JP3879906B2 - Sintered oil-impregnated bearing, its hydraulic holding structure in the hole, and method for manufacturing sintered oil-impregnated bearing - Google Patents

Sintered oil-impregnated bearing, its hydraulic holding structure in the hole, and method for manufacturing sintered oil-impregnated bearing Download PDF

Info

Publication number
JP3879906B2
JP3879906B2 JP2001356157A JP2001356157A JP3879906B2 JP 3879906 B2 JP3879906 B2 JP 3879906B2 JP 2001356157 A JP2001356157 A JP 2001356157A JP 2001356157 A JP2001356157 A JP 2001356157A JP 3879906 B2 JP3879906 B2 JP 3879906B2
Authority
JP
Japan
Prior art keywords
bearing
oil
sintered
impregnated
clogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001356157A
Other languages
Japanese (ja)
Other versions
JP2003156044A (en
Inventor
正典 井出
賢浩 狩野
正史 市川
Original Assignee
平和産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平和産業株式会社 filed Critical 平和産業株式会社
Priority to JP2001356157A priority Critical patent/JP3879906B2/en
Publication of JP2003156044A publication Critical patent/JP2003156044A/en
Application granted granted Critical
Publication of JP3879906B2 publication Critical patent/JP3879906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は焼結含油軸受及びその空孔内油圧保持構造、並びに焼結含油軸受の製造方法に関する。
【0002】
【従来技術】
金属粉を焼結させて得る焼結体の多孔性を利用して、容積比で10〜30%の油(潤滑油)を含浸させて自己給油の状態で使用する焼結含油軸受(以下、「軸受」又は「軸受本体」ともいう)は、通常の軸受が油切れを起こせば直ちに焼付けを起こすのに対し、すでに発煙している状態であっても焼付くことなく運転できるという優れた特徴を有している。
【0003】
焼結含油軸受がこうした特徴を有するのは、軸受内に無数の空孔を有していることに基づく。一般的な焼結含油軸受の作動原理を図5に基づいて説明する。軸受1中を軸体2が矢示方向Rに回転すると、ポンプの吸い込み作用と同様に、ポーラスな軸受1の空孔に含有されている潤滑油が吸い出され、軸体2と軸受1の摺動受け面3との間の界面に滲み出てくる。滲み出てきた潤滑油4は、軸体2の回転力によって界面に矢示方向Rへくさび状に引込まれて油膜を形成し潤滑効果を発揮するが、その一部は軸体2からの押圧力を受けて再び軸受1の空孔へと押し戻される。このような作動を連続的に繰返すことで、潤滑油4は軸受1の内側を循環する。
【0004】
こうした潤滑油の循環作用をもつ軸受1の最大の利点は無給油で使用できることであり、自動車や土木機械等だけでなく、家庭用機器、事務機など、環境的又は機構的に十分な給油が望めない箇所において広く用いられ、近年においては、末端ユーザー向けのOA機器、音響機器等のディスクドライブに備えるモーター軸受として、また小型のファンモーター軸受としての利用も盛んである。
【0005】
【発明が解決しようとする課題】
ところで、上述した優れた利点を有する軸受も必ずしも万能と言えるものではなく、依然改善の余地が残されている。その一つが、軸体のスリコギ回転によって潤滑油の引込み量が低減してしまう問題である。
