JP2006258522A - Infrared microscope - Google Patents

Infrared microscope Download PDF

Info

Publication number
JP2006258522A
JP2006258522A JP2005074338A JP2005074338A JP2006258522A JP 2006258522 A JP2006258522 A JP 2006258522A JP 2005074338 A JP2005074338 A JP 2005074338A JP 2005074338 A JP2005074338 A JP 2005074338A JP 2006258522 A JP2006258522 A JP 2006258522A
Authority
JP
Japan
Prior art keywords
detector
sample
aperture
detector element
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005074338A
Other languages
Japanese (ja)
Inventor
Toyohiko Tanaka
豊彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005074338A priority Critical patent/JP2006258522A/en
Publication of JP2006258522A publication Critical patent/JP2006258522A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance measuring efficiency by improving the complication of measurement produced in the simultaneous use of a plurality of dewers including the whole replacement of the dewers or the addition of a light path switching means performed heretofore in a case requiring a plurality of measurements using a plurality of detector elements different in characteristics, the complication of an apparatus and the scaling-up of the apparatus. <P>SOLUTION: Two detector elements, that is, a P detector element 13P and an S detector element 13S respectively different in optical characteristics are mounted on one dewer 12A and an aperture 9 and a three-dimensional stage 6 cooperating to be subjected to reciprocating movement are provided and reciporcally moved to select either one of the P detector element 13P and the S detector element 13S to use it. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は赤外線波長領域の光により試料の顕微分光を行う赤外顕微鏡に関する。   The present invention relates to an infrared microscope that performs microspectroscopy of a sample with light in the infrared wavelength region.

赤外顕微鏡は赤外線波長領域で顕微分光を行う装置で、微小測定試料の分光に適するように赤外光束を微小面積に集光させるように設計されている。通常の倍率は20〜30倍であるが、近年、フーリエ変換赤外分光器(以下、FTIRと記す)の高感度化に伴い、FTIRと赤外顕微鏡を組み合わせた10μm程度の空間分解能を有する顕微システムが実用化されている。(たとえば特許文献1参照)。赤外顕微鏡は室温、常圧で非破壊分析が出来るので、測定可能な試料の範囲は広く、材料中の異物・欠陥、複合材料の組成・構造・結晶化度、分子や結晶の異方性、生物組織、微粒子などの研究に使用されている。以下にその基本原理を示す。   An infrared microscope is a device that performs microspectroscopic light in the infrared wavelength region, and is designed to condense an infrared light beam onto a minute area so as to be suitable for spectroscopy of a minute measurement sample. Although the normal magnification is 20 to 30 times, in recent years, with the increase in sensitivity of a Fourier transform infrared spectrometer (hereinafter referred to as FTIR), a microscope having a spatial resolution of about 10 μm combining FTIR and an infrared microscope. The system has been put into practical use. (For example, refer to Patent Document 1). Infrared microscopes can perform nondestructive analysis at room temperature and atmospheric pressure, so the range of samples that can be measured is wide, foreign materials / defects in materials, composition / structure / crystallinity of composite materials, and anisotropy of molecules and crystals It is used for research on biological tissues, fine particles, etc. The basic principle is shown below.

FTIR内のマイケルソン干渉計からの赤外光が赤外顕微鏡に導かれる。前記赤外光は反射鏡・半透明鏡・プリズムなどで構成される前段光学系および凹面鏡を用いたコンデンサを介してその光路を制御されるとともに約1mmに集束され、測定試料(以下、試料と略記する)を照射し、試料の透過光が凹面鏡を用いた反射対物鏡を介して取り出され、且つ集束される。試料以外から発生する迷光をカットし試料を透過した光のみを検出するため、反射対物鏡後方の結像部に絞り(以下、アパーチャと記す)が置かれ、アパーチャを通過した光は反射鏡・半透明鏡・プリズムなどで構成される後段光学系でその光路を制御され再び集束され、アパーチャの共焦点位置にある微小面積の検出器素子を照射し電気信号に変換され、さらにフーリエ変換されて赤外スペクトルになる。   Infrared light from a Michelson interferometer in the FTIR is directed to an infrared microscope. The optical path of the infrared light is controlled through a front-end optical system composed of a reflecting mirror, a translucent mirror, a prism, and a condenser using a concave mirror and is focused to about 1 mm. (Abbreviated) is applied, and the transmitted light of the sample is extracted and focused through a reflective objective mirror using a concave mirror. In order to detect stray light generated from other than the sample and detect only the light that has passed through the sample, a diaphragm (hereinafter referred to as an aperture) is placed in the imaging area behind the reflective objective mirror. The optical path of the latter stage optical system composed of semi-transparent mirrors and prisms is controlled and focused again, irradiated to a small area detector element at the confocal position of the aperture, converted into an electrical signal, and further subjected to Fourier transform It becomes an infrared spectrum.

