JP2007239936A - Method of manufacturing sintered hydrodynamic bearing - Google Patents

Method of manufacturing sintered hydrodynamic bearing Download PDF

Info

Publication number
JP2007239936A
JP2007239936A JP2006065659A JP2006065659A JP2007239936A JP 2007239936 A JP2007239936 A JP 2007239936A JP 2006065659 A JP2006065659 A JP 2006065659A JP 2006065659 A JP2006065659 A JP 2006065659A JP 2007239936 A JP2007239936 A JP 2007239936A
Authority
JP
Japan
Prior art keywords
resin
sintered body
anaerobic
pores
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006065659A
Other languages
Japanese (ja)
Inventor
Takahiro Jinushi
孝広 地主
Hidekazu Tokushima
秀和 徳島
Katsutoshi Arai
勝敏 新居
Zenzo Ishijima
善三 石島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2006065659A priority Critical patent/JP2007239936A/en
Priority to US11/711,028 priority patent/US20080010832A1/en
Priority to CNA2007101016331A priority patent/CN101042156A/en
Publication of JP2007239936A publication Critical patent/JP2007239936A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/208Methods of manufacture, e.g. shaping, applying coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49639Fluid bearing

Abstract

<P>PROBLEM TO BE SOLVED: To comparatively easily and stably manufacture a sintered hydrodynamic bearing, further reducing or blocking pore internal gaps caused by a contraction phenomenon following hardening of impregnated resin by a small number of processes while maintaining quality. <P>SOLUTION: The method of manufacturing the sintered hydrodynamic bearing has a resin sealing process of sequentially carrying out resin impregnation for impregnating a monomer of anaerobic resin mainly composed of ester acrylate or methacrylate in pores of a porous sintered body, excessive resin cleaning for cleaning excessive resin adhered to the porous sintered body, and resin hardening for maintaining the porous sintered body after resin cleaning at a hardening temperature of resin or more to harden the monomer of anaerobic resin impregnated in the pores. The resin sealing process is carried out plural times, and in at least the last resin sealing process, resin impregnating operation is carried out by using a monomer of anaerobic resin containing 0.1-1mass% organic peroxide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ディスク駆動用スピンドルモータ等に好適とされる焼結軸受のうち、特に、多孔質焼結体の気孔を封孔した焼結動圧軸受の製造方法に関するものである。   The present invention relates to a sintered dynamic pressure bearing manufacturing method in which pores of a porous sintered body are sealed among sintered bearings suitable for a disk drive spindle motor and the like.

最近の情報機器用モータは、記録の高密度化や情報の高速処理の点から高回転精度や高速安定性とともに低騒音化、量産性、低コスト化などが要求されている。そのような要求性能は、シャフトを支持する軸受にも課され、軸受構造として例えば、焼結軸受が軸受面に各種の動圧発生用溝を設けたもの、更にハウジング内に固定されるとともに潤滑油を充填してシャフトの回転時に動圧発生用溝の作用によってシャフトを非接触支持するものが提供されている。   Recent motors for information devices are required to have low noise, mass productivity, and low cost as well as high rotational accuracy and high speed stability from the viewpoint of high recording density and high speed information processing. Such required performance is also imposed on the bearing that supports the shaft. As a bearing structure, for example, a sintered bearing is provided with various dynamic pressure generating grooves on the bearing surface, and is further fixed in the housing and lubricated. There has been provided an oil-filled one that supports a shaft in a non-contact manner by the action of a dynamic pressure generating groove when the shaft rotates.

そのような焼結動圧軸受では、動圧作用をより高くするため軸受のうち軸受面等の気孔を封鎖したり少なくされる。この封孔処理としては、焼結動圧軸受を高密度に成形する方法以外に、軸受を各種ブラストやタンブラー処理で封孔したり、樹脂を焼結体の気孔内に含浸硬化して封孔する方法が採用される(特許文献1等)。また、樹脂を焼結体の気孔内に含浸硬化して封孔する方法は、樹脂含浸、余剰樹脂の除去、樹脂硬化の手順で行われ、有機モノマー型含浸剤、有機ポリマー型含浸剤、溶剤カット型含浸剤、水性エマルジョン型含浸剤が使用される(特許文献2等)。さらに、樹脂を焼結体の気孔内に含浸硬化して封孔した後、焼結体を金型に入れ圧力を加える塑性加工により樹脂の硬化収縮等に起因して生じる気孔内の隙間を縮小又は閉塞することも提案されている(特許文献3)。   In such a sintered dynamic pressure bearing, pores on the bearing surface and the like are blocked or reduced in order to further increase the dynamic pressure action. In addition to the method of forming a sintered dynamic pressure bearing at a high density, this sealing treatment can be performed by sealing the bearing by various blasting or tumbling treatments, or by impregnating and hardening resin in the pores of the sintered body. The method to do is employ | adopted (patent document 1 grade | etc.,). In addition, the method of impregnating and curing the resin in the pores of the sintered body is performed by the procedures of resin impregnation, excess resin removal, resin curing, organic monomer type impregnating agent, organic polymer type impregnating agent, solvent A cut type impregnating agent and an aqueous emulsion type impregnating agent are used (Patent Document 2, etc.). Furthermore, after the resin is impregnated and cured in the pores of the sintered body and sealed, the gap in the pores caused by the resin's curing shrinkage is reduced by plastic processing that places the sintered body in the mold and applies pressure. Or it has also been proposed to close (Patent Document 3).

特開平11−062948号公報Japanese Patent Laid-Open No. 11-062948 特開平07−216411号公報JP 07-216411 A 特開2002−333023号公報JP 2002-333023 A

上記した焼結動圧軸受を高密度に成形する方法は、原料粉末を圧縮成形する際の加圧力を大きくして行う関係で、成形体に蓄積する歪み量が大きく寸法精度が悪くなるという問題がある。この場合、再圧縮により寸法を矯正するにしても素材が高密度であるため変形し難く精度よく矯正しきれない。また、軸受を各種ブラストやタンブラー処理で封孔する方法は、情報機器に使用される動圧軸受の小型化に伴って、ブラスト等のメディアを軸受内部に供給しにくく、無理に供給すると焼結軸受の内径面および/または端面に形成した動圧溝の形状が損なわれるという問題がある。   The above-mentioned method for forming a sintered dynamic pressure bearing at a high density involves a problem in that the amount of strain accumulated in the molded body is large and the dimensional accuracy is deteriorated because the pressure applied when compressing the raw material powder is increased. There is. In this case, even if the dimensions are corrected by re-compression, the material is high in density, so it is difficult to deform and cannot be corrected with high accuracy. Also, the method of sealing the bearings by various blasting and tumbling processes is difficult to supply media such as blasting into the bearings due to the downsizing of dynamic pressure bearings used in information equipment. There is a problem that the shape of the dynamic pressure groove formed on the inner diameter surface and / or the end surface of the bearing is impaired.

これに対し、樹脂を用いて焼結体の気孔を封孔する方法は、上記したような問題がなく、また製造効率が他の封孔方法に比べて比較的良いが、樹脂の含浸量のばらつきとともに、気孔中に含浸された樹脂が硬化する際の収縮率の変動に起因して表面開口率または封孔度合を安定化し難い。この問題は、例えば、焼結動圧軸受を組み込んだ軸受ユニットに流体として潤滑油を供給する場合、封孔度合いがばらつくと焼結動圧軸受の油吸収量も部分的にばらつくこととなり、潤滑油が部分的に不足したり途切れ易くなるという最悪の事態を引き起こす。換言すると、焼結動圧軸受では、軸受表面の気孔に限らず軸受内部の気孔を含めた気孔全体に樹脂を含浸すれば、油吸収量の部分的なばらつきは抑えるられるが、樹脂硬化の際の収縮率つまり表面開口率の変動により油吸収量を安定化することはできない。   On the other hand, the method of sealing the pores of the sintered body using a resin does not have the above-mentioned problems, and the production efficiency is relatively better than other sealing methods. Along with the variation, it is difficult to stabilize the surface opening ratio or the degree of sealing due to the fluctuation of the shrinkage rate when the resin impregnated in the pores is cured. For example, when lubricating oil is supplied as a fluid to a bearing unit incorporating a sintered hydrodynamic bearing, if the degree of sealing varies, the amount of oil absorbed by the sintered hydrodynamic bearing also varies partially. It causes the worst situation that the oil is partially insufficient or easily cut off. In other words, in a sintered dynamic pressure bearing, if the entire pores including the pores inside the bearings as well as the pores on the bearing surface are impregnated with resin, partial dispersion in the amount of oil absorption can be suppressed. The oil absorption cannot be stabilized by the fluctuation of the shrinkage rate, that is, the surface opening ratio.

