring device, and sets the dressing conditions based on the surface properties of the obtained polishing pad. decide. According to this polishing apparatus, since the dressing conditions are changed according to the surface texture of the polishing pad obtained using the surface texture measuring device, the surface texture of the polishing pad is maintained in a state necessary for ensuring CMP performance. Can do. Furthermore, since the surface properties of the polishing pad can be directly measured, CMP processing in an abnormal state can be prevented.
国際公開第2016/111335号公報International Publication No. 2016/111335
 しかしながら、従来の研磨装置では、表面性状測定装置は、研磨装置に常設されていなかった。すなわち、表面性状測定装置は、研磨パッドの表面性状の測定を意図するたびに、研磨装置に取り付けられ、研磨パッドの表面性状の測定後に取り外されていた。 However, in the conventional polishing apparatus, the surface texture measuring apparatus is not permanently installed in the polishing apparatus. In other words, the surface texture measuring device is attached to the polishing device every time it is intended to measure the surface texture of the polishing pad, and is removed after measuring the surface texture of the polishing pad.
 図30は、従来の研磨装置に取り付けられた表面性状測定装置の一例を示す模式図である。図30に示すように、研磨装置は、表面性状測定装置230を着脱可能に構成された保持プレート215を有しており、この保持プレート215は、研磨装置のフレーム(図示せず)から吊り下げられている。研磨パッド202の表面性状を測定するときは、研磨装置の運転を停止した後で、作業者が保持プレート215の下端部に表面性状測定装置230を取り付ける。研磨パッド202の表面性状の測定が終了すると、作業者は、表面性状測定装置230を保持プレート215から取り外し、その後、研磨装置の運転が開始される。 FIG. 30 is a schematic diagram showing an example of a surface texture measuring apparatus attached to a conventional polishing apparatus. As shown in FIG. 30, the polishing apparatus has a holding plate 215 configured to be detachably attachable to the surface texture measuring device 230, and the holding plate 215 is suspended from a frame (not shown) of the polishing apparatus. It has been. When measuring the surface texture of the polishing pad 202, the operator attaches the surface texture measuring device 230 to the lower end of the holding plate 215 after stopping the operation of the polishing apparatus. When the measurement of the surface texture of the polishing pad 202 is completed, the operator removes the surface texture measuring device 230 from the holding plate 215, and then the operation of the polishing device is started.
 このように、従来の研磨装置では、研磨パッド202の表面性状の測定は、研磨装置の運転とは切り離された独立した作業として行われている。したがって、従来の研磨装置で研磨パッド202の表面性状を測定するためには、研磨装置の運転を一旦停止させる必要があるので、研磨装置のスループットが低下してしまう。さらに、表面性状測定装置230の着脱作業は、作業者にとって非常に煩わしく、時間のかかる作業であるため、自動で研磨パッド202の表面性状を測定可能な研磨装置が望まれている。 As described above, in the conventional polishing apparatus, the measurement of the surface property of the polishing pad 202 is performed as an independent work separated from the operation of the polishing apparatus. Therefore, in order to measure the surface properties of the polishing pad 202 with a conventional polishing apparatus, it is necessary to temporarily stop the operation of the polishing apparatus, so that the throughput of the polishing apparatus decreases. Further, the attaching / detaching operation of the surface texture measuring device 230 is very troublesome for the operator and takes time. Therefore, a polishing device capable of automatically measuring the surface texture of the polishing pad 202 is desired.
 そこで、本発明は、自動で研磨パッドの表面性状を測定して、研磨装置のスループットを向上させることが可能な研磨装置を提供することを目的とする。さらに、本発明は、このような研磨装置を含む研磨システムを提供することを特徴とする。 Therefore, an object of the present invention is to provide a polishing apparatus capable of automatically measuring the surface properties of a polishing pad and improving the throughput of the polishing apparatus. Furthermore, the present invention provides a polishing system including such a polishing apparatus.
 本発明の一態様は、研磨パッドの表面性状を測定する表面性状測定装置と、前記表面性状測定装置を支持する支持アームと、前記支持アームに連結され、前記表面性状測定装置を待避位置から測定位置に自動で移動させる移動ユニットと、を備えたことを特徴とする研磨装置である。 One aspect of the present invention is a surface texture measuring device that measures the surface texture of a polishing pad, a support arm that supports the surface texture measuring device, and connected to the support arm, and the surface texture measuring device is measured from a retracted position. And a moving unit for automatically moving the position to the position.
 本発明の好ましい態様は、前記移動ユニットは、前記研磨装置に固定される固定ブロックと、前記支持アームに連結される回動ブロックと、前記回動ブロックを前記固定ブロックに対して回動自在に連結する回転軸と、前記回動ブロックを回動させる回動機構と、を備えたことを特徴とする。
 本発明の好ましい態様は、前記回動機構は、前記回動ブロックに連結されるピストンと、前記ピストンを進退自在に収容するシリンダから構成されるピストンシリンダ機構であることを特徴とする。
 本発明の好ましい態様は、前記回転軸は、前記回動ブロックに固定されており、前記回動機構は、前記回転軸に連結されたモータであることを特徴とする。
In a preferred aspect of the present invention, the moving unit includes a fixed block fixed to the polishing apparatus, a rotating block connected to the support arm, and the rotating block rotatable with respect to the fixed block. A rotating shaft to be connected and a rotating mechanism for rotating the rotating block are provided.
In a preferred aspect of the present invention, the turning mechanism is a piston cylinder mechanism including a piston connected to the turning block and a cylinder that accommodates the piston so as to freely advance and retract.
In a preferred aspect of the present invention, the rotating shaft is fixed to the rotating block, and the rotating mechanism is a motor connected to the rotating shaft.
 本発明の好ましい態様は、前記測定位置に移動させた前記表面性状測定装置の下面が前記研磨パッドの表面に対して平行になるように、前記表面性状測定装置の姿勢を自動で調整する位置調整機構をさらに備え、前記位置調整機構は、前記支持アームの下方に配置される支持台と、前記表面性状測定装置の上面に固定され、前記支持台に形成された貫通孔を通って延びる少なくとも1つの調整ピンと、を有しており、前記調整ピンは、前記貫通孔の直径よりも小さな直径を有し、前記支持台に形成された貫通孔を通って延びるピン本体と、前記貫通孔よりも上方に位置し、前記貫通孔の直径よりも大きなサイズを有するピンヘッドと、を有することを特徴とする。
 本発明の好ましい態様は、前記表面性状測定装置は、前記研磨パッドの研磨面に対して斜めに加圧気体を噴射するノズルを備えていることを特徴とする。
 本発明の好ましい態様は、前記表面性状測定装置は、研磨パッドの表面性状を測定するための測定構造を収容するケーシングを有しており、前記ケーシングの下部には、切り欠きが形成されており、前記ノズルは、前記切り欠きの開口に向けて前記加圧気体が流れるように、前記加圧気体を噴射することを特徴とする。
A preferred embodiment of the present invention is a position adjustment that automatically adjusts the posture of the surface texture measuring device so that the lower surface of the surface texture measuring device moved to the measurement position is parallel to the surface of the polishing pad. The position adjusting mechanism is fixed to the upper surface of the surface texture measuring device, and extends through a through hole formed in the support table. An adjustment pin, the adjustment pin having a diameter smaller than the diameter of the through hole, extending through the through hole formed in the support base, and more than the through hole And a pin head having a size larger than the diameter of the through hole.
In a preferred aspect of the present invention, the surface texture measuring device includes a nozzle that injects pressurized gas obliquely with respect to the polishing surface of the polishing pad.
In a preferred aspect of the present invention, the surface texture measuring device has a casing that houses a measurement structure for measuring the surface texture of the polishing pad, and a notch is formed in a lower portion of the casing. The nozzle is configured to inject the pressurized gas so that the pressurized gas flows toward the opening of the notch.
 本発明の好ましい態様は、前記支持アームに沿って、前記研磨パッドに対する前記表面性状測定装置の位置を変位させる変位機構を、さらに備え、前記変位機構は、前記支持アームに沿って延びる長穴と、前記長穴に挿入される支持軸と、を有し、前記支持軸は、前記表面性状測定装置に連結される軸本体と、前記長穴の内部に形成された段差部に接触して、前記軸本体に連結された表面性状測定装置を支持する軸ヘッドと、を有することを特徴とする。
 本発明の好ましい態様は、前記変位機構は、前記表面性状測定装置に連結されるピストンと、前記ピストンを進退自在に収容するシリンダとをさらに備え、前記変位機構のシリンダは、前記支持アームに固定されることを特徴とする。
 本発明の好ましい態様は、前記回動ブロックは、前記支持アームに連結される第1プレートと、前記固定ブロックに連結される第2プレートとにより構成され、前記第2プレートは、回転ピンによって前記第1プレートに対して回動自在に連結されていることを特徴とする。
A preferred aspect of the present invention further includes a displacement mechanism for displacing the position of the surface texture measuring device with respect to the polishing pad along the support arm, the displacement mechanism including an elongated hole extending along the support arm; A support shaft inserted into the elongated hole, and the support shaft is in contact with a shaft main body connected to the surface texture measuring device and a step portion formed inside the elongated hole, And a shaft head for supporting a surface texture measuring device connected to the shaft body.
In a preferred aspect of the present invention, the displacement mechanism further includes a piston coupled to the surface texture measuring device, and a cylinder that accommodates the piston so as to be able to advance and retract. The cylinder of the displacement mechanism is fixed to the support arm. It is characterized by being.
In a preferred aspect of the present invention, the rotating block includes a first plate connected to the support arm and a second plate connected to the fixed block, and the second plate is formed by a rotating pin. The first plate is pivotally connected to the first plate.
 本発明の好ましい態様は、前記研磨パッドの表面をドレッシングするドレッサーをさらに備え、前記表面性状測定装置は、前記ドレッサーに取り付けられており、前記支持アームは、前記ドレッサーに連結されるドレッサーシャフトを回転自在に支持するドレッサーアームであり、前記移動機構は、前記ドレッサーシャフトを前記ドレッサーアームに対して上下動させる昇降アクチュエータと、前記ドレッサーアームに連結された支軸を揺動させる回転アクチュエータとを含むことを特徴とする。
 本発明の好ましい態様は、前記表面性状測定装置は、前記研磨パッドをドレッシングしている間に、前記研磨パッドの表面性状を測定することを特徴とする。
 本発明の好ましい態様は、前記ドレッサーに設けられたドレッシング部材は、その上面から下面まで延びる貫通孔を有するリング形状を有しており、前記表面性状測定装置は、前記ドレッシング部材の前記貫通孔を介して、前記研磨パッドの表面性状を測定することを特徴とする。
A preferred embodiment of the present invention further comprises a dresser for dressing the surface of the polishing pad, the surface texture measuring device is attached to the dresser, and the support arm rotates a dresser shaft connected to the dresser. A dresser arm that freely supports, and the moving mechanism includes a lift actuator that moves the dresser shaft up and down relative to the dresser arm, and a rotary actuator that swings a support shaft connected to the dresser arm. It is characterized by.
In a preferred aspect of the present invention, the surface texture measuring device measures the surface texture of the polishing pad while dressing the polishing pad.
In a preferred aspect of the present invention, the dressing member provided in the dresser has a ring shape having a through hole extending from the upper surface to the lower surface thereof, and the surface texture measuring device includes the through hole of the dressing member. And measuring the surface properties of the polishing pad.
 本発明の好ましい態様は、前記表面性状測定装置は、前記ドレッサーに複数取り付けられていることを特徴とする。
 本発明の好ましい態様は、前記複数の表面性状測定装置のいくつかは、前記研磨パッドにレーザ光を照射し、該研磨パッドの表面で反射した反射光を受光することでパッド表面性状を測定する表面性状測定装置であることを特徴とする。
 本発明の好ましい態様は、前記複数の表面性状測定装置のいくつかは、撮像装置が取得した前記研磨パッドの表面の画像情報からパッド表面性状を測定する表面性状測定装置であることを特徴とする。
 本発明の好ましい態様は、前記ドレッサーに設けられたドレッシング部材は、その上面から下面まで延びる貫通孔を有するリング形状を有しており、前記複数の表面性状測定装置の1つは、前記ドレッシング部材の前記貫通孔を介して、前記研磨パッドの表面性状を測定することを特徴とする。
In a preferred aspect of the present invention, a plurality of the surface texture measuring devices are attached to the dresser.
In a preferred aspect of the present invention, some of the plurality of surface texture measuring devices measure the pad surface texture by irradiating the polishing pad with laser light and receiving reflected light reflected from the surface of the polishing pad. It is a surface texture measuring device.
In a preferred aspect of the present invention, some of the plurality of surface texture measuring devices are surface texture measuring devices that measure pad surface properties from image information on the surface of the polishing pad acquired by an imaging device. .
In a preferred aspect of the present invention, the dressing member provided in the dresser has a ring shape having a through hole extending from the upper surface to the lower surface, and one of the plurality of surface texture measuring devices is the dressing member. The surface property of the polishing pad is measured through the through hole.
 本発明の一態様は、上記研磨装置と、前記研磨装置の表面性状測定装置を用いて得られた研磨パッドの表面性状のデータが入力される処理システムと、を備え、前記処理システムは、前記研磨装置から出力された前記研磨パッドの表面性状のデータが入力される入力部と、前記入力部に入力された研磨パッドの表面性状のデータに基づいて、前記研磨装置のドレッシング条件を決定する処理部と、前記処理部によって決定されたドレッシング条件を前記研磨装置に出力する出力部と、を備え、前記研磨装置は、前記出力部から出力されたドレッシング条件に基づいて、前記研磨パッドをドレッシングするように構成されていることを特徴とする研磨システムである。 One aspect of the present invention includes the above polishing apparatus, and a processing system to which data on the surface property of the polishing pad obtained using the surface texture measuring apparatus of the polishing apparatus is input. An input unit for inputting surface property data of the polishing pad output from a polishing apparatus, and a process for determining dressing conditions of the polishing device based on the surface property data of the polishing pad input to the input unit And an output unit that outputs the dressing conditions determined by the processing unit to the polishing apparatus, and the polishing apparatus dresses the polishing pad based on the dressing conditions output from the output unit The polishing system is configured as described above.
 本発明の好ましい態様は、前記処理システムは、前記ドレッシング条件を決定するための教師データを予め記憶している記憶部をさらに備えており、前記処理システムの処理部は、前記教師データに基づいて、前記研磨装置のドレッシング条件を決定することを特徴とする。
 本発明の好ましい態様は、前記研磨装置は、前記研磨パッドのドレッシング後に取得された前記研磨パッドの表面性状のデータを前記処理システムの入力部に送信し、前記処理システムの処理部は、前記ドレッシング後の研磨パッドの表面性状のデータに基づいて、ドレッシングの必要性、追加ドレッシングの必要性、およびドレッサーの交換を決定することを特徴とする。
 本発明の好ましい態様は、前記研磨装置は、前記研磨パッドのドレッシング中に取得された前記研磨パッドの表面性状のデータを前記処理システムの入力部に送信し、前記処理システムの処理部は、前記ドレッシング中の研磨パッドの表面性状のデータに基づいて、前記研磨パッドのドレッシング中に前記ドレッシング条件を変更することを特徴とする。
 本発明の好ましい態様は、前記処理システムは、ネットワークを介して前記研磨装置と接続されていることを特徴とする。
In a preferred aspect of the present invention, the processing system further includes a storage unit that stores teacher data for determining the dressing condition in advance, and the processing unit of the processing system is based on the teacher data. The dressing conditions of the polishing apparatus are determined.
In a preferred aspect of the present invention, the polishing apparatus transmits the surface property data of the polishing pad acquired after dressing the polishing pad to the input unit of the processing system, and the processing unit of the processing system transmits the dressing to the dressing It is characterized in that the necessity of dressing, the necessity of additional dressing, and the replacement of the dresser are determined based on the surface property data of the subsequent polishing pad.
In a preferred aspect of the present invention, the polishing apparatus transmits the surface property data of the polishing pad acquired during dressing of the polishing pad to an input unit of the processing system, and the processing unit of the processing system The dressing conditions are changed during dressing of the polishing pad based on data on surface properties of the polishing pad during dressing.
In a preferred aspect of the present invention, the processing system is connected to the polishing apparatus via a network.
 本発明によれば、表面性状測定装置を移動ユニットによって自動で測定位置に移動させて、研磨パッドの表面性状を測定することができる。したがって、研磨装置のスループットを向上させることができる。さらに、作業者が表面性状測定装置の着脱作業を実行する必要がないので、作業者の負担を軽減させることができる。 According to the present invention, the surface texture measuring device can be automatically moved to the measurement position by the moving unit to measure the surface texture of the polishing pad. Therefore, the throughput of the polishing apparatus can be improved. Furthermore, since it is not necessary for the operator to perform the attaching / detaching operation of the surface texture measuring device, the burden on the operator can be reduced.
図1は、一実施形態に係る研磨装置を示す模式図である。FIG. 1 is a schematic diagram illustrating a polishing apparatus according to an embodiment. 図2は、別の実施形態に係る研磨装置を示す模式図である。FIG. 2 is a schematic view showing a polishing apparatus according to another embodiment. 図3は、図1および図2に示す表面性状測定装置の内部構造(測定構造)の一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of the internal structure (measurement structure) of the surface texture measuring apparatus shown in FIGS. 1 and 2. 図4は、図1および図2に示す表面性状測定装置の内部構造(測定構造)の別の例を示す模式図である。FIG. 4 is a schematic diagram showing another example of the internal structure (measurement structure) of the surface texture measuring apparatus shown in FIGS. 1 and 2. 図5は、図1および図2に示す表面性状測定装置の内部構造(測定構造)のさらに別の例を示す模式図である。FIG. 5 is a schematic diagram showing still another example of the internal structure (measurement structure) of the surface texture measuring apparatus shown in FIGS. 1 and 2. 図6は、研磨装置の内部に配置された表面性状測定装置の一例を模式的に示す斜視図である。FIG. 6 is a perspective view schematically showing an example of a surface texture measuring device arranged inside the polishing apparatus. 図7Aは、図6に示される表面性状測定装置の正面図である。FIG. 7A is a front view of the surface texture measuring apparatus shown in FIG. 図7Bは、図7Aに示される表面性状測定装置の下面図である。FIG. 7B is a bottom view of the surface texture measuring apparatus shown in FIG. 7A. 図8は、図7AのA-A線断面図である。FIG. 8 is a cross-sectional view taken along line AA in FIG. 7A. 図9は、図6に示される表面性状測定装置の周辺を拡大して示す模式図である。FIG. 9 is an enlarged schematic view showing the periphery of the surface texture measuring apparatus shown in FIG. 図10は、図9に示す回動機構により測定位置に移動された表面性状測定装置を示す図である。FIG. 10 is a view showing the surface texture measuring apparatus moved to the measurement position by the rotation mechanism shown in FIG. 図11は、図9に示す回動機構により待避位置に移動された表面性状測定装置を示す図である。FIG. 11 is a view showing the surface texture measuring apparatus moved to the retracted position by the rotation mechanism shown in FIG. 図12は、回動機構の別の例を示す模式図である。FIG. 12 is a schematic diagram illustrating another example of the rotation mechanism. 図13は、表面性状測定装置をメンテナンス位置に移動させた状態を示す模式図である。FIG. 13 is a schematic diagram showing a state in which the surface texture measuring device is moved to the maintenance position. 図14Aは、一実施形態に係る姿勢調整機構の概略正面図である。FIG. 14A is a schematic front view of an attitude adjustment mechanism according to an embodiment. 図14Bは、図14AのB-B線矢視図である。14B is a BB line arrow view of FIG. 14A. 図15Aは、図14AのC-C線断面図である。15A is a cross-sectional view taken along the line CC of FIG. 14A. 図15Bは、表面性状測定装置が待避位置に移動されたときの、図15Aに対応する姿勢調整機構の一部の断面図である。FIG. 15B is a partial cross-sectional view of the posture adjustment mechanism corresponding to FIG. 15A when the surface texture measuring device is moved to the retracted position. 図16は、図9に示す変位機構を模式的に示す斜視図である。16 is a perspective view schematically showing the displacement mechanism shown in FIG. 図17は、図16のD-D線断面図である。17 is a cross-sectional view taken along the line DD of FIG. 図18は、変位機構の別の実施形態を示す模式図である。FIG. 18 is a schematic diagram showing another embodiment of the displacement mechanism. 図19は、図5に示す撮像装置の内部構造(測定構造)の一例を示す模式図である。FIG. 19 is a schematic diagram illustrating an example of an internal structure (measurement structure) of the imaging apparatus illustrated in FIG. 図20は、表面性状測定装置の別の実施形態を示す模式図である。FIG. 20 is a schematic view showing another embodiment of the surface texture measuring device. 図21は、さらに別の実施形態に係る研磨装置を示す模式図である。FIG. 21 is a schematic view showing a polishing apparatus according to still another embodiment. 図22は、図21に示すドレッサーを拡大して示す模式図である。FIG. 22 is an enlarged schematic view of the dresser shown in FIG. 図23は、図21に示すドレッサーが研磨パッド上を揺動する様子を模式的に示す平面図である。FIG. 23 is a plan view schematically showing how the dresser shown in FIG. 21 swings on the polishing pad. 図24Aは、図21に示す研磨装置のドレッサーの変形例を示す模式図である。FIG. 24A is a schematic view showing a modification of the dresser of the polishing apparatus shown in FIG. 図24Bは、図24Aに示すドレッサーの上面図である。FIG. 24B is a top view of the dresser shown in FIG. 24A. 図25は、図24Aおよび図24Bに示すドレッサーの変形例を示す模式図である。FIG. 25 is a schematic diagram showing a modification of the dresser shown in FIGS. 24A and 24B. 図26は、表面性状測定装置を備えた研磨装置を含む研磨システムの一実施形態を示す模式図である。FIG. 26 is a schematic diagram showing an embodiment of a polishing system including a polishing apparatus provided with a surface texture measuring device. 図27Aは、表面性状測定装置の複数の測定ポイントの一例を示す模式図である。FIG. 27A is a schematic diagram illustrating an example of a plurality of measurement points of the surface texture measuring device. 図27Bは、図27Aに示す各測定ポイントで測定された研磨パッドの複数の画像情報を処理するときの研磨システムの動作の概要を示すイメージ図である。FIG. 27B is an image diagram showing an outline of the operation of the polishing system when processing a plurality of pieces of image information of the polishing pad measured at each measurement point shown in FIG. 27A. 図28は、研磨システムがニューラルネットワーク形態を用いて、人工知能として構築された別の例を示す模式図である。FIG. 28 is a schematic diagram showing another example in which the polishing system is constructed as artificial intelligence using a neural network form. 図29は、研磨装置の制御部が人工知能機能を有している例を示す模式図である。FIG. 29 is a schematic diagram illustrating an example in which the control unit of the polishing apparatus has an artificial intelligence function. 図30は、従来の研磨装置に取り付けられた表面性状測定装置の一例を示す模式図である。FIG. 30 is a schematic view showing an example of a surface texture measuring apparatus attached to a conventional polishing apparatus.
 以下、本発明の実施の形態について、図面を参照して説明する。
 図1は、一実施形態に係る研磨装置を示す模式図である。図1に示される研磨装置(CMP装置)は、研磨テーブル1と、研磨対象物である半導体ウエハ等の基板Wを保持して研磨テーブル上の研磨パッドに押圧するキャリア10とを備えている。研磨テーブル1は、テーブル軸1aを介してその下方に配置される研磨テーブル回転モータ(図示せず)に連結されており、テーブル軸1aの回りに回転可能になっている。研磨テーブル1の上面には研磨パッド2が貼付されており、研磨パッド2の表面が基板Wを研磨する研磨面2aを構成している。研磨テーブル1の上方には研磨液供給ノズル(図示せず)が設置されており、研磨液供給ノズルによって研磨テーブル1上の研磨パッド2に研磨液(スラリー)が供給されるようになっている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic diagram illustrating a polishing apparatus according to an embodiment. The polishing apparatus (CMP apparatus) shown in FIG. 1 includes a polishing table 1 and a carrier 10 that holds a substrate W such as a semiconductor wafer that is an object to be polished and presses it against a polishing pad on the polishing table. The polishing table 1 is connected via a table shaft 1a to a polishing table rotation motor (not shown) disposed below the table 1a, and is rotatable around the table shaft 1a. A polishing pad 2 is attached to the upper surface of the polishing table 1, and the surface of the polishing pad 2 constitutes a polishing surface 2a for polishing the substrate W. A polishing liquid supply nozzle (not shown) is installed above the polishing table 1, and the polishing liquid (slurry) is supplied to the polishing pad 2 on the polishing table 1 by the polishing liquid supply nozzle. .
 キャリア10は、シャフト11に接続されており、シャフト11は、キャリアアーム12に対して上下動するようになっている。シャフト11の上下動により、キャリアアーム12に対してキャリア10の全体を上下動させ位置決めするようになっている。シャフト11は、モータ(図示せず)の駆動により回転するようになっており、キャリア10がシャフト11の軸心の回りに回転するようになっている。 The carrier 10 is connected to a shaft 11, and the shaft 11 moves up and down with respect to the carrier arm 12. The entire carrier 10 is moved up and down relative to the carrier arm 12 by the vertical movement of the shaft 11. The shaft 11 is rotated by driving a motor (not shown), and the carrier 10 is rotated around the axis of the shaft 11.
 図1に示すように、キャリア10は、その下面に半導体ウエハなどの基板Wを保持できるようになっている。キャリアアーム12は旋回可能に構成されており、下面に基板Wを保持したキャリア10は、キャリアアーム12の旋回により基板の受取位置から研磨テーブル1の上方に移動可能になっている。キャリア10は、下面に基板Wを保持して基板Wを研磨パッド2の表面(研磨面)に押圧する。このとき、研磨テーブル1およびキャリア10をそれぞれ回転させ、研磨テーブル1の上方に設けられた研磨液供給ノズルから研磨パッド2上に研磨液(スラリー)を供給する。研磨液には砥粒としてシリカ(SiO)やセリア(CeO)などを含んだ研磨液が用いられる。このように、研磨液を研磨パッド2上に供給しつつ、基板Wを研磨パッド2に押圧して基板Wと研磨パッド2とを相対移動させて基板上の絶縁膜や金属膜等を研磨する。絶縁膜としてはSiOが挙げられる。金属膜としてはCu膜、W膜、Ta膜、Ti膜が挙げられる。 As shown in FIG. 1, the carrier 10 can hold a substrate W such as a semiconductor wafer on its lower surface. The carrier arm 12 is configured to be rotatable, and the carrier 10 holding the substrate W on the lower surface can be moved above the polishing table 1 from the substrate receiving position by the rotation of the carrier arm 12. The carrier 10 holds the substrate W on the lower surface and presses the substrate W against the surface (polishing surface) of the polishing pad 2. At this time, the polishing table 1 and the carrier 10 are respectively rotated, and a polishing liquid (slurry) is supplied onto the polishing pad 2 from a polishing liquid supply nozzle provided above the polishing table 1. As the polishing liquid, a polishing liquid containing silica (SiO 2 ), ceria (CeO 2 ) or the like as abrasive grains is used. In this way, while supplying the polishing liquid onto the polishing pad 2, the substrate W is pressed against the polishing pad 2 to move the substrate W and the polishing pad 2 relative to each other to polish the insulating film, metal film, etc. on the substrate. . SiO 2 may be mentioned as an insulating film. Examples of the metal film include a Cu film, a W film, a Ta film, and a Ti film.
 図1に示すように、研磨装置は、研磨パッド2をドレッシングするドレッシング装置20を備えている。ドレッシング装置20は、ドレッサーアーム21と、ドレッサーアーム21に回転自在に取り付けられたドレッサー22とを備えている。ドレッサー22の下部はドレッシング部材22aにより構成され、ドレッシング部材22aは円形のドレッシング面を有しており、ドレッシング面には硬質な粒子が電着等により固定されている。この硬質な粒子としては、ダイヤモンド粒子やセラミック粒子などが挙げられる。ドレッサーアーム21内には、図示しないモータが内蔵されており、このモータによってドレッサー22が回転するようになっている。ドレッサーアーム21は図示しない昇降機構に連結されており、この昇降機構によりドレッサーアーム21が下降することでドレッシング部材22aが研磨パッド2の研磨面2aを押圧するようになっている。 As shown in FIG. 1, the polishing apparatus includes a dressing apparatus 20 for dressing the polishing pad 2. The dressing device 20 includes a dresser arm 21 and a dresser 22 that is rotatably attached to the dresser arm 21. The lower part of the dresser 22 is constituted by a dressing member 22a. The dressing member 22a has a circular dressing surface, and hard particles are fixed to the dressing surface by electrodeposition or the like. Examples of the hard particles include diamond particles and ceramic particles. A motor (not shown) is built in the dresser arm 21, and the dresser 22 is rotated by this motor. The dresser arm 21 is connected to an elevating mechanism (not shown), and the dressing member 22 a presses the polishing surface 2 a of the polishing pad 2 when the dresser arm 21 is lowered by the elevating mechanism.
 ドレッシング装置20は、制御部23に接続されており、制御部23によりドレッシング条件が制御されるようになっている。本実施形態では、この制御部23は、ドレッシング装置20を含む研磨装置全体の動作を制御するように構成されている。 The dressing apparatus 20 is connected to a control unit 23, and the dressing conditions are controlled by the control unit 23. In the present embodiment, the control unit 23 is configured to control the operation of the entire polishing apparatus including the dressing apparatus 20.
 図1に示すように、研磨装置は、研磨パッド2の表面形状や表面状態などの表面性状を測定する研磨パッドの表面性状測定装置30を備えている。本実施形態では、表面性状測定装置30は、研磨パッド2にレーザ光を照射し、研磨パッド2の表面で反射した反射光を受光することでパッド表面性状を測定するように構成されている。研磨パッドの表面性状測定装置30は、演算部40に接続されている。 As shown in FIG. 1, the polishing apparatus includes a polishing pad surface property measuring device 30 that measures surface properties such as the surface shape and surface state of the polishing pad 2. In the present embodiment, the surface texture measuring device 30 is configured to measure the pad surface texture by irradiating the polishing pad 2 with laser light and receiving the reflected light reflected by the surface of the polishing pad 2. The surface property measuring device 30 of the polishing pad is connected to the calculation unit 40.
 図1に示すように構成された研磨装置においては、研磨パッドの表面性状測定装置30で得られたパッド表面からの反射光分布を、演算部40でパッド表面性状値に演算し、その結果を制御部23に受け渡す。制御部23では、受け取ったパッド表面性状値に基づいて、ドレッシング条件を決定する。ドレッシング装置20は、制御部23で決められたドレッシング条件の通りの動作をすることで、ドレッサー22によりパッド表面をドレッシングする。 In the polishing apparatus configured as shown in FIG. 1, the reflected light distribution from the pad surface obtained by the surface texture measuring device 30 of the polishing pad is calculated by the calculation unit 40 into the pad surface property value, and the result is calculated. The data is transferred to the control unit 23. The control unit 23 determines the dressing condition based on the received pad surface property value. The dressing device 20 dresses the pad surface by the dresser 22 by operating according to the dressing conditions determined by the control unit 23.