【0006】
焼結含油軸受が自動車や土木機械等に用いられる場合には、この軸受1が軸支する軸体2は、通常、一定方向(例えば図5に示すF方向)に荷重がかかった状態で使用され、軸受1と軸体2は常に一定点(例えば図5に示すt1点)で最も接近した状態で軸支されている。しかし、ファンモーターやディスクドライブ用モーターの軸受として用いられるような場合には、音楽CDやDVD等のディスク、ファン等の重量バランスが不均衡であり、このような偏心ディスク等に直接繋がった軸体を駆動モータにて高速回転させる場合、軸体の縦断面方向から見ると、図6で示すように、駆動モータの軸体2の回転は、軸体2の理想的な軸心P1に対して傾斜した軸心P2,P3となるように回転し、軸受1の内径面に対して遠近しながら回転する。また、軸体の横断面方向から見ると、図7に示すように、軸受1の内周に沿って軸体2の軸心が軸心P11からP12、P13と移動するように軸体2がM方向に回転し、軸受1と軸体2は常に異なった点(例えば図7に示すt11,t12,t13のような種々の点)で最も接近しながら移動する。こうしたスリコギ回転は、片持ち軸受に一般的に見られる現象であるが、こうなると、軸受1と軸体2の界面に滲み出てきた潤滑油4をくさび状に引込む効果が低下して引込み量が少なくなる一方で、軸受1内に押込まれる潤滑油4の押込み量の比率が大きくなるため、適度なバランスが取れなくなり界面における潤滑油圧が低下してしまう。
【0007】
以上のような潤滑油圧の低下の問題に対しては、潤滑油4の粘度を上げて軸受1内に潤滑油4を押込み難くする(戻り難くする)ことが考えられる。しかしながら、CD等のディスクドライブについては光ピックアップによる読取り精度を安定化させるために、またファンモーターについては振動音を低減するために、軸体2と軸受1の摺動受け面3とのクリアランスを大きくとることができず、むしろ逆に潤滑油4の粘度を下げることが望まれている。
【0008】
そこで、本発明は、潤滑油圧の低下を抑制することのできる焼結含油軸受と、その空孔内油圧保持構造と、その製造方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
即ち本発明は、軸体を回転可能に軸支する円筒状の摺動受け面を有し、該摺動受け面を除く軸受本体の一部又は全部の外表面に表出する表層空孔を目詰めしてある焼結含油軸受について、1次焼結体でなる軸受本体と、該軸受本体の前記表層空孔に圧着する金属粉末との2次焼結体であり、前記表層空孔に0.005〜0.015mmの厚みで目詰めしていることを特徴とする焼結含油軸受を提供する。
【0010】
この焼結含油軸受によれば、摺動受け面を除く軸受本体の外表面の一部又は全部が、表層空孔を目潰しした目詰め面として形成されている。したがって、焼結含油軸受の空孔内潤滑油が、摺動受け面以外の面から焼結含油軸受の外部に逃げようとしても、逃げ道となる表層空孔が目潰しされているため外部への漏出を低減することができる。そのため、摺動受け面における潤滑油圧を高く維持することが可能となり、軸体の滑らかな回転を長期にわたって維持することができる。
【0011】
そして、上述のごとく摺動受け面における潤滑油圧を高く維持できるため、軸体がスリコギ回転する場合でも、摺動受け面における適度な潤滑油圧を発揮することができ、軸体と軸受の摺動受け面との間のクリアランスを拡大したり、潤滑油の粘度を高くしたりする必要もない。
【0012】
また、この焼結含油軸受によれば、固着方法として焼結を採用することにより、所定の軸受表面を確実に目詰めすることができると共に、目詰め面とする軸受表面に開口した空孔を目詰めすることが可能なため、摺動受け面における油圧が高く保たれ、好ましい潤滑状態を維持することが可能な焼結含油軸受とすることができる。
【0013】
そして、本発明は、前記金属粉末が青銅合金粉である焼結含油軸受とすることができ、さらに、軸受本体が、青銅合金と鉄銅合金の混合粉よりなる焼結含油軸受とすることができる。
【0014】
また、本発明は、前記軸受本体の外表面のうち前記摺動受け面と連続する隣接面が目詰め面として形成されている焼結含油軸受を提供する。
【0015】
この焼結含油軸受によれば、焼結含油軸受の摺動受け面と連続する隣接面が目詰め面として形成されているため、目詰めされている隣接面から焼結含油軸受の外部に空孔内潤滑油の漏出を低減することができ、摺動受け面における油圧を高く維持することが可能となる。そして、好ましい潤滑状態を維持することができる。
【0016】
さらに、本発明は、摺動受け面の一方及び他方の面端に拡径するテーパー縁を形成し、該テーパー縁の少なくとも一方については、表層空孔を目潰ししない非目詰め面として形成してある焼結含油軸受を提供する。