検出器素子としては半導体検出器(たとえばMCT検出器、InGaAs結晶など)が使用されるが、半導体検出器は一般に高感度測定のため測定時に低温に保つ必要であるので、液体窒素などの冷却剤または冷媒を内蔵した魔法瓶などの冷却装置(以下、デュワーと記す)の表面の一部に低温面を設け、低温面に密着した検出器ホルダに検出器素子を取り付けて検出器素子を低温に保ち使用する。なお、検出器素子を照射する赤外光としては試料の透過光のみならず、試料表面からの反射光を使用することもある。   As the detector element, a semiconductor detector (for example, MCT detector, InGaAs crystal, etc.) is used. Since a semiconductor detector is generally required to be kept at a low temperature during measurement for high sensitivity measurement, a coolant such as liquid nitrogen is used. Alternatively, a low-temperature surface is provided on a part of the surface of a cooling device such as a thermos containing refrigerant (hereinafter referred to as “Dewar”), and the detector element is attached to a detector holder that is in close contact with the low-temperature surface to keep the detector element at a low temperature. use. In addition, not only the transmitted light of the sample but also reflected light from the sample surface may be used as the infrared light that irradiates the detector element.

この場合は前記マイケルソン干渉計からの赤外光をアパーチャと反射対物鏡の中間に設けた半透明鏡によりアパーチャ方向から前記反射対物鏡を介して試料表面に導き、試料表面からの反射光を再び反射対物鏡および半透明鏡を介して結像部にあるアパーチャに入射させる。アパーチャ以下の光路は透過光測定の場合と同じである。さらに、光路および試料像の視認のために、一般に赤外顕微鏡の光路の入口にマイケルソン干渉計からの赤外光と同一の光路が得られるように調整された可視光源が備えられ、赤外光と切り替えて使用することが行われている。この場合の試料像の視認はアパーチャの後方に設けた光路変更用ミラーを移動し、検出器素子に向かっていた光の方向を変更して光学顕微鏡または、光学顕微鏡を介してCCDスクリーンなどに導くことによって行われる。   In this case, the infrared light from the Michelson interferometer is guided from the aperture direction to the sample surface via the reflecting objective by a semi-transparent mirror provided between the aperture and the reflecting objective, and the reflected light from the sample surface is guided. The light is again incident on the aperture in the imaging unit via the reflective objective mirror and the semi-transparent mirror. The optical path below the aperture is the same as in the case of transmitted light measurement. In addition, for visual recognition of the optical path and the sample image, a visible light source is generally provided at the entrance of the optical path of the infrared microscope so as to obtain the same optical path as the infrared light from the Michelson interferometer. It is used by switching to light. In this case, the sample image is visually confirmed by moving an optical path changing mirror provided behind the aperture and changing the direction of light directed toward the detector element to guide it to an optical microscope or a CCD screen via the optical microscope. Is done by.

以下、図5(A)によって従来の赤外顕微鏡の構造と作動を説明する。FTIR1から出射された赤外光の光束Lは切り替えミラー2で反射され、反射鏡・半透明鏡・プリズムなどで構成される前段光学系3、ミラー4、凹面鏡を用いたコンデンサ5を介して集束され、3次元ステージ6上の試料7の約1mmの領域を照射する。3次元ステージ6は試料7をXYZ3方向に粗動および微動することのできる構造を有している。試料7を透過した光束Lは反射対物鏡8を介して図の上方に取り出され、アパーチャ9の位置で焦点を結ぶ。   Hereinafter, the structure and operation of a conventional infrared microscope will be described with reference to FIG. The infrared light beam L emitted from the FTIR 1 is reflected by the switching mirror 2 and converged via the front optical system 3 composed of a reflecting mirror, a semitransparent mirror, a prism, and the like, a mirror 4, and a condenser 5 using a concave mirror. Then, an area of about 1 mm of the sample 7 on the three-dimensional stage 6 is irradiated. The three-dimensional stage 6 has a structure capable of coarsely and finely moving the sample 7 in the XYZ3 directions. The light beam L transmitted through the sample 7 is taken out upward in the figure through the reflecting objective mirror 8 and focused at the position of the aperture 9.