 図2は、別の実施形態に係る研磨装置を示す模式図である。図2に示す研磨装置は、図1に示す研磨装置と同様に、研磨パッド2を貼付した研磨テーブル1やキャリア10等からなる研磨部およびドレッシング装置20を備えている。また、図2に示す研磨装置は、図1に示す研磨装置と同様に、表面性状測定装置30および演算部40を備えている。演算部40は表示装置41に接続されている。図2では、制御部23の図示を省略しているが、図2に示す研磨装置も、図1に示す研磨装置と同様に、制御部23を有している。 FIG. 2 is a schematic view showing a polishing apparatus according to another embodiment. The polishing apparatus illustrated in FIG. 2 includes a polishing unit and a dressing apparatus 20 including the polishing table 1 and the carrier 10 to which the polishing pad 2 is attached, as in the polishing apparatus illustrated in FIG. Further, the polishing apparatus shown in FIG. 2 includes a surface texture measuring device 30 and a calculation unit 40, similarly to the polishing apparatus shown in FIG. The computing unit 40 is connected to the display device 41. In FIG. 2, illustration of the control unit 23 is omitted, but the polishing apparatus illustrated in FIG. 2 also includes the control unit 23 in the same manner as the polishing apparatus illustrated in FIG. 1.
 図2に示される研磨装置では、表面性状測定装置30で得られたパッド表面からの反射光分布を、演算部40でパッド表面性状値に演算し、その結果を表示装置41に表示する。 In the polishing apparatus shown in FIG. 2, the reflected light distribution from the pad surface obtained by the surface texture measuring device 30 is calculated to the pad surface texture value by the calculation unit 40, and the result is displayed on the display device 41.
 図3は、図1および図2に示す表面性状測定装置30の内部構造(測定構造)の一例を示す模式図である。図3に示すように、表面性状測定装置30は、レーザ光を出射する光源31と、光源31から出射されたレーザ光を研磨テーブル1上の研磨パッド2の表面に導く投光部32と、研磨パッド2の表面で反射した反射光を受光する受光部33とを備えている。したがって、光源31から出射されたレーザ光は、投光部32を介して研磨パッド2の表面に導かれ、研磨パッド2の表面で反射した反射光は受光部33により受光される。受光部33は演算部40(図1および図2参照)に接続されている。 FIG. 3 is a schematic diagram showing an example of the internal structure (measurement structure) of the surface texture measuring device 30 shown in FIGS. 1 and 2. As shown in FIG. 3, the surface texture measuring device 30 includes a light source 31 that emits laser light, a light projecting unit 32 that guides the laser light emitted from the light source 31 to the surface of the polishing pad 2 on the polishing table 1, And a light receiving unit 33 that receives the reflected light reflected by the surface of the polishing pad 2. Therefore, the laser light emitted from the light source 31 is guided to the surface of the polishing pad 2 through the light projecting unit 32, and the reflected light reflected by the surface of the polishing pad 2 is received by the light receiving unit 33. The light receiving unit 33 is connected to the calculation unit 40 (see FIGS. 1 and 2).
 図4は、図1および図2に示す表面性状測定装置30の内部構造(測定構造)の別の例を示す模式図である。図4に示すように、研磨パッドの表面性状測定装置30は、レーザ光を出射する光源31と、光源31から出射されたレーザ光を所定の方向に導く投光部32と、投光部32から投光されたレーザ光の光路に沿って順次配置された偏光子35、NDフィルター(減光フィルター)36、ミラー37とを備えている。ミラー37は、研磨パッド2にレーザ光が入射する角度を調整するために投光部32から投光されたレーザ光を反射することにより光路を変更可能に構成されている。また、研磨パッド2の表面で反射した反射光の光路には、受光部33の手前にバンドパスフィルター38が配置されている。したがって、光源31から出射されたレーザ光は、偏光子35でS偏光された後に、NDフィルター36で光量が調整されて、予めその角度が調整されたミラー37に入射する。そして、レーザ光は、ミラー37で反射して光路が変更され、研磨パッド2の表面に入射する。研磨パッド2の表面で反射した反射光は、バンドパスフィルター38で特定の波長帯のみの透過が許容され、特定の波長帯の反射光が受光部33で受光される。 FIG. 4 is a schematic diagram showing another example of the internal structure (measurement structure) of the surface texture measuring device 30 shown in FIGS. 1 and 2. As shown in FIG. 4, the surface property measuring apparatus 30 for a polishing pad includes a light source 31 that emits laser light, a light projecting unit 32 that guides the laser light emitted from the light source 31 in a predetermined direction, and a light projecting unit 32. Are provided with a polarizer 35, an ND filter (a neutral density filter) 36, and a mirror 37, which are sequentially arranged along the optical path of the laser light projected from. The mirror 37 is configured to change the optical path by reflecting the laser light projected from the light projecting unit 32 in order to adjust the angle at which the laser light is incident on the polishing pad 2. In addition, a band pass filter 38 is disposed in front of the light receiving unit 33 in the optical path of the reflected light reflected from the surface of the polishing pad 2. Accordingly, the laser light emitted from the light source 31 is s-polarized by the polarizer 35 and then incident on the mirror 37 whose angle is adjusted in advance by adjusting the amount of light by the ND filter 36. Then, the laser beam is reflected by the mirror 37, the optical path is changed, and is incident on the surface of the polishing pad 2. The reflected light reflected by the surface of the polishing pad 2 is allowed to pass through only a specific wavelength band by the band pass filter 38, and the reflected light of the specific wavelength band is received by the light receiving unit 33.
 図3および図4に示す受光部33は、例えば、研磨パッド2から反射するレーザ光の少なくとも4次回折光または7次回折光までを受光可能な寸法を持った線状もしくは面状の電荷結合素子(CCD)、もしくは相捕型金属酸化膜半導体(CMOS)素子のいずれかからなる。研磨パッド2の表面に照射されたレーザ光は、正反射するだけでなく、パッド表面性状に応じて、回折現象を経て、広い角度に反射する。即ち、正反射成分だけでなく、広角度に反射したレーザ光を受光し、これを解析することで、パッド表面性状の情報が得られる。これら広角度に反射したレーザ光を受光するために、線状もしくは面状の受光素子が必要となる。CMP性能を左右するパッド表面性状は、望ましくは7次回折光、実用上は4次回折光までに含まれることが分かっている。そのため、この範囲の回折光が受光可能な大きさを持つ受光素子を表面性状測定装置30の受光部33として用いるのが好ましい。 The light receiving unit 33 shown in FIGS. 3 and 4 is, for example, a linear or planar charge coupled device having a dimension capable of receiving at least up to the fourth order diffracted light or the seventh order diffracted light of the laser light reflected from the polishing pad 2. CCD) or phase-trapping metal oxide semiconductor (CMOS) device. The laser light applied to the surface of the polishing pad 2 is not only regularly reflected, but also reflected at a wide angle through a diffraction phenomenon according to the pad surface properties. That is, not only the specular reflection component but also laser light reflected at a wide angle is received and analyzed to obtain pad surface property information. In order to receive the laser beam reflected at these wide angles, a linear or planar light receiving element is required. It has been found that the pad surface properties that influence the CMP performance are desirably included in the 7th-order diffracted light, and practically up to the 4th-order diffracted light. Therefore, it is preferable to use a light receiving element having a size capable of receiving diffracted light in this range as the light receiving unit 33 of the surface texture measuring device 30.
 本実施形態では、表面性状測定装置30は、研磨パッド2にレーザ光を照射し、研磨パッド2の表面で反射した反射光を受光することでパッド表面性状を測定するように構成されているが、本発明はこの例に限定されない。例えば、表面性状測定装置30は、研磨パッド2の表面(すなわち、研磨面2a)の画像を取得する任意の撮像装置を備え、該撮像装置が取得したパッド表面の画像情報からパッド表面性状を測定するように構成されてもよい。撮像装置の例としては、CCDイメージセンサを備えた撮像装置、CMOSイメージセンサを備えた撮像装置、およびTDI(time delay and integration)イメージセンサを備えた撮像装置などが挙げられる。あるいは、撮像装置は、時間経過に伴った連続画像(すなわち、動画)を取得するビデオカメラ装置であってもよい。 In the present embodiment, the surface texture measuring device 30 is configured to measure the pad surface texture by irradiating the polishing pad 2 with laser light and receiving the reflected light reflected by the surface of the polishing pad 2. The present invention is not limited to this example. For example, the surface texture measuring device 30 includes an arbitrary imaging device that acquires an image of the surface of the polishing pad 2 (that is, the polishing surface 2a), and measures the pad surface properties from the image information of the pad surface acquired by the imaging device. It may be configured to. Examples of the imaging device include an imaging device provided with a CCD image sensor, an imaging device provided with a CMOS image sensor, and an imaging device provided with a TDI (time delay and integration) image sensor. Alternatively, the imaging device may be a video camera device that acquires continuous images (that is, moving images) over time.
 次に、図1乃至図4に示すように構成された研磨パッドの表面性状測定装置を備えた研磨装置の作用を説明する。光源31からレーザ光を出射し、研磨パッド2の表面にレーザ光を照射する。研磨パッド2の表面で反射したレーザ光を受光することで、研磨パッド2の表面の情報を測定する。演算部40では、研磨パッドの表面性状測定装置30で得られた反射強度分布を、フーリエ変換することで、研磨パッド表面の空間波長スペクトルに変換する。また、演算部40は、空間波長スペクトルを演算することで、パッド表面性状値を得る。ここで、同演算は、所定の空間波長領域の反射強度の総和を、より広い空間波長領域の反射強度の総和で除算することで、パッド表面性状値を得る。 Next, the operation of the polishing apparatus provided with the polishing pad surface property measuring apparatus configured as shown in FIGS. 1 to 4 will be described. Laser light is emitted from the light source 31 to irradiate the surface of the polishing pad 2 with the laser light. Information on the surface of the polishing pad 2 is measured by receiving the laser beam reflected by the surface of the polishing pad 2. In the calculation unit 40, the reflection intensity distribution obtained by the surface property measuring apparatus 30 of the polishing pad is converted into a spatial wavelength spectrum on the surface of the polishing pad by Fourier transform. Moreover, the calculating part 40 calculates a pad surface property value by calculating a spatial wavelength spectrum. Here, the calculation obtains the pad surface property value by dividing the total reflection intensity in a predetermined spatial wavelength region by the total reflection intensity in a wider spatial wavelength region.
 ここで、反射強度分布とは、線状もしくは面状の受光素子における、受光位置ごとの受光強度の分布である。受光素子である線状もしくは面状のCMOS素子またはCCD素子は、多数の受光ピクセルを備えており、ピクセル別に受光強度を検知できる。受光位置は、照射されたレーザ光がパッド表面で反射する際の反射角に応じて変化し、受光強度は、パッド表面性状によって変化する。即ち、パッド表面性状に応じて、各反射角に対する反射強度を捉えることで、パッド表面の性状に応じた特徴的な反射強度分布を得ることになる。また空間波長スペクトルとは、反射強度分布をフーリエ変換することで得られるスペクトルで、パッド表面の空間波長ごとの受光強度の分布を示す。例えば、測定されたパッド表面が、主に波長Aと波長Bの組合せから成る形状であった場合、空間波長スペクトルは、波長Aと波長Bに主たるピークを持つ。 Here, the reflection intensity distribution is a distribution of received light intensity at each light receiving position in a linear or planar light receiving element. A linear or planar CMOS element or CCD element, which is a light receiving element, includes a large number of light receiving pixels and can detect the light receiving intensity for each pixel. The light receiving position changes according to the reflection angle when the irradiated laser light is reflected on the pad surface, and the light receiving intensity changes depending on the pad surface property. That is, by capturing the reflection intensity for each reflection angle according to the pad surface property, a characteristic reflection intensity distribution corresponding to the pad surface property is obtained. The spatial wavelength spectrum is a spectrum obtained by Fourier transforming the reflection intensity distribution, and indicates the distribution of received light intensity for each spatial wavelength on the pad surface. For example, when the measured pad surface has a shape mainly composed of a combination of the wavelength A and the wavelength B, the spatial wavelength spectrum has main peaks at the wavelength A and the wavelength B.
 空間波長スペクトルは、CMP性能を左右するパッド表面性状が含まれる次数以下の回折光に対して、十分に広い波長領域が取得されるようにする。取得されるべき回折光の次数は、望ましくは7次回折光、実用上は4次回折光であることが分かっている。パッド表面性状を評価する場合、CMP性能に関連する(=「所定の」)空間波長領域の強度だけを抽出したい。しかしながら、得られた空間波長スペクトルには、一般に全波長領域に対してランダムノイズが含まれる。そこで、所定の空間波長領域の反射強度の積分値の、より広い空間波長領域の反射強度の積分値に対する比率を求めることで、ノイズの影響を除外して、所定の空間波長領域の反射強度だけを評価する手法を採る。 The spatial wavelength spectrum is set so that a sufficiently wide wavelength region is obtained for diffracted light of the order or less including the pad surface properties that affect the CMP performance. It has been found that the order of diffracted light to be acquired is preferably 7th order diffracted light, and practically 4th order diffracted light. When evaluating pad surface properties, we only want to extract the intensity in the spatial wavelength region (= “predetermined”) related to CMP performance. However, the obtained spatial wavelength spectrum generally includes random noise for the entire wavelength region. Therefore, by calculating the ratio of the integrated value of the reflected intensity in the predetermined spatial wavelength region to the integrated value of the reflected intensity in the wider spatial wavelength region, the influence of noise is excluded, and only the reflected intensity in the predetermined spatial wavelength region is obtained. Use a method to evaluate
 上述した通り、所定の空間波長領域の反射強度の積分値の、より広い空間波長領域の積分値に対する比率を求め、これを、パッド表面性状を特徴づける指標として「波長構成比率」と定義する。波長構成比率が大きいほど、所定の空間波長領域の反射強度が相対的に大きいことを示し、このことは即ち、測定されたパッド表面が、所定の空間波長成分をより多く含むことを示している。予め、所定の空間波長成分の大小が、CMP性能と強い関連性を持つことを調べてあるため、測定されたパッド表面の波長構成比率によって、CMP性能を推測することが可能となる。 As described above, the ratio of the integrated value of the reflection intensity in a predetermined spatial wavelength region to the integrated value in a wider spatial wavelength region is obtained, and this is defined as a “wavelength constituent ratio” as an index characterizing the pad surface properties. A larger wavelength composition ratio indicates that the reflection intensity in a predetermined spatial wavelength region is relatively higher, which indicates that the measured pad surface contains more predetermined spatial wavelength components. . Since it has been examined in advance that the magnitude of the predetermined spatial wavelength component has a strong relationship with the CMP performance, the CMP performance can be estimated from the measured wavelength composition ratio of the pad surface.
 制御部23は、演算部40で求めたパッド表面性状値を得て、その値に基づいて、閉ループ制御で好適なドレッシング条件を算出する。例えば、パッド表面性状値が、予め設定した所定の範囲内で推移するように、ドレッシング条件を算出する。その際、制御部23は、予め、ドレッシング条件とパッド表面性状値との関連を示す関係式を得ておき、同式により、好適なドレッシング条件を求める。ここでドレッシング条件とは、主に、研磨パッド回転数、ドレッサー回転数、ドレッシング荷重、ドレッサー揺動速度、などである。決定されたドレッシング条件は、ドレッシング装置20に伝達され、所定のドレッシング条件を適用して、研磨パッド2のドレッシングを行う。 The control unit 23 obtains the pad surface property value obtained by the calculation unit 40, and calculates a suitable dressing condition by the closed loop control based on the value. For example, the dressing condition is calculated so that the pad surface property value changes within a predetermined range set in advance. At that time, the control unit 23 obtains a relational expression indicating a relation between the dressing condition and the pad surface property value in advance, and obtains a suitable dressing condition from the same expression. Here, the dressing conditions are mainly the polishing pad rotation speed, the dresser rotation speed, the dressing load, the dresser swing speed, and the like. The determined dressing conditions are transmitted to the dressing apparatus 20, and dressing of the polishing pad 2 is performed by applying predetermined dressing conditions.
 例えば、ドレッシング条件として、ドレッシング荷重が制御対象になる場合には、予め、ドレッシング荷重とパッド表面性状の関係性を取得しておき、即ち、ドレッシング荷重を大きくしたらどのくらい表面性状値が大きくなるか又は小さくなるかを取得しておき、予め定めた理想的なパッド表面性状値と、測定されたパッド表面性状値とを比較して、そこにずれがあれば、上記関係性に基づいてドレッシング荷重を、理想的なパッド表面性状値に近付く方向に設定する。 For example, when the dressing load is to be controlled as a dressing condition, the relationship between the dressing load and the pad surface property is acquired in advance, that is, how much the surface property value increases when the dressing load is increased or Compare the ideal pad surface property value determined in advance with the measured pad surface property value, and if there is a deviation, the dressing load is calculated based on the above relationship. , Set to a direction approaching the ideal pad surface property value.
 また、演算部40で得たパッド表面性状値を異常検知に使用してもよい。この場合、パッド表面性状値やその経時的な変化を測定し、これが予め定めた値の範囲から外れたら、パッド表面性状異常と判定し、1)異常を発報、2)ドレッサー交換が必要であることを発報、などする。 Further, the pad surface property value obtained by the calculation unit 40 may be used for abnormality detection. In this case, the pad surface property value and its change over time are measured, and if this is outside the predetermined range, it is determined that the pad surface property is abnormal, 1) an abnormality is reported, and 2) dresser replacement is required. Report something, etc.
 一実施形態では、前記ドレッシング条件の決定は、測定されたパッド表面性状値と予め定めておく所望のパッド表面性状値との差異を所望パッド表面性状変化量として求め、ドレッシング荷重、ドレッサー回転数、研磨パッド回転数、ドレッサー揺動速度の少なくとも一項目の変化量とパッド表面性状の変化量との関係を予め求めて作成した回帰式に、前記所望パッド表面性状変化量を代入することで前記ドレッシング荷重、ドレッサー回転数、研磨パッド回転数、ドレッサー揺動速度の少なくとも一項目を求める。 In one embodiment, the dressing condition is determined by calculating a difference between the measured pad surface property value and a predetermined desired pad surface property value as a desired pad surface property change amount, a dressing load, a dresser rotational speed, The dressing is obtained by substituting the desired pad surface property change amount into a regression equation created by previously obtaining the relationship between the change amount of at least one item of the polishing pad rotation speed and the dresser rocking speed and the change amount of the pad surface property. At least one item of load, dresser rotational speed, polishing pad rotational speed, and dresser swing speed is obtained.
 上記実施形態によれば、予め、ドレッシング条件(ドレッシング荷重、ドレッサー回転数、研磨パッド回転数、ドレッサー揺動速度など)とパッド表面性状値(波長構成比率)との関係を表す回帰式を求めておき、ここに測定されたパッド表面性状値の変化量を代入することで、所望のパッド表面性状値を得るために最適なドレッシング条件を一意的に得ることができる。 According to the above embodiment, a regression equation representing the relationship between dressing conditions (dressing load, dresser rotation speed, polishing pad rotation speed, dresser rocking speed, etc.) and pad surface property values (wavelength composition ratio) is obtained in advance. By substituting the measured change amount of the pad surface property value, the optimum dressing condition for obtaining the desired pad surface property value can be uniquely obtained.
 回帰式は、例えば、dR=A×dL+Bと表すことができる。ここで、dRはパッド表面性状値(波長構成比率)の変化量、dLはドレッシング荷重の変化量、AおよびBは定数、である。上記ドレッシング条件の決定方法によれば、パッドの表面性状をパッドの使用初期から使用末期まで一定に保つことができるという効果が得られる。パッドの表面性状は、パッドの使用初期から末期まで、パッドの減耗量やドレッサーの切れ味の鋭さによって変化し、その変化に応じて、CMP性能も変化する。パッドの表面性状を一定に保つことは、CMP性能を一定に保つことにつながる。 The regression equation can be expressed as, for example, dR = A × dL + B. Here, dR is the amount of change in pad surface property value (wavelength composition ratio), dL is the amount of change in dressing load, and A and B are constants. According to the dressing condition determination method, the surface property of the pad can be kept constant from the initial use to the final use of the pad. The surface property of the pad changes depending on the amount of pad wear and the sharpness of the dresser from the beginning to the end of use of the pad, and the CMP performance also changes according to the change. Keeping the surface properties of the pad constant leads to keeping the CMP performance constant.
 また、表示装置41は、演算部40で得られた研磨パッド2の表面性状値を、予め設定しておいたパッド表面性状値と比較した上で、ドレッサー22の状態および研磨パッド2の状態の少なくとも一方を表示するように構成されている。表示装置41は、上記のように比較をすることなく、演算部40で得られた研磨パッド2の表面性状に基づき、ドレッサー22の状態および研磨パッド2の状態の少なくとも一方を表示するように構成してもよい。 Further, the display device 41 compares the surface property value of the polishing pad 2 obtained by the calculation unit 40 with a preset pad surface property value, and then displays the state of the dresser 22 and the state of the polishing pad 2. It is configured to display at least one. The display device 41 is configured to display at least one of the state of the dresser 22 and the state of the polishing pad 2 based on the surface properties of the polishing pad 2 obtained by the arithmetic unit 40 without making a comparison as described above. May be.
 研磨装置は、演算部40(図1および図2参照)で得られた研磨パッドの表面性状値を、予め設定しておいたパッド表面性状値の範囲と比較した上で、範囲外であった場合に研磨パッドの表面性状が異常と判定する異常判定部を備えていてもよい。異常判定部で異常と判定されたら、表示装置41(図2参照)は異常を発報する。
 パッド表面性状の異常の種類は、以下が代表的なものである。
 1)パッド表面に異常な点(欠陥)が存在する。
 2)研磨パッドのドレッシングが不足している。
 3)ドレッサーが寿命を迎えた。
 4)パッドが寿命を迎えた。
 1)の場合、複数点のパッド表面性状を測定した際、他の測定点に比べて大きな差異がある点があれば、その点をパッド異常と判断して、発報する。
 2)の場合、パッド表面性状値が予め設定した所定の範囲の上限値を超えていれば、追加ドレッシングが必要であると判断し、発報する。
 3),4)の場合、経時的に(基板処理枚数毎に)パッド表面性状の推移を測定し、これが予め定めた範囲から外れたら寿命オーバーと判断して、発報する。
The polishing apparatus was out of range after comparing the surface property value of the polishing pad obtained by the computing unit 40 (see FIGS. 1 and 2) with a preset range of the pad surface property value. In some cases, an abnormality determination unit that determines that the surface property of the polishing pad is abnormal may be provided. If the abnormality determining unit determines that there is an abnormality, the display device 41 (see FIG. 2) reports the abnormality.
The following are typical types of abnormal pad surface properties.
1) An abnormal point (defect) exists on the pad surface.
2) The dressing of the polishing pad is insufficient.
3) The dresser has reached the end of its life.
4) The pad has reached the end of its life.
In the case of 1), when a plurality of pad surface properties are measured, if there is a point that is significantly different from other measurement points, that point is judged as a pad abnormality and is reported.
In the case of 2), if the pad surface property value exceeds an upper limit value of a predetermined range set in advance, it is determined that additional dressing is necessary and a notification is issued.
In the case of 3) and 4), the transition of the pad surface properties is measured over time (for each number of substrates processed), and if this deviates from a predetermined range, it is determined that the life is over and a notification is issued.
 表面性状測定装置30は、図4に示すように、光ファイバー34、偏光子35、NDフィルター36、ミラー37、バンドパスフィルター38などを有することで、より測定精度を向上させたり、設置自由度を高めることも可能である。また、偏光子35によって光源31から出射されたレーザ光をS偏光させた後に研磨パッド2に入射させることで、研磨パッド表面での反射率を高めることができる。さらに、NDフィルター36を用いてレーザ光の光量を減少させて所望の光量に調整した後に、レーザ光を研磨パッド2に入射させることができる。一方、研磨パッド2の表面で反射した反射光の光路にバンドパスフィルター38を設置することで、光源31のレーザ光の波長に対して±5nm以内の反射光だけを通過させるようにしている。本実施形態では、光源31のレーザ光として、波長が635nmのレーザ光を用いている。このように、バンドパスフィルター38を設置することで、光源31のレーザ光の波長に対して±5nm以内の反射光だけを通過させることにより、ノイズとなる周囲の環境光の影響を低減することができるという効果が得られる。 As shown in FIG. 4, the surface texture measuring device 30 includes an optical fiber 34, a polarizer 35, an ND filter 36, a mirror 37, a bandpass filter 38, and the like, so that the measurement accuracy can be further improved and the installation flexibility can be increased. It can also be increased. In addition, the laser light emitted from the light source 31 by the polarizer 35 is made S-polarized and then incident on the polishing pad 2, whereby the reflectance on the surface of the polishing pad can be increased. Furthermore, the laser light can be incident on the polishing pad 2 after the ND filter 36 is used to reduce the light amount of the laser light and adjust it to a desired light amount. On the other hand, by installing a band pass filter 38 in the optical path of the reflected light reflected from the surface of the polishing pad 2, only the reflected light within ± 5 nm with respect to the wavelength of the laser light of the light source 31 is allowed to pass. In the present embodiment, a laser beam having a wavelength of 635 nm is used as the laser beam of the light source 31. In this way, by installing the band pass filter 38, only the reflected light within ± 5 nm with respect to the wavelength of the laser light of the light source 31 is allowed to pass, thereby reducing the influence of ambient environmental light that becomes noise. The effect of being able to be obtained.
 表面性状測定装置30の内部構造(測定構造)は、図3および図4に示す実施形態に限定されない。例えば、表面性状測定装置30は、光源31から出射されたレーザ光を所望の方向に導く光ファイバーを有していてもよい。これにより、研磨パッドの表面性状測定装置30の光学系の設置自由度を高めることができる。さらに、表面性状測定装置30のミラー37は、その傾斜角度を変更可能に構成されてもよい。ミラー37の傾斜角度を変更することにより、研磨パッド2にレーザ光が入射する角度を調整することができる。さらに、光源31および/または受光部33を揺動可能に構成してもよい。表面性状測定装置30は、複数の光源31を有していてもよいし、複数の受光部33を有していてもよい。 The internal structure (measurement structure) of the surface texture measuring device 30 is not limited to the embodiment shown in FIGS. For example, the surface texture measuring device 30 may include an optical fiber that guides the laser light emitted from the light source 31 in a desired direction. Thereby, the installation freedom degree of the optical system of the surface property measuring apparatus 30 of a polishing pad can be raised. Furthermore, the mirror 37 of the surface texture measuring device 30 may be configured such that the tilt angle thereof can be changed. By changing the tilt angle of the mirror 37, the angle at which the laser beam is incident on the polishing pad 2 can be adjusted. Furthermore, the light source 31 and / or the light receiving unit 33 may be configured to be swingable. The surface texture measuring device 30 may include a plurality of light sources 31 or a plurality of light receiving units 33.
 図5は、図1および図2に示す表面性状測定装置30の内部構造(測定構造)のさらに別の例を示す模式図である。図5に示す表面性状測定装置30は、光源31および受光部33の代わりに、研磨パッド2の表面性状の画像情報を取得する撮像装置39を有している。撮像装置39は、例えば、電荷結合素子(CCD)イメージセンサ、または相捕型金属酸化膜半導体(CMOS)イメージセンサを備えたデジタルカメラである。撮像装置39は、TDIイメージセンサを備えたデジタルカメラであってもよいし、動画を撮影するビデオカメラであってもよい。撮像装置39は、演算部40を介して制御部23に接続される。 FIG. 5 is a schematic diagram showing still another example of the internal structure (measurement structure) of the surface texture measuring device 30 shown in FIGS. 1 and 2. A surface texture measuring device 30 shown in FIG. 5 has an imaging device 39 that acquires image information of the surface texture of the polishing pad 2 instead of the light source 31 and the light receiving unit 33. The imaging device 39 is, for example, a digital camera including a charge coupled device (CCD) image sensor or a phase-trapping metal oxide semiconductor (CMOS) image sensor. The imaging device 39 may be a digital camera provided with a TDI image sensor, or may be a video camera that takes a moving image. The imaging device 39 is connected to the control unit 23 via the calculation unit 40.
 本実施形態では、撮像装置39の撮影面39aは、研磨パッド2の研磨面2aと正対している。すなわち、撮像装置39の撮影面39aは、研磨パッド2の研磨面2aと平行である。一実施形態では、撮像装置39は、撮影面39aが研磨パッド2の研磨面2aに対して斜めになるように配置されてもよい(図5で、二点鎖線で示された撮像装置39参照)。図示はしないが、表面性状測定装置30は、撮像装置39が撮影する研磨面2aを照らす光源を備えていてもよい。 In this embodiment, the imaging surface 39a of the imaging device 39 faces the polishing surface 2a of the polishing pad 2. That is, the imaging surface 39 a of the imaging device 39 is parallel to the polishing surface 2 a of the polishing pad 2. In one embodiment, the imaging device 39 may be arranged such that the imaging surface 39a is inclined with respect to the polishing surface 2a of the polishing pad 2 (see the imaging device 39 indicated by a two-dot chain line in FIG. 5). ). Although not shown, the surface texture measuring device 30 may include a light source that illuminates the polished surface 2 a taken by the imaging device 39.
 撮像装置39によって取得された研磨パッド2の表面性状の画像情報は、演算部40に送られ、演算部40でパッド表面性状値に演算される。上述したように、制御部23は、演算部40で求めた表面性状値を得て、その値に基づいて、閉ループ制御で好適なドレッシング条件を算出する。研磨装置は、演算部40(図1および図2参照)で得られた研磨パッドの表面性状値を、予め設定しておいたパッド表面性状値の範囲と比較した上で、範囲外であった場合に異常を発報してもよい。 The surface texture image information of the polishing pad 2 acquired by the imaging device 39 is sent to the calculation unit 40, and the calculation unit 40 calculates the pad surface property value. As described above, the control unit 23 obtains the surface property value obtained by the calculation unit 40, and calculates a suitable dressing condition by closed loop control based on the value. The polishing apparatus was out of range after comparing the surface property value of the polishing pad obtained by the computing unit 40 (see FIGS. 1 and 2) with a preset range of the pad surface property value. In some cases, an abnormality may be reported.
 上述のように構成された表面性状測定装置30は、研磨装置の内部に配置される。図6は、研磨装置の内部に配置された表面性状測定装置30の一例を模式的に示す斜視図である。図7Aは、図6に示される表面性状測定装置30の正面図であり、図7Bは、図7Aに示される表面性状測定装置30の下面図である。さらに、図8は、図7AのA-A線断面図である。 The surface texture measuring device 30 configured as described above is disposed inside the polishing device. FIG. 6 is a perspective view schematically showing an example of the surface texture measuring device 30 arranged inside the polishing apparatus. 7A is a front view of the surface texture measuring device 30 shown in FIG. 6, and FIG. 7B is a bottom view of the surface texture measuring device 30 shown in FIG. 7A. Further, FIG. 8 is a cross-sectional view taken along line AA of FIG. 7A.