【0017】
この焼結含油軸受によれば、目詰めされた軸受本体の外表面からの空孔内潤滑油の漏出を防止し、摺動受け面における油圧を高く維持することができる一方、該テーパー縁の少なくとも一方については表層空孔を目潰ししない非目詰め面として形成してあるため、焼結含油軸受の内径面と軸体との間から外部にあふれ出た潤滑油を、このテーパー縁から軸受と軸体との間に戻すことが可能となる。そのため、焼結含油軸受内の油量の減少を防止し、焼結含油軸受の好ましい潤滑状態を長期にわたって維持することができる。
【0018】
そして、前述した目的を達成するための他の手段として、本発明は、軸体を軸方向に沿って回転可能に軸支する円筒状の摺動受け面が形成された軸受本体の空孔に含油処理を施して成り、器機内の所定位置にブラケットを介して取付けられる前記本発明における焼結含油軸受の空孔内油圧保持構造であって、前記摺動受け面及びブラケットに対する接触面とを除く軸受本体の外表面が表層空孔を目潰しした目詰め面として形成されており、該目詰め面と前記ブラケットの焼結含油軸受との接触面とを空孔内含油の返し面として焼結含油軸受の空孔内油圧を保持するようにしたことを特徴とする焼結含油軸受の空孔内油圧保持構造を提供する。
【0019】
この空孔内油圧保持構造によれば、摺動受け面となる内径面以外の焼結含油軸受の外表面が目詰めされているか、目詰めされていないブラケットとの接触面も、軸受本体とブラケットが気密に接しているため、ブラケット表面が空孔内含油の返し面として働いて軸受本体から空孔内含油の漏出を低減できるため、軸受本体の摺動受け面以外の外表面が目詰めされた場合と同様に、摺動受け面における潤滑油圧を高く維持することが可能となる。したがって、軸体の滑らかな回転を長期にわたって維持することが可能である。
【0020】
また、本発明は、軸体を軸方向に沿って回転可能に軸支する円筒状の摺動受け面が形成された軸受本体の空孔に含油処理を施して成り、機器内の所定位置に接着材を介してブラケットに取付けられる前記本発明における焼結含油軸受の空孔内油圧保持構造であって、前記摺動受け面及びブラケットとの接着面とを除く軸受本体の外表面が表層空孔を目潰しした目詰め面として形成されており、該目詰め面と前記接着材表面とを空孔内含油の返し面として空孔内油圧を保持するようにしたことを特徴とする焼結含油軸受の空孔内油圧保持構造を提供する。
【0021】
この空孔内油圧保持構造によれば、摺動受け面となる内径面以外の焼結含油軸受の外表面が目詰めされているか、目詰めされていないブラケットとの接着面も、焼結含油軸受とブラケットとの接着に用いられた接着材の表面が、空孔内含油の返し面として働くため、軸受本体から空孔内含油の漏出を抑制することができ、軸受本体の摺動受け面以外の外表面が目詰めされた場合と同様に、摺動受け面における潤滑油圧を高く維持でき、軸体の滑らかな回転を長期にわたって維持することが可能である。
【0024】
そして、上記目的を達成する更に別の手段として本発明は、軸体を回転可能に軸支する円筒状の摺動受け面が形成され、該摺動受け面を除く軸受本体の外表面の一部又は全部について表層空孔を目詰めし焼結含油軸受の製造方法について、圧粉成形した軸受本体を1次焼結し、該軸受本体の摺動受け面を除く一部又は全部の外表面における表層空孔に金属粉末を圧着して埋め込み、そしてこの金属粉末を埋め込んだ軸受本体を2次焼結して、0.005〜0.015mmの厚みで目詰めすることを特徴とする目詰めした焼結含油軸受の製造方法を提供する。
【0025】
この焼結含油軸受の製造方法によれば、摺動受け面を除く軸受本体の外表面の一部又は全部が、表層空孔を目潰しした目詰め面として形成させることができるため、焼結含油軸受の空孔に充填された潤滑油が、軸体との摺動受け面となる焼結含油軸受の内径面以外の面から焼結含油軸受外部に漏出するのを抑制でき、摺動受け面における潤滑油圧を高く維持することが可能となる焼結含油軸受を得ることができる。
【0026】
そして、目詰め材として金属を用い、該目詰め材を焼結により固着するため、所定の軸受表面を確実に目詰めすることができると共に、目詰め面とする軸受表面に開口した空孔を目詰めすることが可能となり、摺動受け面における油圧が高く保たれ、好ましい潤滑状態を維持することができる。また、目詰め材が剥がれにくく目詰め状態を長期間維持することが可能である。さらに、安価に製造することができる。
【0027】
前記金属粉末の圧着は、該金属粉末に圧力を加えて軸受本体の空孔に埋め込むことにより行うことができ、また前記金属粉末が、青銅合金粉であるものとし、さらに軸受本体が、青銅合金と鉄銅合金の混合粉よりなる焼結含油軸受の製造方法とすることができる。