更に光束Lは切り替えミラー10で反射され、反射鏡・半透明鏡・プリズムなどで構成される後段光学系11で集束されてアパーチャ9の共焦点位置に置かれている検出器素子13上に試料像を結像する。検出器素子13はデュワー12で冷却されている。なお12Wは検出器素子13の保護のため設けられている側壁である。検出器素子13で得られた試料7の電気信号をフーリエ変換することにより赤外スペクトルが得られる。   Further, the light beam L is reflected by the switching mirror 10, focused by a subsequent optical system 11 composed of a reflecting mirror, a semitransparent mirror, a prism, and the like, and placed on the detector element 13 placed at the confocal position of the aperture 9. Form an image. The detector element 13 is cooled by a dewar 12. Reference numeral 12W denotes a side wall provided for protecting the detector element 13. An infrared spectrum is obtained by Fourier-transforming the electrical signal of the sample 7 obtained by the detector element 13.

以上の説明は試料7の透過光を分析する場合についてのものであるが、前段光学系3の中で光路を変更し、切り替えミラー2からの光を反射対物鏡8とアパーチャ9の中間に導き、半透明ミラー(図示せず)により反射対物鏡8を介して試料7表面に入射させ、試料7からの反射光を再度反射対物鏡8を介してアパーチャ9に入射させ試料7の反射光を検出器素子13に結像させることにより、反射光分析を行うことも可能である。反射光分析においても本発明に関与するアパーチャ9以後の光束Lの進路は透過光分析の場合と同一であるので、反射光分析についてはこれ以上の記載を割愛する。   The above explanation is about the case where the transmitted light of the sample 7 is analyzed, but the optical path is changed in the front optical system 3, and the light from the switching mirror 2 is guided to the middle between the reflecting objective mirror 8 and the aperture 9. Then, a semi-transparent mirror (not shown) is caused to enter the surface of the sample 7 via the reflecting objective mirror 8, and the reflected light from the sample 7 is again incident on the aperture 9 via the reflecting objective mirror 8 to reflect the reflected light of the sample 7. Reflected light analysis can be performed by forming an image on the detector element 13. Also in the reflected light analysis, the path of the light beam L after the aperture 9 involved in the present invention is the same as in the case of the transmitted light analysis, so that further description of the reflected light analysis is omitted.

FTIR1からの光束Lは赤外光であり視認ができないので、光路および結像状態の視認のため可視光源14が備えられている。可視光源14からの可視光は集光レンズ15でFTIR1からの赤外光と同等の形状に成形され、切り替えミラー2を光路から移動することによって前段光学系3の方向に進行するので、必要に応じて光路および結像状態の確認が可能となる。また切り替えミラー10を光路から移動し、アパーチャ9から進行してきた可視光を光学顕微鏡OPまたは光学顕微鏡OPを介してCCDスクリーン(図示せず)などに導くことによって、試料7の光学顕微像を視認または記録することができる。   Since the light beam L from the FTIR 1 is infrared light and cannot be visually recognized, a visible light source 14 is provided for visual recognition of the optical path and the image formation state. Visible light from the visible light source 14 is formed into a shape equivalent to the infrared light from the FTIR 1 by the condenser lens 15 and travels in the direction of the preceding optical system 3 by moving the switching mirror 2 from the optical path. Accordingly, the optical path and the imaging state can be confirmed. The switching mirror 10 is moved from the optical path, and the visible light traveling from the aperture 9 is guided to a CCD screen (not shown) or the like through the optical microscope OP or the optical microscope OP, so that an optical microscopic image of the sample 7 is visually recognized. Or you can record.