 図6および図7Aに示すように、表面性状測定装置30は、ケーシング43を有している。このケーシング43は、その内部に、研磨パッド2の表面性状を測定するための測定構造を収容している。ケーシング43の内部に収容される測定構造は、例えば、図3乃至図5を参照して説明された光源31、受光部33、偏光子35、NDフィルター36、ミラー37、バンドパスフィルター38、撮像装置39などである。 As shown in FIGS. 6 and 7A, the surface texture measuring device 30 has a casing 43. The casing 43 accommodates a measurement structure for measuring the surface properties of the polishing pad 2 therein. The measurement structure housed in the casing 43 includes, for example, the light source 31, the light receiving unit 33, the polarizer 35, the ND filter 36, the mirror 37, the band pass filter 38, and the imaging described with reference to FIGS. The device 39 or the like.
 図7Aに示すように、ケーシング43の下部には切り欠き44が形成されている。本実施形態では、切り欠き44は、2つの対向する傾斜面44a,44bと、これら傾斜面44a,44bを接続する接続面44cとによって区画される台形形状を有している。図7Bに示すように、一方の傾斜面44aには、透光性を有するフィルター47aが配置されており、フィルター47aを通して光源31から出射されたレーザ光が研磨パッド2に照射される。他方の傾斜面44bにも、透光性を有するフィルター47bが配置されており、受光部33は、フィルター47bを通して、研磨パッド2からの反射光を受光する。これらフィルター47a,47bの例としては、例えば、透明フィルム、または透明ガラスなどが挙げられる。本実施形態では、接続面44cは、一方の傾斜面44aから他方の傾斜面44bまで直線状に延びている。 As shown in FIG. 7A, a cutout 44 is formed in the lower portion of the casing 43. In the present embodiment, the notch 44 has a trapezoidal shape defined by two opposing inclined surfaces 44a and 44b and a connection surface 44c that connects the inclined surfaces 44a and 44b. As shown in FIG. 7B, a filter 47a having translucency is disposed on one inclined surface 44a, and the polishing pad 2 is irradiated with laser light emitted from the light source 31 through the filter 47a. A light-transmitting filter 47b is also disposed on the other inclined surface 44b, and the light receiving unit 33 receives reflected light from the polishing pad 2 through the filter 47b. Examples of the filters 47a and 47b include a transparent film or transparent glass. In the present embodiment, the connection surface 44c extends linearly from one inclined surface 44a to the other inclined surface 44b.
 表面性状測定装置30は、ケーシング43の側面に固定された位置決めプレート77,78を有する。表面性状測定装置30が図6および図7Aに示す測定位置(後述する)に移動されたとき、位置決めプレート77,78が研磨パッド2の研磨面2aに接触する。位置決めプレート77,78によって、鉛直方向における研磨パッド2の研磨面2aから表面性状測定装置30の測定構造までの距離、および表面性状測定装置30の研磨面2aに対する角度を常に一定に保つことができる。 The surface texture measuring device 30 has positioning plates 77 and 78 fixed to the side surface of the casing 43. When the surface texture measuring device 30 is moved to a measurement position (described later) shown in FIGS. 6 and 7A, the positioning plates 77 and 78 come into contact with the polishing surface 2a of the polishing pad 2. By the positioning plates 77 and 78, the distance from the polishing surface 2a of the polishing pad 2 in the vertical direction to the measurement structure of the surface property measuring device 30 and the angle of the surface property measuring device 30 with respect to the polishing surface 2a can always be kept constant. .
 図7A、図7B、および図8に示すように、表面性状測定装置30は、接続面44cから突出する先端を有するノズル45を備えていてもよい。表面性状測定装置30のノズル45は、図示しない加圧気体供給ラインに接続されており、該加圧気体供給ラインから加圧気体(例えば、加圧窒素、または加圧空気)を研磨パッド2の研磨面2aに吹き付けるように構成されている。ノズル45から吹き付けられた加圧気体によって、研磨面2a上の研磨液またはドレッシング液などの液体が除去される。これにより、表面性状測定装置30は正確な研磨パッド2の表面性状を測定することができる。 7A, 7B, and 8, the surface texture measuring device 30 may include a nozzle 45 having a tip that protrudes from the connection surface 44c. The nozzle 45 of the surface texture measuring device 30 is connected to a pressurized gas supply line (not shown), and pressurized gas (for example, pressurized nitrogen or pressurized air) is supplied to the polishing pad 2 from the pressurized gas supply line. It is comprised so that it may spray on the grinding | polishing surface 2a. The pressurized gas blown from the nozzle 45 removes a liquid such as a polishing liquid or a dressing liquid on the polishing surface 2a. Thereby, the surface texture measuring device 30 can accurately measure the surface texture of the polishing pad 2.
 ノズル45は、任意の形状を有する。例えば、ノズル45は、流路径が先端から後端まで同一である円筒ノズルであってもよいし、流路径が漸次縮小するスロート部と、該スロート部の下流側で流路径が漸次拡大する拡大部とを有するラバルノズルであってもよい。あるいは、ノズル45は、流路径がノズル45の先端に向けて漸次縮小または拡大する形状を有するノズルであってもよい。 The nozzle 45 has an arbitrary shape. For example, the nozzle 45 may be a cylindrical nozzle having the same flow path diameter from the front end to the rear end, or a throat portion where the flow passage diameter is gradually reduced, and an enlargement where the flow passage diameter is gradually increased downstream of the throat portion. A laval nozzle having a portion may be used. Alternatively, the nozzle 45 may be a nozzle having a shape in which the flow path diameter gradually decreases or expands toward the tip of the nozzle 45.
 図8に示すように、ノズル45は、研磨パッド2の研磨面2aに対して傾斜して配置されており、ノズル45から噴射される加圧気体は、研磨パッド2の研磨面2aに斜めに衝突する。ノズル45は、加圧気体がケーシング43に形成された切り欠き44の開口に向けて流れるように、研磨パッド2の研磨面2aと平行な面Pに対して傾斜角度θだけ傾斜して配置されている。このような構成により、ノズル45から噴射された加圧気体によって除去された液体が切り欠き44の傾斜面44a,44bにそれぞれ配置されたフィルター47a,47bに付着することが防止される。 As shown in FIG. 8, the nozzle 45 is disposed to be inclined with respect to the polishing surface 2 a of the polishing pad 2, and the pressurized gas injected from the nozzle 45 is inclined to the polishing surface 2 a of the polishing pad 2. collide. The nozzle 45 is disposed so as to be inclined at an inclination angle θ with respect to a plane P parallel to the polishing surface 2 a of the polishing pad 2 so that the pressurized gas flows toward the opening of the notch 44 formed in the casing 43. ing. With such a configuration, the liquid removed by the pressurized gas ejected from the nozzle 45 is prevented from adhering to the filters 47a and 47b disposed on the inclined surfaces 44a and 44b of the notch 44, respectively.
 このように、傾斜されたノズル45から加圧気体を噴射する目的は、研磨面2a上の研磨液またはドレッシング液などの液体を除去しつつ、加圧気体によって除去された液体が飛び散って、フィルター47a,47bなどに付着することを防止することである。したがって、ノズル45の傾斜角度θは、上記目的を達成するための最適傾斜角度に設定される。最適傾斜角度は、例えば、ノズル45から噴射される加圧気体の圧力、流速などに基づいて決定される。最適傾斜角度を、加圧気体の圧力および/または流速を変更して行われる実験に基づいて決定してもよい。この最適傾斜角度は、例えば、60°である。一実施形態では、ノズル45は、ケーシング43に対して回動可能に取り付けられてもよい。この場合、加圧気体の圧力および流速に応じて、ノズル45の傾斜角度θを最適傾斜角度に変更することができる。 As described above, the purpose of injecting the pressurized gas from the inclined nozzle 45 is to remove the liquid such as the polishing liquid or the dressing liquid on the polishing surface 2a while the liquid removed by the pressurized gas is scattered, and the filter It is to prevent adhesion to 47a, 47b and the like. Therefore, the inclination angle θ of the nozzle 45 is set to an optimum inclination angle for achieving the above object. The optimum inclination angle is determined based on, for example, the pressure of the pressurized gas injected from the nozzle 45, the flow velocity, and the like. The optimum tilt angle may be determined based on experiments performed by changing the pressure and / or flow rate of the pressurized gas. This optimum inclination angle is, for example, 60 °. In one embodiment, the nozzle 45 may be rotatably attached to the casing 43. In this case, the inclination angle θ of the nozzle 45 can be changed to the optimum inclination angle according to the pressure and flow rate of the pressurized gas.
 図9は、図6に示される表面性状測定装置30の周辺を拡大して示す模式図である。図6および図9に示すように、研磨パッド2の表面性状を測定する表面性状測定装置30は、支持アーム50に支持されており、支持アーム50は、研磨装置に固定される移動ユニット53に連結される。移動ユニット53は、表面性状測定装置30を待避位置から測定位置に、または測定位置から待避位置に移動させるためのユニットである。すなわち、移動ユニット53によって、表面性状測定装置30の位置が待避位置から測定位置に、または測定位置から待避位置に自動で変更される。 FIG. 9 is an enlarged schematic view showing the periphery of the surface texture measuring device 30 shown in FIG. As shown in FIGS. 6 and 9, the surface texture measuring device 30 for measuring the surface texture of the polishing pad 2 is supported by a support arm 50, and the support arm 50 is attached to a moving unit 53 fixed to the polishing apparatus. Connected. The moving unit 53 is a unit for moving the surface texture measuring device 30 from the retracted position to the measuring position or from the measuring position to the retracted position. That is, the position of the surface texture measuring device 30 is automatically changed from the retracted position to the measured position or from the measured position to the retracted position by the moving unit 53.
 本実施形態では、表面性状測定装置30の測定位置を、該表面性状測定装置30が研磨パッド2の表面性状を測定するために研磨パッド2に接触している位置として定義する。例えば、表面性状測定装置30の測定位置は、図7Aに示すように、表面性状測定装置30の位置決めプレート77,78が研磨パッド2の研磨面2aに接触している位置である。さらに、表面性状測定装置30の待避位置を、該表面性状測定装置30が研磨パッド2から離間した位置として定義する。 In the present embodiment, the measurement position of the surface texture measuring device 30 is defined as the position where the surface texture measuring device 30 is in contact with the polishing pad 2 in order to measure the surface texture of the polishing pad 2. For example, the measurement position of the surface texture measuring device 30 is a position where the positioning plates 77 and 78 of the surface texture measuring device 30 are in contact with the polishing surface 2a of the polishing pad 2, as shown in FIG. 7A. Further, the retracted position of the surface texture measuring device 30 is defined as a position where the surface texture measuring device 30 is separated from the polishing pad 2.
 図9に示すように、移動ユニット53は、研磨装置に固定される固定ブロック55と、支持アーム50に連結される回動ブロック56と、回動ブロック56を固定ブロック55に対して回動自在に連結する回転軸58と、回動ブロック56を回転軸58の軸心まわりに回動させる回動機構60とから構成される。固定ブロック55は、研磨装置のフレーム48にねじなどの固定具(図示せず)により固定されている。表面性状測定装置30を支持する支持アーム50は、回動ブロック56に固定された支持プレート52にねじなどの固定具(図示せず)によって接続されており、該支持プレート52を介して回動ブロック56に連結される。一実施形態では、支持プレート52を回動ブロック56と一体に形成してもよい。さらに、支持アーム50を、回動ブロック56に直接接続してもよい。この場合、支持プレート52は、移動ユニット53から省略される。 As shown in FIG. 9, the moving unit 53 includes a fixed block 55 fixed to the polishing apparatus, a rotating block 56 connected to the support arm 50, and the rotating block 56 being rotatable with respect to the fixed block 55. And a rotation mechanism 60 for rotating the rotation block 56 around the axis of the rotation shaft 58. The fixing block 55 is fixed to the frame 48 of the polishing apparatus with a fixing tool (not shown) such as a screw. The support arm 50 that supports the surface texture measuring device 30 is connected to a support plate 52 fixed to a rotation block 56 by a fixing tool (not shown) such as a screw, and rotates via the support plate 52. Connected to block 56. In one embodiment, the support plate 52 may be formed integrally with the rotation block 56. Further, the support arm 50 may be directly connected to the rotation block 56. In this case, the support plate 52 is omitted from the moving unit 53.
 回動ブロック56は、回転軸58を介して固定ブロック55に連結される。より具体的には、固定ブロック55には、凹部55aが形成されており、回動ブロック56には、固定ブロック55の凹部55aに挿入される凸部56aが形成されている。凸部56aには、回転軸58が挿入される貫通孔(図示せず)が形成されている。固定ブロック55は、該固定ブロック55の凹部55aの両側部にそれぞれ形成された2つの貫通孔(図示せず)を有している。回動ブロック56の凸部56aを固定ブロック55の凹部55aに挿入したときに、固定ブロック55に形成された2つの貫通孔を、回動ブロック56の凸部56aに形成された貫通孔と一直線上に配列させることができる。回動ブロック56の凸部56aを固定ブロック55の凹部55aに挿入した状態で、回転軸58を、固定ブロック55の凹部55aの両側部にそれぞれ形成された2つの貫通孔と、凸部56aに形成された貫通孔に挿入する。これにより、回動ブロック56が固定ブロック55に対して回動自在に連結される。 The rotation block 56 is connected to the fixed block 55 via the rotation shaft 58. More specifically, the fixed block 55 is formed with a concave portion 55 a, and the rotating block 56 is formed with a convex portion 56 a that is inserted into the concave portion 55 a of the fixed block 55. A through hole (not shown) into which the rotation shaft 58 is inserted is formed in the convex portion 56a. The fixed block 55 has two through holes (not shown) formed on both sides of the concave portion 55a of the fixed block 55, respectively. When the convex portion 56a of the rotating block 56 is inserted into the concave portion 55a of the fixed block 55, the two through holes formed in the fixed block 55 are aligned with the through holes formed in the convex portion 56a of the rotating block 56. Can be arranged on a line. In a state where the convex portion 56a of the rotation block 56 is inserted into the concave portion 55a of the fixed block 55, the rotation shaft 58 is inserted into the two through holes formed on both sides of the concave portion 55a of the fixed block 55 and the convex portion 56a. Insert into the formed through-hole. Thereby, the rotation block 56 is rotatably connected to the fixed block 55.
 図10は、図9に示す回動機構60により測定位置に移動された表面性状測定装置30を示す図であり、図11は、図9に示す回動機構60により待避位置に移動された表面性状測定装置30を示す図である。 10 is a view showing the surface texture measuring device 30 moved to the measurement position by the turning mechanism 60 shown in FIG. 9, and FIG. 11 is a view showing the surface moved to the retracted position by the turning mechanism 60 shown in FIG. It is a figure which shows the property measuring apparatus.
 図10および図11に示すように、本実施形態に係る回動機構60は、回動ブロック56に連結されるピストン62と、該ピストン62を進退自在に収容するシリンダ63から構成されるピストンシリンダ機構である。ピストン62の先端は、回動ブロック56の下面に固定されたブラケット70を介して回動ブロック56に連結される。ピストン62の先端には、ピン67が挿入可能な貫通孔(図示せず)が形成されており、ブラケット70は、ピストン62の貫通孔に挿入されたピン72を挿入可能な貫通孔68が形成されている。ピストン62の先端に形成された貫通孔をブラケットの貫通孔68と一直線に並べた状態で、ピン67をピストン62の貫通孔とブラケットの貫通孔68とに挿入することにより、ピストン62がブラケット70を介して回動ブロック56に連結される。回動ブロック56の下面に固定されたブラケット70は、ピストン62に対して回動自在に連結される。 As shown in FIGS. 10 and 11, the rotation mechanism 60 according to the present embodiment includes a piston 62 connected to a rotation block 56 and a piston cylinder configured to accommodate the piston 62 so as to be able to advance and retract. Mechanism. The tip of the piston 62 is connected to the rotation block 56 via a bracket 70 fixed to the lower surface of the rotation block 56. A through hole (not shown) into which a pin 67 can be inserted is formed at the tip of the piston 62, and a through hole 68 into which the pin 72 inserted into the through hole of the piston 62 can be inserted into the bracket 70. Has been. With the through hole formed at the tip of the piston 62 aligned with the through hole 68 of the bracket, the pin 67 is inserted into the through hole of the piston 62 and the through hole 68 of the bracket, so that the piston 62 is attached to the bracket 70. It connects with the rotation block 56 via. A bracket 70 fixed to the lower surface of the rotation block 56 is rotatably connected to the piston 62.
 シリンダ63は、研磨装置のフレーム48から延びる台49に支持されている。シリンダ63には、流体供給ライン(図示せず)が接続され、該流体供給ラインを介して流体(例えば、加圧窒素または加圧空気)がシリンダ63に供給される。制御部23(図1参照)は、シリンダ63への流体の供給を制御することにより、ピストン62を上下動させる。例えば、流体供給ラインに開閉弁(図示せず)を配置して、制御部23がこの開閉弁の動作を制御することにより、ピストン62を上下動させる。より具体的には、ピストン62を上昇させるときは、制御部23は、開閉弁を開き、シリンダ63に流体を供給する。ピストン62を下降させるときは、制御部23は、開閉弁を閉じて、シリンダ63への流体の供給を停止させる。 The cylinder 63 is supported by a base 49 extending from the frame 48 of the polishing apparatus. A fluid supply line (not shown) is connected to the cylinder 63, and fluid (for example, pressurized nitrogen or pressurized air) is supplied to the cylinder 63 through the fluid supply line. The control unit 23 (see FIG. 1) moves the piston 62 up and down by controlling the supply of fluid to the cylinder 63. For example, an on-off valve (not shown) is disposed in the fluid supply line, and the control unit 23 controls the operation of the on-off valve to move the piston 62 up and down. More specifically, when raising the piston 62, the control unit 23 opens the on-off valve and supplies the fluid to the cylinder 63. When lowering the piston 62, the controller 23 closes the on-off valve and stops the supply of fluid to the cylinder 63.
 研磨パッド2の表面性状を測定するときは、制御部23は、回動機構60のピストン62を下降させる。これにより、回動ブロック56および支持アーム50が表面性状測定装置30を下方に移動させる方向に回動し、表面性状測定装置30の位置決めプレート77,78が研磨パッド2に接触する。このように、制御部23は、回動機構60を動作させることにより、表面性状測定装置30を図10に示す測定位置に移動させることができる。この状態で、上述した研磨パッド2の表面性状の測定が行われ、ドレッシング条件が決定される。制御部23が表面性状測定装置30から得られた表面性状の測定値から研磨パッド2の異常を検知したときは、制御部23は、異常を発報して、研磨装置の運転を停止してもよい。 When measuring the surface property of the polishing pad 2, the controller 23 lowers the piston 62 of the rotation mechanism 60. Thereby, the rotation block 56 and the support arm 50 are rotated in the direction in which the surface texture measuring device 30 is moved downward, and the positioning plates 77 and 78 of the surface texture measuring device 30 are in contact with the polishing pad 2. In this way, the control unit 23 can move the surface texture measuring device 30 to the measurement position shown in FIG. 10 by operating the rotation mechanism 60. In this state, the surface properties of the polishing pad 2 described above are measured, and the dressing conditions are determined. When the controller 23 detects an abnormality of the polishing pad 2 from the surface texture measurement value obtained from the surface texture measuring device 30, the controller 23 reports the abnormality and stops the operation of the polishing apparatus. Also good.
 研磨パッド2の表面性状の測定が終了して、ドレッシング条件が決定されると、制御部23は、回動機構60のピストン62を上昇させる。これにより、回動ブロック56および支持アーム50が表面性状測定装置30を上方に移動させる方向に回動し、表面性状測定装置30が研磨パッド2から離間する(図11参照)。このように、制御部23は、回動機構60を動作させることにより、表面性状測定装置30を図10に示す測定位置から図11に示す待避位置に移動させる。研磨パッド2の表面性状を再度測定するときは、制御部23は、回動機構60を動作させることにより、表面性状測定装置30を図11に示す待避位置から図10に示す測定位置に移動させる。 When the measurement of the surface property of the polishing pad 2 is completed and the dressing conditions are determined, the control unit 23 raises the piston 62 of the rotation mechanism 60. Thereby, the rotation block 56 and the support arm 50 are rotated in the direction in which the surface texture measuring device 30 is moved upward, and the surface texture measuring device 30 is separated from the polishing pad 2 (see FIG. 11). In this way, the control unit 23 moves the surface texture measuring device 30 from the measurement position shown in FIG. 10 to the retracted position shown in FIG. 11 by operating the rotation mechanism 60. When measuring the surface property of the polishing pad 2 again, the control unit 23 moves the surface property measuring device 30 from the retracted position shown in FIG. 11 to the measuring position shown in FIG. 10 by operating the rotation mechanism 60. .
 図12は、回動機構の別の例を示す模式図である。図12に示す回動機構60は、回転軸58に連結されたモータ59を有しており、モータ59は、制御部23に電気的に連結されている。モータ59は、研磨装置のフレーム48から延びる台49に支持されている。本実施形態では、回転軸58は、回動ブロック56に固定されている。例えば、回転軸58は、図示しないキーを有しており、回動ブロック56の凸部56aには、該キーが係合するキー溝が形成されている。回転軸58のキーを回動ブロック56のキー溝に挿入することにより、回転軸58がキーとキー溝との係合によって回動ブロック56に固定される。 FIG. 12 is a schematic diagram showing another example of the rotation mechanism. A rotation mechanism 60 shown in FIG. 12 has a motor 59 connected to a rotating shaft 58, and the motor 59 is electrically connected to the control unit 23. The motor 59 is supported by a base 49 extending from the frame 48 of the polishing apparatus. In the present embodiment, the rotation shaft 58 is fixed to the rotation block 56. For example, the rotary shaft 58 has a key (not shown), and a key groove that engages with the key is formed in the convex portion 56 a of the rotation block 56. By inserting the key of the rotating shaft 58 into the key groove of the rotating block 56, the rotating shaft 58 is fixed to the rotating block 56 by the engagement between the key and the key groove.
 制御部23は、モータ59の動作を制御することにより回転軸58を回転させ、これにより、回動ブロック56が固定ブロック55に対して回動する。回動ブロック56は、支持プレート52を介して支持アーム50および表面性状測定装置30に連結されているので、モータ59の動作により、表面性状測定装置30を待避位置(図11参照)から測定位置(図10参照)に、またはその逆に移動させることができる。 The control unit 23 controls the operation of the motor 59 to rotate the rotating shaft 58, whereby the rotating block 56 rotates with respect to the fixed block 55. Since the rotation block 56 is connected to the support arm 50 and the surface texture measuring device 30 via the support plate 52, the operation of the motor 59 moves the surface texture measuring device 30 from the retracted position (see FIG. 11) to the measurement position. (See FIG. 10) or vice versa.
 図9に示すように、回動ブロック56を、支持アーム50に支持プレート52を介して連結される第1プレート64と、固定ブロック55に回転軸58を介して連結される第2プレート65とから構成してもよい。第1プレート64は、回転ピン66を介して第2プレート65に回動自在に連結される。図9に示す実施形態では、第1プレート64は、回転ピン66を含むヒンジ機構88によって、第2プレート65に連結されている。ヒンジ機構88は、第1プレート64の上面に固定される第1ジョイント89と、第2プレート65の上面に固定される第2ジョイント90と、第1ジョイント89を第2ジョイント90に対して回動自在に連結する回転ピン66とから構成されている。 As shown in FIG. 9, the rotation block 56 includes a first plate 64 coupled to the support arm 50 via a support plate 52, and a second plate 65 coupled to the fixed block 55 via a rotation shaft 58. You may comprise. The first plate 64 is rotatably connected to the second plate 65 via a rotation pin 66. In the embodiment shown in FIG. 9, the first plate 64 is connected to the second plate 65 by a hinge mechanism 88 including a rotation pin 66. The hinge mechanism 88 includes a first joint 89 fixed to the upper surface of the first plate 64, a second joint 90 fixed to the upper surface of the second plate 65, and the first joint 89 rotating with respect to the second joint 90. The rotary pin 66 is movably connected.
 図13は、表面性状測定装置30をメンテナンス位置に移動させた状態を示す模式図である。メンテナンス位置は、研磨パッド2のメンテナンスまたは交換を行うために、表面性状測定装置30が研磨パッド2から遠く離された位置である。図13に示す例では、支持アーム50が鉛直方向に延びるように、上記ヒンジ機構88を動作させている。これにより、表面性状測定装置30が研磨パッド2から遠くに位置させられるので、研磨パッド2のメンテナンスまたは交換を容易に行うことができる。 FIG. 13 is a schematic diagram showing a state in which the surface texture measuring device 30 is moved to the maintenance position. The maintenance position is a position where the surface texture measuring device 30 is far away from the polishing pad 2 in order to perform maintenance or replacement of the polishing pad 2. In the example shown in FIG. 13, the hinge mechanism 88 is operated so that the support arm 50 extends in the vertical direction. Thereby, since the surface texture measuring apparatus 30 is positioned far from the polishing pad 2, the maintenance or replacement of the polishing pad 2 can be easily performed.
 図示はしないが、研磨装置は、表面性状測定装置30をメンテナンス位置に移動させたときに、支持アーム50の移動を阻止する固定具を有しているのが好ましい。固定具によって、メンテナンス位置に移動された支持アーム50が意図せずに転倒することが防止される。固定具の例としては、メンテナンス位置に移動された支持アーム50に係合可能なフックまたはクランプが挙げられる。 Although not shown, it is preferable that the polishing apparatus has a fixture that prevents the movement of the support arm 50 when the surface texture measuring device 30 is moved to the maintenance position. The fixing tool prevents the support arm 50 moved to the maintenance position from falling unintentionally. Examples of fixtures include hooks or clamps that are engageable with the support arm 50 moved to the maintenance position.
 本実施形態によれば、制御部23が移動ユニット53の回動機構60の動作を制御することにより、表面性状測定装置30を待避位置から測定位置に移動させ、さらに、表面性状測定装置30を用いて研磨パッド2の表面性状を自動で取得することができる。制御部23は、取得された表面性状に基づいてドレッシング条件を決定する。制御部23は、取得された表面性状に基づいて異常を発報してもよい。このように、従来必要であった表面性状測定装置の着脱作業を行う必要がなくなるので、研磨装置のスループットを向上させることができるとともに、作業者の負担を軽減させることができる。 According to the present embodiment, the control unit 23 controls the operation of the rotation mechanism 60 of the moving unit 53 to move the surface texture measuring device 30 from the retracted position to the measuring position. By using it, the surface texture of the polishing pad 2 can be automatically acquired. The controller 23 determines dressing conditions based on the acquired surface properties. The control unit 23 may issue an abnormality based on the acquired surface properties. As described above, since it is not necessary to perform the attaching / detaching operation of the surface texture measuring device which has been conventionally required, the throughput of the polishing device can be improved and the burden on the operator can be reduced.
 研磨装置は、表面性状測定装置30が測定位置に移動したときに、表面性状測定装置30の下面が研磨パッド2の表面に対して平行になるように、表面性状測定装置30の姿勢を自動で調整する姿勢調整機構を有していてもよい。 The polishing apparatus automatically positions the surface texture measuring device 30 such that the lower surface of the surface texture measuring device 30 is parallel to the surface of the polishing pad 2 when the surface texture measuring device 30 moves to the measurement position. You may have the attitude | position adjustment mechanism to adjust.
 図14Aは、一実施形態に係る姿勢調整機構の概略正面図であり、図14Bは、図14AのB-B線矢視図である。図15Aは、図14AのC-C線断面図であり、図15Bは、表面性状測定装置30が待避位置に移動されたときの、図15Aに対応する姿勢調整機構の一部の断面図である。 FIG. 14A is a schematic front view of the posture adjustment mechanism according to the embodiment, and FIG. 14B is a view taken along line BB in FIG. 14A. 15A is a cross-sectional view taken along the line CC of FIG. 14A, and FIG. 15B is a cross-sectional view of a part of the posture adjustment mechanism corresponding to FIG. 15A when the surface texture measuring device 30 is moved to the retracted position. is there.
 図14Aおよび図14Bに示すように、姿勢調整機構70は、支持アーム50に連結される支持台72と、表面性状測定装置30の上面に固定され、支持台72に形成された貫通孔を通って延びる少なくとも1つの調整ピン73とを有している。本実施形態では、4本の調整ピン73が表面性状測定装置30の上面に固定されている。支持台72は、支持アーム50の下面に直接固定されている。さらに、支持台72は、その下部にフランジ部72aを有しており、4つの貫通孔74がフランジ部72aの4角に形成されている。各調整ピン73は、支持台72のフランジ部72aに形成された各貫通孔74を通って延びている。 As shown in FIGS. 14A and 14B, the posture adjustment mechanism 70 is fixed to the support base 72 connected to the support arm 50 and the upper surface of the surface texture measuring device 30, and passes through the through hole formed in the support base 72. And at least one adjustment pin 73 extending in the direction. In the present embodiment, four adjustment pins 73 are fixed to the upper surface of the surface texture measuring device 30. The support base 72 is directly fixed to the lower surface of the support arm 50. Furthermore, the support base 72 has a flange portion 72a at the lower portion thereof, and four through holes 74 are formed at the four corners of the flange portion 72a. Each adjustment pin 73 extends through each through hole 74 formed in the flange portion 72 a of the support base 72.
 図15Aに示すように、調整ピン73は、貫通孔74の直径Dpよりも小さな直径Daを有するピン本体73aと、ピン本体73aの上部に形成されたピンヘッド73bとを有している。ピンヘッド73bは、貫通孔74よりも上方に位置している。より具体的には、ピンヘッド73bは、支持アーム50と支持台72のフランジ部72aとの間に位置している(図14A参照)。ピンヘッド73bは、貫通孔74の直径Dpよりも大きい直径Dbを有している。 As shown in FIG. 15A, the adjustment pin 73 has a pin main body 73a having a diameter Da smaller than the diameter Dp of the through hole 74, and a pin head 73b formed on the top of the pin main body 73a. The pin head 73 b is located above the through hole 74. More specifically, the pin head 73b is located between the support arm 50 and the flange portion 72a of the support base 72 (see FIG. 14A). The pin head 73 b has a diameter Db larger than the diameter Dp of the through hole 74.
 図15Bに示すように、制御部23が表面性状測定装置30を待避位置に移動させたとき、ピンヘッド73bの下面が支持台72のフランジ部72aの上面に接触し、これにより、表面性状測定装置30は、支持台72を介して支持アーム50に支持される。制御部23が表面性状測定装置30を測定位置に移動させて、表面性状測定装置30の位置決めプレート77,78を研磨パッド2の研磨面2aに接触させると、ピンヘッド73bの下面が支持台72のフランジ部72aから離間する。これにより、表面性状測定装置30は、その自重により、研磨パッド2の研磨面2aに支持される。したがって、姿勢調整機構70によって、表面性状測定装置30の姿勢がその下面を研磨パッド2の研磨面2aと平行になるように調整される。 As shown in FIG. 15B, when the control unit 23 moves the surface texture measuring device 30 to the retracted position, the lower surface of the pin head 73b comes into contact with the upper surface of the flange portion 72a of the support base 72, thereby the surface texture measuring device. 30 is supported by the support arm 50 via the support base 72. When the controller 23 moves the surface texture measuring device 30 to the measurement position and brings the positioning plates 77 and 78 of the surface texture measuring device 30 into contact with the polishing surface 2 a of the polishing pad 2, the lower surface of the pin head 73 b is on the support base 72. Separated from the flange portion 72a. Thereby, the surface texture measuring device 30 is supported on the polishing surface 2a of the polishing pad 2 by its own weight. Therefore, the posture of the surface texture measuring device 30 is adjusted by the posture adjusting mechanism 70 so that the lower surface thereof is parallel to the polishing surface 2 a of the polishing pad 2.
