JP2006258240A - Method for manufacturing sintered slide bearing - Google Patents

Method for manufacturing sintered slide bearing Download PDF

Info

Publication number
JP2006258240A
JP2006258240A JP2005079027A JP2005079027A JP2006258240A JP 2006258240 A JP2006258240 A JP 2006258240A JP 2005079027 A JP2005079027 A JP 2005079027A JP 2005079027 A JP2005079027 A JP 2005079027A JP 2006258240 A JP2006258240 A JP 2006258240A
Authority
JP
Japan
Prior art keywords
sintered body
resin
bearing
pores
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005079027A
Other languages
Japanese (ja)
Inventor
Hidekazu Tokushima
秀和 徳島
Takashi Matsumura
隆志 松村
Makoto Kondo
近藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2005079027A priority Critical patent/JP2006258240A/en
Publication of JP2006258240A publication Critical patent/JP2006258240A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To certainly and stably retain a porosity of 1.0% or less without raising a density of a bearing material. <P>SOLUTION: In the method for manufacturing the sintered slide bearing, pores of a porous sintered body is impregnated/cured with a thermoset resin to perform sealing treatment and the sealing treatment by the resin are performed two times or more at the final step of the manufacturing of the bearing of the porous sintered body. Specifically, the method comprises a sintering step for sintering a pressure-molded powder body to manufacture the porous sintered body; a re-compression step for re-compressing the sintered body; and a sealing treatment step in which sealing operations in which pores of the re-compressed sintered body are impregnated/cured with a resin are performed two times or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特に、焼結体の気孔に樹脂を含浸硬化して封孔した焼結滑り軸受の製造方法に関するものである。   In particular, the present invention relates to a method for manufacturing a sintered plain bearing in which pores of a sintered body are impregnated and cured by sealing with resin.

焼結軸受のうち、流体式滑り軸受は特開昭64−83920号等に記載されているように軸受周囲に潤滑油が充填供給されるもので、例えば、高速回転用のディスク駆動スピンドルモータ等に用いられている。この滑り軸受では、動圧作用をより高くするため軸受のうち軸受面等の気孔を封鎖したり少なくされる。この封孔処理としては、特許文献1に記載されているように、軸受を各種ブラストやタンブラー処理で封孔したり、樹脂を気孔内に含浸硬化する方法が採用される。また、樹脂による封孔処理では、特許文献2に記載されているように、圧粉成形体を焼結した焼結体又は該焼結体を予備サイジングした多孔質焼結体の気孔に樹脂を含浸し硬化させた後、該焼結体を金型に入れ圧力を加える塑性加工により樹脂の硬化収縮等に起因して生じる気孔内の隙間を縮小又は閉塞することが好ましいとされる。   Among the sintered bearings, a fluid type sliding bearing is one in which lubricating oil is filled and supplied around the bearing as described in JP-A-64-83920, for example, a disk drive spindle motor for high-speed rotation, etc. It is used for. In this sliding bearing, pores such as the bearing surface are blocked or reduced in order to further increase the dynamic pressure action. As this sealing treatment, as described in Patent Document 1, a method of sealing the bearing by various blasting or tumbling treatment or impregnating and hardening resin in the pores is adopted. Further, in the sealing treatment with resin, as described in Patent Document 2, resin is put into pores of a sintered body obtained by sintering a compacted body or a porous sintered body obtained by pre-sizing the sintered body. After impregnating and curing, it is preferable to reduce or close the gaps in the pores caused by the curing shrinkage of the resin or the like by plastic processing in which the sintered body is put into a mold and pressure is applied.