図5(B)および(C)はそれぞれ、アパーチャ9の位置および検出器素子13の位置における、アパーチャ部全結像範囲16、アパーチャ開口17、試料像中心18および、検出器部全結像範囲16A、検出器素子13、アパーチャ開口像17A、検出器部試料像中心18Aの相互位置関係を模式的に示している。アパーチャ部全結像範囲16および検出器部全結像範囲16Aはアパーチャ9の位置および検出器素子13の位置における3次元ステージ位置の像の結像範囲の限界を示しており、その大きさおよび位置はコンデンサ5、反射対物鏡8の位置と倍率関係により定まっており、この範囲にある試料7の像がアパーチャ9およびその共焦点にある検出器素子13の位置で結像可能である。試料像中心18および検出器部試料像中心18Aは試料7の分光目標箇所の中心位置を模式的に示しており、3次元ステージ6の移動によって希望する試料像中心18をアパーチャ開口17したがってアパーチャ開口像17Aの中央に選択することができる。アパーチャ開口17の大きさは通常、アパーチャ開口像17Aの大きさが検出器素子13より少し小さくなるように選択される。   FIGS. 5B and 5C respectively show the aperture portion total imaging range 16, the aperture opening 17, the sample image center 18, and the detector portion total imaging range at the position of the aperture 9 and the position of the detector element 13. 16A schematically shows the mutual positional relationship among 16A, the detector element 13, the aperture opening image 17A, and the detector portion sample image center 18A. Aperture full image forming range 16 and detector full image forming range 16A indicate the limits of the image forming range of the image of the three-dimensional stage position at the position of aperture 9 and the position of detector element 13, and the size and The position is determined by the position of the condenser 5 and the reflecting objective mirror 8 and the magnification relationship, and an image of the sample 7 within this range can be formed at the position of the aperture 9 and the detector element 13 at the confocal point. The sample image center 18 and the detector part sample image center 18A schematically show the center position of the spectral target portion of the sample 7, and the desired sample image center 18 is moved to the aperture opening 17 and thus the aperture opening by the movement of the three-dimensional stage 6. It can be selected in the center of the image 17A. The size of the aperture opening 17 is usually selected so that the size of the aperture opening image 17A is slightly smaller than the detector element 13.

特開2000−121553号公報(第1−6頁)JP 2000-121553 A (page 1-6)

従来の赤外顕微鏡の構造および作動は以上のとおりであるが、この構造では複数の検出器素子13の使用に問題がある。一般に、ある特定の検出器素子13は波長領域や感度などのすべてを同時には満足しない。一例としてMCT検出器には波長領域の広いものは感度が低いという特性があるので、測定対象とする波長領域、求める感度に応じて異なる特性範囲を持つ数種類の検出器素子13を交換または切り替えて使用する必要があった。   The structure and operation of a conventional infrared microscope are as described above, but there is a problem in the use of a plurality of detector elements 13 in this structure. In general, a particular detector element 13 does not satisfy all of the wavelength region and sensitivity at the same time. As an example, since the MCT detector has a characteristic that the sensitivity of a wide wavelength region is low, several types of detector elements 13 having different characteristic ranges are exchanged or switched depending on the wavelength region to be measured and the required sensitivity. Had to be used.

しかし従来の構造では、特性の異なる検出器素子13、たとえば波長感度領域が狭いが高感度の検出器素子13および、低感度であるが波長感度領域が広い検出器素子13の両者を用いた測定の手順が煩雑になり、測定効率が低下していた。すなわち従来の構造ではデュワー12に装着される検出器素子13は1個であり、現在装着されている検出器素子13とは異なる特性範囲の測定のためには、デュワー12を別の特性を持つ検出器素子13を装着したデュワー12に交換するか、または特性の異なる検出器素子13を各1個ずつ装着した複数のデュワー12を装置に同時に取り付け且つアパーチャ9以後の光路にミラーなどの光学素子を追加し光路を切り替えることにより複数のデュワー12から1個を選択するかのいずれかの方法を実施しなければならない。   However, in the conventional structure, measurement is performed using both detector elements 13 having different characteristics, for example, a detector element 13 having a narrow wavelength sensitivity range but a high sensitivity, and a detector element 13 having a low sensitivity but a wide wavelength sensitivity range. The procedure was complicated and the measurement efficiency was reduced. That is, in the conventional structure, only one detector element 13 is attached to the dewar 12, and the dewar 12 has different characteristics for measurement in a characteristic range different from that of the currently installed detector element 13. Replace the dewar 12 with the detector element 13 attached, or simultaneously attach a plurality of dewars 12 with one detector element 13 with different characteristics to the apparatus, and an optical element such as a mirror in the optical path after the aperture 9 Either one of the plurality of dewars 12 is selected by switching the optical path.

デュワー12全体の交換は煩雑であり、また複数のデュワー12を使用する場合は複数のデュワー12を設置するとともに光路の切り替え手段を追加しなければならないため装置が複雑化し大型化するので、いずれの場合も測定効率は大きく低下する。もし3種類以上の測定が必要な場合は、困難はますます増大する。本発明はこのような問題を解決する手段を提供することを目的とする。   Replacing the entire dewar 12 is complicated, and when a plurality of dewars 12 are used, a plurality of dewars 12 must be installed and an optical path switching means must be added. Even in this case, the measurement efficiency is greatly reduced. If more than two types of measurements are required, the difficulty increases. An object of the present invention is to provide means for solving such problems.