また、特許文献3の方法では、上記したような課題を克服するため樹脂の硬化収縮等に起因して生じる気孔内の隙間を塑性加工により封孔するが、新たに塑性加工が追加されることとなり製造費の増大は免れない。この対策としては、塑性加工という機械的な工程の追加を防ぐため樹脂含浸後の塑性加工工程と軸受面への動圧溝形成工程とを兼ねることも考えられる。しかし、その場合には、焼結体の気孔中で硬化した樹脂が焼結体の変形能を損なって精度良い動圧溝の形成が行えない。   In addition, in the method of Patent Document 3, the gaps in the pores resulting from the curing shrinkage of the resin and the like are sealed by plastic working in order to overcome the above-described problems, but plastic processing is newly added. Therefore, the increase in manufacturing costs is inevitable. As a countermeasure, it is conceivable that the plastic processing step after the resin impregnation and the dynamic pressure groove forming step on the bearing surface are combined in order to prevent an additional mechanical step called plastic processing. However, in that case, the resin cured in the pores of the sintered body impairs the deformability of the sintered body, and the dynamic pressure grooves cannot be formed with high accuracy.

本発明は以上のような課題を解消することを目的としている。具体的には、含浸樹脂の硬化に伴う収縮現象で生じる気孔内隙間をより縮小又は閉塞した焼結動圧軸受を少ない工程で、かつ比較的容易に品質を保って安定製造可能にする焼結動圧軸受の製造方法を提供することにある。   An object of the present invention is to solve the above problems. Specifically, sintering that enables stable production of sintered hydrodynamic bearings with reduced or closed pore gaps caused by the shrinkage phenomenon associated with the curing of the impregnated resin, with fewer steps, and relatively easily maintaining quality. The object is to provide a method of manufacturing a hydrodynamic bearing.

本発明に係る焼結動圧軸受の製造方法は、多孔質焼結体(例えば、気孔率が5〜20%のもの)の気孔中にアクリル酸エステルまたはメタクリル酸エステルを主成分とする嫌気性樹脂のモノマーを含浸させる樹脂含浸操作、多孔質焼結体の表面に付着した余剰の樹脂を洗浄する余剰樹脂洗浄操作、余剰樹脂洗浄後の多孔質焼結体を樹脂の硬化温度以上に保持して気孔内に含浸した前記嫌気性樹脂のモノマーを硬化させる樹脂硬化操作を順に行う樹脂封孔工程を有する焼結動圧軸受の製造方法において、前記樹脂封孔工程を複数回行うとともに、少なくとも最後の樹脂封孔工程における樹脂含浸操作を0.1〜1質量%の有機過酸化物を含有する嫌気性樹脂のモノマーを用いて行うことを特徴としている。   The method for producing a sintered hydrodynamic bearing according to the present invention is anaerobic, mainly composed of acrylic acid ester or methacrylic acid ester in the pores of a porous sintered body (for example, having a porosity of 5 to 20%). Resin impregnation operation for impregnating resin monomer, excess resin washing operation for washing excess resin adhering to the surface of the porous sintered body, and maintaining the porous sintered body after washing the excess resin above the resin curing temperature In the manufacturing method of a sintered dynamic pressure bearing having a resin sealing step of sequentially performing a resin curing operation for sequentially curing the anaerobic resin monomer impregnated in the pores, the resin sealing step is performed a plurality of times, and at least the last The resin impregnation operation in the resin sealing step is performed using an anaerobic resin monomer containing 0.1 to 1% by mass of an organic peroxide.

以上の発明方法において、嫌気性樹脂のモノマーは、空気(酸素を含む雰囲気)と遮断されると金属イオンの影響によって遊離基が形成され、それらの遊離基が自発的に重合開始して硬化する液状の樹脂ないしは接着剤であり、0.1〜1質量%有機酸化物を含有していると、空気遮断状態において、金属イオンと反応し易くなって多孔質焼結体の気孔中で活性に重合反応を生じる。   In the above invention method, when the anaerobic resin monomer is blocked from air (atmosphere containing oxygen), free radicals are formed by the influence of metal ions, and these free radicals spontaneously start polymerization and cure. When it is a liquid resin or adhesive and contains 0.1 to 1% by mass of organic oxide, it reacts easily with metal ions in the air blocking state and becomes active in the pores of the porous sintered body. Causes a polymerization reaction.

請求項1の発明では、樹脂硬化操作において樹脂が硬化収縮することで生じる隙間に、再度有機過酸化物を含有したモノマーを含浸するため、該モノマーが活性に重合して気孔を封孔するので、封孔が確実かつ安定に行える。そして、本発明により製造される焼結動圧軸受は、焼結体の気孔が完全に封孔されているので、流体として潤滑油等を用いる場合でも潤滑油の吸収量が極微量かつ吸収量のばらつきが安定しており、また使用時に動圧の抜けが全く生じないという優れた効果を有する。   In the first aspect of the present invention, the monomer containing the organic peroxide is impregnated again in the gap generated by the resin curing and shrinking in the resin curing operation, and therefore the monomer is actively polymerized to seal the pores. The sealing can be performed reliably and stably. The sintered hydrodynamic bearing produced according to the present invention has the pores of the sintered body completely sealed, so that even when lubricating oil or the like is used as the fluid, the amount of absorbed lubricating oil is extremely small and the amount of absorbed oil The variation in the pressure is stable, and there is an excellent effect that no dynamic pressure is lost during use.

請求項2の発明は、少なくとも最初の樹脂含浸操作に用いられる嫌気性樹脂のモノマーとして0.1〜0.5質量%のアゾ化合物を含有していると、重合反応が比較的高い温度で開始されるため含浸剤として多孔質焼結体の内部の気孔や気孔の奥深くまで進入されるようにする。換言すると、重合反応が低い温度で活性になるタイプだと、例えば、含浸操作の初期段階で気孔の入口側だけを封孔し気孔の内部まで進入不可能となるため、そのような不具合を解消する。   In the invention of claim 2, the polymerization reaction starts at a relatively high temperature when 0.1 to 0.5% by mass of an azo compound is contained as a monomer of an anaerobic resin used for at least the first resin impregnation operation. Therefore, as the impregnating agent, the pores inside the porous sintered body and the depth of the pores are entered. In other words, if the polymerization reaction becomes active at a low temperature, for example, only the inlet side of the pores is sealed at the initial stage of the impregnation operation, and it becomes impossible to enter the inside of the pores. To do.

請求項3の発明は、最後の樹脂含浸操作で用いる含浸剤は重合反応が初期から活性になるよう成分調整したものであるため、複数回行う各樹脂封孔工程(樹脂含浸操作)に用いられる嫌気性樹脂のモノマーとして同じものを使用する場合、少なくとも最初の樹脂含浸操作では重合反応を抑制する条件下、つまり10〜10Paの減圧下で含浸を行うようにして多孔質焼結体の内部の気孔、気孔の奥深くまで進入し含浸されるようにする。 In the invention of claim 3, since the impregnating agent used in the last resin impregnation operation is a component adjusted so that the polymerization reaction becomes active from the beginning, it is used for each resin sealing step (resin impregnation operation) performed a plurality of times. When using the same anaerobic resin monomer, the porous sintered body should be impregnated under conditions that suppress the polymerization reaction in at least the first resin impregnation operation, that is, under reduced pressure of 10 2 to 10 3 Pa. The inside of the pores, so that they penetrate deeply into the pores so as to be impregnated.