特開平11−62948JP-A-11-62948 特開2002−333023JP 2002-333023 A

上記樹脂を含浸させる封孔処理のうち、特許文献1の方法では、含浸された樹脂が気孔内で硬化するときに収縮するため、含浸量及び収縮率のバラツキにより表面開口率又は気孔率をより小さくしたり安定化し難い。対策としては、使用樹脂の粘度を低くすると共に真空含浸等の採用も考えられるが、時間がかかり非効率となる。特許文献2の方法では、多孔質焼結体の気孔に樹脂を含浸し硬化したものを金型に入れて塑性加工することにより、気孔内の樹脂が気孔の縮小変形によって密充填状態となり気孔内隙間を小さくできる。ところが、本出願人らは、この方法を更に検討した結果、この方法では密度や含浸方法等によっても異なるが、通常の製造条件だと気孔率がせいぜい3%程度となること、気孔率1%以下にするには焼結体の密度を7.2g/cm以上にしなければならないことが分かった。また、軸受部材としては、密度を7.2g/cm以上にした場合、軸受の変形抵抗が高くなり、軸受内径側に動圧溝を転写する際の転写精度が悪化し、軸円筒度の矯正も不十分となって軸円筒度の精度も低下する。そこで、本発明の目的は、以上のような問題を解消して、軸受材料の密度を上げることなく、気孔率を確実かつ安定して1.0%以下に製造できるようにすることにある。 Among the sealing treatment for impregnating the resin, in the method of Patent Document 1, since the impregnated resin shrinks when cured in the pores, the surface opening ratio or the porosity is further increased due to variations in the impregnation amount and the shrinkage rate. It is difficult to reduce or stabilize. As countermeasures, it may be possible to reduce the viscosity of the resin used and employ vacuum impregnation, but it takes time and becomes inefficient. In the method of Patent Document 2, the pores of the porous sintered body are impregnated with a resin and hardened, and the resin is put into a mold and subjected to plastic processing, so that the resin in the pores is in a tightly packed state by shrinkage deformation of the pores. The gap can be reduced. However, as a result of further examination of this method, the present applicants have found that this method differs depending on the density, impregnation method, etc., but the porosity is about 3% at most under normal production conditions, and the porosity is 1%. It was found that the density of the sintered body had to be 7.2 g / cm 3 or more to make it below. Further, as the bearing member, when the density is set to 7.2 g / cm 3 or more, the deformation resistance of the bearing is increased, the transfer accuracy when the dynamic pressure groove is transferred to the inner diameter side of the bearing is deteriorated, and the axial cylindricity is reduced. The correction becomes insufficient and the accuracy of the axial cylindricity is lowered. Accordingly, an object of the present invention is to solve the above-described problems so that the porosity can be reliably and stably manufactured to 1.0% or less without increasing the density of the bearing material.

上記目的を達成するため本発明は、多孔質焼結体の気孔に熱硬化型樹脂を含浸硬化して封孔処理した焼結滑り軸受の製造方法において、前記多孔質焼結体の軸受製造の最終工程で前記樹脂による封孔処理を2回以上行うことを特徴としている。
以上の発明は、請求項2に特定したように、圧粉成形体を焼結して多孔質焼結体を製造する焼結工程と、前記焼結体を再圧縮する再圧縮工程と、前記再圧縮された焼結体の気孔に樹脂を含浸し硬化する封孔操作を2回行う封孔処理工程とを経ることが好ましい。
In order to achieve the above object, the present invention provides a method for manufacturing a sintered sliding bearing in which pores of a porous sintered body are impregnated and cured with a thermosetting resin and sealed, in which the porous sintered body is manufactured. The sealing process with the resin is performed twice or more in the final step.
In the above invention, as specified in claim 2, a sintering step of sintering a green compact to produce a porous sintered body, a recompression step of recompressing the sintered body, It is preferable to pass through a sealing treatment step in which a sealing operation for impregnating and curing the resin in the pores of the recompressed sintered body is performed twice.

以上の樹脂の含浸硬化は、焼結体として、再圧縮(コイニングやサンジングその他の塑性加工を含む)された焼結体に封孔処理することが好ましい。これは、再圧縮前の焼結体に樹脂による封孔処理を施すと、気孔が樹脂で満たされる結果、軸受の変形抵抗が高くなり、例えば軸受内径側の動圧溝の転写精度が低下するからである。また、使用される樹脂は、含浸性の点から、濡れ性があり粘性が低い、例えば、アクリル系の熱硬化型樹脂が好適である。そして、封孔処理としては、焼結体の気孔を樹脂含浸により封孔すると、気孔内の空間ないしは隙間が硬化した樹脂により減少されるが、1回の樹脂含浸では気孔率がせいぜい2〜3%にとどまる。その気孔率は、続いて行われる2回目の樹脂含浸により1%以下に確実に小さくできる。1回目の樹脂含浸と2回目の樹脂含浸は、操作的に同じ方法で、かつ連続して行うことができるため製造工数及び設備費を抑えて実施できる。   The resin impregnation and curing described above is preferably performed by sealing the sintered body that has been recompressed (including coining, sanding, and other plastic working) as a sintered body. This is because if the sintered body before re-compression is subjected to sealing with resin, the pores are filled with resin, resulting in an increase in deformation resistance of the bearing, for example, a decrease in the transfer accuracy of the dynamic pressure groove on the inner diameter side of the bearing. Because. The resin used is preferably an acrylic thermosetting resin having wettability and low viscosity, for example, from the viewpoint of impregnation. As the sealing treatment, when pores of the sintered body are sealed by resin impregnation, spaces or gaps in the pores are reduced by the cured resin, but the porosity is at most 2 to 3 in one resin impregnation. Stay at%. The porosity can be reliably reduced to 1% or less by the subsequent second resin impregnation. The first resin impregnation and the second resin impregnation can be carried out by the same method and continuously in operation, so that the number of manufacturing steps and equipment costs can be reduced.