 さらに、図9に示すように、研磨装置は、表面性状測定装置30の水平方向の位置を支持アーム50に沿って調整する変位機構80を有していてもよい。変位機構80は、表面性状測定装置30の水平方向の位置を支持アーム50の長手方向に沿って移動させるための機構である。 Further, as shown in FIG. 9, the polishing apparatus may have a displacement mechanism 80 that adjusts the horizontal position of the surface texture measuring device 30 along the support arm 50. The displacement mechanism 80 is a mechanism for moving the position in the horizontal direction of the surface texture measuring device 30 along the longitudinal direction of the support arm 50.
 図16は、図9に示す変位機構80を模式的に示す斜視図である。図17は、図16のD-D線断面図である。図16および図17に示すように、変位機構80は、支持アーム50の長手方向に沿って延びる長穴81と、該長穴81に挿入される支持軸82とを有する。長穴81の内部には、段差部81aが形成されている。支持軸82は、表面性状測定装置30に連結される軸本体82aと、長穴81の段差部81aに接触する軸ヘッド82bとを有している。本実施形態では、支持軸82は、上記支持台72の上面に形成されたねじ孔(図示せず)にねじ込まれるボルトであり、支持台72と上記姿勢調整機構70を介して表面性状測定装置30に連結される。以下の説明では、支持軸82をボルト82と称することがあり、軸本体82aをボルト本体82aと称することがあり、軸ヘッド82bをボルトヘッド82bと称することがある。 FIG. 16 is a perspective view schematically showing the displacement mechanism 80 shown in FIG. 17 is a cross-sectional view taken along the line DD of FIG. As shown in FIGS. 16 and 17, the displacement mechanism 80 includes a long hole 81 extending along the longitudinal direction of the support arm 50 and a support shaft 82 inserted into the long hole 81. A stepped portion 81 a is formed inside the elongated hole 81. The support shaft 82 includes a shaft main body 82 a connected to the surface texture measuring device 30 and a shaft head 82 b that contacts the stepped portion 81 a of the elongated hole 81. In the present embodiment, the support shaft 82 is a bolt that is screwed into a screw hole (not shown) formed on the upper surface of the support base 72, and the surface texture measuring device via the support base 72 and the posture adjustment mechanism 70. 30. In the following description, the support shaft 82 may be referred to as a bolt 82, the shaft main body 82a may be referred to as a bolt main body 82a, and the shaft head 82b may be referred to as a bolt head 82b.
 ボルト82のボルト本体82aは、長穴81の長手方向に垂直な方向で、かつ水平方向における段差部81aの幅よりも小さな直径を有しており、ボルト82のボルトヘッド82bは、長穴81の段差部81aの幅よりも大きな直径を有している。さらに、ボルトヘッド82bの直径は、段差部81aが形成されていない長穴81の上部の幅よりも小さい。したがって、ボルト82を支持アーム50の上方から長穴81に挿入したときに、ボルト本体82aは、長穴81の段差部81aに接触することなく、長穴81を通過できる。一方で、ボルトヘッド82bは、長穴81の段差部81aに接触して、段差部81aを通過することができない。 The bolt body 82a of the bolt 82 has a diameter that is perpendicular to the longitudinal direction of the elongated hole 81 and smaller than the width of the stepped portion 81a in the horizontal direction, and the bolt head 82b of the bolt 82 has the elongated hole 81. It has a larger diameter than the width of the step portion 81a. Further, the diameter of the bolt head 82b is smaller than the width of the upper portion of the long hole 81 where the step portion 81a is not formed. Therefore, when the bolt 82 is inserted into the elongated hole 81 from above the support arm 50, the bolt body 82 a can pass through the elongated hole 81 without contacting the stepped portion 81 a of the elongated hole 81. On the other hand, the bolt head 82b cannot contact the step portion 81a of the elongated hole 81 and pass through the step portion 81a.
 表面性状測定装置30を支持アーム50に支持させるときは、支持台72を支持アーム50の下面に接触させた状態で、ボルト82を支持アーム50の上方から長穴81に挿入し、支持台72に形成されたねじ孔にねじ込む。ボルト82のボルトヘッド82bが段差部81aに接触するまで、ボルト82を支持台72のねじ孔にねじ込むことにより、表面性状測定装置30が支持台72を介して支持アーム50に連結される。ボルト82をさらに支持台72のねじ孔にねじ込むことにより、支持台72はボルト82によって支持アーム50に強固に固定され、これにより、支持台72(すなわち、表面性状測定装置30)の水平方向の位置が固定される。 When the surface texture measuring device 30 is supported by the support arm 50, the bolt 82 is inserted into the elongated hole 81 from above the support arm 50 with the support base 72 being in contact with the lower surface of the support arm 50, and the support base 72. Screw into the screw hole formed in The surface texture measuring device 30 is connected to the support arm 50 via the support base 72 by screwing the bolt 82 into the screw hole of the support base 72 until the bolt head 82b of the bolt 82 contacts the stepped portion 81a. By further screwing the bolt 82 into the screw hole of the support base 72, the support base 72 is firmly fixed to the support arm 50 by the bolt 82, and thereby the horizontal direction of the support base 72 (that is, the surface texture measuring device 30). The position is fixed.
 表面性状測定装置30の水平方向の位置を調整(すなわち、変更)するときは、ボルト82を緩めて、支持台72(すなわち、表面性状測定装置30)を長穴81に沿って所望の位置まで移動させる。その後で、再度ボルト82を支持台72のねじ孔にねじ込み、表面性状測定装置30の水平方向の位置を固定する。 When adjusting (that is, changing) the horizontal position of the surface texture measuring device 30, the bolt 82 is loosened, and the support base 72 (that is, the surface texture measuring device 30) is moved to the desired position along the elongated hole 81. Move. Thereafter, the bolt 82 is screwed into the screw hole of the support base 72 again, and the horizontal position of the surface texture measuring device 30 is fixed.
 本実施形態によれば、変位機構80によって、表面性状測定装置30の水平方向の位置を調整することができるので、表面性状測定装置30が研磨パッド2の任意の位置(すなわち、所望の位置)における表面性状を測定することができる。 According to the present embodiment, since the position of the surface texture measuring device 30 in the horizontal direction can be adjusted by the displacement mechanism 80, the surface texture measuring device 30 can be at an arbitrary position (that is, a desired position) of the polishing pad 2. The surface property can be measured.
 図18は、変位機構80の別の実施形態を示す模式図である。特に説明しない本実施形態の構成は、図16および図17に示される変位機構80の構成と同様であるため、その重複する説明を省略する。 FIG. 18 is a schematic diagram showing another embodiment of the displacement mechanism 80. The configuration of the present embodiment that is not specifically described is the same as the configuration of the displacement mechanism 80 shown in FIGS. 16 and 17, and thus redundant description thereof is omitted.
 図18に示す変位機構80では、支持台72の位置は支持軸(ボルト)82によって支持アーム50に固定されていない。より具体的には、支持軸82の軸ヘッド82bは、段差部81aに接触しているだけであり、長穴81は、支持台72(すなわち、表面性状測定装置30)を支持アーム50に沿って移動させるための案内穴として機能する。さらに、変位機構80は、表面性状測定装置30に連結されるピストン85と、該ピストン85を進退自在に収容するシリンダ86とを有するピストンシリンダ機構83を備えている。本実施形態では、ピストン85の先端が支持台72の側面に接続されており、シリンダ86は、支持アーム50の下面に固定されている。さらに、シリンダ86は、図示しない流体供給ラインに接続されている。 In the displacement mechanism 80 shown in FIG. 18, the position of the support base 72 is not fixed to the support arm 50 by a support shaft (bolt) 82. More specifically, the shaft head 82 b of the support shaft 82 is only in contact with the stepped portion 81 a, and the long hole 81 extends along the support arm 50 along the support base 72 (that is, the surface texture measuring device 30). It functions as a guide hole for moving. Furthermore, the displacement mechanism 80 includes a piston cylinder mechanism 83 having a piston 85 connected to the surface texture measuring device 30 and a cylinder 86 that accommodates the piston 85 so as to be able to advance and retract. In the present embodiment, the tip of the piston 85 is connected to the side surface of the support base 72, and the cylinder 86 is fixed to the lower surface of the support arm 50. Further, the cylinder 86 is connected to a fluid supply line (not shown).
 流体供給ラインからシリンダ86に供給される加圧流体(例えば、加圧窒素または加圧空気)によって、ピストン85を支持アーム50に沿って進退させることができる。ピストン85を支持アーム50に沿って進退させることにより、該ピストン85に支持台72を介して連結される表面性状測定装置30の水平方向の位置を支持アーム50に沿って調整することができる。制御部23(図1参照)は、シリンダ86に供給される加圧流体の供給を制御して、表面性状測定装置30の水平方向の位置を自動で変更する。このように、本実施形態に係る変位機構80によれば、表面性状測定装置30の水平方向の位置を自動で調整することができる。 The piston 85 can be advanced and retracted along the support arm 50 by a pressurized fluid (for example, pressurized nitrogen or pressurized air) supplied from the fluid supply line to the cylinder 86. By moving the piston 85 along the support arm 50, the horizontal position of the surface texture measuring device 30 connected to the piston 85 via the support base 72 can be adjusted along the support arm 50. The control unit 23 (see FIG. 1) controls the supply of the pressurized fluid supplied to the cylinder 86 to automatically change the horizontal position of the surface texture measuring device 30. Thus, according to the displacement mechanism 80 which concerns on this embodiment, the position of the horizontal direction of the surface texture measuring apparatus 30 can be adjusted automatically.
 図示はしないが、変位機構80は、ピストンシリンダ機構83の代わりに、表面性状測定装置30の水平方向の位置を変更するためのボールねじ機構を有していてもよい。この場合でも、制御部23がボールねじ機構の動作を制御することにより、表面性状測定装置30の水平方向の位置を自動で調整することができる。 Although not shown, the displacement mechanism 80 may have a ball screw mechanism for changing the horizontal position of the surface texture measuring device 30 instead of the piston cylinder mechanism 83. Even in this case, the controller 23 can automatically adjust the horizontal position of the surface texture measuring device 30 by controlling the operation of the ball screw mechanism.
 制御部23は、基板Wの研磨中、または研磨パッド2のドレッシング中に、表面性状測定装置30を測定位置(図10参照)に移動させて、回転する研磨パッド2の表面性状を測定してもよい。上述したように、表面性状測定装置30は、ケーシング43の傾斜面44a,44bにそれぞれ配置されたフィルター47a,47b(図7B参照)を有している。基板Wの研磨中またはドレッシング中は、研磨パッド2上に研磨液(スラリー)またはドレッシング液などの流体が供給されるが、フィルター47a,47bによって、この流体がケーシング43の内部に浸入することが防止される。したがって、フィルター47a,47bによって、光源31、受光部33などの測定構造が流体によって汚染されることを防止することができる。さらに、表面性状測定装置30が研磨パッド2の研磨面2aに対して傾斜して配置されたノズル45(図8参照)を有している場合は、ノズル45から噴射される加圧気体によって、研磨面2a上の流体が切り欠き44から表面性状測定装置30の外部に吹き飛ばされる。その結果、基板Wの研磨中またはドレッシング中であっても、フィルター47a,47bに流体が付着することをより効果的に防止できるとともに、正確な研磨パッド2の表面性状を測定することができる。 The controller 23 moves the surface property measuring device 30 to the measurement position (see FIG. 10) during the polishing of the substrate W or the dressing of the polishing pad 2, and measures the surface property of the rotating polishing pad 2. Also good. As described above, the surface texture measuring device 30 has the filters 47a and 47b (see FIG. 7B) disposed on the inclined surfaces 44a and 44b of the casing 43, respectively. During polishing or dressing of the substrate W, a fluid such as a polishing liquid (slurry) or a dressing liquid is supplied onto the polishing pad 2, and this fluid may enter the inside of the casing 43 by the filters 47 a and 47 b. Is prevented. Therefore, the filters 47a and 47b can prevent the measurement structure such as the light source 31 and the light receiving unit 33 from being contaminated by the fluid. Furthermore, when the surface texture measuring device 30 has a nozzle 45 (see FIG. 8) that is disposed to be inclined with respect to the polishing surface 2a of the polishing pad 2, by the pressurized gas injected from the nozzle 45, The fluid on the polishing surface 2 a is blown off from the notch 44 to the outside of the surface texture measuring device 30. As a result, even when the substrate W is being polished or dressed, it is possible to more effectively prevent the fluid from adhering to the filters 47a and 47b and to measure the accurate surface properties of the polishing pad 2.
 図19は、図5に示す撮像装置39の内部構造(測定構造)の一例を示す模式図である。図19には、撮像装置39を収容する表面性状測定装置30のケーシング43の一部も描かれている。図19に示すケーシング43の一部は、撮像装置39を収容するケーシング43の下部に形成された切り欠き44の変形例を示している。 FIG. 19 is a schematic diagram showing an example of the internal structure (measurement structure) of the imaging device 39 shown in FIG. FIG. 19 also illustrates a part of the casing 43 of the surface texture measuring device 30 that houses the imaging device 39. A part of the casing 43 shown in FIG. 19 shows a modification of the notch 44 formed in the lower part of the casing 43 that houses the imaging device 39.
 上述したように、撮像装置39は、表面性状測定装置30のケーシング43に収容され、研磨パッド2の表面性状の画像情報を取得する。図19に示す撮像装置39は、撮影面39aを有するイメージセンサと、該撮影面39aに研磨パッド2の表面画像を結像させるレンズ機構24と、アパーチャ29と、を有している。レンズ機構24は、レンズ25と、研磨パッド2の表面と撮影面39aとの間でレンズ25を移動させるフォーカス機構(図示せず)と、を備えている。フォーカス機構によって、レンズ25を移動させることにより、撮影面39aに研磨パッド2の表面の画像を結像させる。 As described above, the imaging device 39 is accommodated in the casing 43 of the surface texture measuring device 30 and acquires image information on the surface texture of the polishing pad 2. An imaging apparatus 39 shown in FIG. 19 includes an image sensor having a photographing surface 39a, a lens mechanism 24 that forms a surface image of the polishing pad 2 on the photographing surface 39a, and an aperture 29. The lens mechanism 24 includes a lens 25 and a focus mechanism (not shown) that moves the lens 25 between the surface of the polishing pad 2 and the imaging surface 39a. By moving the lens 25 by the focus mechanism, an image of the surface of the polishing pad 2 is formed on the imaging surface 39a.
 本実施形態では、アパーチャ29は、撮影面39aとレンズ25との間に配置されている。アパーチャ29は、撮像装置39の視野サイズを調整するために、およびバックグランドからのノイズを除去するために用いられる。 In the present embodiment, the aperture 29 is disposed between the photographing surface 39a and the lens 25. The aperture 29 is used to adjust the visual field size of the imaging device 39 and to remove noise from the background.
 図示はしないが、図3および図4に示される表面性状測定装置30に、アパーチャ29を設けてもよい。この場合、アパーチャ29は、投光部32と受光部33の間に形成された光路上で研磨面2aと受光部33との間に配置される。アパーチャ29は、研磨パッド2から反射するレーザ光の回折幅(回折光の次数)を調整するために、およびバックグランドからのノイズを除去するために用いられる。 Although not shown, an aperture 29 may be provided in the surface texture measuring device 30 shown in FIGS. In this case, the aperture 29 is disposed between the polishing surface 2 a and the light receiving unit 33 on the optical path formed between the light projecting unit 32 and the light receiving unit 33. The aperture 29 is used to adjust the diffraction width (the order of the diffracted light) of the laser light reflected from the polishing pad 2 and to remove noise from the background.
 本実施形態では、表面性状測定装置30のケーシング43の下部に形成された切り欠き44は、2つの対向する傾斜面44a,44bと、各傾斜面44a,44bから上方向に延びる側面44d,44eと、側面44d,44eを接続する接続面44cと、によって区画される形状を有している。図示した例では、側面44d,44eは、垂直方向に延びている。以下の説明では、側面44d,44eを垂直面44d,44eとそれぞれ称する。 In this embodiment, the notch 44 formed in the lower part of the casing 43 of the surface texture measuring device 30 includes two opposing inclined surfaces 44a and 44b and side surfaces 44d and 44e extending upward from the inclined surfaces 44a and 44b. And a connection surface 44c that connects the side surfaces 44d and 44e. In the illustrated example, the side surfaces 44d and 44e extend in the vertical direction. In the following description, the side surfaces 44d and 44e are referred to as vertical surfaces 44d and 44e, respectively.
 撮像装置39が撮影する研磨パッド2の研磨面2a上に研磨液またはドレッシング液などの液体があると、撮像装置39は、正確な研磨パッド2の表面性状の画像情報を取得することができない。そこで、上述したノズル45から加圧気体を噴射して、撮像装置39によって撮影される研磨面2a上の液体を除去する。 If there is a liquid such as a polishing liquid or a dressing liquid on the polishing surface 2a of the polishing pad 2 photographed by the imaging device 39, the imaging device 39 cannot acquire accurate image information of the surface properties of the polishing pad 2. Therefore, pressurized gas is ejected from the nozzle 45 described above to remove the liquid on the polishing surface 2 a photographed by the imaging device 39.
 本実施形態では、ノズル45は、一方の傾斜面44aから突出している。一方の垂直面44dには、開口27が形成されており、他方の垂直面44eには、別の開口28が形成されている。開口27,28は、研磨面2aとレンズ25との間に位置している。開口27は、気体(例えば、CDA(クリーンドライエア)、ドライエア、窒素など)を開口28に向けて噴射するように構成されており、開口28は、開口27から噴射した気体が流れ込むように構成されている。このような構成によって、開口27から開口28に向かう気体のカーテンを形成することができる。開口27と開口28との間に形成された気体のカーテンによって、ノズル45から噴射させた加圧気体によって飛び散った液体がレンズ25に到達することが防止される。したがって、撮像装置39は、研磨パッド2の研磨面2aの正確な画像情報を取得することができる。 In the present embodiment, the nozzle 45 protrudes from one inclined surface 44a. An opening 27 is formed on one vertical surface 44d, and another opening 28 is formed on the other vertical surface 44e. The openings 27 and 28 are located between the polishing surface 2 a and the lens 25. The opening 27 is configured to inject gas (for example, CDA (clean dry air), dry air, nitrogen, or the like) toward the opening 28, and the opening 28 is configured to allow the gas injected from the opening 27 to flow in. ing. With such a configuration, a gas curtain from the opening 27 toward the opening 28 can be formed. The gas curtain formed between the opening 27 and the opening 28 prevents the liquid scattered by the pressurized gas ejected from the nozzle 45 from reaching the lens 25. Therefore, the imaging device 39 can acquire accurate image information of the polishing surface 2a of the polishing pad 2.
 図19に示す例では、開口27は、図19の紙面と平行で、かつノズル45を通る鉛直面上に位置し、開口27からの気体およびノズル45からの加圧気体は、図19の紙面と平行な方向に噴射される。しかしながら、開口27は、図19の紙面と平行で、かつノズル45を通る鉛直面から水平方向にずれていてもよい。さらに、開口27からの気体および/またはノズル45からの加圧気体は、図19の紙面と平行な方向とは異なる方向に噴射されてもよい。 In the example shown in FIG. 19, the opening 27 is parallel to the paper surface of FIG. 19 and is located on a vertical plane passing through the nozzle 45, and the gas from the opening 27 and the pressurized gas from the nozzle 45 are the paper surface of FIG. 19. It is injected in the direction parallel to. However, the opening 27 may be shifted in the horizontal direction from a vertical plane passing through the nozzle 45 in parallel with the paper surface of FIG. Furthermore, the gas from the opening 27 and / or the pressurized gas from the nozzle 45 may be injected in a direction different from the direction parallel to the paper surface of FIG.
 図示はしないが、ノズル45と対向する傾斜面44bの一部(例えば、下部)を曲面状に形成してもよい。曲面状に形成された傾斜面44bの一部の表面は、ノズル45から噴射された加圧気体によって研磨面2aから吹き飛ばされた液体を、表面性状測定装置30のケーシング43の外部に円滑に排出するための案内面として機能する。あるいは、ノズル45と対向する傾斜面44bの下部に、液体をケーシング43の外部に排出しやすくするための切り欠きを設けてもよい。 Although not shown, a part (for example, the lower part) of the inclined surface 44b facing the nozzle 45 may be formed in a curved surface shape. A part of the surface of the inclined surface 44b formed into a curved surface smoothly discharges the liquid blown off from the polishing surface 2a by the pressurized gas injected from the nozzle 45 to the outside of the casing 43 of the surface texture measuring device 30. It functions as a guide surface. Or you may provide the notch for making it easy to discharge | emit a liquid to the exterior of the casing 43 in the lower part of the inclined surface 44b facing the nozzle 45. FIG.
 図20は、表面性状測定装置30の別の実施形態を示す模式図である。特に説明しない本実施形態の構成は、上述した実施形態に係る表面性状測定装置30の構成と同様であるため、重複する説明を省略する。 FIG. 20 is a schematic diagram showing another embodiment of the surface texture measuring device 30. The configuration of the present embodiment that is not particularly described is the same as the configuration of the surface texture measuring device 30 according to the above-described embodiment, and thus redundant description is omitted.
 図20に示すように、表面性状測定装置30は、ケーシング43の側面に連結されたバリア69を備える。本実施形態では、バリア69は、位置決め板78の側面に取り付けられている。バリア69の下面は、表面性状測定装置30が測定位置(図10参照)に移動されたときに、研磨パッド2の研磨面2aに接触する。バリア69は、研磨パッド2の研磨面2a上に供給された研磨液またはドレッシング液などの流体が表面性状測定装置30に到達することを阻害するためのフェンスとして機能する。本実施形態に係るバリア69は、円弧状形状を有し、研磨面2a上を表面性状測定装置30に向かって流れてきた流体をバリア69の円弧形状に沿って案内することにより、流体が表面性状測定装置30に到達することを阻害する。図示はしないが、バリア69を支持アーム50に取り付けてもよい。 As shown in FIG. 20, the surface texture measuring device 30 includes a barrier 69 connected to the side surface of the casing 43. In the present embodiment, the barrier 69 is attached to the side surface of the positioning plate 78. The lower surface of the barrier 69 contacts the polishing surface 2a of the polishing pad 2 when the surface texture measuring device 30 is moved to the measurement position (see FIG. 10). The barrier 69 functions as a fence for preventing fluid such as polishing liquid or dressing liquid supplied on the polishing surface 2 a of the polishing pad 2 from reaching the surface property measuring device 30. The barrier 69 according to the present embodiment has an arc shape and guides the fluid flowing on the polishing surface 2a toward the surface texture measuring device 30 along the arc shape of the barrier 69, so that the fluid is on the surface. Reaching the property measuring device 30 is inhibited. Although not shown, the barrier 69 may be attached to the support arm 50.
 図21は、さらに別の実施形態に係る研磨装置を示す模式図である。図22は、図21に示すドレッサーを拡大して示す模式図であり、図23は、図21に示すドレッサーが研磨パッド上を揺動する様子を模式的に示す平面図である。特に説明しない本実施形態の構成は、上述した実施形態の構成と同様であり、同一または相当する部材には同一の符号を付して、その重複する説明を省略する。 FIG. 21 is a schematic diagram showing a polishing apparatus according to still another embodiment. FIG. 22 is an enlarged schematic view showing the dresser shown in FIG. 21, and FIG. 23 is a plan view schematically showing how the dresser shown in FIG. 21 swings on the polishing pad. The configuration of the present embodiment that is not particularly described is the same as the configuration of the above-described embodiment, and the same or corresponding members are denoted by the same reference numerals, and redundant description thereof is omitted.
 図21に示す研磨装置は、図1に示す研磨装置と同様に、研磨パッド2を貼付した研磨テーブル1やキャリア10等からなる研磨部およびドレッシング装置20を備えている。図21に示すドレッシング装置20は、ドレッサーアーム21と、ドレッサーアーム21に回転自在に取り付けられたドレッサー22と、ドレッサー22に連結されたドレッサーシャフト91と、ドレッサーシャフト91の上端に設けられたエアシリンダ93と、を備えている。ドレッサーシャフト91は、ドレッサーアーム21に回転自在に支持されており、ドレッサーアーム21内に配置されたモータ(図示せず)によって回転する。このドレッサーシャフト91の回転により、ドレッサー22がその軸心まわりに回転する。本実施形態では、ドレッサー22の下部に設けられたドレッシング部材22aはリング形状を有しているが、ドレッシング部材22aは、円形状を有していてもよい。 The polishing apparatus shown in FIG. 21 includes a polishing unit and a dressing apparatus 20 including the polishing table 1, the carrier 10 and the like to which the polishing pad 2 is attached, like the polishing apparatus shown in FIG. A dressing device 20 shown in FIG. 21 includes a dresser arm 21, a dresser 22 rotatably attached to the dresser arm 21, a dresser shaft 91 connected to the dresser 22, and an air cylinder provided at the upper end of the dresser shaft 91. 93. The dresser shaft 91 is rotatably supported by the dresser arm 21 and is rotated by a motor (not shown) disposed in the dresser arm 21. As the dresser shaft 91 rotates, the dresser 22 rotates about its axis. In this embodiment, the dressing member 22a provided in the lower part of the dresser 22 has a ring shape, but the dressing member 22a may have a circular shape.
 エアシリンダ93は、図示しない気体供給源に連結されており、研磨パッド22へのドレッシング荷重をドレッサー22に付与する装置である。ドレッシング荷重は、エアシリンダ93に供給される空気圧により調整することができる。さらに、エアシリンダ93によって、ドレッサー22を研磨パッド2の研磨面2aから離間させることができる。エアシリンダ93は、ドレッサーシャフト91およびドレッサー22をドレッサーアーム21に対して上下動させる昇降アクチュエータとして機能する。一実施形態では、ボールねじ機構をドレッサーシャフト91およびドレッサー22をドレッサーアーム21に対して上下動させる昇降アクチュエータとして用いてもよい。 The air cylinder 93 is connected to a gas supply source (not shown), and is a device that applies a dressing load to the polishing pad 22 to the dresser 22. The dressing load can be adjusted by the air pressure supplied to the air cylinder 93. Further, the dresser 22 can be separated from the polishing surface 2 a of the polishing pad 2 by the air cylinder 93. The air cylinder 93 functions as a lift actuator that moves the dresser shaft 91 and the dresser 22 up and down relative to the dresser arm 21. In one embodiment, the ball screw mechanism may be used as a lift actuator that moves the dresser shaft 91 and the dresser 22 up and down relative to the dresser arm 21.
 さらに、ドレッシング装置20は、ドレッサーアーム21に連結された支軸98と、支軸98を回転させるモータ(回転アクチュエータ)96とを有している。ドレッサーアーム21は、モータ96に駆動されて、支軸98を中心として揺動するように構成されている。 Furthermore, the dressing apparatus 20 includes a support shaft 98 connected to the dresser arm 21 and a motor (rotation actuator) 96 that rotates the support shaft 98. The dresser arm 21 is driven by a motor 96 and is configured to swing around a support shaft 98.
 研磨パッド2の研磨面2aのドレッシングは次のようにして行われる。研磨テーブル1および研磨パッド2を研磨テーブル回転モータ(図示せず)により回転させ、図示しないドレッシング液供給ノズルからドレッシング液(例えば、純水)を研磨パッド2の研磨面2aに供給する。さらに、ドレッサー22をその軸心周りに回転させる。ドレッサー22はエアシリンダ93により研磨面2aに押圧され、ドレッシング部材22aの下面を研磨面2aに摺接させる。この状態で、ドレッサーアーム21を揺動させ、研磨パッド2上のドレッサー22を研磨パッド2の略半径方向に移動させる。図23に示すように、研磨テーブル1およびその上の研磨パッド2は、原点(研磨パッド2の中心点)Oを中心として回転する。一方で、ドレッサー22は、図21に示す支軸98の中心位置に相当する点Cを中心として所定の角度だけ回転する(すなわち揺動する)。研磨パッド2は、回転するドレッサー22により削り取られ、これにより研磨面2aのドレッシングが行われる。 The dressing of the polishing surface 2a of the polishing pad 2 is performed as follows. The polishing table 1 and the polishing pad 2 are rotated by a polishing table rotating motor (not shown), and a dressing liquid (for example, pure water) is supplied to the polishing surface 2a of the polishing pad 2 from a dressing liquid supply nozzle (not shown). Further, the dresser 22 is rotated around its axis. The dresser 22 is pressed against the polishing surface 2a by the air cylinder 93 to bring the lower surface of the dressing member 22a into sliding contact with the polishing surface 2a. In this state, the dresser arm 21 is swung to move the dresser 22 on the polishing pad 2 in the substantially radial direction of the polishing pad 2. As shown in FIG. 23, the polishing table 1 and the polishing pad 2 thereon are rotated about the origin (the center point of the polishing pad 2) O. On the other hand, the dresser 22 rotates (i.e., swings) by a predetermined angle around a point C corresponding to the center position of the support shaft 98 shown in FIG. The polishing pad 2 is scraped off by a rotating dresser 22, whereby dressing of the polishing surface 2 a is performed.
 図21および図22に示すように、研磨装置は、ドレッサー22に取り付けられた表面性状測定装置30を有している。図22に示す表面性状測定装置30は、ドレッサー22の外周面に取り付けられたサブアーム95の先端に固定されている。サブアーム95は、略L字状の断面形状を有しており、表面性状測定装置30は、サブアーム95の先端に固定されている。サブアーム95の末端は、ドレッサー22の外周面に固定される。本実施形態では、表面性状測定装置30を支持する支持アームは、ドレッサーアーム21であり、表面性状測定装置30は、サブアーム95、ドレッサー22、およびドレッサーシャフト91を介してドレッサーアーム21に支持される。 21 and FIG. 22, the polishing apparatus has a surface texture measuring device 30 attached to the dresser 22. The surface texture measuring device 30 shown in FIG. 22 is fixed to the tip of a sub arm 95 attached to the outer peripheral surface of the dresser 22. The sub arm 95 has a substantially L-shaped cross section, and the surface texture measuring device 30 is fixed to the tip of the sub arm 95. The end of the sub arm 95 is fixed to the outer peripheral surface of the dresser 22. In the present embodiment, the support arm that supports the surface texture measuring device 30 is the dresser arm 21, and the surface texture measuring device 30 is supported by the dresser arm 21 via the sub arm 95, the dresser 22, and the dresser shaft 91. .
 図22に示す表面性状測定装置30は、図3または図4を参照して説明された内部構造(測定構造)を有していてもよいし、図5および図19を参照して説明された撮像装置39を有していてもよい。以下の説明では、図3または図4を参照して説明された内部構造を、単に「上記測定構造」と称することがある。さらに、表面性状測定装置30は、上記測定構造または撮像装置39を収容するハウジング43を有していてもよい。このハウジング43の形状は任意であるが、例えば、図7Aおよび図7Bを参照して説明されたハウジング43であってもよい。あるいは、ハウジング43は、円筒形状を有していてもよい。 The surface texture measuring device 30 shown in FIG. 22 may have the internal structure (measurement structure) described with reference to FIG. 3 or FIG. 4, or described with reference to FIG. 5 and FIG. An imaging device 39 may be included. In the following description, the internal structure described with reference to FIG. 3 or 4 may be simply referred to as “the measurement structure”. Furthermore, the surface texture measuring device 30 may have a housing 43 that houses the measurement structure or the imaging device 39. The shape of the housing 43 is arbitrary, but may be the housing 43 described with reference to FIGS. 7A and 7B, for example. Alternatively, the housing 43 may have a cylindrical shape.
 一実施形態では、サブアーム95の内部に表面性状測定装置30を収容してもよい。この場合、上記測定構造または撮像装置39がサブアーム95内に配置され、サブアーム95の先端には、開口が形成される。表面性状測定装置30が上記測定構造を有する場合は、投光部32から投光されたレーザ光は、サブアーム95に形成された開口を介して研磨パッド2の表面に到達し、研磨パッド2の表面で反射した反射光は、サブアーム95に形成された開口を介して受光部33に受光される。表面性状測定装置30が撮像装置39を有する場合は、撮像装置39は、サブアーム95に形成された開口を介して研磨パッド2の表面の画像情報を取得する。 In one embodiment, the surface texture measuring device 30 may be accommodated in the sub arm 95. In this case, the measurement structure or the imaging device 39 is disposed in the sub arm 95, and an opening is formed at the tip of the sub arm 95. When the surface texture measuring device 30 has the above measurement structure, the laser light projected from the light projecting unit 32 reaches the surface of the polishing pad 2 through the opening formed in the sub arm 95, and The reflected light reflected from the surface is received by the light receiving unit 33 through an opening formed in the sub arm 95. When the surface texture measuring device 30 includes the imaging device 39, the imaging device 39 acquires image information on the surface of the polishing pad 2 through the opening formed in the sub arm 95.