請求項4の発明は有機過酸化物の具体例を挙げたことに意義がある。請求項5の発明は、1質量%以下の有機金属化合物からなる硬化促進剤を含有していると、例えば、1回目の樹脂含浸操作で気孔表面が被覆されて金属イオンが届き難くなっているような場合にも確実に含浸硬化されるようにする。   The invention of claim 4 is significant in that specific examples of the organic peroxide are given. When the invention according to claim 5 contains a curing accelerator composed of an organometallic compound of 1% by mass or less, for example, the pore surface is covered by the first resin impregnation operation, and metal ions are difficult to reach. In such a case, it is ensured that the resin is impregnated and cured.

請求項6の発明は、多孔質焼結体が20質量%以上のCuを含有していると、イオン化しやすいCuの存在で上記の重合反応を活性化でき、また、Cuの添加形態として3〜30質量%の銅箔粉が用いられていると気孔表面に露出するFeの割合が低下して、金属イオンを発生し易いCuの露出量が増加するため上記の重合反応をより活性化できる。請求項7の発明は、焼結動圧軸受が高品質化を図る上で樹脂封孔工程前に寸法調整再圧縮工程と動圧溝形成再圧縮工程を経ていることが好ましい点を明瞭化したことに意義がある。   In the invention of claim 6, when the porous sintered body contains 20% by mass or more of Cu, the above polymerization reaction can be activated in the presence of Cu which is easily ionized, and the addition form of Cu is 3 When the copper foil powder of ˜30% by mass is used, the ratio of Fe exposed on the pore surface decreases, and the exposure amount of Cu that easily generates metal ions increases, so that the above polymerization reaction can be more activated. . The invention of claim 7 clarified that it is preferable that the sintered dynamic pressure bearing has undergone a dimensional adjustment recompression step and a dynamic pressure groove formation recompression step before the resin sealing step in order to improve the quality. It has significance.

本発明に係る焼結動圧軸受の製造方法は、多孔質焼結体の気孔中にメタクリレートを主成分とする嫌気性樹脂のモノマーを含浸させる樹脂含浸操作、多孔質焼結体の表面に付着した余剰の樹脂(液)を洗浄する余剰樹脂洗浄操作、余剰樹脂洗浄後の多孔質焼結体を樹脂の硬化温度以上に保って気孔内に含浸した前記嫌気性樹脂のモノマーを硬化させる樹脂硬化操作を順に行う樹脂封孔工程を有している。そして、要部は、樹脂封孔工程を2回行うとともに、2回目の樹脂封孔工程における樹脂含浸操作を0.1〜1質量%の有機過酸化物を含有する嫌気性樹脂のモノマーを用いて行うことである。   The method for producing a sintered hydrodynamic bearing according to the present invention includes a resin impregnation operation in which pores of a porous sintered body are impregnated with a monomer of an anaerobic resin mainly composed of methacrylate, and adhere to the surface of the porous sintered body. Resin curing operation for cleaning the excess resin (liquid), and curing the anaerobic resin monomer impregnated in the pores while maintaining the porous sintered body after the excess resin cleaning at a temperature higher than the curing temperature of the resin A resin sealing step for sequentially performing the operations is included. And the principal part uses the monomer of the anaerobic resin containing 0.1-1 mass% organic peroxide for the resin impregnation operation in the 2nd resin sealing process while performing the resin sealing process twice. To do.

ここで、対象の焼結動圧軸受は、原料粉末を圧縮形成する圧粉工程、得られた圧粉体を焼結する焼結工程、得られた焼結体をサイジング等の塑性加工により設計軸受形状に形成する再圧縮工程などにより作製された後、本発明の樹脂封孔工程を経ることで気孔が封孔される。ここで気孔の封孔状態としては気孔の容積に対して樹脂が100%充填されていることが好ましいが、気孔の容積に対して90%以上であれば、潤滑油の吸収量が極微量かつ吸収量のばらつきが安定するので使用上問題ない。   Here, the target sintered dynamic pressure bearing is designed by a compacting process for compressing and forming the raw material powder, a sintering process for sintering the obtained green compact, and the obtained sintered body by plastic working such as sizing After being produced by a recompression process or the like formed into a bearing shape, the pores are sealed through the resin sealing process of the present invention. Here, as the pore sealing state, it is preferable that 100% of the resin is filled with respect to the pore volume. However, if the pore volume is 90% or more with respect to the pore volume, the absorption amount of the lubricating oil is extremely small. There is no problem in use because the variation in absorption amount is stable.

前記樹脂封孔工程中、樹脂含浸操作では含浸剤として、アクリル酸エステルまたはメタクリル酸エステルを主成分とする嫌気性樹脂のモノマーを用いる。アクリル酸エステルまたはメタクリル酸エステルを主成分とする樹脂は、潤滑油との反応性が低く、かつ適当な強度を有しているため、この樹脂で気孔を封孔した焼結動圧軸受を、潤滑油中で使用したとき、潤滑油と反応して潤滑特性を劣化させたり、樹脂が劣化して潤滑油中に剥離脱落することがないので好適である。アクリル酸エステルまたはメタクリル酸エステルを主成分とする嫌気性樹脂のモノマーとは、嫌気性樹脂のモノマーとして公知であるアクリル酸またはメタクリル酸エステル、具体的にはポリグリコールジメタクリレート、エポキシアクリレート、エポキシメタクリレート、ウレタンアクリレート、ウレタンメタアクリレート等のアクリル酸またはメタクリル酸エステルを含有し、必要によりその他のアクリル酸エステルまたはメタクリル酸エステルを含有するモノマーである。なお、本願においては、発明の効果を損なわない範囲でこれらのモノマー以外にも嫌気性樹脂の改質を目的とするその他のモノマーを含有していてもよい。   During the resin sealing step, an anaerobic resin monomer mainly composed of acrylic acid ester or methacrylic acid ester is used as the impregnating agent in the resin impregnation operation. Resin mainly composed of acrylic acid ester or methacrylic acid ester has low reactivity with lubricating oil and has an appropriate strength. Therefore, a sintered hydrodynamic bearing in which pores are sealed with this resin, When used in lubricating oil, it is preferable because it does not react with the lubricating oil and deteriorate the lubricating properties, or the resin does not deteriorate and peel and fall into the lubricating oil. An anaerobic resin monomer mainly composed of acrylic acid ester or methacrylic acid ester is acrylic acid or methacrylic acid ester known as an anaerobic resin monomer, specifically polyglycol dimethacrylate, epoxy acrylate, epoxy methacrylate It is a monomer containing acrylic acid or methacrylic acid ester such as urethane acrylate or urethane methacrylate and, if necessary, other acrylic acid ester or methacrylic acid ester. In addition, in this application, you may contain the other monomer aiming at modification | reformation of anaerobic resin other than these monomers in the range which does not impair the effect of invention.

また、嫌気性樹脂は、一般に有機過酸化物として過酸化触媒を含有するもので、空気(酸素を含む雰囲気)が遮断された状態で過酸化触媒が金属イオンによって遊離基に変化し、その遊離基によってモノマーが高分子へ重合して、いわゆる交差連結した強固な高分子を形成するものである。一方、大気中では一定の酸素の供給により安定しているため遊離基が生成せず、重合反応は開始されない。このような嫌気性樹脂において過酸化触媒は、重合反応の開始剤として重要な意味を持つ。すなわち、含浸剤として嫌気性樹脂のモノマーを用いた場合は、過酸化触媒が金属イオンと反応し易いものであると、重合反応は活性に進行するが、金属イオンと反応し難いものであると重合反応は緩やかに進行することとなる。   Anaerobic resins generally contain a peroxidation catalyst as an organic peroxide, and the peroxidation catalyst is converted into free radicals by metal ions in a state where air (atmosphere containing oxygen) is blocked. A monomer is polymerized into a polymer by a group to form a so-called cross-linked strong polymer. On the other hand, since it is stable in the atmosphere by the supply of constant oxygen, free radicals are not generated and the polymerization reaction is not started. In such anaerobic resins, the peroxide catalyst has an important meaning as an initiator for the polymerization reaction. That is, when an anaerobic resin monomer is used as the impregnating agent, if the peroxidation catalyst is likely to react with metal ions, the polymerization reaction proceeds actively, but it is difficult to react with metal ions. The polymerization reaction proceeds slowly.