本発明の製造方法にあっては、多孔質焼結体の気孔に樹脂を含浸し硬化させる操作を2回以上行うことにより気孔内の隙間を常に同程度に縮小又は閉塞して、軸受材料の密度を抑えながら気孔率を1.0%以下にすることができる。この結果、本発明は、製造を複雑化することなく軸受面の気孔を確実に封孔でき、含油性及び通油性のない滑り軸受の品質向上に寄与できる。   In the production method of the present invention, the pores of the porous sintered body are impregnated with resin and cured twice or more, so that the gaps in the pores are always reduced or closed to the same extent, and the bearing material The porosity can be reduced to 1.0% or less while suppressing the density. As a result, the present invention can reliably seal the pores of the bearing surface without complicating the production, and can contribute to the improvement of the quality of the sliding bearing having no oil content and oil permeability.

以下、本発明の滑り軸受の製造方法として焼結工程、再圧縮工程、封孔処理工程の順に説明した後、その軸受特性に言及する。   Hereinafter, after explaining in order of the sintering process, the recompression process, and the sealing treatment process as a manufacturing method of the sliding bearing of the present invention, the bearing characteristics will be mentioned.

(焼結工程)この工程では、鉄や銅系等の原料粉末が成形金型(例えば、ダイ孔付きダイ、ダイ孔に挿入されるコアロッド、上下のパンチ)にて圧縮されることで圧粉成形体として製造される。その後、前記圧粉成形体は、所定雰囲気下での焼結により多孔質焼結体として製造される。 (Sintering process) In this process, raw material powders such as iron and copper are compressed in a molding die (for example, a die with a die hole, a core rod inserted into the die hole, and upper and lower punches), and compacted. Manufactured as a molded body. Thereafter, the green compact is produced as a porous sintered body by sintering under a predetermined atmosphere.

(再圧縮工程)この工程では、前記多孔質焼結体を気孔が完全に潰れないよう再圧縮、つまりコイニングやサンジング等の塑性加工により設計軸受形状の多孔質焼結体として製造される。 (Recompression step) In this step, the porous sintered body is manufactured as a porous sintered body having a designed bearing shape by recompression, that is, plastic processing such as coining and sanding, so that the pores are not completely crushed.

(封孔処理工程)この工程では、焼結工程で得られた焼結体又は再圧縮工程で得られた焼結体の気孔に樹脂を含浸し硬化する操作を2回以上繰り返し行う。ここで、使用する樹脂は、潤滑油に対して耐久性があること、耐熱性及び摺動特性に優れているものが好ましい。具体的な樹脂としては、含浸性から加熱硬化性の樹脂液、溶媒を添加して低粘度化した熱可塑性の樹脂液であり、比較試験からはアクリル系の熱硬化型樹脂が総合して良好である。この樹脂には、例えば、ヘンケルジャパン(株)製の製品名LESINOL-90Cが挙げられる。含浸法は、通常の減圧含浸が好ましいが常圧含浸でよく、さらに、減圧含浸を行ったのち加圧含浸を行うとより好ましい。また、前記樹脂液を焼結体に含浸したのち湯洗又は水洗して表面の余剰の樹脂を取り除いてから沸騰水中で樹脂硬化させることが好ましい。これにより、焼結体の気孔に樹脂を充填硬化した軸受が得られる。なお、樹脂は、焼結体の中心部にある気孔にも充填されている状態が好ましいが、表層部の気孔に充填されており中心部が不完全な状態であっても差し支えない。 (Sealing treatment step) In this step, the operation of impregnating the resin in the pores of the sintered body obtained in the sintering step or the sintered body obtained in the recompression step and curing is repeated twice or more. Here, it is preferable that the resin to be used has durability against lubricating oil and is excellent in heat resistance and sliding characteristics. Specific resins include impregnated to heat curable resin liquids, and thermoplastic resin liquids that have been reduced in viscosity by the addition of a solvent. From the comparative test, acrylic thermosetting resins are generally good. It is. An example of this resin is a product name LESINOL-90C manufactured by Henkel Japan. The impregnation method is preferably normal pressure impregnation, but may be atmospheric pressure impregnation, and more preferably, pressure impregnation is performed after the pressure impregnation. In addition, it is preferable that the sintered body is impregnated with the resin liquid and then washed with hot water or water to remove excess resin on the surface, and then cured in boiling water. Thereby, a bearing in which pores of the sintered body are filled and cured with resin is obtained. The resin is preferably filled in the pores in the center of the sintered body, but the resin may be filled in the pores in the surface layer and the center may be incomplete.