【0030】
【発明の実施の形態】
以下、本発明の焼結含油軸受(以下、「軸受」と略称する。)及びその空孔内油圧保持構造の実施形態について図面に基づいて説明する。なお、以下の実施形態では、CDプレーヤにおける音楽CDを回転駆動する駆動モータ用の軸受を一例として説明する。
【0031】
図1は、ブラケット11に取付けた軸受12により、音楽CDを回転駆動する駆動モータの軸体13を軸支する状態を示す縦断面図である。軸体13は、円筒状の軸受12の内径面が摺動受け面14となってラジアル方向で支持され、また、樹脂スラスト軸受15によってアキシャル方向で支持されている。この樹脂スラスト軸受15は、ブラケット11の底部16に形成した凹部17に取付けたものである。
【0032】
軸受12は、円筒形状を呈するもので、その内径面が軸体13の回転摺動を受ける摺動受け面14である。摺動受け面14の上下の面端には、外向きに拡径するテーパー縁18,19が形成されている。この摺動受け面14と、軸受12の外径面20と、摺動受け面14の上面端に連続する上面21(隣接面)と、摺動受け面14の下面端に連続する下面22(隣接面)及びテーパー縁18,19によって、この軸受12における“外表面”が形成されている。そして、“外表面”のうち、摺動受け面14、テーパー縁18を除く、外径面20、上面21及び下面22、並びにテーパー縁19については、目詰め材にて表層空孔を目潰しした“目詰め面”をなしている。
【0033】
次に、以上のような概略構成とした軸受12の動作について説明する。軸体13が回転すると、図6及び図7で鎖線で示したようなスリコギ回転する。このとき、従来の軸受であれば、図2(a)に示すように軸受1の上面、下面、及び外径面の表層空孔が目潰しした目詰め面ではないため、さほど抵抗無く潤滑油が軸受内に押込まれてしまう。ところが、上述のように、摺動受け面14と上側テーパー縁18を除く、外径面20、上面21、下面22及び下側テーパー縁19の表層空孔を目詰め材にて目潰しした“目詰め面”をなしている本形態の軸受12では、図2(b)に示すように潤滑油の押込みを受けても、空孔内潤滑油が表層空孔を通じて外部へ逃げないように“目詰め面”で封止された状態としてあるため、空孔内潤滑油の外部への漏出が抑制される。そのため、表層空孔が目潰しされていない摺動受け面14では、適度な潤滑油圧がかかった状態となる。よって、この軸受12では、摺動受け面14の潤滑油圧を高く維持することが可能となり、軸体13の滑らかな回転を長期にわたって維持することができるものである。
【0034】
そして、このように摺動受け面14における潤滑油圧を高く維持できるため、軸体13がスリコギ回転する場合でも、軸体13と軸受12の摺動受け面14との間のクリアランスを拡大したり、潤滑油の粘度を高くしたりする必要もない。
【0035】
なお、図1では、摺動受け面14及びテーパー縁18を除く軸受12の“外表面”を“目詰め面”とした例であるが、これらの面を全て目詰め面としなければならないものではない。例えばブラケット11と気密に接しているため軸受12の外径面20から空孔内潤滑油が漏れないのであれば、この外径面20は目詰めしないことも可能である。このような場合は、軸受12とブラケット11が互いに気密に設置されることにより軸受12内の空孔内に含まれる潤滑油の油圧が保持される。なお、軸受12とブラケット11間の気密性が保てないような場合は、接着材により軸受12をブラケット11に固定することで、軸受12から空孔内潤滑油が漏れないようにすることも可能である。しかしながら、目詰め面をなるべく多く設けた方が、空孔内潤滑油の漏出に対する危険性が軽減されて潤滑特性向上の観点からは好ましく、最も好ましくは、摺動受け面を除く軸受本体の外表面の全部が目潰しした目詰め面としていることである。
【0036】
また、上側テーパー縁18は、図2(b)に示すように、軸受12の内径面と軸体13との間からあふれ出た潤滑油を、軸受12と軸体13の摺動受け面14に戻すため、目詰めしないこととしているが、空孔内潤滑油の外部への漏出をより抑制する必要がある場合は、この上側テーパー縁18を目詰めしても良い。また、軸受12から外部にあふれ出た潤滑油を摺動受け面14に戻す要求が高ければ、上側テーパー縁18だけでなく、下側テーパー縁19も目詰めしないことも可能である。しかしながら、軸体13の長手方向が水平に向くように軸受12が軸体13を軸支する場合には、一方及び他方の両方のテーパー縁を目詰めするか又は目詰めしない場合が多いが、軸体13の長手方向が上下に向くように軸受12が軸体13を軸支する場合には、軸受12の下方への空孔内含油の漏出を抑制するため下側テーパー縁19を目詰めし、軸受12の上方へ溢れ出た潤滑油を軸受12内に戻すため上側テーパー縁18を目詰めしないことが好ましい。なお、本実施形態では、テーパー縁18,19は軸受12の摺動受け面14の両方の面端に設けられているが、場合によってはどちらか一方だけの面端に設けられる形態もあり得、その場合には、そのテーパー縁を目詰めするか否かは、摺動受け面14における油圧と、軸受12への油戻しの必要性との関係で決定する。