 さらに、表面性状測定装置30は、図8を参照して説明されたノズル45を有していてもよい。上述したように、ノズル45は、加圧気体(例えば、加圧窒素、または加圧空気)を研磨パッド2の研磨面2aに吹き付けるように構成されており、ノズル45から吹き付けられた加圧気体によって、研磨面2a上の研磨液またはドレッシング液などの液体が除去される。図示はしないが、ノズル45に加圧気体を供給するための加圧気体供給ラインは、例えば、ロータリージョイントなどを介してドレッサーシャフト91に接続され、ドレッサーシャフト91、ドレッサー22、およびサブアーム95の内部に形成された流路を介して表面性状測定装置30に供給される。 Furthermore, the surface texture measuring device 30 may have the nozzle 45 described with reference to FIG. As described above, the nozzle 45 is configured to blow a pressurized gas (for example, pressurized nitrogen or pressurized air) onto the polishing surface 2 a of the polishing pad 2, and the pressurized gas blown from the nozzle 45. Thus, the liquid such as the polishing liquid or the dressing liquid on the polishing surface 2a is removed. Although not shown, a pressurized gas supply line for supplying pressurized gas to the nozzle 45 is connected to the dresser shaft 91 via, for example, a rotary joint, and the inside of the dresser shaft 91, the dresser 22, and the sub arm 95. Is supplied to the surface texture measuring device 30 through the flow path formed in the above.
 図22に示すように、表面性状測定装置30は、ドレッサー22のドレッシング部材22aを研磨パッド2の研磨面2aに接触させたときに、該研磨面2aから離間している。本実施形態では、ドレッサー22のドレッシング部材22aが研磨パッド2の研磨面2aに接触したときの表面性状測定装置30の位置が上記測定位置である。表面性状測定装置30は、サブアーム95の先端に固定されているので、測定位置にある表面性状測定装置30と研磨パッド2の研磨面2aとの間の距離は常に一定である。したがって、表面性状測定装置30は、研磨パッド2の研磨面2aの正確なパッド表面性状を測定することができる。 As shown in FIG. 22, the surface texture measuring device 30 is separated from the polishing surface 2 a when the dressing member 22 a of the dresser 22 is brought into contact with the polishing surface 2 a of the polishing pad 2. In the present embodiment, the position of the surface texture measuring device 30 when the dressing member 22a of the dresser 22 contacts the polishing surface 2a of the polishing pad 2 is the measurement position. Since the surface texture measuring device 30 is fixed to the tip of the sub arm 95, the distance between the surface texture measuring device 30 at the measurement position and the polishing surface 2a of the polishing pad 2 is always constant. Therefore, the surface texture measuring device 30 can measure the accurate pad surface texture of the polishing surface 2a of the polishing pad 2.
 上述したように、エアシリンダ(昇降アクチュエータ)93によって、ドレッサー22を研磨パッド2の研磨面2aの上方に移動させることができる。本実施形態では、ドレッサー22のドレッシング部材22aが研磨パッド2の研磨面2aから上方に離間した位置が待避位置であり、表面性状測定装置30を測定位置から待避位置に移動させる移動機構は、エアシリンダ93である。一実施形態では、エアシリンダ93によって、ドレッサー22と表面性状測定装置30を研磨パッド2の研磨面2aから上方に移動させた後で、ドレッサー22と表面性状測定装置30をモータ(回転アクチュエータ)96によって、研磨パッド2の側方に移動させてもよい(図23で二点鎖線で示されるドレッサー22参照)。この場合、表面性状測定装置30の待避位置は、研磨パッド2の側方の位置であり、移動機構は、エアシリンダ93と、モータ96との組み合わせから構成される。 As described above, the air cylinder (elevating actuator) 93 can move the dresser 22 above the polishing surface 2a of the polishing pad 2. In this embodiment, the position where the dressing member 22a of the dresser 22 is spaced upward from the polishing surface 2a of the polishing pad 2 is the retreat position, and the moving mechanism for moving the surface texture measuring device 30 from the measurement position to the retreat position is an air This is a cylinder 93. In one embodiment, after the dresser 22 and the surface texture measuring device 30 are moved upward from the polishing surface 2 a of the polishing pad 2 by the air cylinder 93, the dresser 22 and the surface texture measuring device 30 are moved to a motor (rotary actuator) 96. May be moved to the side of the polishing pad 2 (see the dresser 22 shown by a two-dot chain line in FIG. 23). In this case, the retracted position of the surface texture measuring device 30 is a position on the side of the polishing pad 2, and the moving mechanism is composed of a combination of an air cylinder 93 and a motor 96.
 図示はしないが、ドレッサー22のドレッシング部材22aを研磨パッド2の研磨面2aに接触させたときに、表面性状測定装置30を研磨面2aに接触させてもよい。この場合、表面性状測定装置30が研磨パッド2に接触している位置が表面性状測定装置30の測定位置である。表面性状測定装置30は、図14Aおよび図14Bを参照して説明された姿勢調整機構70を介してサブアーム95に連結されるのが好ましい。姿勢調整機構70によって、研磨面2aに接触する表面性状測定装置30の姿勢がその下面を研磨パッド2の研磨面2aと平行になるように調整される。この場合の表面性状測定装置30の待避位置は、表面性状測定装置30が研磨パッド2の研磨面2aから離間した位置か、またはドレッサー22と表面性状測定装置30が研磨パッド2の側方に移動した位置である。 Although not shown, when the dressing member 22a of the dresser 22 is brought into contact with the polishing surface 2a of the polishing pad 2, the surface texture measuring device 30 may be brought into contact with the polishing surface 2a. In this case, the position where the surface texture measuring device 30 is in contact with the polishing pad 2 is the measurement position of the surface texture measuring device 30. The surface texture measuring device 30 is preferably connected to the sub arm 95 via the posture adjusting mechanism 70 described with reference to FIGS. 14A and 14B. The posture adjustment mechanism 70 adjusts the posture of the surface texture measuring device 30 in contact with the polishing surface 2 a so that the lower surface thereof is parallel to the polishing surface 2 a of the polishing pad 2. In this case, the retracted position of the surface texture measuring device 30 is a position where the surface texture measuring device 30 is separated from the polishing surface 2a of the polishing pad 2, or the dresser 22 and the surface texture measuring device 30 move to the side of the polishing pad 2. Is the position.
 表面性状測定装置30によるパッド表面性状の測定は、基板Wの研磨中、または研磨パッド2のドレッシング中に、表面性状測定装置30を測定位置に移動させて実行されてもよい。この場合、表面性状測定装置30は、ドレッサー22とともに回転しながら、研磨パッド2の表面性状を測定する。 The measurement of the pad surface texture by the surface texture measuring device 30 may be performed by moving the surface texture measuring device 30 to the measurement position during polishing of the substrate W or during dressing of the polishing pad 2. In this case, the surface texture measuring device 30 measures the surface texture of the polishing pad 2 while rotating together with the dresser 22.
 図21に示すように、研磨装置は、ドレッサーシャフト91を介してドレッサー22の回転角度を測定可能なロータリエンコーダ92を備えている。ロータリエンコーダ92によって、回転する表面性状測定装置30の研磨パッド2に対する相対位置を検出することができる。より具体的には、研磨パッド2のドレッシング中、表面性状測定装置30はドレッサー22とともに回転している。この場合、表面性状測定装置30は、ドレッサー22によってドレッシングされる前の研磨パッド2の上方と、ドレッサー22によってドレッシングされた後の研磨パッド2の上方を交互に通過する。表面性状測定装置30は、所定の時間間隔で、研磨パッド2の表面性状を測定しており、研磨パッド2の表面性状を測定するたびにその測定値を制御部23(図1参照)に送信している。 As shown in FIG. 21, the polishing apparatus includes a rotary encoder 92 that can measure the rotation angle of the dresser 22 via a dresser shaft 91. The rotary encoder 92 can detect the relative position of the rotating surface texture measuring device 30 with respect to the polishing pad 2. More specifically, the surface texture measuring device 30 rotates with the dresser 22 during dressing of the polishing pad 2. In this case, the surface texture measuring device 30 alternately passes above the polishing pad 2 before being dressed by the dresser 22 and above the polishing pad 2 after being dressed by the dresser 22. The surface texture measuring device 30 measures the surface texture of the polishing pad 2 at predetermined time intervals, and transmits the measured value to the control unit 23 (see FIG. 1) every time the surface texture of the polishing pad 2 is measured. ing.
 ロータリエンコーダ92も制御部23に接続されており、ロータリエンコーダ92は、研磨パッド2に対する表面性状測定装置30の相対位置を制御部23に送信する。制御部23は、送信された相対位置に基づいて、表面性状測定装置30によって取得された複数のパッド表面性状値をドレッシング前のパッド表面性状値と、ドレッシング後のパッド表面性状値とに分割する。そして、制御部23は、ドレッシング後のパッド表面性状値を、ドレッシング前のパッド表面性状値と比較し、その比較に基づいて好適なドレッシング条件を算出する。例えば、ドレッシング前後のパッド表面性状値の差が、予め設定した所定の範囲内で推移するように、ドレッシング条件を算出する。その際、制御部23は、予め、ドレッシング条件とドレッシング前後のパッド表面性状値の差との関連を示す関係式を得ておき、同式により、好適なドレッシング条件を求める。 The rotary encoder 92 is also connected to the control unit 23, and the rotary encoder 92 transmits the relative position of the surface texture measuring device 30 to the polishing pad 2 to the control unit 23. Based on the transmitted relative position, the control unit 23 divides the plurality of pad surface property values acquired by the surface property measuring device 30 into a pad surface property value before dressing and a pad surface property value after dressing. . And the control part 23 compares the pad surface property value after dressing with the pad surface property value before dressing, and calculates suitable dressing conditions based on the comparison. For example, the dressing conditions are calculated so that the difference between the pad surface property values before and after dressing changes within a predetermined range set in advance. At that time, the control unit 23 obtains a relational expression indicating the relationship between the dressing condition and the difference between the pad surface property values before and after the dressing in advance, and obtains a suitable dressing condition based on the relational expression.
 一実施形態では、ドレッシング部材22aが研磨パッド2の表面から上方に離れたときの表面性状測定装置30の位置を上記測定位置としてもよい。この場合、表面性状測定装置30の待避位置は、ドレッシング部材22aが研磨パッド2の表面からさらに上方に離れたときの表面性状測定装置30の位置か、またはドレッサー22と表面性状測定装置30が研磨パッド2の側方に移動した位置である。本実施形態では、ドレッシング部材22aおよび表面性状測定装置30が研磨パッド2の表面から離れた状態で、ドレッサー22を回転させずに、ドレッサーアーム21を介して研磨パッド2の周縁部から中心部まで移動させる。表面性状測定装置30は、ドレッサー22とともに研磨パッド2の周縁部から中心部まで移動する間に、所定の時間間隔で研磨パッド2の表面性状を測定し、その測定値を制御部23に送信する。制御部23は、表面性状測定装置30から送信されたパッド表面性状値に基づいて好適なドレッシング条件を算出する。 In one embodiment, the position of the surface texture measuring device 30 when the dressing member 22a is separated upward from the surface of the polishing pad 2 may be set as the measurement position. In this case, the retracted position of the surface texture measuring device 30 is the position of the surface texture measuring device 30 when the dressing member 22a is further away from the surface of the polishing pad 2, or the dresser 22 and the surface texture measuring device 30 are polished. This is the position moved to the side of the pad 2. In the present embodiment, the dressing member 22a and the surface texture measuring device 30 are separated from the surface of the polishing pad 2, and without rotating the dresser 22, from the peripheral edge to the center of the polishing pad 2 via the dresser arm 21. Move. The surface texture measuring device 30 measures the surface texture of the polishing pad 2 at a predetermined time interval while moving from the peripheral edge to the center of the polishing pad 2 together with the dresser 22, and transmits the measured value to the controller 23. . The controller 23 calculates a suitable dressing condition based on the pad surface property value transmitted from the surface property measuring device 30.
 図24Aは、図21に示す研磨装置のドレッサーの変形例を示す模式図であり、図24Bは、図24Aに示すドレッサーの上面図である。特に説明しない本実施形態の構成は、図21に示すドレッサー22の構成と同様であるため、その重複する説明を省略する。 FIG. 24A is a schematic view showing a modification of the dresser of the polishing apparatus shown in FIG. 21, and FIG. 24B is a top view of the dresser shown in FIG. 24A. The configuration of the present embodiment that is not particularly described is the same as the configuration of the dresser 22 illustrated in FIG. 21, and thus redundant description thereof is omitted.
 図24Aおよび図24Bに示す研磨装置のドレッサー22には、複数の(図示した例では、2つの)表面性状測定装置30A,30Bが取り付けられている。表面性状測定装置30A,30Bは、ドレッサー22の中心に対して対称に配置されている。各表面性状測定装置30をドレッサー22に連結するサブアーム95は、略J字状の形状を有しており、サブアーム95の末端は、ドレッサー22の上面に固定されている。 A plurality of (two in the illustrated example) surface property measuring devices 30A and 30B are attached to the dresser 22 of the polishing apparatus shown in FIGS. 24A and 24B. The surface texture measuring devices 30 </ b> A and 30 </ b> B are arranged symmetrically with respect to the center of the dresser 22. The sub arm 95 that connects each surface texture measuring device 30 to the dresser 22 has a substantially J-shape, and the end of the sub arm 95 is fixed to the upper surface of the dresser 22.
 本実施形態では、2つの表面性状測定装置30A,30Bがドレッサー22に取り付けられているが、3つ以上の表面性状測定装置をドレッサー22に取り付けてもよい。例えば、4つの表面性状測定装置をドレッサー22の外周面に沿って90°ごとに配置してもよい。以下の説明では、特に区別する必要のない限り、表面性状測定装置30A,30Bを単に「表面性状測定装置30」と称することがある。 In this embodiment, the two surface texture measuring devices 30A and 30B are attached to the dresser 22, but three or more surface texture measuring devices may be attached to the dresser 22. For example, four surface texture measuring devices may be arranged every 90 ° along the outer peripheral surface of the dresser 22. In the following description, the surface texture measuring devices 30A and 30B may be simply referred to as “surface texture measuring device 30” unless it is necessary to distinguish between them.
 各表面性状測定装置30は、同一の測定構造を有していてもよいし、互いに異なる測定構造を有していてもよい。例えば、複数の表面性状測定装置30のうちのいくつか(例えば、表面性状装置30A)は、図3または図4を参照して説明された測定構造を有する表面性状測定装置である一方で、残りの表面性状測定装置(例えば、表面性状測定装置30B)は、図5および図19を参照して説明された撮像装置39を有する表面性状測定装置であってもよい。 Each surface texture measuring device 30 may have the same measurement structure or different measurement structures. For example, some of the plurality of surface texture measuring devices 30 (for example, the surface texture device 30A) are surface texture measuring devices having the measurement structure described with reference to FIG. 3 or FIG. The surface texture measuring device (for example, the surface texture measuring device 30B) may be a surface texture measuring device having the imaging device 39 described with reference to FIGS.
 上述した実施形態と同様に、研磨パッド2のドレッシング中、複数の表面性状測定装置30はドレッサー22とともに回転しており、各表面性状測定装置30は、所定の時間間隔で、研磨パッド2の表面性状を測定している。各表面性状測定装置30は、研磨パッド2の表面性状を測定するたびにその測定値を制御部23に送信する。制御部23は、研磨パッド2に対する各表面性状測定装置30の相対位置に基づいて、各表面性状測定装置30によって取得された複数の表面性状測定値をドレッシング前のパッド表面性状値と、ドレッシング後のパッド表面性状値とに分割する。そして、制御部23は、ドレッシング前後のパッド表面性状値を比較し、その比較に基づいて好適なドレッシング条件を算出する。本実施形態によれば、複数の表面性状測定装置30がドレッサー23に取り付けられているので、制御部23が取得するドレッシング前後のパッド表面性状値の差のデータ量は、1つの表面性状測定装置がドレッサー22に取り付けられた実施形態よりも多い。そのため、制御部23は、より好適なドレッシング条件を算出することができる。 Similar to the above-described embodiment, during the dressing of the polishing pad 2, the plurality of surface texture measuring devices 30 are rotated together with the dresser 22, and each surface texture measuring device 30 is a surface of the polishing pad 2 at a predetermined time interval. The properties are being measured. Each surface texture measuring device 30 transmits the measured value to the control unit 23 every time the surface texture of the polishing pad 2 is measured. Based on the relative position of each surface texture measuring device 30 with respect to the polishing pad 2, the controller 23 obtains a plurality of surface texture measurement values acquired by each surface texture measuring device 30 as pad surface texture values before dressing, and after dressing. The pad surface properties are divided into values. Then, the control unit 23 compares pad surface property values before and after dressing, and calculates suitable dressing conditions based on the comparison. According to the present embodiment, since the plurality of surface texture measuring devices 30 are attached to the dresser 23, the data amount of the difference between the pad surface texture values before and after dressing acquired by the control unit 23 is one surface texture measuring device. Is more than the embodiment attached to the dresser 22. Therefore, the control unit 23 can calculate more suitable dressing conditions.
 図25は、図24Aおよび図24Bに示すドレッサーの変形例を示す模式図である。特に説明しない構成は、図24Aおよび図24Bに示す実施形態の構成と同様であるため、その重複する説明を省略する。 FIG. 25 is a schematic diagram showing a modification of the dresser shown in FIGS. 24A and 24B. The configuration that is not particularly described is the same as the configuration of the embodiment illustrated in FIGS. 24A and 24B, and thus redundant description thereof is omitted.
 図25に示すドレッサー22には、3つの表面性状測定装置30A,30B,30Cが取り付けられている。2つの表面性状測定装置30A,30Bは、ドレッサー22の外周面にサブアーム95を介して取り付けられており、表面性状測定装置30Cは、ドレッサー22内に配置されている。本実施形態では、ドレッサー22に設けられたドレッシング部材22aはリング形状を有している。すなわち、ドレッシング部材22aは、その上面から下面まで延びる貫通孔22bを有している。ドレッサー22の下面のドレッシング部材22aが設けられていない部分(本実施形態では、ドレッサー22の下面の中央部)には、凹部が形成されており、該凹部に表面性状測定装置30Cは嵌め込まれている。 25, three surface texture measuring devices 30A, 30B, and 30C are attached to the dresser 22 shown in FIG. The two surface texture measuring devices 30 </ b> A and 30 </ b> B are attached to the outer peripheral surface of the dresser 22 via the sub-arm 95, and the surface texture measuring device 30 </ b> C is disposed in the dresser 22. In this embodiment, the dressing member 22a provided in the dresser 22 has a ring shape. That is, the dressing member 22a has a through hole 22b extending from the upper surface to the lower surface. A concave portion is formed in a portion of the lower surface of the dresser 22 where the dressing member 22a is not provided (in this embodiment, the central portion of the lower surface of the dresser 22), and the surface texture measuring device 30C is fitted into the concave portion. Yes.
 表面性状測定装置30Cは、図3または図4を参照して説明された内部構造(測定構造)を有していてもよいし、図5および図19を参照して説明された撮像装置39を有していてもよい。一実施形態では、表面性状測定装置30Cは、上記測定構造または撮像装置39を収容するハウジングを有していてもよい。例えば、ハウジングは、円筒形状を有している。この場合、ハウジングの外周面に形成されたねじを、ドレッサー22の下面に形成された凹部の壁面に設けられたねじ溝に係合させることにより、表面性状測定装置30Cをドレッサー22に取り付ける。 The surface texture measuring device 30C may have the internal structure (measurement structure) described with reference to FIG. 3 or FIG. 4, or the imaging device 39 described with reference to FIG. 5 and FIG. You may have. In one embodiment, the surface texture measurement device 30 </ b> C may include a housing that houses the measurement structure or the imaging device 39. For example, the housing has a cylindrical shape. In this case, the surface texture measuring device 30 </ b> C is attached to the dresser 22 by engaging the screw formed on the outer peripheral surface of the housing with the screw groove provided on the wall surface of the recess formed on the lower surface of the dresser 22.
 表面性状測定装置30Cは、ドレッシング部材22aの貫通孔22bを介して、研磨パッド2の表面性状を測定する。例えば、表面性状測定装置30Cが上記測定構造を有する場合は、投光部32から投光されたレーザ光は、ドレッシング部材22aに形成された貫通孔22bを介して研磨パッド2の表面に到達し、研磨パッド2の表面で反射した反射光は、貫通孔22bを介して受光部33に受光される。表面性状測定装置30Cが撮像装置39を有する場合は、撮像装置39は、ドレッシング部材22aに形成された貫通孔22bを介して研磨パッド2の表面の画像情報を取得する。 The surface texture measuring device 30C measures the surface texture of the polishing pad 2 through the through hole 22b of the dressing member 22a. For example, when the surface texture measuring device 30C has the above-described measurement structure, the laser light projected from the light projecting unit 32 reaches the surface of the polishing pad 2 through the through hole 22b formed in the dressing member 22a. The reflected light reflected by the surface of the polishing pad 2 is received by the light receiving unit 33 through the through hole 22b. When the surface texture measuring device 30C includes the imaging device 39, the imaging device 39 acquires image information on the surface of the polishing pad 2 through the through hole 22b formed in the dressing member 22a.
 図25に示すように、表面性状測定装置30Cは、図8を参照して説明されたノズル45を有していてもよい。上述したように、ノズル45は、加圧気体(例えば、加圧窒素、または加圧空気)を研磨パッド2の研磨面2aに吹き付けるように構成されており、ノズル45から吹き付けられた加圧気体によって、研磨面2a上の研磨液またはドレッシング液などの液体が除去される。図示はしないが、ノズル45に加圧気体を供給するための加圧気体供給ラインは、例えば、ロータリージョイントなどを介してドレッサーシャフト91に接続され、ドレッサーシャフト91、およびドレッサー22に形成された流路を介して表面性状測定装置30Cに供給される。 As shown in FIG. 25, the surface texture measuring device 30C may have the nozzle 45 described with reference to FIG. As described above, the nozzle 45 is configured to blow a pressurized gas (for example, pressurized nitrogen or pressurized air) onto the polishing surface 2 a of the polishing pad 2, and the pressurized gas blown from the nozzle 45. Thus, the liquid such as the polishing liquid or the dressing liquid on the polishing surface 2a is removed. Although not shown, the pressurized gas supply line for supplying the pressurized gas to the nozzle 45 is connected to the dresser shaft 91 via, for example, a rotary joint, and the flow formed in the dresser shaft 91 and the dresser 22 is, for example. It is supplied to the surface texture measuring device 30C via the path.
 このように、本実施形態では、ドレッサー22に取り付けられた複数の表面性状測定装置30A-30Cのうちの1つの表面性状測定装置30Cがドレッサー22の内部に配置される。この表面性状測定装置30Cは、例えば、ドレッサー22が研磨パッド2をドレッシングしている最中の研磨パッド2の表面性状を測定する。表面性状測定装置30Cも、制御部23に接続されており、表面性状測定装置30Cは、研磨パッド2のドレッシング中に、所定の時間間隔で、研磨パッド2の表面性状を測定し、その測定値(パッド表面性状値)を制御部23に送信する。 Thus, in the present embodiment, one surface texture measuring device 30C among the plurality of surface texture measuring devices 30A-30C attached to the dresser 22 is arranged inside the dresser 22. The surface texture measuring device 30C measures the surface texture of the polishing pad 2 while the dresser 22 is dressing the polishing pad 2, for example. The surface texture measuring device 30C is also connected to the control unit 23. The surface texture measuring device 30C measures the surface texture of the polishing pad 2 at predetermined time intervals during dressing of the polishing pad 2, and the measured value. (Pad surface property value) is transmitted to the controller 23.
 上述したように、表面性状測定装置30A,30Bは、ドレッシング前後のパッド表面性状値を測定し、その測定値(パッド表面性状値)を制御部23に送信する。したがって、制御部23は、表面性状測定装置30A,30Bによって取得されたドレッシング前後のパッド表面性状値と、表面性状測定装置30Cによって取得されたドレッシング中のパッド表面性状値と、を取得することができる。その結果、制御部23は、ドレッシング前後のパッド表面性状値に加えて、ドレッシング中のパッド表面性状値に基づいた、より好適なドレッシング条件を算出することができる。 As described above, the surface texture measuring devices 30A and 30B measure the pad surface texture values before and after dressing, and transmit the measured values (pad surface texture values) to the control unit 23. Therefore, the control unit 23 can acquire the pad surface property value before and after dressing acquired by the surface texture measuring devices 30A and 30B and the pad surface property value during dressing acquired by the surface texture measuring device 30C. it can. As a result, the control unit 23 can calculate more suitable dressing conditions based on the pad surface property value during dressing in addition to the pad surface property value before and after dressing.
 図26は、表面性状測定装置30を備えた研磨装置を含む研磨システムの一実施形態を示す模式図である。図26に示す研磨システム100は、図1乃至図25を参照して説明された研磨装置と、該研磨装置の表面性状測定装置30を用いて得られた研磨パッド2の表面性状のデータが入力される研磨プロセス生成システム101とを備える。図26に示す研磨プロセス生成システム101は、研磨装置と情報を送受信可能に接続される中継器102と、中継器102と情報を送受信可能に接続される処理システム105と、を備える。したがって、研磨装置は、中継器102を介して、処理システム105と情報を送受信可能に接続される。 FIG. 26 is a schematic diagram showing an embodiment of a polishing system including a polishing apparatus provided with a surface texture measuring device 30. The polishing system 100 shown in FIG. 26 receives the surface property data of the polishing pad 2 obtained using the polishing device described with reference to FIGS. 1 to 25 and the surface property measuring device 30 of the polishing device. And a polishing process generation system 101. A polishing process generation system 101 shown in FIG. 26 includes a repeater 102 that is connected to a polishing apparatus so that information can be transmitted and received, and a processing system 105 that is connected to the repeater 102 so that information can be transmitted and received. Therefore, the polishing apparatus is connected to the processing system 105 via the repeater 102 so that information can be transmitted and received.
 本実施形態では、研磨装置は、研磨パッド2の表面性状のデータなどの各種情報を出力する出力部15を備える。上述したように、研磨装置は、表面性状測定装置30を用いて研磨パッド2の反射強度分布を取得する。研磨装置は、得られた反射強度分布を研磨パッド2の表面性状を表すデータとして出力部15から出力する。一実施形態では、研磨装置は、表面性状測定装置30から得られた反射強度分布に基づいて、研磨パッドの表面性状値を入手し、この表面性状値を研磨パッド2の表面性状を表すデータとして出力部15から出力してもよい。 In this embodiment, the polishing apparatus includes an output unit 15 that outputs various types of information such as surface property data of the polishing pad 2. As described above, the polishing apparatus acquires the reflection intensity distribution of the polishing pad 2 using the surface texture measuring apparatus 30. The polishing apparatus outputs the obtained reflection intensity distribution as data representing the surface properties of the polishing pad 2 from the output unit 15. In one embodiment, the polishing apparatus obtains the surface texture value of the polishing pad based on the reflection intensity distribution obtained from the surface texture measuring device 30, and uses the surface texture value as data representing the surface texture of the polishing pad 2. You may output from the output part 15. FIG.
 表面性状測定装置30が撮像装置39(図5および図19参照)を有する場合は、研磨装置は、撮像装置39から得られた研磨パッド2の画像情報を研磨パッド2の表面性状を表すデータとして出力部15から出力する。撮像装置39によって取得される研磨パッド2の画像情報の例としては、フレーム画像、TDI画像、ストロボ画像、ビデオ画像などが挙げられる。一実施形態では、複数の撮像装置39を表面性状測定装置30のケーシング43内に配置して、研磨面2aの三次元画像を取得してもよい。 When the surface property measuring device 30 includes the imaging device 39 (see FIGS. 5 and 19), the polishing device uses the image information of the polishing pad 2 obtained from the imaging device 39 as data representing the surface property of the polishing pad 2. Output from the output unit 15. Examples of the image information of the polishing pad 2 acquired by the imaging device 39 include a frame image, a TDI image, a strobe image, and a video image. In one embodiment, a plurality of imaging devices 39 may be arranged in the casing 43 of the surface texture measuring device 30 to acquire a three-dimensional image of the polished surface 2a.
 処理システム105は、研磨パッド2の表面性状のデータなどの各種情報が入力される入力部107と、入力部107に入力された研磨パッド2の表面性状のデータに基づいて、研磨装置のドレッシング条件を決定する処理部108と、処理部108によって決定されたドレッシング条件などの各種情報を研磨装置に出力する出力部110と、を備える。本実施形態では、処理システム105は、入力部107と出力部110とが一体に構成された送受信部を有している。さらに、処理システム105は、記憶部111を備えており、記憶部111は、入力部107に入力された研磨パッド2の表面性状のデータなどの各種情報を記憶することができる。 The processing system 105 includes an input unit 107 to which various information such as surface property data of the polishing pad 2 is input, and the dressing condition of the polishing apparatus based on the surface property data of the polishing pad 2 input to the input unit 107. And an output unit 110 that outputs various types of information such as dressing conditions determined by the processing unit 108 to the polishing apparatus. In the present embodiment, the processing system 105 includes a transmission / reception unit in which an input unit 107 and an output unit 110 are integrated. Furthermore, the processing system 105 includes a storage unit 111, and the storage unit 111 can store various types of information such as surface property data of the polishing pad 2 input to the input unit 107.
 処理システム105の処理部108は、入力部107に入力された反射強度分布などの研磨パッド2の表面性状のデータに基づいて、研磨パッド2の表面性状値を演算し、この値に基づいて、好適なドレッシング条件を算出する。表面性状測定装置30から得られた反射強度分布に基づいて入手された研磨パッド2の表面性状値が処理システム105の入力部107に入力される場合は、処理部108は、入力部107に入力された研磨パッド2の表面性状値に基づいて、好適なドレッシング条件を算出する。研磨パッド2の画像情報が研磨パッド2の表面性状を表すデータとして処理システム105の入力部107に入力される場合は、処理部108は、入力部107に入力された研磨パッド2の画像情報に基づいて、好適なドレッシング条件を算出する。 The processing unit 108 of the processing system 105 calculates the surface property value of the polishing pad 2 based on the surface property data of the polishing pad 2 such as the reflection intensity distribution input to the input unit 107, and based on this value, Calculate suitable dressing conditions. When the surface texture value of the polishing pad 2 obtained based on the reflection intensity distribution obtained from the surface texture measuring device 30 is input to the input unit 107 of the processing system 105, the processing unit 108 inputs to the input unit 107. Based on the surface property value of the polished polishing pad 2, a suitable dressing condition is calculated. When the image information of the polishing pad 2 is input to the input unit 107 of the processing system 105 as data representing the surface properties of the polishing pad 2, the processing unit 108 adds the image information of the polishing pad 2 input to the input unit 107. Based on this, a suitable dressing condition is calculated.