本発明が提供する赤外線顕微鏡は上記課題を解決するために、往復動可能に設けられたステージに試料を載置するとともに、試料への赤外光照射を案内するアパーチャも往復動可能に設けて、赤外光を試料に照射し、試料からの赤外光を半導体検出器の検出器素子に入射し試料の測定を行う赤外顕微鏡において、ステージとアパーチャの往復動を連動させる機構を設けるとともに検出器素子を複数種設け、かつこのいずれかの検出器素子を選択できる機構を設ける。   In order to solve the above-described problems, the infrared microscope provided by the present invention has a sample placed on a stage that is reciprocally movable, and an aperture that guides the irradiation of infrared light to the sample is also reciprocally movable. In an infrared microscope that irradiates a sample with infrared light and injects infrared light from the sample into a detector element of a semiconductor detector to measure the sample, a mechanism is provided for reciprocating the stage and the aperture. A plurality of types of detector elements are provided, and a mechanism capable of selecting any one of the detector elements is provided.

本発明の効果として、ステージとアパーチャの往復動を連動させる機構を設けるとともに検出器素子を複数種設け、かつこのいずれかの検出器素子を選択できる機構を設けることにより、特性の異なる検出器素子による測定を行うため検出器素子を1個装着した冷却装置(デュワー)の全体を交換したり、特性の異なる検出器素子を各1個ずつ装着した複数の冷却装置(デュワー)を同時に配設し且つアパーチャ以後の光路にミラーなどの光学素子を追加し光路を切り替えたりすることなく、特性の異なる検出器素子による複数の測定を簡単に行うことが可能になる。   As an effect of the present invention, by providing a mechanism for interlocking the reciprocation of the stage and the aperture, providing a plurality of types of detector elements, and providing a mechanism for selecting any one of these detector elements, detector elements having different characteristics Replace the entire cooling device (dewar) equipped with one detector element or perform multiple cooling devices (dewars) equipped with detector elements with different characteristics at the same time. In addition, it is possible to easily perform a plurality of measurements using detector elements having different characteristics without adding an optical element such as a mirror to the optical path after the aperture and switching the optical path.

本発明が提供する赤外顕微鏡はつぎのような特徴を有している。第1の特徴はステージとアパーチャの往復動を連動させる機構を設けるように構成された点である。第2の特徴は検出器素子を複数種設け、かつこのいずれかの検出器素子を選択できる機構を設けるように構成された点である。したがって最良の形態の基本的な構成は、ステージとアパーチャの往復動を連動させる機構と、検出器素子を複数種設けかついずれかの検出器素子を選択できる機構とを具備する赤外顕微鏡である。   The infrared microscope provided by the present invention has the following characteristics. The first feature is that a mechanism for interlocking the reciprocation of the stage and the aperture is provided. The second feature is that a plurality of types of detector elements are provided and a mechanism capable of selecting any one of the detector elements is provided. Therefore, the basic configuration of the best mode is an infrared microscope having a mechanism for interlocking the reciprocating motion of the stage and the aperture, and a mechanism for providing a plurality of types of detector elements and selecting any one of the detector elements. .

以下図示例に従って説明する。図1および図2は本発明の第1の実施例の構成図である。図1および図2において図5と同一符号の部品の構造および作動は図5と同一である。図1はデュワーの構成の一例である。図1(A)はデュワー12Aの正面図、(B)は側面図である。検出器ホルダ21には異なった波長吸収特性を有する2個の検出器素子、P検出器素子13PおよびS検出器素子13Sが装着され、デュワー12Aで冷却されている。検出器ホルダ21は断熱および霜の付着防止のため、測定波長に対して透明な窓板22および窓板側壁23で覆われている。   This will be described with reference to the illustrated example. 1 and 2 are configuration diagrams of a first embodiment of the present invention. 1 and 2, the structure and operation of the parts having the same reference numerals as those in FIG. 5 are the same as those in FIG. 5. FIG. 1 shows an example of the configuration of the dewar. 1A is a front view of the dewar 12A, and FIG. 1B is a side view. Two detector elements having different wavelength absorption characteristics, a P detector element 13P and an S detector element 13S are mounted on the detector holder 21 and cooled by a dewar 12A. The detector holder 21 is covered with a window plate 22 and a window plate side wall 23 that are transparent to the measurement wavelength for heat insulation and prevention of frost adhesion.