(軸受特性)以上の工程により得られる焼結滑り軸受は、含油性や通油性がないものであり、回転軸との摺動面に潤滑油を介在させ運転したとき、含油軸受のように気孔に油を吸い込むことによる摺動部の油圧低下が起こらないので、面圧が高い軸受要素でも滑り特性が良好である。該焼結滑り軸受は、給油機構を備えている軸受要素に好適であり、外部に給油器を備えているもの、又は、スピンドルモータ用軸受のように軸受収納容器内に潤滑油を充填した態様で用いられる。また、この製造方法を動圧溝がない平滑な摺動面の軸受に適用した場合でも、軸受摺動部に絶えず潤滑油が供給される構造の軸受要素として用いれば、前記した油圧の作用と効果が得られる。最適な適用例は、摺動部に動圧溝がある軸受、特にスピンドル軸受である。軸受摺動面の溝は封孔されて油圧の逃げが完全になくなるため、より高い動圧効果が得られる。 (Bearing characteristics) Sintered plain bearings obtained by the above processes are not oil-impregnated or oil-permeable, and when operated with lubrication oil on the sliding surface with the rotary shaft, Since the oil pressure in the sliding portion does not decrease due to the oil being sucked into the bearing, the sliding characteristics are good even with a bearing element having a high surface pressure. The sintered sliding bearing is suitable for a bearing element provided with an oil supply mechanism, and is provided with an external oil supply device or an aspect in which a lubricating oil is filled in a bearing storage container like a spindle motor bearing. Used in Further, even when this manufacturing method is applied to a bearing having a smooth sliding surface without a dynamic pressure groove, if it is used as a bearing element having a structure in which lubricating oil is constantly supplied to the bearing sliding portion, the above-described hydraulic pressure action can be achieved. An effect is obtained. The most suitable application is a bearing with a dynamic pressure groove in the sliding part, in particular a spindle bearing. Since the groove of the bearing sliding surface is sealed and the hydraulic pressure escape is completely eliminated, a higher dynamic pressure effect can be obtained.

ここでは、本発明方法の有用性を明らかにするため、銅鉄系の原料粉末を圧縮した所定大の円筒状圧粉成形体を用いて、上記した焼結工程、上記した再圧縮工程、上記した封孔操作を1回(比較例)又は2回(実施例)行う封孔処理工程を経ることにより、製造した焼結滑り軸受の密度−気孔率の関係を調べたときの一例を挙げる。   Here, in order to clarify the usefulness of the method of the present invention, a cylindrical powder compact having a predetermined size obtained by compressing a copper iron-based raw material powder, the above-described sintering step, the above-described recompression step, the above-mentioned An example will be given when the density-porosity relationship of the manufactured sintered plain bearing is examined through a sealing treatment step in which the sealing operation is performed once (Comparative Example) or twice (Example).

再圧縮工程では、各焼結体を、密度が6.8g/cm、7.0g/cm、7.2g/cm になるようサイジングした。封孔処理工程では、アクリル系の熱硬化型樹脂として、日本ロックタイト社製のレジノール90Cを同じ条件で含浸させ、含浸後に沸騰水中で硬化し、水洗いしてから乾燥処理を同様に行なった。 In the recompression process, each sintered body was sized so that the density was 6.8 g / cm 3 , 7.0 g / cm 3 , and 7.2 g / cm 3 . In the sealing treatment step, Resinol 90C manufactured by Nippon Loctite Co., Ltd. was impregnated under the same conditions as an acrylic thermosetting resin, and after impregnation, cured in boiling water, washed with water, and then similarly dried.