 処理部108は、例えば、予め、ドレッシング条件とパッド表面性状値との関連を示す関係式を得ておき、同式により、好適なドレッシング条件を求める。上述したように、ドレッシング条件とは、主に、研磨パッド回転数、ドレッサー回転数、ドレッシング荷重、ドレッサー揺動速度、などである。決定されたドレッシング条件は、処理システム105の出力部110から中継器102を介して研磨装置に出力される。 The processing unit 108 obtains, for example, a relational expression indicating a relationship between the dressing condition and the pad surface property value in advance, and obtains a suitable dressing condition based on the relational expression. As described above, the dressing conditions are mainly the polishing pad rotation speed, the dresser rotation speed, the dressing load, the dresser swing speed, and the like. The determined dressing conditions are output from the output unit 110 of the processing system 105 to the polishing apparatus via the repeater 102.
 研磨装置は、処理システム105から出力されたドレッシング条件などの各種情報が入力される入力部16を有している。本実施形態では、研磨装置は、入力部16と上記出力部15とが一体に構成された送受信部を有している。研磨装置の制御部23は、入力部16に入力されたドレッシング条件にしたがって研磨パッド2のドレッシングを行う。 The polishing apparatus has an input unit 16 into which various information such as dressing conditions output from the processing system 105 is input. In this embodiment, the polishing apparatus has a transmission / reception unit in which the input unit 16 and the output unit 15 are integrally formed. The control unit 23 of the polishing apparatus performs dressing of the polishing pad 2 according to the dressing conditions input to the input unit 16.
 本実施形態では、研磨システム100の研磨プロセス生成システム101は、処理システム105と研磨装置との間に配置された中継器102を備えている。中継器102は、例えば、ルータなどのゲートウェイである。研磨装置の出力部15から出力される研磨パッド2の表面性状のデータは、中継器102を介して処理システム105の入力部107に送信される。処理システム105の出力部110から出力されるドレッシング条件は、中継器102を介して研磨装置の入力部16に送信される。 In this embodiment, the polishing process generation system 101 of the polishing system 100 includes a repeater 102 disposed between the processing system 105 and the polishing apparatus. The repeater 102 is a gateway such as a router, for example. The surface property data of the polishing pad 2 output from the output unit 15 of the polishing apparatus is transmitted to the input unit 107 of the processing system 105 via the relay 102. The dressing conditions output from the output unit 110 of the processing system 105 are transmitted to the input unit 16 of the polishing apparatus via the repeater 102.
 中継器102は、研磨装置の出力部15から出力された研磨パッド2の表面性状のデータなどの各種情報が入力される入力部134と、処理システム105から出力されたドレッシング条件などの各種情報を研磨装置の入力部16に出力する出力部136と、を有している。本実施形態では、中継器102は、入力部134と出力部136とが一体に構成された送受信部を有している。さらに、中継器102は、入力部134から入力された研磨パッド2の表面性状のデータなどの各種情報を処理システム105の入力部107に出力する出力部139と、処理システム105の出力部110から出力されたドレッシング条件などの各種情報が入力される入力部138と、を有している。中継器102は、処理部140を有しており、処理部140は、研磨装置と中継器102との間の情報の送受信と、中継器102と処理システム105との間の情報の送受信を制御する。 The repeater 102 receives various information such as dressing conditions output from the processing system 105 and an input unit 134 to which various information such as surface property data of the polishing pad 2 output from the output unit 15 of the polishing apparatus is input. And an output unit 136 that outputs to the input unit 16 of the polishing apparatus. In the present embodiment, the repeater 102 includes a transmission / reception unit in which an input unit 134 and an output unit 136 are integrally formed. Further, the repeater 102 outputs various information such as surface property data of the polishing pad 2 input from the input unit 134 to the input unit 107 of the processing system 105 and from the output unit 110 of the processing system 105. And an input unit 138 for inputting various information such as the outputted dressing conditions. The repeater 102 includes a processing unit 140, and the processing unit 140 controls transmission / reception of information between the polishing apparatus and the repeater 102 and transmission / reception of information between the repeater 102 and the processing system 105. To do.
 研磨装置は、中継器102と無線通信(例えば、高速WiFi(登録商標))または有線通信で接続可能であり、中継器102は、処理システム105と無線通信(例えば、高速WiFi(登録商標))または有線通信で接続可能である。本実施形態では、研磨装置は、処理システム105と中継器102を介したネットワーク(例えば、インターネット)により接続されている。 The polishing apparatus can be connected to the repeater 102 by wireless communication (for example, high-speed WiFi (registered trademark)) or wired communication, and the repeater 102 is wirelessly connected to the processing system 105 (for example, high-speed WiFi (registered trademark)). Or it can be connected by wired communication. In the present embodiment, the polishing apparatus is connected to the processing system 105 and a network (for example, the Internet) via the relay 102.
 研磨システム100は、処理システム105で得られた、または処理システム105に入力されたパッド表面性状値を異常検知に使用してもよい。この場合、処理システム105の処理部108は、パッド表面性状値やその経時的な変化が予め定めた値(しきい値)の範囲から外れたら、パッド表面性状異常と判定し、異常信号を研磨装置に出力する。異常信号が入力部16に入力されると、研磨装置は、異常を発報する。この場合、研磨装置の運転を停止してもよい。 The polishing system 100 may use the pad surface property value obtained by the processing system 105 or input to the processing system 105 for abnormality detection. In this case, the processing unit 108 of the processing system 105 determines that the pad surface property is abnormal and polishes the abnormal signal when the pad surface property value or its change with time is out of the range of a predetermined value (threshold value). Output to the device. When an abnormal signal is input to the input unit 16, the polishing apparatus issues an abnormality. In this case, the operation of the polishing apparatus may be stopped.
 さらに、研磨システム100は、処理システム105で得られた、または処理システム105に入力された研磨パッド2の表面性状値に基づいて、研磨パッド2のドレッシングを行う必要があるか否かを示すドレッシングの必要性、研磨パッド2の追加ドレッシングを行う必要があるか否かを示す追加ドレッシングの必要性、およびドレッサーの交換を決定してもよい。この場合、処理システム105は、ドレッシングの必要性、追加ドレッシングの必要性、およびドレッサーの交換などの情報を研磨装置に出力し、研磨装置は、入力された情報にしたがって動作する。 Further, the polishing system 100 indicates whether or not the polishing pad 2 needs to be dressed based on the surface property value of the polishing pad 2 obtained by the processing system 105 or input to the processing system 105. , The need for additional dressing that indicates whether additional dressing of the polishing pad 2 needs to be performed, and dresser replacement may be determined. In this case, the processing system 105 outputs information such as the necessity of dressing, the necessity of additional dressing, and replacement of the dresser to the polishing apparatus, and the polishing apparatus operates according to the input information.
 例えば、研磨装置は、研磨パッド2のドレッシング後に、研磨パッド2の表面性状のデータを取得し、このデータを処理システム105に出力する。処理システム105は、ドレッシング後の表面性状のデータに基づいて、研磨パッド2をドレッシングする必要があるか否か(すなわち、ドレッシングの必要性)を決定する。処理システム105は、決定されたドレッシングの必要性を研磨装置に出力し、研磨装置は、入力されたドレッシングの必要性に基づいて、ドレッサーの動作を制御する。すなわち、研磨装置に、ドレッシングが必要であることを示す情報が入力されると、研磨装置は、研磨パッドのドレッシングを実行する。このとき、研磨装置は、処理システム105から出力された好適なドレッシング条件で研磨パッドをドレッシングする。研磨装置に、ドレッシングの必要はないことを示す情報が入力されると、研磨装置は、研磨パッドのドレッシングを実行せずに、次の基板Wの研磨を開始する。 For example, the polishing apparatus acquires the surface property data of the polishing pad 2 after dressing the polishing pad 2, and outputs this data to the processing system 105. The processing system 105 determines whether or not the polishing pad 2 needs to be dressed (that is, the necessity of dressing) based on the surface property data after dressing. The processing system 105 outputs the determined dressing necessity to the polishing apparatus, and the polishing apparatus controls the operation of the dresser based on the input dressing necessity. That is, when information indicating that dressing is necessary is input to the polishing apparatus, the polishing apparatus performs dressing of the polishing pad. At this time, the polishing apparatus dresses the polishing pad under suitable dressing conditions output from the processing system 105. When information indicating that dressing is not necessary is input to the polishing apparatus, the polishing apparatus starts polishing the next substrate W without performing dressing of the polishing pad.
 上述したように、研磨装置の表面性状測定装置30は、基板Wの研磨中、または研磨パッド2のドレッシング中に、研磨パッド2の表面性状のデータを取得することができる。そこで、研磨装置は、研磨パッド2のドレッシング中に取得された研磨パッド2の表面性状のデータを処理システム105に送信し、処理システム105の処理部108は、ドレッシング中の研磨パッド2の表面性状のデータに基づいて、研磨パッド2のドレッシング中にドレッシング条件を変更する。変更されたドレッシング条件は、研磨装置に送られ、研磨装置は、変更されたドレッシング条件にしたがって研磨パッドのドレッシング行う。 As described above, the surface property measuring device 30 of the polishing apparatus can acquire the surface property data of the polishing pad 2 during polishing of the substrate W or during dressing of the polishing pad 2. Therefore, the polishing apparatus transmits the surface property data of the polishing pad 2 acquired during the dressing of the polishing pad 2 to the processing system 105, and the processing unit 108 of the processing system 105 performs the surface property of the polishing pad 2 during dressing. Based on the data, the dressing conditions are changed during dressing of the polishing pad 2. The changed dressing conditions are sent to the polishing apparatus, and the polishing apparatus performs dressing of the polishing pad according to the changed dressing conditions.
 図26に示すように、処理システム105の処理部108は、人工知能(AI:artificial intelligence)機能を有していてもよい。この場合、処理部108は、人工知能機能を利用して、好適なドレッシング条件、ドレッシングの必要性、追加ドレッシングの必要性、およびドレッサーの交換時期を予測する。処理部108は、機械学習またはディープラーニングを行って、パッド表面の性状およびパッド表面状態を評価し、これにより、処理システム105は、好適なドレッシング条件、パッド表面のドレッシングの必要性、追加ドレッシングの必要性、およびドレッサー交換時期を予測して、研磨装置に出力する。処理システム105は、パッド表面測定装置30によって取得された画像情報を記憶部111に継続的に蓄積し、この蓄積された画像情報を学習データ、教師データ、および学習データセットとして使用することができる。 As shown in FIG. 26, the processing unit 108 of the processing system 105 may have an artificial intelligence (AI) function. In this case, the processing unit 108 uses an artificial intelligence function to predict a suitable dressing condition, the necessity for dressing, the necessity for additional dressing, and the replacement timing of the dresser. The processor 108 performs machine learning or deep learning to evaluate the pad surface properties and pad surface condition so that the processing system 105 can provide suitable dressing conditions, pad surface dressing requirements, additional dressing requirements. The necessity and the dresser replacement time are predicted and output to the polishing apparatus. The processing system 105 continuously accumulates the image information acquired by the pad surface measuring device 30 in the storage unit 111, and can use the accumulated image information as learning data, teacher data, and a learning data set. .
 さらに、処理システム105は、研磨装置が設置された工場外に構築されたクラウドコンピューティングシステムまたはフォグコンピューティングシステムであってもよいし、研磨装置が設置された工場内に構築されたクラウドコンピューティングシステムまたはフォグコンピューティングシステムであってもよい。 Further, the processing system 105 may be a cloud computing system or a fog computing system constructed outside the factory where the polishing apparatus is installed, or a cloud computing constructed within the factory where the polishing apparatus is installed. It may be a system or a fog computing system.
 このような研磨システム100は、人工知能として、ニューラルネットワーク形態、または量子コンピューティング形態を用いて構築される。研磨システム100では、研磨装置の表面性状測定装置30によって取得された研磨パッド2の表面性状を表すデータ(例えば、反射強度分布、画像情報など)を、ルータなどの中継器102を介して、処理システム105に送信する。処理システム105は、人工知能機能を利用して、機械学習またはディープラーニングを行い、好適なドレッシング条件、ドレッシングの必要性、追加ドレッシングの必要性、およびドレッサー交換時期を予測して、研磨装置に出力する。 Such a polishing system 100 is constructed using a neural network form or a quantum computing form as artificial intelligence. In the polishing system 100, data (for example, reflection intensity distribution, image information, etc.) representing the surface property of the polishing pad 2 acquired by the surface property measuring device 30 of the polishing device is processed via a relay 102 such as a router. Transmit to system 105. The processing system 105 performs machine learning or deep learning using an artificial intelligence function, predicts suitable dressing conditions, the necessity of dressing, the necessity of additional dressing, and the timing of dresser replacement, and outputs them to the polishing apparatus. To do.
 機械学習またはディープラーニングでは、教師データが使用される。処理システム105は、記憶部111を備えており、この記憶部111は、入力部107に入力された研磨パッド2の表面性状のデータの比較対象となる教師データを予め記憶している。教師データは、例えば、ドレッシング条件を決定するための研磨パッド2のデータ値、研磨パッド2の交換が必要となる研磨パッド2のデータのしきい値、研磨パッド追加研磨または交換が必要となる研磨パッド2の画像情報などを含んでいる。機械学習またはディープラーニングに使用される教師データは、例えば、正常データ、異常データ、または参照データである。 ∙ Teacher data is used in machine learning or deep learning. The processing system 105 includes a storage unit 111, and the storage unit 111 stores teacher data to be compared with the surface property data of the polishing pad 2 input to the input unit 107 in advance. The teacher data includes, for example, the data value of the polishing pad 2 for determining the dressing condition, the threshold value of the data of the polishing pad 2 that requires replacement of the polishing pad 2, and polishing that requires additional polishing or replacement of the polishing pad. The image information of the pad 2 is included. Teacher data used for machine learning or deep learning is, for example, normal data, abnormal data, or reference data.
 正常データを教師データとして用いる場合は、正常データを教師データとして機械学習またはディープラーニングを行い、学習済モデルが作成される。処理システム105の処理部108には、研磨装置から研磨パッド2の表面性状を表すデータが入力され、該当の学習済モデルを用いた処理が行われる。そして、処理部108は、パッド表面の性状を評価する。処理部108は、正常データと同等であると判断された画像情報を追加の教師データとして記憶部111に蓄積し、教師データおよび追加の教師データを基にした学習を通じて、好適なドレッシング条件、パッド表面のドレッシングの必要性、およびドレッサー交換時期を予測するためのモデルを更新していく。この学習済モデルは、新たに入力される研磨パッド2の表面性状のデータに対する予測に使用される。 When normal data is used as teacher data, machine learning or deep learning is performed using normal data as teacher data, and a learned model is created. Data representing the surface properties of the polishing pad 2 is input from the polishing apparatus to the processing unit 108 of the processing system 105, and processing using the corresponding learned model is performed. Then, the processing unit 108 evaluates the property of the pad surface. The processing unit 108 accumulates image information determined to be equivalent to normal data in the storage unit 111 as additional teacher data, and through learning based on the teacher data and the additional teacher data, suitable dressing conditions, pads The model for predicting the necessity of dressing of the surface and the timing of changing the dresser will be updated. This learned model is used for prediction of the newly inputted surface property data of the polishing pad 2.
 研磨装置から入力された研磨パッド2の表面性状を表すデータが、求められた学習済モデルの正常判定条件から外れている場合は、処理システム105の処理部108は、研磨パッド2に異常が発生していると判断して、研磨装置に異常情報を出力する。 When the data representing the surface properties of the polishing pad 2 input from the polishing apparatus is out of the normal determination conditions of the learned model obtained, the processing unit 108 of the processing system 105 has an abnormality in the polishing pad 2. It is determined that the abnormality is occurring, and abnormality information is output to the polishing apparatus.
 このように、ニューラルネットワーク形態で構築された研磨システム100に、反射強度分布、画像情報などの研磨パッド2の表面性状を表すデータを入力することで、好適なドレッシング条件、ドレッシングの必要性、追加ドレッシングの必要性、ドレッサー交換時期、および研磨パッド2の異常などのパッド表面診断結果を提供できる。この場合、研磨システム100は、研磨パッド2の表面性状を表すデータを入力とし、パッド表面診断結果を出力とする。学習の際には、教師データとして、研磨パッド2の表面性状を表すデータと、正常/異常診断の組み合わせを用いることも可能である。これにより、研磨装置のオペレータの操作指示に異常原因がある場合に、その操作の改善提案を提供することができる。さらに、研磨装置において、自動ドレッシング動作が可能となる。 Thus, by inputting data representing the surface properties of the polishing pad 2 such as reflection intensity distribution and image information to the polishing system 100 constructed in the form of a neural network, suitable dressing conditions, necessity of dressing, and addition Pad surface diagnosis results such as the necessity of dressing, dresser replacement time, and abnormality of the polishing pad 2 can be provided. In this case, the polishing system 100 receives data representing the surface properties of the polishing pad 2 as an input and outputs a pad surface diagnosis result as an output. In learning, a combination of data representing the surface properties of the polishing pad 2 and normal / abnormal diagnosis can be used as teacher data. Thereby, when there is an abnormality cause in the operation instruction of the operator of the polishing apparatus, it is possible to provide a proposal for improving the operation. Furthermore, an automatic dressing operation can be performed in the polishing apparatus.
 研磨パッド2の表面性状を表すデータが比較的大きな容量を有している場合でも、ニューラルネットワーク形態、または量子コンピューティング形態を用いて、人工知能として構築された研磨システム100は、大量の情報を処理することができる。そこで、研磨装置は、表面性状測定装置30を用いて、基板W上の複数の測定ポイントで、研磨パッド2の画像情報を取得する。 Even when the data representing the surface properties of the polishing pad 2 has a relatively large capacity, the polishing system 100 constructed as artificial intelligence using a neural network form or a quantum computing form can receive a large amount of information. Can be processed. Therefore, the polishing apparatus acquires image information of the polishing pad 2 at a plurality of measurement points on the substrate W using the surface texture measuring apparatus 30.
 図27Aは、表面性状測定装置30の複数の測定ポイントの一例を示す模式図であり、図27Bは、図27Aに示す各測定ポイントで測定された研磨パッド2の複数の画像情報を処理するときの研磨システムの動作の概要を示すイメージ図である。図27Aに示す例では、表面性状測定装置30は、基板Wの中心CPを含む13の測定ポイントSで研磨パッド2の画像情報を取得する。 FIG. 27A is a schematic diagram illustrating an example of a plurality of measurement points of the surface texture measuring device 30, and FIG. 27B illustrates a case where a plurality of pieces of image information of the polishing pad 2 measured at each measurement point illustrated in FIG. 27A is processed. It is an image figure which shows the outline | summary of operation | movement of this grinding | polishing system. In the example shown in FIG. 27A, the surface texture measuring device 30 acquires image information of the polishing pad 2 at 13 measurement points S including the center CP of the substrate W.
 図27Bに示すように、研磨装置は、表面性状測定装置30によって取得された複数の研磨パッド2の画像情報と、該画像情報を取得した基板Wの各座標とを、処理部108に入力する。処理部108は、記憶部111に記憶された学習済モデルを読み出し、入力された研磨パッド2の画像情報に対して学習済モデルを用いた処理を行い、各座標に対応するパッド表面性状を診断する。さらに、処理部108は、好適なドレッシング条件、ドレッシングの必要性、追加ドレッシングの必要性、ドレッサー交換時期、および研磨パッド2の異常などのパッド表面診断結果を研磨装置に出力する。 As shown in FIG. 27B, the polishing apparatus inputs the image information of the plurality of polishing pads 2 acquired by the surface texture measuring apparatus 30 and the coordinates of the substrate W from which the image information has been acquired, to the processing unit 108. . The processing unit 108 reads the learned model stored in the storage unit 111, performs processing using the learned model on the input image information of the polishing pad 2, and diagnoses the pad surface property corresponding to each coordinate To do. Furthermore, the processing unit 108 outputs pad surface diagnostic results such as suitable dressing conditions, necessity of dressing, necessity of additional dressing, dresser replacement time, and abnormality of the polishing pad 2 to the polishing apparatus.
 図26に示す研磨システム100によれば、研磨パッド2の複数の画像情報が入力された場合でも、比較的高速でパッド表面診断結果を出力することができる。さらに、複数の画像情報は、記憶部111に追加教師データとして蓄積されるので、研磨システム100は、パッド表面診断結果の精度を比較的短時間に向上させることができる。 The polishing system 100 shown in FIG. 26 can output a pad surface diagnosis result at a relatively high speed even when a plurality of pieces of image information of the polishing pad 2 are input. Furthermore, since a plurality of pieces of image information are accumulated as additional teacher data in the storage unit 111, the polishing system 100 can improve the accuracy of the pad surface diagnosis result in a relatively short time.
 図28は、研磨システム100がニューラルネットワーク形態(または量子コンピューティング形態)を用いて、人工知能として構築された別の例を示す模式図である。特に説明しない本実施形態の構成は、図26に示す研磨システム100と同様であるため、その重複する説明を省略する。 FIG. 28 is a schematic diagram showing another example in which the polishing system 100 is constructed as artificial intelligence using a neural network form (or quantum computing form). The configuration of the present embodiment that is not specifically described is the same as that of the polishing system 100 shown in FIG.
 図28に示す研磨システム100では、中継器102の処理部140が人工知能機能(AI)を有している。この中継器102は、教師データなどの各種情報を記憶する記憶部142をさらに有している。図28に示す研磨システム100では、研磨装置の表面性状測定装置30によって取得された研磨パッド2の表面性状を表すデータ(例えば、反射強度分布、画像情報など)が中継器102に入力され、中継器102が人工知能機能を利用して、機械学習またはディープラーニングを行い、好適なドレッシング条件、ドレッシングの必要性、追加ドレッシングの必要性、およびドレッサー交換時期を予測して、研磨装置に出力する。 28, the processing unit 140 of the repeater 102 has an artificial intelligence function (AI). The repeater 102 further includes a storage unit 142 that stores various types of information such as teacher data. In the polishing system 100 shown in FIG. 28, data (for example, reflection intensity distribution, image information, etc.) representing the surface properties of the polishing pad 2 acquired by the surface property measuring device 30 of the polishing device is input to the relay 102 and relayed. The machine 102 performs machine learning or deep learning using the artificial intelligence function, predicts suitable dressing conditions, the necessity of dressing, the necessity of additional dressing, and the dresser replacement time, and outputs them to the polishing apparatus.
 中継器102は、研磨装置の近くに配置されており、研磨システム100は、エッジコンピューティングシステムとして構築されている。すなわち、本実施形態に係る研磨システム100では、中継器102は、好適なドレッシング条件、ドレッシングの必要性、追加ドレッシングの必要性、ドレッサー交換時期、および研磨パッド2の異常などのパッド表面診断結果を高速で処理して、研磨装置に出力することができる。例えば、図27Aに示すような複数の測定ポイントSで研磨パッド2の画像情報を取得し、該画像情報を中継器102に入力する場合でも、研磨システム100の中継器102は、複数の画像情報を高速で処理して、研磨装置にいち早くパッド表面診断結果を出力することができる。そのため、ドレッシング中に、ドレッシング条件を変更する場合であっても、中継器102は、画像情報に基づいた好適なドレッシング条件を研磨装置に出力することができる。 The repeater 102 is disposed near the polishing apparatus, and the polishing system 100 is constructed as an edge computing system. That is, in the polishing system 100 according to the present embodiment, the repeater 102 displays pad surface diagnosis results such as suitable dressing conditions, necessity of dressing, necessity of additional dressing, dresser replacement time, and abnormality of the polishing pad 2. It can be processed at high speed and output to a polishing apparatus. For example, even when image information of the polishing pad 2 is acquired at a plurality of measurement points S as shown in FIG. 27A and the image information is input to the repeater 102, the repeater 102 of the polishing system 100 does not have a plurality of pieces of image information. Can be processed at a high speed, and the pad surface diagnosis result can be output to the polishing apparatus immediately. Therefore, even when the dressing conditions are changed during dressing, the repeater 102 can output suitable dressing conditions based on the image information to the polishing apparatus.
 一方で、高速で処理する必要のない情報(例えば、研磨装置のステータス情報など)は研磨装置から中継器102を介して処理システム105に送信することができる。その結果、中継器102の処理部140は、余計な情報処理を実行する必要がないので、複数の画像情報をさらに高速で処理することができる。 On the other hand, information that does not need to be processed at high speed (for example, status information of the polishing apparatus) can be transmitted from the polishing apparatus to the processing system 105 via the relay 102. As a result, the processing unit 140 of the repeater 102 does not need to execute extra information processing, and can process a plurality of pieces of image information at a higher speed.
 図29は、研磨装置の制御部が人工知能機能を有している例を示す模式図である。図29に示されるように、研磨装置の制御部23が人工知能機能を有していてもよい。研磨装置は、記憶部7を有しており、記憶部7は、教師データなどの各種情報を記憶している。 FIG. 29 is a schematic diagram showing an example in which the control unit of the polishing apparatus has an artificial intelligence function. As shown in FIG. 29, the control unit 23 of the polishing apparatus may have an artificial intelligence function. The polishing apparatus has a storage unit 7, and the storage unit 7 stores various types of information such as teacher data.
 表面性状測定装置30によって取得された研磨パッド2の表面性状を表すデータ(例えば、反射強度分布、画像情報など)は、研磨装置の制御部23に入力され、制御部23が人工知能機能を利用して、機械学習またはディープラーニングを行い、好適なドレッシング条件、ドレッシングの必要性、追加ドレッシングの必要性、およびドレッサー交換時期を予測する。さらに、制御部23は、予測された好適なドレッシング条件、ドレッシングの必要性、追加ドレッシングの必要性、およびドレッサー交換時期に応じて、研磨装置の動作を制御する。 Data (for example, reflection intensity distribution, image information, etc.) representing the surface property of the polishing pad 2 acquired by the surface property measuring device 30 is input to the control unit 23 of the polishing device, and the control unit 23 uses the artificial intelligence function. Then, machine learning or deep learning is performed to predict suitable dressing conditions, the necessity of dressing, the necessity of additional dressing, and the timing of dresser replacement. Further, the control unit 23 controls the operation of the polishing apparatus according to the predicted suitable dressing conditions, the necessity of dressing, the necessity of additional dressing, and the dresser replacement time.
 例えば、制御部23が追加ドレッシングが必要であると予測した場合は、制御部23は、ドレッシングが終了した後で、さらに、追加ドレッシングを実行する。制御部23は、追加ドレッシングの好適なドレッシング条件を予測しており、該好適なドレッシング条件にしたがって、研磨パッド2をドレッシングする。 For example, when the control unit 23 predicts that additional dressing is necessary, the control unit 23 further performs additional dressing after the dressing is completed. The control unit 23 predicts a suitable dressing condition for the additional dressing, and dresses the polishing pad 2 according to the suitable dressing condition.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。 The above-described embodiments are described for the purpose of enabling the person having ordinary knowledge in the technical field to which the present invention belongs to implement the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Accordingly, the present invention is not limited to the described embodiments, but is to be construed in the widest scope according to the technical idea defined by the claims.
 本発明は、半導体ウエハ等の基板の研磨に用いられる研磨パッドの表面性状を測定する表面性状測定装置を備えた研磨装置、およびこのような研磨装置を含む研磨システムに利用可能である。 The present invention can be used for a polishing apparatus provided with a surface texture measuring device for measuring the surface texture of a polishing pad used for polishing a substrate such as a semiconductor wafer, and a polishing system including such a polishing apparatus.
   1 研磨テーブル
   2 研磨パッド
  15 出力部
  16 入力部
  20 ドレッシング装置
  22 ドレッサー
  23 制御部
  30 表面性状測定装置
  40 演算部
  43 ケーシング
  44 切り欠き
  45 ノズル
  47 フィルター
  48 フレーム
  49 モータ台
  50 支持アーム
  52 支持プレート
  53 移動ユニット
  55 固定ブロック
  56 回動ブロック
  58 回転軸
  59 モータ
  60 回動機構
  62 ピストン
  63 シリンダ
  64 第1プレート
  65 第2プレート
  66 回転ピン
  67 ピン
  68 貫通孔
  69 バリア
  70 姿勢調整機構
  72 支持台
  73 調整ピン
  74 貫通孔
  77,78 位置決めプレート
  80 変位機構
  81 長穴
  82 支持軸
  83 ピストンシリンダ機構
  85 ピストン
  86 シリンダ
  89 第1ジョイント
  90 第2ジョイント
  91 ドレッサーシャフト
  92 ロータリエンコーダ
  93 エアシリンダ(昇降アクチュエータ)
  95 サブアーム
  96 モータ(回転アクチュエータ)
  98 支軸
 100 研磨システム
 102 中継器
 105 研磨プロセス生成システム
 107 入力部
 108 処理部
 110 出力部
 111 記憶部
DESCRIPTION OF SYMBOLS 1 Polishing table 2 Polishing pad 15 Output part 16 Input part 20 Dressing device 22 Dresser 23 Control part 30 Surface texture measuring device 40 Calculation part 43 Casing 44 Notch 45 Nozzle 47 Filter 48 Frame 49 Motor stand 50 Support arm 52 Support plate 53 Movement Unit 55 Fixed block 56 Rotating block 58 Rotating shaft 59 Motor 60 Rotating mechanism 62 Piston 63 Cylinder 64 First plate 65 Second plate 66 Rotating pin 67 Pin 68 Through hole 69 Barrier 70 Posture adjusting mechanism 72 Support base 73 Adjusting pin 74 Through hole 77, 78 Positioning plate 80 Displacement mechanism 81 Elongate hole 82 Support shaft 83 Piston cylinder mechanism 85 Piston 86 Cylinder 89 First joint 90 Second Yointo 91 dresser shaft 92 rotary encoder 93 an air cylinder (elevating)
95 Sub arm 96 Motor (rotary actuator)
98 Support shaft 100 Polishing system 102 Repeater 105 Polishing process generation system 107 Input unit 108 Processing unit 110 Output unit 111 Storage unit