【0037】
軸受12の原材料には、一般的な焼結含油軸受に用いられる原材料を使用することができ、粉末金属として、例えば、鉄粉、銅粉、鉄粉と銅粉の混合物、又はこれらに黒鉛粉、すず粉、亜鉛粉、鉛粉等を加えたもの、あるいは他の合金を加えたものや、鉄系の合金粉、例えば、Fe−C、Fe−Pb−C、Fe−Cu−C合金等や、銅系の合金粉、例えば、Cu−Sn、Cu−Sn−C、Cu−Sn−Pb−C合金等をはじめその他の合金を用いることができる。通常は、鉄系の合金がもつ機械的強度が強く、硬度が高く、安価であるという利点と、銅系の合金がもつ潤滑特性に優れるという利点を併せ持つような合金であることが好ましい。
【0038】
軸受12の製造は、一般的な粉末冶金による方法を利用することができ、その製造工程の途中の段階で、軸受12の外表面を目詰めする工程を加えることにより行うことができる。例えば、原料となる種々の金属粉を混合し、金型内に充填した後、プレス機にて圧縮して所定形状とし、これを焼結炉で高温に保持して焼結する。そして、その焼結体をサイジングにより寸法や密度を調整した後、洗浄、油含浸等の後処理する工程を順次行う。これらの工程の内、圧粉成形後洗浄前までの段階に目詰め工程を行う。
【0039】
目詰めに用いる材料(目詰め材)は、例えば、金属、樹脂等を選択することができ、目詰め方法も材料に応じて選択することができる。
【0040】
目詰め材に金属を用いる場合は、青銅、鉄、銅等を溶融させて外表面を被覆する方法や、微粉末に粉砕した軸受用の前記金属を用いて目詰めする方法がある。粉末金属で目詰めする方法は、粉末金属が軸受12の空孔に埋められて抜け落ちないようにする必要があり、金属粉末を外部からの機械的な圧力を加えることにより空孔に埋め込んだり、金属粉末を軸受12の外表面に付着させて熱を加えて溶融又は焼結させる方法もある。また、金属粉末を軸受12の外表面に接着剤によって接着させる方法もある。しかしながら、切削工程時に合金地が流れる現象を利用する方法、または切粉によって空孔が埋められることを利用して目詰めする方法は、目詰めの程度が不十分であり目詰めされない空孔がかなり残ることに加え、非経済的であるため、目詰め方法としては好ましくない。
【0041】
目詰め材用の樹脂としては、アクリル樹脂、ポリカーボネート樹脂、エステル樹脂、ABS樹脂、ポリプロピレン樹脂、アミノ樹脂、フェノール樹脂、ポリアミド型樹脂、エポキシ樹脂、ポリウレタン樹脂等の種々の熱可塑性、熱硬化性樹脂等を用いることができる。アクリル樹脂等の熱可塑性樹脂を用いる場合は、樹脂を溶剤に溶かした塗液を用いて外表面に塗布し、乾燥させて、軸受12の外表面を樹脂層で被覆することが可能である。また、エポキシ樹脂等の熱硬化性樹脂を用いる場合は、軸受12の外表面に塗布後、樹脂を硬化させる方法を用いることができる。
【0042】
いずれの目詰め方法を採用する場合も、軸受12の外表面が目詰めされて目詰め材が軸受12の外表面に固着すれば良く、特にその厚さに制限はないが、通常0.005〜0.015mm程度の厚みとすることが、耐久性、経済性等の観点から好ましい。なお、本発明の方法により目詰めした軸受12の断面の顕微鏡写真(図3の左側2枚の写真)を、目詰めしていない焼結含油軸受の断面の顕微鏡写真(図3の右側2枚の写真)とともに図3に示した。図3の写真図より、軸受12の表面が0.010mm程度の厚みで目詰めされていることが判る。なお、目詰め状態が写真に良く写るよう、純鉄からなるSBF1種(JIS B1581)を用いて軸受を作成し目詰めには銅粉を用いている。
【0043】
目詰めの程度は、目潰しする面の表層空孔の95%以上、好ましくは99%以上を目詰めすることが好ましい。95%より少ないと目詰め効果も劣るからである。
【0044】
【実施例】
以下、実施例に基づいて本発明をさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。
【0045】
実施例1(圧粉成型→焼結→目詰め→再焼結→二次成形→後処理)
【0046】