図2は試料7およびアパーチャ9を連動して往復動させる構造を説明する図である。図2(A)は試料7およびアパーチャ9を連動して往復動させる構造の概念図を示す。また図2(B)および(C)はそれぞれアパーチャ9と、検出器素子面Dにおける結像状態を示す。実際は図5の反射対物鏡8や途中の光学系の倍率に従って拡大/縮小関係にある。図2(B)に示すアパーチャ開口17Pは図2(C)に示すP検出器素子13Pでのアパーチャ開口像17PAに、図2(B)に示すアパーチャ開口17Sは図2(C)に示すS検出器素子13S位置でのアパーチャ開口像17SAにそれぞれ対応する。すなわち図2(B)において3次元ステージ6を移動させて試料像中心18P(試料7の中心像)を試料像中心18Sに移動させるとともに、アパーチャ9を移動させアパーチャ開口17Pをアパーチャ開口17Sに移動させることで、検出器素子面Dにおいて検出器部試料像中心18PAを検出器部試料像中心18SAに、またアパーチャ開口像17PAをアパーチャ開口像17SAに移動させ、P検出器素子13PからS検出器素子13Sへの入射切り替えが達成できることになる。但し、図2(A)では試料7およびアパーチャ9を2個の検出器素子の間隔と同一距離だけ同一方向に移動しているが、本図は基本原理を示したものであり、実際にはP検出器素子13P面またはS検出器素子13S面での試料7の像の倍率および3次元ステージ6から各検出器素子までの光学系の構成により、試料7およびアパーチャ9の移動方向および移動距離は影響を受けるから、実際の装置では試料7およびアパーチャ9それぞれに、装置の構成で決まる方向および距離の連動往復動が必要である。   FIG. 2 is a diagram for explaining a structure in which the sample 7 and the aperture 9 are reciprocated in an interlocking manner. FIG. 2A shows a conceptual diagram of a structure in which the sample 7 and the aperture 9 are reciprocated in an interlocking manner. 2B and 2C show the image formation state on the aperture 9 and the detector element surface D, respectively. Actually, there is an enlargement / reduction relationship according to the magnification of the reflective objective mirror 8 in FIG. The aperture opening 17P shown in FIG. 2 (B) is an aperture opening image 17PA in the P detector element 13P shown in FIG. 2 (C), and the aperture opening 17S shown in FIG. 2 (B) is S shown in FIG. 2 (C). This corresponds to the aperture opening image 17SA at the position of the detector element 13S. That is, in FIG. 2B, the three-dimensional stage 6 is moved to move the sample image center 18P (center image of the sample 7) to the sample image center 18S, and the aperture 9 is moved to move the aperture opening 17P to the aperture opening 17S. As a result, the detector part sample image center 18PA is moved to the detector part sample image center 18SA and the aperture opening image 17PA is moved to the aperture opening image 17SA on the detector element surface D, and the S detector is detected from the P detector element 13P. Switching of incidence to the element 13S can be achieved. However, in FIG. 2 (A), the sample 7 and the aperture 9 are moved in the same direction by the same distance as the distance between the two detector elements, but this figure shows the basic principle. Depending on the magnification of the image of the sample 7 on the P detector element 13P surface or the S detector element 13S surface and the configuration of the optical system from the three-dimensional stage 6 to each detector element, the moving direction and moving distance of the sample 7 and the aperture 9 Therefore, in the actual apparatus, the sample 7 and the aperture 9 need to be reciprocally moved in the direction and distance determined by the structure of the apparatus.

図3は本発明の第2の実施例である。図3において図1または図5と同一符号の部品の構造および作動は図1または図5と同一である。図3(A)はデュワー12Bの正面図、(B)は側面図である。本実施例では2個の検出器素子、P検出器素子13PおよびS検出器素子13Sが光束Lの進行方向に重ねられ、デュワー12Bの側面に配設された検出器ホルダ21Aに装着されている。デュワー12Bの構造は、検出器ホルダ21Aの取り付け部分以外は図1のデュワー12Aと同一である。   FIG. 3 shows a second embodiment of the present invention. In FIG. 3, the structure and operation of components having the same reference numerals as those in FIG. 1 or FIG. 5 are the same as those in FIG. 3A is a front view of the dewar 12B, and FIG. 3B is a side view. In the present embodiment, two detector elements, a P detector element 13P and an S detector element 13S are overlapped in the traveling direction of the light beam L and are mounted on a detector holder 21A disposed on the side surface of the dewar 12B. . The structure of the dewar 12B is the same as that of the dewar 12A of FIG. 1 except for the attachment portion of the detector holder 21A.