また、樹脂含浸操作は真空含浸法にて行われる。具体的には、例えば、含浸槽内の嫌気性樹脂モノマー中に多孔質焼結体を浸漬し、含浸槽を減圧して多孔質焼結体の気孔中の空気を除去した後、大気圧まで復帰させてモノマーを気孔中に吸引により含浸させる方法、含浸槽内のステージ上に多孔質焼結体を載置した状態で、含浸槽内を減圧して多孔質焼結体の気孔中の空気を除去し、次いでステージごと降下させて含浸槽内の嫌気性樹脂モノマー中に多孔質焼結体を浸漬した後、大気圧まで復帰させてモノマーを気孔中に吸引により含浸させる方法などである。それらの真空含浸法では、大気圧まで復帰した後さらに加圧するようにしてもよい。   The resin impregnation operation is performed by a vacuum impregnation method. Specifically, for example, the porous sintered body is immersed in the anaerobic resin monomer in the impregnation tank, the air in the pores of the porous sintered body is removed by depressurizing the impregnation tank, and then up to atmospheric pressure. Method of returning and impregnating the monomer into the pores by suction, with the porous sintered body placed on the stage in the impregnation tank, and reducing the pressure in the impregnation tank to air in the pores of the porous sintered body And then dropping the entire stage and immersing the porous sintered body in the anaerobic resin monomer in the impregnation tank, and then returning to atmospheric pressure and impregnating the monomer into the pores by suction. In these vacuum impregnation methods, the pressure may be further increased after returning to atmospheric pressure.

ところで、焼結動圧軸受の封孔状態は、多孔質焼結体の内部の気孔、気孔の奥側まで完全に樹脂で封孔されていることが好ましい。すなわち、表面部および表面近傍の気孔、気孔の入口側だけが封孔されている態様では、多孔質焼結体の内部の気孔、気孔の奥側は樹脂含浸操作において脱気されて減圧状態となっているため、前記封孔が使用中に破れた場合、気孔中に潤滑油が吸引されて流体潤滑に必要な潤滑油が不足したりなくなる虞がある。   By the way, it is preferable that the sealed state of the sintered dynamic pressure bearing is completely sealed with resin to the pores inside the porous sintered body and the back side of the pores. That is, in the aspect in which only the pores near the surface portion and the surface, and the pore inlet side are sealed, the pores inside the porous sintered body and the back side of the pores are degassed in the resin impregnation operation and are in a reduced pressure state. Therefore, when the sealing hole is torn during use, there is a risk that the lubricating oil is sucked into the pores and the lubricating oil necessary for fluid lubrication is insufficient.

したがって、樹脂含浸操作では、重合反応が瞬時に活性化されると、樹脂含浸の初期に表面部および表面近傍の気孔、気孔の入口側だけが封孔されて、含浸剤が多孔質焼結体の内部の気孔や気孔の奥側まで到達できなくなるため好ましくない。この点から、1回目の樹脂含浸操作に用いる含浸剤としては、従来より用いられているメタクリル酸エステルを主成分とし、0.1〜0.5質量%のアゾ化合物を含有する嫌気性樹脂のモノマーを用いて含浸することが好ましい。一例を挙げると、特許文献1に記載のヘンケル社製レジノール90Cは、メタクリル酸エステルを主成分とし過酸化触媒としてアゾ化合物(2,2−アゾビス)を含有する嫌気性樹脂で、重合反応は主に90℃以上の温度で開始されるので、多孔質焼結体の内部の気孔、気孔の奥側まで含浸する上で好適なものである。   Therefore, in the resin impregnation operation, when the polymerization reaction is instantly activated, only the surface portion and the pores near the surface and the inlet side of the pores are sealed at the initial stage of the resin impregnation, and the impregnating agent is a porous sintered body. It is not preferable because it cannot reach the inner pores or the inner side of the pores. From this point, as the impregnating agent used for the first resin impregnation operation, an anaerobic resin containing a methacrylic acid ester as a main component and containing 0.1 to 0.5% by mass of an azo compound is used. It is preferable to impregnate with a monomer. For example, Resinol 90C manufactured by Henkel Co., Ltd. described in Patent Document 1 is an anaerobic resin containing a methacrylic acid ester as a main component and an azo compound (2,2-azobis) as a peroxidation catalyst. Since it is started at a temperature of 90 ° C. or higher, it is suitable for impregnation up to the pores inside the porous sintered body and the back side of the pores.

ただし、このような重合反応を抑制した含浸剤では、余剰樹脂洗浄後の加熱硬化操作において、樹脂が重合収縮するため該収縮により生じる隙間の発生は避けられなくなる。この隙間は、樹脂含浸操作を複数回行うことで完全に充填することが可能であるが、含浸操作を多数回行うことは時間およびコスト増となる。   However, with such an impregnating agent that suppresses the polymerization reaction, the resin undergoes polymerization shrinkage in the heat-curing operation after washing the excess resin, so that the generation of gaps due to the shrinkage is unavoidable. The gap can be completely filled by performing the resin impregnation operation a plurality of times, but performing the impregnation operation a number of times increases time and cost.

そこで、本発明の製造方法は、より少ない樹脂含浸操作で隙間を充填して気孔に対する樹脂の容積率が90%以上とするため、少なくとも最初の樹脂含浸操作では多孔質焼結体の気孔のうち焼結体の内部の気孔、気孔の奥側まで含浸剤をできるだけ進入充填する。同時に、加熱硬化で発生する隙間については、2回目以降の樹脂含浸操作で用いる含浸剤を、1回目の含浸剤と異なるものを用いたり、1回目の減圧等の含浸条件と異なる条件で含浸操作することで確実に封孔できるようにしたものである。換言すると、本発明の工夫点は、少なくとも最後の樹脂含浸操作に用いる含浸剤として、0.1〜1質量%の有機過酸化物を含有する嫌気性樹脂のモノマーを用いて行う構成にある。有機過酸化物は、過酸化触媒のうちでも金属イオンと反応し易いもので、多孔質焼結体の気孔中で重合反応を活性に生じて硬化するに好適なものである。   Therefore, the manufacturing method of the present invention fills the gap with fewer resin impregnation operations so that the volume ratio of the resin to the pores is 90% or more. Therefore, at least in the first resin impregnation operation, among the pores of the porous sintered body The impregnating agent is filled as much as possible into the pores inside the sintered body and the back side of the pores. At the same time, for the gap generated by heat curing, the impregnating agent used in the second and subsequent resin impregnation operations is different from the first impregnating agent or under different conditions from the impregnation conditions such as the first decompression. By doing so, it can be surely sealed. In other words, the contrivance of the present invention resides in a configuration in which an anaerobic resin monomer containing 0.1 to 1% by mass of an organic peroxide is used as an impregnation agent used in at least the final resin impregnation operation. An organic peroxide is one that easily reacts with metal ions among the peroxide catalysts, and is suitable for curing by causing a polymerization reaction in the pores of the porous sintered body.

上記の重合反応を適正な範囲で行うためには、嫌気性樹脂に添加する有機過酸化物は0.1質量%以上とする必要がある。0.1質量%に満たないと、重合反応が充分活性に生じなく、気孔の再封孔が不十分となる。また、1.0質量%を超えて添加すると、上記の重合反応が活性になりすぎて多孔質焼結体表面で樹脂が固化して余剰の樹脂分の除去が難しくなる。   In order to carry out the above polymerization reaction in an appropriate range, the organic peroxide added to the anaerobic resin needs to be 0.1% by mass or more. If it is less than 0.1% by mass, the polymerization reaction is not sufficiently active, and the re-sealing of the pores becomes insufficient. Moreover, when it adds exceeding 1.0 mass%, said polymerization reaction will become too active and resin will solidify on the porous sintered compact surface, and it will become difficult to remove the excess resin part.