Claims (22)

  1.  研磨パッドの表面性状を測定する表面性状測定装置と、
     前記表面性状測定装置を支持する支持アームと、
     前記支持アームに連結され、前記表面性状測定装置を待避位置から測定位置に自動で移動させる移動ユニットと、を備えたことを特徴とする研磨装置。
    A surface texture measuring device for measuring the surface texture of the polishing pad;
    A support arm for supporting the surface texture measuring device;
    A polishing apparatus comprising: a moving unit connected to the support arm and automatically moving the surface texture measuring device from a retracted position to a measuring position.
  2.  前記移動ユニットは、
     前記研磨装置に固定される固定ブロックと、
     前記支持アームに連結される回動ブロックと、
     前記回動ブロックを前記固定ブロックに対して回動自在に連結する回転軸と、
     前記回動ブロックを回動させる回動機構と、を備えたことを特徴とする請求項1に記載の研磨装置。
    The mobile unit is
    A fixed block fixed to the polishing apparatus;
    A rotating block coupled to the support arm;
    A rotating shaft that rotatably connects the rotating block to the fixed block;
    The polishing apparatus according to claim 1, further comprising a rotation mechanism that rotates the rotation block.
  3.  前記回動機構は、前記回動ブロックに連結されるピストンと、前記ピストンを進退自在に収容するシリンダから構成されるピストンシリンダ機構であることを特徴とする請求項2に記載の研磨装置。 3. The polishing apparatus according to claim 2, wherein the rotation mechanism is a piston cylinder mechanism including a piston coupled to the rotation block and a cylinder that accommodates the piston so as to advance and retreat.
  4.  前記回転軸は、前記回動ブロックに固定されており、
     前記回動機構は、前記回転軸に連結されたモータであることを特徴とする請求項2に記載の研磨装置。
    The rotating shaft is fixed to the rotating block,
    The polishing apparatus according to claim 2, wherein the rotation mechanism is a motor connected to the rotation shaft.
  5.  前記測定位置に移動させた前記表面性状測定装置の下面が前記研磨パッドの表面に対して平行になるように、前記表面性状測定装置の姿勢を自動で調整する位置調整機構をさらに備え、
     前記位置調整機構は、前記支持アームの下方に配置される支持台と、前記表面性状測定装置の上面に固定され、前記支持台に形成された貫通孔を通って延びる少なくとも1つの調整ピンと、を有しており、
     前記調整ピンは、前記貫通孔の直径よりも小さな直径を有し、前記支持台に形成された貫通孔を通って延びるピン本体と、前記貫通孔よりも上方に位置し、前記貫通孔の直径よりも大きなサイズを有するピンヘッドと、を有することを特徴とする請求項1乃至4のいずれか一項に記載の研磨装置。
    A position adjusting mechanism for automatically adjusting the posture of the surface texture measuring device so that the lower surface of the surface texture measuring device moved to the measurement position is parallel to the surface of the polishing pad;
    The position adjustment mechanism includes a support base disposed below the support arm, and at least one adjustment pin that is fixed to the upper surface of the surface texture measuring device and extends through a through hole formed in the support base. Have
    The adjustment pin has a diameter smaller than the diameter of the through hole, extends through the through hole formed in the support base, and is positioned above the through hole, and the diameter of the through hole The polishing apparatus according to claim 1, further comprising a pin head having a larger size.
  6.  前記表面性状測定装置は、前記研磨パッドの研磨面に対して斜めに加圧気体を噴射するノズルを備えていることを特徴とする請求項1乃至5のいずれか一項に記載の研磨装置。 The polishing apparatus according to any one of claims 1 to 5, wherein the surface texture measuring device includes a nozzle that injects pressurized gas obliquely with respect to the polishing surface of the polishing pad.
  7.  前記表面性状測定装置は、研磨パッドの表面性状を測定するための測定構造を収容するケーシングを有しており、
     前記ケーシングの下部には、切り欠きが形成されており、
     前記ノズルは、前記切り欠きの開口に向けて前記加圧気体が流れるように、前記加圧気体を噴射することを特徴とする請求項6に記載の研磨装置。
    The surface texture measuring device has a casing that houses a measurement structure for measuring the surface texture of the polishing pad,
    A notch is formed in the lower part of the casing,
    The polishing apparatus according to claim 6, wherein the nozzle injects the pressurized gas so that the pressurized gas flows toward the opening of the notch.
  8.  前記支持アームに沿って、前記研磨パッドに対する前記表面性状測定装置の位置を変位させる変位機構を、さらに備え、
     前記変位機構は、
      前記支持アームに沿って延びる長穴と、
      前記長穴に挿入される支持軸と、を有し、
     前記支持軸は、前記表面性状測定装置に連結される軸本体と、前記長穴の内部に形成された段差部に接触して、前記軸本体に連結された表面性状測定装置を支持する軸ヘッドと、を有することを特徴とする請求項1乃至7のいずれか一項に記載の研磨装置。
    A displacement mechanism for displacing the position of the surface texture measuring device with respect to the polishing pad along the support arm;
    The displacement mechanism is
    An elongated hole extending along the support arm;
    A support shaft inserted into the elongated hole,
    The support shaft is in contact with a shaft main body coupled to the surface texture measuring device and a step formed in the elongated hole, and a shaft head that supports the surface texture measuring device coupled to the shaft body. The polishing apparatus according to claim 1, wherein the polishing apparatus includes:
  9.  前記変位機構は、前記表面性状測定装置に連結されるピストンと、前記ピストンを進退自在に収容するシリンダとをさらに備え、
     前記変位機構のシリンダは、前記支持アームに固定されることを特徴とする請求項8に記載の研磨装置。
    The displacement mechanism further includes a piston coupled to the surface texture measuring device, and a cylinder that accommodates the piston so as to freely advance and retract.
    The polishing apparatus according to claim 8, wherein a cylinder of the displacement mechanism is fixed to the support arm.
  10.  前記回動ブロックは、前記支持アームに連結される第1プレートと、前記固定ブロックに連結される第2プレートとにより構成され、
     前記第2プレートは、回転ピンによって前記第1プレートに対して回動自在に連結されていることを特徴とする請求項1乃至9のいずれか一項に記載の研磨装置。
    The rotating block includes a first plate connected to the support arm and a second plate connected to the fixed block.
    The polishing apparatus according to claim 1, wherein the second plate is rotatably connected to the first plate by a rotation pin.
  11.  前記研磨パッドの表面をドレッシングするドレッサーをさらに備え、
     前記表面性状測定装置は、前記ドレッサーに取り付けられており、
     前記支持アームは、前記ドレッサーに連結されるドレッサーシャフトを回転自在に支持するドレッサーアームであり、
     前記移動機構は、前記ドレッサーシャフトを前記ドレッサーアームに対して上下動させる昇降アクチュエータと、前記ドレッサーアームに連結された支軸を揺動させる回転アクチュエータとを含むことを特徴とする請求項1に記載の研磨装置。
    A dresser for dressing the surface of the polishing pad;
    The surface texture measuring device is attached to the dresser,
    The support arm is a dresser arm that rotatably supports a dresser shaft connected to the dresser,
    The moving mechanism includes a lift actuator that moves the dresser shaft up and down with respect to the dresser arm, and a rotary actuator that swings a support shaft connected to the dresser arm. Polishing equipment.
  12.  前記表面性状測定装置は、前記研磨パッドをドレッシングしている間に、前記研磨パッドの表面性状を測定することを特徴とする請求項11に記載の研磨装置。 The polishing apparatus according to claim 11, wherein the surface texture measuring apparatus measures the surface texture of the polishing pad while dressing the polishing pad.
  13.  前記ドレッサーに設けられたドレッシング部材は、その上面から下面まで延びる貫通孔を有するリング形状を有しており、
     前記表面性状測定装置は、前記ドレッシング部材の前記貫通孔を介して、前記研磨パッドの表面性状を測定することを特徴とする請求項11または12に記載の研磨装置。
    The dressing member provided in the dresser has a ring shape having a through hole extending from the upper surface to the lower surface,
    The polishing apparatus according to claim 11 or 12, wherein the surface texture measuring apparatus measures the surface texture of the polishing pad through the through hole of the dressing member.
  14.  前記表面性状測定装置は、前記ドレッサーに複数取り付けられていることを特徴とする請求項12に記載の研磨装置。 The polishing apparatus according to claim 12, wherein a plurality of the surface texture measuring apparatuses are attached to the dresser.
  15.  前記複数の表面性状測定装置のいくつかは、前記研磨パッドにレーザ光を照射し、該研磨パッドの表面で反射した反射光を受光することでパッド表面性状を測定する表面性状測定装置であることを特徴とする請求項14に記載の研磨装置。 Some of the plurality of surface texture measuring devices are surface texture measuring devices that measure the pad surface texture by irradiating the polishing pad with laser light and receiving reflected light reflected from the surface of the polishing pad. The polishing apparatus according to claim 14.
  16.  前記複数の表面性状測定装置のいくつかは、撮像装置が取得した前記研磨パッドの表面の画像情報からパッド表面性状を測定する表面性状測定装置であることを特徴とする請求項14または15に記載の研磨装置。 16. The surface texture measuring device according to claim 14, wherein some of the plurality of surface texture measuring devices are surface texture measuring devices that measure pad surface properties from image information on the surface of the polishing pad acquired by an imaging device. Polishing equipment.
  17.  前記ドレッサーに設けられたドレッシング部材は、その上面から下面まで延びる貫通孔を有するリング形状を有しており、
     前記複数の表面性状測定装置の1つは、前記ドレッシング部材の前記貫通孔を介して、前記研磨パッドの表面性状を測定することを特徴とする請求項14乃至16のいずれか一項に記載の研磨装置。
    The dressing member provided in the dresser has a ring shape having a through hole extending from the upper surface to the lower surface,
    The one of the plurality of surface texture measuring devices measures the surface texture of the polishing pad through the through hole of the dressing member. Polishing equipment.
  18.  請求項1乃至17のいずれか一項に記載の研磨装置と、
     前記研磨装置の表面性状測定装置を用いて得られた研磨パッドの表面性状のデータが入力される処理システムと、を備え、
     前記処理システムは、
      前記研磨装置から出力された前記研磨パッドの表面性状のデータが入力される入力部と、
      前記入力部に入力された研磨パッドの表面性状のデータに基づいて、前記研磨装置のドレッシング条件を決定する処理部と、
      前記処理部によって決定されたドレッシング条件を前記研磨装置に出力する出力部と、を備え、
     前記研磨装置は、前記出力部から出力されたドレッシング条件に基づいて、前記研磨パッドをドレッシングするように構成されていることを特徴とする研磨システム。
    A polishing apparatus according to any one of claims 1 to 17,
    A processing system for inputting data on the surface property of the polishing pad obtained by using the surface property measuring device of the polishing apparatus,
    The processing system includes:
    An input unit for inputting data of the surface property of the polishing pad output from the polishing apparatus;
    Based on the surface property data of the polishing pad input to the input unit, a processing unit that determines dressing conditions of the polishing apparatus;
    An output unit that outputs the dressing conditions determined by the processing unit to the polishing apparatus,
    The polishing system, wherein the polishing apparatus is configured to dress the polishing pad based on a dressing condition output from the output unit.
  19.  前記処理システムは、前記ドレッシング条件を決定するための教師データを予め記憶している記憶部をさらに備えており、
     前記処理システムの処理部は、前記教師データに基づいて、前記研磨装置のドレッシング条件を決定することを特徴とする請求項18に記載の研磨システム。
    The processing system further includes a storage unit that stores teacher data for determining the dressing conditions in advance,
    The polishing system according to claim 18, wherein a processing unit of the processing system determines a dressing condition of the polishing apparatus based on the teacher data.
  20.  前記研磨装置は、前記研磨パッドのドレッシング後に取得された前記研磨パッドの表面性状のデータを前記処理システムの入力部に送信し、
     前記処理システムの処理部は、前記ドレッシング後の研磨パッドの表面性状のデータに基づいて、ドレッシングの必要性、追加ドレッシングの必要性、およびドレッサーの交換を決定することを特徴とする請求項18または19に記載の研磨システム。
    The polishing apparatus transmits the surface property data of the polishing pad acquired after dressing of the polishing pad to the input unit of the processing system,
    The processing unit of the processing system determines necessity of dressing, necessity of additional dressing, and replacement of a dresser based on surface property data of the polishing pad after the dressing. 20. The polishing system according to 19.
  21.  前記研磨装置は、前記研磨パッドのドレッシング中に取得された前記研磨パッドの表面性状のデータを前記処理システムの入力部に送信し、
     前記処理システムの処理部は、前記ドレッシング中の研磨パッドの表面性状のデータに基づいて、前記研磨パッドのドレッシング中に前記ドレッシング条件を変更することを特徴とする請求項18乃至20のいずれか一項に記載の研磨システム。
    The polishing apparatus transmits surface property data of the polishing pad acquired during dressing of the polishing pad to an input unit of the processing system,
    21. The processing unit of the processing system changes the dressing condition during dressing of the polishing pad based on surface property data of the polishing pad during dressing. The polishing system according to item.
  22.  前記処理システムは、ネットワークを介して前記研磨装置と接続されていることを特徴とする請求項18乃至21のいずれか一項に記載の研磨システム。 The polishing system according to any one of claims 18 to 21, wherein the processing system is connected to the polishing apparatus via a network.
PCT/JP2019/017691 2018-04-26 2019-04-25 Polishing device provided with polishing pad surface property measuring device, and polishing system WO2019208712A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980026985.6A CN112004640B (en) 2018-04-26 2019-04-25 Polishing apparatus and polishing system provided with surface texture measuring apparatus for polishing pad
US17/048,674 US11958161B2 (en) 2018-04-26 2019-04-25 Polishing apparatus having surface-property measuring device of polishing pad and polishing system
SG11202010259SA SG11202010259SA (en) 2018-04-26 2019-04-25 Polishing apparatus having surface-property measuring device of polishing pad and polishing system
KR1020207033357A KR20210002580A (en) 2018-04-26 2019-04-25 Polishing device and polishing system equipped with a device for measuring the surface properties of a polishing pad