本実施例ではP検出器素子13Pで吸収された赤外光はS検出器素子13Sには到達しないので、装着に当たってはこのことを理解しておかなければならない。たとえばP検出器素子13PおよびS検出器素子13Sの吸収強度αと波長λの関係が図4に示されるグラフのようなものであるとすると、入射光のうち、波長Hから波長Iの区間の光の一部はP検出器素子13Pで吸収されるので、S検出器素子13Sには到達しない。したがってS検出器素子13Sは本来、波長Hから波長Jの範囲の光をすべて吸収するが、本実施例の場合はハッチングされた三角形の範囲の光が吸収できなくなる。しかしこの場合も波長Iから波長Jまでの光はS検出器素子13Sでそのまま吸収されるので、P検出器素子13Pとは異なった光情報を得ることができる。   In the present embodiment, the infrared light absorbed by the P detector element 13P does not reach the S detector element 13S, so this must be understood when mounting. For example, if the relationship between the absorption intensity α and the wavelength λ of the P detector element 13P and the S detector element 13S is as shown in the graph shown in FIG. Since a part of the light is absorbed by the P detector element 13P, it does not reach the S detector element 13S. Therefore, the S detector element 13S originally absorbs all the light in the range from the wavelength H to the wavelength J, but in the present embodiment, it cannot absorb the light in the hatched triangular range. However, also in this case, the light from the wavelength I to the wavelength J is absorbed as it is by the S detector element 13S, so that optical information different from that of the P detector element 13P can be obtained.

本発明は上記の実施例に限定されるものではなく、さらに種々の変形実施例を挙げることができる。たとえば実施例1において2個の検出器素子は図の上下方向(縦方向)に配置することも可能である。また実施例1および実施例2において検出器素子数を必要によって3個以上としても良い。本発明はこれらをすべて包含する。また前記各実施例ではいずれも冷却手段をデュワーを例として説明しているが、冷却手段としてはペルチェ冷却、スターリング冷却など任意のものを使用できる。また冷却手段を要しない場合も本発明を適用することが可能であり、本発明は冷却手段には限定されない。   The present invention is not limited to the above-described embodiments, and various modified embodiments can be given. For example, in the first embodiment, the two detector elements can be arranged in the vertical direction (vertical direction) in the figure. In the first and second embodiments, the number of detector elements may be three or more if necessary. The present invention includes all of these. In each of the above embodiments, the cooling means is described by taking a dewar as an example, but any cooling means such as Peltier cooling or Stirling cooling can be used. Further, the present invention can be applied even when the cooling means is not required, and the present invention is not limited to the cooling means.

本発明は赤外線波長領域の光により試料の顕微分光を行う赤外顕微鏡に適用することができる。   The present invention can be applied to an infrared microscope that performs microspectroscopy of a sample with light in the infrared wavelength region.

は本発明の第1の実施例のデュワー部構造図である。FIG. 2 is a structural diagram of a dewar part of the first embodiment of the present invention. は本発明の第1の実施例の検出器素子切り替え機構である。Is a detector element switching mechanism of the first embodiment of the present invention. は本発明の第2の実施例のデュワー部構造図である。These are dewar part structure diagrams of the second embodiment of the present invention. は検出器素子の吸収強度と波長の関係の例を示す図である。These are figures which show the example of the relationship between the absorption intensity of a detector element, and a wavelength. は従来の赤外線顕微鏡の全体の構成図である。FIG. 1 is an overall configuration diagram of a conventional infrared microscope.

符号の説明Explanation of symbols

1 FTIR
2 切り替えミラー
3 前段光学系
4 ミラー
5 コンデンサ
6 3次元ステージ
7 試料
8 反射対物鏡
9 アパーチャ
10 切り替えミラー
11 後段光学系
12、12A、12B デュワー
12W 側壁
13 検出器素子
13P P検出器素子
13S S検出器素子
14 可視光源
15 集光レンズ
16 アパーチャ部全結像範囲
16A 検出器部全結像範囲
17、17P、17S アパーチャ開口
17A、17PA、17SA アパーチャ開口像
18、18P、18S 試料像中心
18A、18PA、18SA 検出器部試料像中心
21、21A 検出器ホルダ
22 窓板
23 窓板側壁
L 光束
1 FTIR
2 Switching mirror 3 Front stage optical system 4 Mirror 5 Condenser 6 3D stage 7 Sample 8 Reflective objective mirror 9 Aperture 10 Switching mirror 11 Rear stage optical system 12, 12A, 12B Dewar 12W Side wall 13 Detector element 13P P detector element 13S S detection Element 14 Visible light source 15 Condensing lens 16 Aperture part full imaging range 16A Detector part full imaging range 17, 17P, 17S Aperture aperture 17A, 17PA, 17SA Aperture aperture image 18, 18P, 18S Sample image center 18A, 18PA , 18SA detector part sample image center 21, 21A detector holder 22 window plate 23 window plate side wall L luminous flux