青銅合金粉(銅:錫=9:1(重量));60wt%と、鉄銅合金粉(鉄:銅=9:1(重量));40wt%とを混合し、圧縮成形して円筒状(内径×外形×全長=3mm×7mm×7mm)の圧粉体を得た。この圧粉体を水素雰囲気焼結炉にて800℃にて20分間、1次焼結を行った。次に、青銅合金粉を圧粉体の内径面を除く外表面に圧着した。そしてこれを、水素雰囲気焼結炉にて800℃にて20分間、2次焼結(再焼結)を行った。その後、バリ取り等の表面処理を施し、洗浄、油(20♯の合成油)含浸を行って試料1を得た。
【0047】
例2(圧粉成型→目詰め→焼結→二次成形→後処理)
【0048】
実施例1と同様にして得た圧粉体に焼結を行うことなく目詰めを行った。目詰めには、実施例1で用いたのと同じ材料を用いた。その後、水素雰囲気焼結炉にて800℃にて20分間、焼結を行った。これにバリ取り等の表面処理を施し、洗浄、油(20♯の合成油)含浸を行って試料2を得た。
【0049】
例3(圧粉成型→焼結→二次成形→目詰め→後処理)
【0050】
実施例1と同様にして得た圧粉体を水素雰囲気焼結炉にて800℃にて20分間、焼結を行った後、バリ取り等の表面処理を施した。この焼結体の内径面を除く外表面にアクリル樹脂ワニス(樹脂分15wt%、残部トルエン)を塗布し乾燥させた。これを洗浄し油(20♯の合成油)含浸して試料3を得た。
【0051】
例4
【0052】
目詰め工程において、圧粉体の内径面及び外径面以外の外表面を目詰めした以外は実施例1と同様にして、試料4を得た。なお、試料4については、ブラケットへの装着の際にアクリル樹脂接着剤を試料4の外径面に塗布しておいた。
【0053】
比較例1
【0054】
目詰め工程を除いた以外は実施例1と同様にして、試料5を得た。
【0055】
トルク試験
【0056】
上記実施例1及び比較例1で得られた試料1及び試料5を硬質樹脂製のブラケットにそれぞれ装着した。ブラケットに装着した試料1、5の各々に対し、クリアランスが2μmとなる軸体を通し、軸体の運転トルクを測定した。運転トルクの測定は、ファンモーター用軸受を想定し、軸体にかかる周速を75m/min.(8000rpm);軸受にかかる面圧を0.85kg/cmとした場合、及びCD−ROMドライブ装置のディスク回転用モーターの軸受を想定し、軸体にかかる周速を113m/min.(12000rpm);軸受にかかる面圧を0.85kg/cmとした場合の2条件にて行った。その結果を図4(a)及び図4(b)に各々示す。いずれの測定条件においても、目詰めを行った試料1(図4の「目詰め品」)は、目詰めを行っていない試料5(図4の「非目詰め品」)に比較してトルク値が低い。これにより、目詰めした軸受は、目詰めしていない軸受に比較して運転安定性に優れ、製品寿命が向上することがわかる。
【0057】
【発明の効果】
本発明の焼結含油軸受及びその空孔内油圧保持構造、並びに焼結含油軸受の製造方法によれば、軸受本体の空孔に充填された潤滑油が、表層空孔を目潰しした目詰め面によって摺動受け面以外の外表面から焼結含油軸受外部に漏出することが抑制されるため、摺動受け面における潤滑油圧が高く保たれ、好ましい潤滑状態を維持することができる焼結含油軸受及びその空孔内油圧保持構造を得ることができる。
【0058】
また、本発明の焼結含油軸受及びその空孔内油圧保持構造、並びに焼結含油軸受の製造方法によれば、安価に製造することができ、かつ製品寿命も長くなる。
【図面の簡単な説明】
【図1】本発明の焼結含油軸受の設置状態を示す縦断面図である。
【図2】本発明の焼結含油軸受中の空孔内潤滑油の流れを示す概念図である。
【図3】本発明の焼結含油軸受の目詰めした面及び目詰めしていない面のそれぞれの断面の顕微鏡写真図である。
【図4】運転トルク試験の結果を示すグラフ図であり、分図(a)は、周速が75m/min.、分図(b)は、周速が113m/min.の条件で測定した場合である。
【図5】一般的な含油軸受の作動原理を説明する図6のSA−SA線断面相当の模式図である。
【図6】軸体がスリコギ回転をする状態を縦断面で示す概念図である。
【図7】軸体がスリコギ回転をする状態を横断面で示す概念図である。
【符号の説明】
1,12 焼結含油軸受(「軸受」又は「軸受本体」)
2,13 軸体
3,14 摺動受け面
4 潤滑油
11 ブラケット
15 スラスト軸受
16 ブラケットの底部
17 凹部
18 上側テーパー縁
19 下側テーパー縁
20 外径面
21 上面(隣接面)
22 下面(隣接面)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sintered oil-impregnated bearing, a hydraulic pressure retaining structure in the hole, and a method for manufacturing a sintered oil-impregnated bearing.