このような重合反応をより活性に行うため、有機過酸化物の中でもハイドロパーオキサイド類を用いることが好ましい。ハイドロパーオキサイド類には、t−ブチルハイドロパーオキサイド、キュメンハイドロパーオキサイド、ジ−イソプロピルパーオキサイド、p−メンタンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、ベンゾイルパーオキサイドなどがあり、これらを選択的に用いたり複数組み合わせて用いるようにしてもよい。   In order to carry out such a polymerization reaction more actively, it is preferable to use hydroperoxides among organic peroxides. Hydroperoxides include t-butyl hydroperoxide, cumene hydroperoxide, di-isopropyl peroxide, p-menthane hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, benzoyl peroxide These may be used selectively or in combination.

また、多孔質焼結体の素材構成からは次のような点が重要となる。多孔質焼結体としては20質量%以上のCuが含有されていると、上記の重合反応を活性に行うことができる。すなわち、Cuはイオン化しやすい元素であるため、上記の2回目の樹脂封孔工程(の樹脂硬化操作)における重合反応を活性に行うことができる。また、Cuの添加形態については、3〜30質量%の銅箔粉を用いることが推奨される。理由は、例えば鉄銅系の多孔質焼結体を製造する場合、原料粉末に3〜30質量%の銅箔粉を使用すると、銅箔粉が鉄粉表面に付着して鉄粉表面を覆う状態となる。このような原料粉末を圧粉成形、焼結して得られる多孔質焼結体では、気孔内壁に露出するFeの割合が大幅に低下して、金属イオンを発生し易いCuの露出量が増加するためCu含有量が少なくてもCuイオンの供給量を稼ぐことができ、上記の重合反応をより一層活性化できる。ただし、銅箔粉の使用は3質量%に満たないと鉄粉を被覆する効果に乏しく、逆に30質量%を超えて与えても鉄粉被覆の効果の向上がそれ以上は認められないばかりかコスト増の一因となる。このため、銅箔粉量は3〜30質量%が適正な範囲である。   Further, the following points are important from the material configuration of the porous sintered body. When the porous sintered body contains 20% by mass or more of Cu, the above polymerization reaction can be performed actively. That is, since Cu is an element easily ionized, the polymerization reaction in the second resin sealing step (resin curing operation) can be actively performed. Moreover, about the addition form of Cu, it is recommended to use 3-30 mass% copper foil powder. The reason is, for example, when manufacturing a copper-sintered porous sintered body, if 3 to 30% by mass of copper foil powder is used as the raw material powder, the copper foil powder adheres to the iron powder surface and covers the iron powder surface. It becomes a state. In a porous sintered body obtained by compacting and sintering such a raw material powder, the ratio of Fe exposed to the inner wall of the pores is greatly reduced, and the exposed amount of Cu that easily generates metal ions is increased. Therefore, even if there is little Cu content, the supply amount of Cu ion can be earned and said polymerization reaction can be activated further. However, if the use of copper foil powder is less than 3% by mass, the effect of coating the iron powder is poor, and conversely, even if it exceeds 30% by mass, no further improvement in the effect of iron powder coating is observed. It contributes to the cost increase. For this reason, 3-30 mass% is an appropriate range for the amount of copper foil powder.

1回目の樹脂含浸操作から、含浸剤として最後の樹脂含浸操作で用いるアクリル酸エステルまたはメタクリル酸エステルを主成分とし0.1〜1質量%の有機過酸化物を含有する嫌気性樹脂のモノマーを用いることができる。この場合は、気孔を封孔する樹脂が同一成分となるため樹脂の強度が異なる成分を含浸する場合より接着性が向上するため好ましい。ただし、最後の樹脂含浸操作で用いる含浸剤は、重合反応が活性になるよう成分調整したものであるため、1回目の樹脂含浸操作で用いる場合は、重合反応を抑制する条件下で含浸を行って、多孔質焼結体の内部の気孔、気孔の奥側まで含浸剤を進入充填しなければならない。重合反応の抑制は次のような方法で制御することが好ましい。すなわち、上記のように嫌気性樹脂は、外部の酸素が遮断された状態で、有機過酸化物(過酸化触媒)の酸素が金属イオンによって遊離基に変化することで重合反応が開始されるから、外部酸素の量を増加させれば重合反応を抑制することができる。具体的には、樹脂含浸操作における減圧を10〜10Paの条件として、含浸槽内の酸素をある程度の量を残存させることで、アクリル酸エステルまたはメタクリル酸エステルを主成分とし0.1〜1質量%の有機過酸化物を含有する嫌気性樹脂のモノマーを用いても、多孔質焼結体の内部の気孔、気孔の奥側まで含浸剤を確実に進入充填することが可能となる。なお、最後の樹脂含浸操作においては、重合反応を活性に行って隙間を封孔しなければならないため、10Paより低い減圧下で行う必要がある。 From the first resin impregnation operation, an anaerobic resin monomer containing, as a main component, an acrylic ester or methacrylic ester used in the final resin impregnation operation and 0.1 to 1% by mass of an organic peroxide. Can be used. In this case, since the resin for sealing the pores is the same component, the adhesiveness is improved as compared with the case of impregnating components having different resin strengths. However, since the impregnating agent used in the final resin impregnation operation is a component adjusted so that the polymerization reaction becomes active, when used in the first resin impregnation operation, the impregnation is performed under conditions that suppress the polymerization reaction. Thus, it is necessary to enter and fill the impregnating agent to the pores inside the porous sintered body and the back side of the pores. The suppression of the polymerization reaction is preferably controlled by the following method. That is, as described above, the anaerobic resin starts the polymerization reaction by changing the oxygen of the organic peroxide (peroxidation catalyst) to a free radical by a metal ion in a state where external oxygen is blocked. If the amount of external oxygen is increased, the polymerization reaction can be suppressed. Specifically, the pressure in the resin impregnation operation is set to 10 2 to 10 3 Pa, and a certain amount of oxygen in the impregnation tank is allowed to remain, so that acrylic acid ester or methacrylic acid ester is the main component. Even if an anaerobic resin monomer containing ˜1% by mass of organic peroxide is used, it becomes possible to reliably enter and fill the impregnating agent to the pores inside the porous sintered body and the back side of the pores. . In the final resin impregnation operation, it is necessary to perform the polymerization reaction actively to seal the gap, and therefore it is necessary to carry out under a reduced pressure lower than 10 2 Pa.

樹脂含浸後は余剰樹脂洗浄操作にて表面に付着している余剰の樹脂を洗浄して除去し、その後、樹脂硬化操作により樹脂含浸した多孔質焼結体を加熱することで含浸した樹脂を重合して硬化する。このとき、最後の樹脂含浸操作においては、それ以前の樹脂含浸操作において生じた隙間を封孔しなくてはならないが、有機過酸化物を含有した嫌気性樹脂のモノマーを用いると、重合反応が活性に行えるため、樹脂硬化のための加熱温度を低くしてもよく、室温から加熱温度まで昇温する間の樹脂の熱膨張に伴う未硬化モノマーの吹き出しが少なくなるという利点も有する。   After the resin impregnation, the excess resin adhering to the surface is removed by washing with an excess resin washing operation, and then the impregnated resin is polymerized by heating the porous sintered body impregnated with the resin by the resin curing operation. And harden. At this time, in the last resin impregnation operation, the gap generated in the previous resin impregnation operation must be sealed. However, when an anaerobic resin monomer containing an organic peroxide is used, the polymerization reaction is caused. Since it can be activated actively, the heating temperature for resin curing may be lowered, and there is also an advantage that blowout of uncured monomers accompanying thermal expansion of the resin during the temperature rise from room temperature to the heating temperature is reduced.