図1(b)の比較例では、封孔操作を1回だけ行うことで、例えば密度6.8g/cmの軸受において気孔率3.0%となり、又、気孔率1.0%以下にするには密度約7.4g/cm以上の軸受にしなければならないことが分かる。これに対し、図1(a)の実施例では、封孔操作を2回行うことで、例えば密度6.8g/cmの軸受において気孔率1.0%以下となる。したがって、本発明方法では、軸受の密度を上げることなく、気孔率を確実かつ安定して1.0%以下に製造できることが分かる。 In the comparative example of FIG. 1 (b), by performing the sealing operation only once, for example, in a bearing having a density of 6.8 g / cm 3 , the porosity becomes 3.0%, and the porosity becomes 1.0% or less. It can be seen that the bearing must have a density of about 7.4 g / cm 3 or more. On the other hand, in the embodiment of FIG. 1A, the porosity is reduced to 1.0% or less in a bearing with a density of 6.8 g / cm 3 , for example, by performing the sealing operation twice. Therefore, it can be seen that the method of the present invention can reliably and stably produce a porosity of 1.0% or less without increasing the density of the bearing.

(a)は実施例、(b)は比較例を示す密度−気孔率のグラフである。(A) is an Example and (b) is a density-porosity graph showing a comparative example.

Claims (2)

多孔質焼結体の気孔に熱硬化型樹脂を含浸硬化して封孔処理した焼結滑り軸受の製造方法において、前記多孔質焼結体の軸受製造の最終工程で前記樹脂による封孔処理を2回以上行うことを特徴とする焼結滑り軸受の製造方法。   In a method of manufacturing a sintered sliding bearing in which pores of a porous sintered body are impregnated and cured with a thermosetting resin and sealed, the sealing treatment with the resin is performed in the final step of manufacturing the porous sintered body. A method for producing a sintered plain bearing, which is performed twice or more. 圧粉成形体を焼結して多孔質焼結体を製造する焼結工程と、前記焼結体を再圧縮する再圧縮工程と、前記再圧縮された焼結体の気孔に樹脂を含浸し硬化する封孔操作を2回行う封孔処理工程とを経る請求項1に記載の焼結滑り軸受の製造方法。
































Sintering the green compact to produce a porous sintered body, a recompressing step for recompressing the sintered body, and impregnating the pores of the recompressed sintered body with resin. The manufacturing method of the sintered sliding bearing of Claim 1 which passes through the sealing process process which performs the sealing operation which hardens | cures twice.
































JP2005079027A 2005-03-18 2005-03-18 Method for manufacturing sintered slide bearing Pending JP2006258240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079027A JP2006258240A (en) 2005-03-18 2005-03-18 Method for manufacturing sintered slide bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079027A JP2006258240A (en) 2005-03-18 2005-03-18 Method for manufacturing sintered slide bearing

Publications (1)

Publication Number Publication Date
JP2006258240A true JP2006258240A (en) 2006-09-28

Family

ID=37097722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079027A Pending JP2006258240A (en) 2005-03-18 2005-03-18 Method for manufacturing sintered slide bearing

Country Status (1)

Country Link
JP (1) JP2006258240A (en)

Similar Documents

Publication Publication Date Title
EP1860335B1 (en) Manufacturing method of an oil-impregnated sintered bearing and oil-impregnated sintered bearing
CN107110209B (en) Hydrodynamic bearing and its manufacturing method
JP6199106B2 (en) Sintered bearing, method for manufacturing the same, and fluid dynamic bearing device provided with the sintered bearing
JP3883179B2 (en) Manufacturing method of sintered plain bearing
US20190353205A1 (en) Method of molding double-layer sliding bearing
JP2007232113A (en) Method of manufacturing sintered dynamic pressure bearing
JP2006258240A (en) Method for manufacturing sintered slide bearing
WO2015151698A1 (en) Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
EP2333366A1 (en) Sintered bearing and process for producing same
CN108779803A (en) Hydrodynamic bearing and its manufacturing method
JP2007239936A (en) Method of manufacturing sintered hydrodynamic bearing
JP2010031909A (en) Sintered bearing and its manufacturing method
US6623542B2 (en) Slide member
JP2009085234A (en) Plain bearing and method for manufacturing same
JP6999259B2 (en) Plain bearing
WO2018047765A1 (en) Slide bearing
WO2017047697A1 (en) Method for manufacturing green compact and method for manufacturing sintered metal part
JP3879906B2 (en) Sintered oil-impregnated bearing, its hydraulic holding structure in the hole, and method for manufacturing sintered oil-impregnated bearing
JP6482923B2 (en) Bearing device
JP2019183868A (en) Sintered oil-containing bearing, fluid dynamic pressure bearing device and method for manufacturing sintered oil-containing bearing
CN110168241A (en) Sintered metal bearing and its manufacturing method
JP2004292840A (en) Sizing method for sintered component and die for sizing
JP2010060099A (en) Slide bearing and manufacturing method for the same
JP3856363B2 (en) Manufacturing method of bearing
KR102702567B1 (en) Sintered bearing and its manufacturing method