Claims (2)

往復動可能に設けられたステージに試料を載置するとともに、試料への赤外光照射を案内するアパーチャも往復動可能に設けて、赤外光を試料に照射し、試料からの赤外光を半導体検出器の検出器素子に入射し試料の測定を行う赤外顕微鏡において、ステージとアパーチャの往復動を連動させる機構を設けるとともに検出器素子を複数種設け、かつこのいずれかの検出器素子を選択できる機構を設けたことを特徴とする赤外顕微鏡。   The sample is placed on a stage that can reciprocate, and an aperture that guides the sample to irradiate infrared light is also provided to reciprocate, irradiate the sample with infrared light, and receive infrared light from the sample. Infrared microscope that measures the sample by entering the detector element of the semiconductor detector is provided with a mechanism for interlocking the reciprocation of the stage and the aperture, and a plurality of detector elements, and any one of these detector elements An infrared microscope characterized in that a mechanism capable of selecting is provided. 複数種の検出器素子のうち少なくとも1個がその検出器が感度を有する波長以外の領域で透明であることを特徴とする請求項1記載の赤外顕微鏡。   2. The infrared microscope according to claim 1, wherein at least one of the plurality of types of detector elements is transparent in a region other than the wavelength at which the detector has sensitivity.
JP2005074338A 2005-03-16 2005-03-16 Infrared microscope Withdrawn JP2006258522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005074338A JP2006258522A (en) 2005-03-16 2005-03-16 Infrared microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074338A JP2006258522A (en) 2005-03-16 2005-03-16 Infrared microscope

Publications (1)

Publication Number Publication Date
JP2006258522A true JP2006258522A (en) 2006-09-28

Family

ID=37097960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074338A Withdrawn JP2006258522A (en) 2005-03-16 2005-03-16 Infrared microscope

Country Status (1)

Country Link
JP (1) JP2006258522A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223846A (en) * 2009-03-25 2010-10-07 Jasco Corp Detector and infrared microscope
US8008594B2 (en) 2007-07-17 2011-08-30 Hitachi, Ltd. Vacuum insulated switchgear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8008594B2 (en) 2007-07-17 2011-08-30 Hitachi, Ltd. Vacuum insulated switchgear
JP2010223846A (en) * 2009-03-25 2010-10-07 Jasco Corp Detector and infrared microscope

Similar Documents

Publication Publication Date Title
US10942116B2 (en) Method and apparatus for enhanced photo-thermal imaging and spectroscopy
US11002665B2 (en) Method and apparatus for enhanced photo-thermal imaging and spectroscopy
KR100743591B1 (en) Confocal Self-Interference Microscopy Which Excluding Side Lobes
JP4887989B2 (en) Optical microscope and spectrum measuring method
WO2014110900A1 (en) Method and apparatus for laser differential confocal spectrum microscopy
US5589936A (en) Optical measuring apparatus for measuring physichemical properties
JP4069959B2 (en) Polarizer for multi-axis inspection in microscope
CN106198407B (en) A kind of scanning of sample space and positioning device
KR101393514B1 (en) High-sensitivity and video-rate confocal fluorescence microscope
JP2002148172A (en) Near field microscope
JPH0797078B2 (en) Infrared microspectrophotometer
US20230280267A1 (en) Analysis device
JP2006258522A (en) Infrared microscope
CN104267488A (en) Optical microscope beam splitter device
US20230236112A1 (en) Method and apparatus for enhanced photo-thermal imaging and spectroscopy
JP3121902U (en) Infrared microscope
JP2001174708A (en) Infrared microscope
JP4614495B2 (en) Double resonance absorption microscope
JPS62133339A (en) Luminescence measuring instrument
US4764676A (en) Apparatus for spectral analysis of chromatographic fractions
CN108489613A (en) A kind of volume holographic grating type space heterodyne Raman spectroscopy instrument light channel structure
JPH0694613A (en) Infrared microscopic measuring apparatus
JP4713391B2 (en) Infrared microscope
JPH1054793A (en) Spectral reflection light amount measuring device
JP2943236B2 (en) Total reflection absorption spectrum measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090918