また、樹脂含浸操作に用いる含浸剤としては、一般の嫌気性樹脂で用いられているような1質量%以下の有機金属化合物からなる硬化促進剤を併用してもよい。特に、最後の樹脂含浸操作では、気孔内壁の大部分がそれ以前の樹脂含浸操作において被覆され金属イオンが届き難くなっているため有機金属化合物からなる硬化促進剤の使用が推奨される。ただし、過剰な有機金属化合物の添加は上記のモノマー含浸時の重合反応を過剰に引き起こすため、その添加は1質量%以下にするべきである。用いられる有機金属化合物としては、ジメチル銅酸リチウム、ジアセチルアセトン銅、炭化カルシウム、フェニルリチウム等が挙げられる。なお本発明においては発明の効果を損なわない範囲で、これ以外に有機および/または無機充填剤、粘度調節剤、安定剤等を配合することができる。   Moreover, as an impregnating agent used for resin impregnation operation, you may use together the hardening accelerator which consists of an organometallic compound of 1 mass% or less which is used with general anaerobic resin. In particular, in the last resin impregnation operation, most of the pore inner walls are coated in the previous resin impregnation operation, and metal ions are difficult to reach, so that it is recommended to use a curing accelerator made of an organometallic compound. However, since addition of an excessive organometallic compound causes an excessive polymerization reaction during the above-described monomer impregnation, the addition should be 1% by mass or less. Examples of the organometallic compound used include lithium dimethylcuprate, diacetylacetone copper, calcium carbide, and phenyllithium. In addition, in this invention, an organic and / or inorganic filler, a viscosity modifier, a stabilizer, etc. can be mix | blended in the range which does not impair the effect of invention.

以上の樹脂含浸操作は、例えば、動圧溝を圧粉成形時に形成して、後に寸法調整および動圧溝形成の再圧縮工程を行わない場合は焼結工程の後に行えばよいが、焼結工程の後に再圧縮工程を行う場合には多孔質焼結体の気孔中で硬化した樹脂が焼結体の変形能を低下させて、精度よく調製し難くなることから、樹脂含浸操作は寸法調整および動圧溝形成の各再圧縮工程の後に行う必要がある。   The above resin impregnation operation may be performed after the sintering step when, for example, the dynamic pressure groove is formed at the time of compaction molding and the dimensional adjustment and the recompression step for forming the dynamic pressure groove are not performed later. When the re-compression process is performed after the process, the resin cured in the pores of the porous sintered body reduces the deformability of the sintered body, making it difficult to prepare accurately. And after each recompression step of forming the dynamic pressure groove.

なお、余剰樹脂洗浄操作では余剰の樹脂が完全に除去されるが、極微量の余剰樹脂が残留する場合には、樹脂含浸操作の後に、メディアとしてφ0.1〜1.0mm程度、好ましくは0.1〜0.6mm程度のステンレスピンを用いて磁気バレルないしは電磁バレル加工によって軸受表面を機械的に打撃することで残余の樹脂を完全に除去することが好ましい。   The excess resin cleaning operation completely removes excess resin. However, when a very small amount of excess resin remains, after the resin impregnation operation, the medium is about φ0.1 to 1.0 mm, preferably 0. It is preferable to completely remove the remaining resin by mechanically hitting the bearing surface by magnetic barrel processing or electromagnetic barrel processing using a stainless pin of about 1 to 0.6 mm.

以上の焼結動圧軸受の製造方法により得られる焼結動圧軸受は、内部の気孔、気孔の奥から入口まで全ての気孔空間にアクリル酸エステルまたはメタクリル酸エステルを主成分とする嫌気性樹脂のポリマーが完全に含浸硬化されているため、例えば、軸受ユニットに組み込まれて流体として潤滑油を供給する場合にも、動圧の抜けおよび潤滑油の吸収がない優れたものとなる。   The sintered dynamic pressure bearing obtained by the above method for producing a sintered dynamic pressure bearing is an anaerobic resin mainly composed of acrylic ester or methacrylic ester in the pores of the interior, from the back of the pore to the inlet. For example, even when the polymer is completely impregnated and cured and is supplied to the bearing unit and supplied with the lubricating oil, it is excellent in that there is no loss of dynamic pressure and absorption of the lubricating oil.

実施例では、原料粉末として、鉄粉、電解銅粉、銅箔粉、錫粉、黒鉛粉を用意し、表1に示す配合割合で添加混合して原料粉末を調整した後、内径2.5mm、外径7mm、高さ5mmの軸受形状に密度比85%になるよう圧粉成形し、アンモニア分解ガス雰囲気中770℃で30分保持して焼結を行った。次いで、その焼結体は、寸法調整を目的とした再圧縮工程と、軸受内径面に5つの円弧状の動圧形状を付与する動圧溝形成再圧縮工程とを行い、合計、55個の多孔質焼結体を作製した。   In the examples, iron powder, electrolytic copper powder, copper foil powder, tin powder, and graphite powder were prepared as raw material powders, and added and mixed at the blending ratio shown in Table 1 to adjust the raw material powder, and then the inner diameter was 2.5 mm. The compact was molded into a bearing shape having an outer diameter of 7 mm and a height of 5 mm so that the density ratio would be 85%, and was sintered in an ammonia decomposition gas atmosphere at 770 ° C. for 30 minutes. Subsequently, the sintered body is subjected to a recompression process for the purpose of adjusting dimensions and a dynamic pressure groove forming recompression process for imparting five arc-shaped dynamic pressure shapes to the bearing inner diameter surface. A porous sintered body was produced.

Figure 2007239936
Figure 2007239936

嫌気性樹脂として特許文献1に記載されているポリグリコールジメタクリレートを主成分とし、過酸化触媒としてアゾ化合物(2,2−アゾビス)を0.3質量%含有するヘンケル社製レジノール90C(商品名)を用意した(以下、嫌気性樹脂1と称す)。また、嫌気性樹脂としてポリグリコールジメタクリレートを主成分とし、過酸化触媒としてキュメンハイドロパーオキサイドを0.8質量%含有するヘンケル社製PMS−50E(商品名)を用意した(以下、嫌気性樹脂2と称す)。   Resinol 90C (trade name) manufactured by Henkel, which contains polyglycol dimethacrylate as a main component as an anaerobic resin and contains 0.3% by mass of an azo compound (2,2-azobis) as a peroxidation catalyst. (Hereinafter referred to as anaerobic resin 1). Moreover, Henkel PMS-50E (trade name) containing polyglycol dimethacrylate as a main component as an anaerobic resin and 0.8% by mass of cumene hydroperoxide as a peroxidation catalyst was prepared (hereinafter referred to as anaerobic resin). 2).

上記により作製した55個の多孔質焼結体につき、表2に示す嫌気性樹脂および減圧圧力の組み合わせで各11個ずつ樹脂封孔工程を行い試料A〜Eを作製した。なお、樹脂封孔工程は次のような手順で行った。すなわち、樹脂含浸操作では、含浸槽内のステージ上に多孔質焼結体を載置して含浸槽内を減圧し多孔質焼結体の気孔中の空気を除去してから、ステージを降下させて含浸槽内の嫌気性樹脂モノマー中にステージ上の多孔質焼結体を浸漬した後、加圧してモノマーを気孔中に吸引することで含浸を行った。樹脂含浸の後は、多孔質焼結体の表面に付着した余剰の樹脂液を洗浄し、その後、嫌気性樹脂1については90℃、嫌気性樹脂2については50℃(いずれもメーカ推奨温度)の温水中に保持して気孔内に含浸した前記嫌気性樹脂のモノマーを硬化させた。   About 55 porous sintered compacts produced by the above, the resin sealing process was carried out 11 pieces each with the combination of the anaerobic resin shown in Table 2, and the pressure reduction pressure, and samples AE were produced. The resin sealing step was performed according to the following procedure. That is, in the resin impregnation operation, the porous sintered body is placed on the stage in the impregnation tank, the pressure in the impregnation tank is reduced, air in the pores of the porous sintered body is removed, and then the stage is lowered. The porous sintered body on the stage was immersed in the anaerobic resin monomer in the impregnation tank, and then impregnated by applying pressure and sucking the monomer into the pores. After the resin impregnation, the excess resin liquid adhering to the surface of the porous sintered body is washed, and then 90 ° C for the anaerobic resin 1 and 50 ° C for the anaerobic resin 2 (both recommended by the manufacturer) The anaerobic resin monomer impregnated in the pores while being held in the warm water was cured.