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018085143 2018-04-26
JP2018-085143 2018-04-26
JP2019-071994 2019-04-04
JP2019071994A JP7269074B2 (en) 2018-04-26 2019-04-04 Polishing device and polishing system equipped with polishing pad surface texture measuring device

Publications (1)

Publication Number Publication Date
WO2019208712A1 true WO2019208712A1 (en) 2019-10-31

Family

ID=68295500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017691 WO2019208712A1 (en) 2018-04-26 2019-04-25 Polishing device provided with polishing pad surface property measuring device, and polishing system

Country Status (1)

Country Link
WO (1) WO2019208712A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022256059A1 (en) * 2021-06-02 2022-12-08 Revasum, Inc. Polishing pad surface cooling by compressed gas

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312526A (en) * 1992-05-12 1993-11-22 Speedfam Co Ltd Laser instrument
JPH10197219A (en) * 1997-01-16 1998-07-31 Mitsubishi Heavy Ind Ltd Pipe shape measuring instrument
JPH10296615A (en) * 1997-04-25 1998-11-10 Okamoto Kosaku Kikai Seisakusho:Kk Polishings cloth characteristics detecting device and system
JPH10315131A (en) * 1997-05-23 1998-12-02 Hitachi Ltd Polishing method of semiconductor wafer and device therefor
JP2001198794A (en) * 2000-01-21 2001-07-24 Ebara Corp Polishing device
JP2006263876A (en) * 2005-03-24 2006-10-05 Renesas Technology Corp Polishing device, polishing method, and manufacturing method for semiconductor device
JP2016209951A (en) * 2015-05-08 2016-12-15 株式会社ディスコ Dry type polishing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312526A (en) * 1992-05-12 1993-11-22 Speedfam Co Ltd Laser instrument
JPH10197219A (en) * 1997-01-16 1998-07-31 Mitsubishi Heavy Ind Ltd Pipe shape measuring instrument
JPH10296615A (en) * 1997-04-25 1998-11-10 Okamoto Kosaku Kikai Seisakusho:Kk Polishings cloth characteristics detecting device and system
JPH10315131A (en) * 1997-05-23 1998-12-02 Hitachi Ltd Polishing method of semiconductor wafer and device therefor
JP2001198794A (en) * 2000-01-21 2001-07-24 Ebara Corp Polishing device
JP2006263876A (en) * 2005-03-24 2006-10-05 Renesas Technology Corp Polishing device, polishing method, and manufacturing method for semiconductor device
JP2016209951A (en) * 2015-05-08 2016-12-15 株式会社ディスコ Dry type polishing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022256059A1 (en) * 2021-06-02 2022-12-08 Revasum, Inc. Polishing pad surface cooling by compressed gas

Similar Documents

Publication Publication Date Title
JP7269074B2 (en) Polishing device and polishing system equipped with polishing pad surface texture measuring device
US8579675B2 (en) Methods of using optical metrology for feed back and feed forward process control
TWI700474B (en) Method and apparatus for measuring surface properties of polishing pad
US10401285B2 (en) Apparatus for measuring surface properties of polishing pad
US10903101B2 (en) Substrate processing apparatus and method for detecting abnormality of substrate
US8932883B2 (en) Method of measuring surface properties of polishing pad
CN109641342A (en) Polishing system with annular working platform or polishing pad
JP6622720B2 (en) CMP apparatus equipped with a surface texture measuring device for a polishing pad
US9669515B2 (en) Polishing apparatus
WO2019208712A1 (en) Polishing device provided with polishing pad surface property measuring device, and polishing system
TWI830730B (en) Grinding device and grinding system equipped with surface properties measuring device of polishing pad
WO2022158284A1 (en) Surface texture measurement device for polishing pad, surface texture measurement method for polishing pad, and surface texture determination method for polishing pad
US11958161B2 (en) Polishing apparatus having surface-property measuring device of polishing pad and polishing system
JP2018065209A (en) Surface-quality measuring device of polishing pad
US20240075580A1 (en) Surface property measuring system, surface property measuring method, polishing apparatus, and polishing method
JP2023162110A (en) Surface quality measurement system, surface quality measurement method, polishing device and polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207033357

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19792075

Country of ref document: EP

Kind code of ref document: A1