作製した各試料から組織観察用に各々1個の試料について切断、研磨して断面の封孔状態を表層部および内部について顕微鏡により観察した。その結果を表2の「封孔状態」の欄に示す。なお、この観察結果は、顕微鏡観察により樹脂による封孔が確認された場合「○」、樹脂が存在しない場合「×」と記した。   One sample was cut and polished from each of the prepared samples for tissue observation, and the sealed state of the cross section was observed with a microscope for the surface layer portion and the inside. The results are shown in the “sealed state” column of Table 2. In addition, this observation result was described as "(circle)" when the sealing by resin was confirmed by microscopic observation, and "x" when resin did not exist.

また、各試料の残余の各10個の試料について重量を測定し、その後、ビーカーに満たした潤滑油中に浸漬し5Paに減圧してから大気圧に復帰した後、重量を再び測定し、試験前後における各試料の重量の差(潤滑油の吸収の有無)を調べる潤滑油吸収試験を繰り返し行った。繰り返し回数5回の試験で重量の増加(潤滑油の吸収)が認められない場合は、さらに5回繰り返して試験を行い(計10回)、同様に重量の増加の有無について調べた。このときの試験結果について、10個の試料について潤滑油の吸収(重量の増加)が認められた場合「×」、数個について潤滑油の吸収が認められた場合「△」、全く重量の増加が認めらない場合「○」と評価して表2の「油吸収の有無」の欄に記載した。   In addition, the weight of each of the remaining 10 samples of each sample was measured, then immersed in a lubricating oil filled in a beaker, depressurized to 5 Pa, and then returned to atmospheric pressure. Then, the weight was measured again and tested. A lubricating oil absorption test was conducted repeatedly to examine the difference in weight of each sample before and after (presence or absence of absorption of lubricating oil). When no increase in weight (absorption of lubricating oil) was observed in the test with 5 repetitions, the test was repeated 5 more times (10 times in total), and the presence or absence of an increase in weight was similarly examined. As for the test results at this time, “x” when absorption (increase in weight) of lubricating oil was observed for 10 samples, “△” when absorption of lubricating oil was observed for several samples, and an increase in weight at all. Is not recognized, it was evaluated as “◯” and described in the column “Presence / absence of oil absorption” in Table 2.

Figure 2007239936
Figure 2007239936

表2より、1回目の樹脂封孔工程において、過酸化触媒としてアゾ化合物を含有する嫌気性樹脂1を用いた試料(試料A〜C)はいずれも多孔質焼結体の内部の気孔まで樹脂が含浸され封孔されていることが確認された。一方、過酸化触媒として有機過酸化物を含有する嫌気性樹脂2を用い、50Paの減圧条件で樹脂封孔工程を行った試料Dは重合反応が含浸初期より活性に生じて表面部の気孔が初期段階で封孔されて、多孔質焼結体の内部の気孔まで樹脂が含浸されないことが確認された。ただし、同じ嫌気性樹脂2でも、減圧圧力が200Paの条件下で樹脂封孔工程を行った試料Eでは、酸素分圧の増加により重合反応が抑制されて、多孔質焼結体の内部の気孔まで樹脂を充填できていることが確認された。   From Table 2, in the first resin sealing step, the samples (samples A to C) using the anaerobic resin 1 containing an azo compound as a peroxidation catalyst all resin up to the pores inside the porous sintered body. Was impregnated and sealed. On the other hand, sample D, which uses anaerobic resin 2 containing an organic peroxide as a peroxidation catalyst and has been subjected to a resin sealing step under a reduced pressure of 50 Pa, has a polymerization reaction that has been active since the beginning of impregnation, resulting in surface pores. It was confirmed that the resin was impregnated at the initial stage and the resin was not impregnated to the pores inside the porous sintered body. However, even in the same anaerobic resin 2, in the sample E in which the resin sealing step was performed under the reduced pressure of 200 Pa, the polymerization reaction was suppressed by the increase of the oxygen partial pressure, and the pores inside the porous sintered body were reduced. It was confirmed that the resin could be filled up to.

表2より、嫌気性樹脂1を用いて樹脂封孔工程を1回だけ行った試料A(従来例)では、潤滑油吸収試験を5回行った段階で、10個の全数について潤滑油の吸収が確認され、顕微鏡観察の結果ではわからなかったものの、気孔と樹脂の間に隙間が発生していることが確認された。また、嫌気性樹脂1を用いて樹脂封孔工程を2回行った試料Bについても、5回の潤滑油吸収試験を行った後に潤滑油の吸収が認められ、1回目の封孔工程において発生した隙間を2回目の樹脂封孔工程において完全に封孔できない場合があることが確認された。さらに、嫌気性樹脂2を用いて樹脂封孔工程を1回だけ行った試料Dでは、5回目の潤滑油吸収試験では潤滑油の吸収が確認されなかったが、10回の潤滑油吸収試験の後では、1個の試料について潤滑油の吸収が認められ、封孔状態の安定性については問題があることが確認された。一方、2回目の樹脂封孔工程を嫌気性樹脂2を用いて行った試料C、Eでは、10回の潤滑油吸収試験を繰り返しても潤滑油の吸収が確認されず、良好かつ安定な封孔状態であることが確認された。以上より、2回の樹脂封孔工程のみで多孔質焼結体の気孔の封孔を行う場合、2回目の樹脂含浸操作を有機過酸化物を含有する嫌気性樹脂のモノマーを用いて行うと、気孔の封孔が確実かつ安定に行えることが確認された。

From Table 2, in Sample A (conventional example) in which the resin sealing step was performed only once using the anaerobic resin 1, absorption of the lubricating oil was performed for all of the 10 samples after the lubricating oil absorption test was performed five times. Although it was not confirmed by microscopic observation, it was confirmed that a gap was generated between the pores and the resin. In addition, Sample B, which was subjected to the resin sealing step twice using the anaerobic resin 1, was found to absorb the lubricating oil after the five lubricating oil absorption tests, and occurred in the first sealing step. It was confirmed that the gaps that were made could not be completely sealed in the second resin sealing step. Furthermore, in Sample D in which the resin sealing step was performed only once using the anaerobic resin 2, the absorption of the lubricating oil was not confirmed in the fifth lubricating oil absorption test. Later, absorption of lubricating oil was observed for one sample, and it was confirmed that there was a problem with the stability of the sealed state. On the other hand, in Samples C and E in which the second resin sealing step was performed using the anaerobic resin 2, even if the lubricating oil absorption test was repeated ten times, the absorption of the lubricating oil was not confirmed, and a good and stable sealing was achieved. It was confirmed to be in a hole state. From the above, when the pores of the porous sintered body are sealed only by two resin sealing steps, the second resin impregnation operation is performed using an anaerobic resin monomer containing an organic peroxide. It was confirmed that the pores can be sealed reliably and stably.

Claims (7)

多孔質焼結体の気孔中にアクリル酸エステルまたはメタクリル酸エステルを主成分とする嫌気性樹脂のモノマーを含浸させる樹脂含浸操作、多孔質焼結体の表面に付着した余剰の樹脂を洗浄する余剰樹脂洗浄操作、余剰樹脂洗浄後の多孔質焼結体を樹脂の硬化温度以上に保持して気孔内に含浸した前記嫌気性樹脂のモノマーを硬化させる樹脂硬化操作を順に行う樹脂封孔工程を有する焼結動圧軸受の製造方法において、
前記樹脂封孔工程を複数回行うとともに、少なくとも最後の樹脂封孔工程における樹脂含浸操作を0.1〜1質量%の有機過酸化物を含有する嫌気性樹脂のモノマーを用いて行うことを特徴とする焼結動圧軸受の製造方法。
Resin impregnation operation in which pores of the porous sintered body are impregnated with a monomer of an anaerobic resin mainly composed of acrylic acid ester or methacrylic acid ester, and excess resin adhering to the surface of the porous sintered body is washed away Resin cleaning step, resin sealing step of sequentially performing resin curing operation of curing the anaerobic resin monomer impregnated in the pores while maintaining the porous sintered body after washing the excess resin at a temperature higher than the curing temperature of the resin In the manufacturing method of the sintered hydrodynamic bearing,
The resin sealing step is performed a plurality of times, and at least the resin impregnation operation in the last resin sealing step is performed using an anaerobic resin monomer containing 0.1 to 1% by mass of an organic peroxide. A method for manufacturing a sintered hydrodynamic bearing.
少なくとも最初の樹脂封孔工程における樹脂含浸操作を0.1〜0.5質量%のアゾ化合物を含有する嫌気性樹脂のモノマーを用いて行うことを特徴とする請求項1に記載の焼結動圧軸受の製造方法。   The sintering operation according to claim 1, wherein the resin impregnation operation in at least the first resin sealing step is performed using an anaerobic resin monomer containing 0.1 to 0.5% by mass of an azo compound. Pressure bearing manufacturing method. 1回目の樹脂封孔工程における樹脂含浸操作を0.1〜1質量%の有機過酸化物を含有する嫌気性樹脂のモノマーを用い、10〜10Paに減圧して行うことを特徴とする請求項1に記載の焼結動圧軸受の製造方法。 The resin impregnation operation in the first resin sealing step is performed by using a monomer of an anaerobic resin containing 0.1 to 1% by mass of an organic peroxide and reducing the pressure to 10 2 to 10 3 Pa. The manufacturing method of the sintered hydrodynamic bearing of Claim 1. 前記有機過酸化物が、t−ブチルハイドロパーオキサイド、キュメンハイドロパーオキサイド、ジ−イソプロピルパーオキサイド、p−メンタンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、ベンゾイルパーオキサイドのうち少なくとも1種のハイドロパーオキサイド類であることを特徴とする請求項1から3のいずれかに記載の焼結動圧軸受の製造方法。   The organic peroxide is t-butyl hydroperoxide, cumene hydroperoxide, di-isopropyl peroxide, p-menthane hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, benzoyl peroxide The method for producing a sintered hydrodynamic bearing according to any one of claims 1 to 3, wherein the hydroperoxide is at least one kind of hydroperoxide. 前記メタクリレートを主成分とする嫌気性樹脂のモノマーが1質量%以下の有機金属化合物からなる硬化促進剤を含有していることを特徴とする請求項1から4のいずれかに記載の焼結動圧軸受の製造方法。   The sintering motion according to any one of claims 1 to 4, wherein the monomer of the anaerobic resin whose main component is the methacrylate contains a curing accelerator composed of 1% by mass or less of an organometallic compound. Pressure bearing manufacturing method. 前記多孔質焼結体は、銅鉄系からなるとともに、原料粉末が3〜30質量%の銅箔粉を含有したもので作製されて、Cu含有量が20質量%以上になっていることを特徴とする請求項1〜5のいずれかに記載の焼結動圧軸受の製造方法。   The porous sintered body is made of a copper iron-based material, and the raw material powder is made of a material containing 3 to 30% by mass of copper foil powder, and the Cu content is 20% by mass or more. The method for producing a sintered hydrodynamic bearing according to any one of claims 1 to 5. 前記多孔質焼結体は、樹脂封孔工程の前に、多孔質焼結体の寸法を調整する寸法調整再圧縮工程と、多孔質焼結体の内径面および/または端面に塑性加工によって動圧発生用の溝を設ける動圧溝形成再圧縮工程とが施されていることを特徴とする請求項1〜6のいずれかに記載の焼結動圧軸受の製造方法。

Prior to the resin sealing step, the porous sintered body is moved by a dimension adjustment recompression process for adjusting the dimensions of the porous sintered body, and plastic working on the inner diameter surface and / or end surface of the porous sintered body. The method for producing a sintered hydrodynamic bearing according to any one of claims 1 to 6, wherein a hydrodynamic groove forming and recompressing step of providing a pressure generating groove is performed.

JP2006065659A 2006-03-10 2006-03-10 Method of manufacturing sintered hydrodynamic bearing Pending JP2007239936A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006065659A JP2007239936A (en) 2006-03-10 2006-03-10 Method of manufacturing sintered hydrodynamic bearing
US11/711,028 US20080010832A1 (en) 2006-03-10 2007-02-27 Production method for sintered fluid dynamic pressure bearing
CNA2007101016331A CN101042156A (en) 2006-03-10 2007-03-09 Manufacturing method for sinterring dynamic pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065659A JP2007239936A (en) 2006-03-10 2006-03-10 Method of manufacturing sintered hydrodynamic bearing

Publications (1)

Publication Number Publication Date
JP2007239936A true JP2007239936A (en) 2007-09-20

Family

ID=38585671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065659A Pending JP2007239936A (en) 2006-03-10 2006-03-10 Method of manufacturing sintered hydrodynamic bearing

Country Status (3)

Country Link
US (1) US20080010832A1 (en)
JP (1) JP2007239936A (en)
CN (1) CN101042156A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066789B1 (en) * 2010-11-29 2011-09-21 주식회사 넥스텍 Sinter bearing and maufacturing method thereof
CN104934550A (en) * 2015-05-07 2015-09-23 京东方科技集团股份有限公司 OLED device packaging structure, packaging method and electronic device
JP2019167569A (en) * 2018-03-22 2019-10-03 Ntn株式会社 Mechanical component and method of manufacturing the same

Also Published As

Publication number Publication date
CN101042156A (en) 2007-09-26
US20080010832A1 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
KR101492954B1 (en) Powder metal polymer composites
JP2007239936A (en) Method of manufacturing sintered hydrodynamic bearing
JP2007231966A (en) Sintered hydrodynamic bearing manufacturing method
JP2012031965A (en) Method for producing fluid dynamic pressure bearing
JP5255940B2 (en) Mold manufacturing method and mold
CN101029658A (en) Production method for fluid dynamic pressure sintered bearing
JP2010018823A (en) Composite type metal molded body, method for producing the same, electromagnetic driving device using the same, and light quantity regulating apparatus
US20110142387A1 (en) Sintered bearing and manufacturing method for the same
US20200003292A1 (en) Sprocket with vibration absorption properties
JP4275576B2 (en) Sintered bearing member manufacturing method, fluid dynamic bearing device, and spindle motor
JP4140778B2 (en) Resin-bonded magnet and manufacturing method thereof
JP2004255522A (en) Method of surface treatment and sintered part
JP2002129207A (en) Sliding member
WO2010134458A1 (en) Sintered metal bearing, shaft member for a plain bearing unit, and plain bearing unit provided with said shaft member
JP2006258240A (en) Method for manufacturing sintered slide bearing
JPH04273413A (en) Manufacture of rare-earth bonded magnet
JP3879906B2 (en) Sintered oil-impregnated bearing, its hydraulic holding structure in the hole, and method for manufacturing sintered oil-impregnated bearing
JPH07216411A (en) Sliding member and method for improving frictional characteristic of sliding member
KR100818312B1 (en) The manufacturing method of spray formed metal tools by a back-filling
CN111204008B (en) Metal resin complex and preparation method and application thereof
JP2024044665A (en) Cased bonded magnet
JP2009085234A (en) Plain bearing and method for manufacturing same
JP2010060098A (en) Sintered bearing and process for producing the same
JP2009001867A (en) Large-sized high-density powder compact and manufacturing method therefor
JP2008166345A (en) Method of rust-proofing process