[0002]
[Prior art]
Utilizing the porosity of a sintered body obtained by sintering metal powder, a sintered oil-impregnated bearing (hereinafter, referred to as “self-lubricated”) that is impregnated with 10-30% oil (lubricant) by volume ratio. "Bearing" or "Bearing body" is an excellent feature that normal bearings can be burned immediately if they run out of oil, but can be operated without seizure even if they are already smoked. have.
[0003]
The reason why the sintered oil-impregnated bearing has such characteristics is based on the fact that the bearing has innumerable voids. The principle of operation of a general sintered oil-impregnated bearing will be described with reference to FIG. When the shaft body 2 rotates in the direction indicated by the arrow R in the bearing 1, the lubricating oil contained in the pores of the porous bearing 1 is sucked out in the same manner as the suction action of the pump. It oozes out at the interface with the sliding receiving surface 3. The lubricating oil 4 that has oozed out is drawn in the shape of a wedge in the direction indicated by the arrow R by the rotational force of the shaft body 2 to form an oil film and exerts a lubricating effect. Under pressure, it is pushed back into the hole of the bearing 1 again. By repeating such an operation continuously, the lubricating oil 4 circulates inside the bearing 1.
[0004]
The greatest advantage of the bearing 1 having such a circulating function of lubricating oil is that it can be used without lubrication. Not only automobiles and civil engineering machines, but also household equipment, office machines, etc. have sufficient lubrication in terms of environment or mechanism. It is widely used in places where it cannot be desired, and in recent years, it has been actively used as a motor bearing provided in a disk drive of OA equipment, acoustic equipment, etc. for end users and as a small fan motor bearing.
[0005]
[Problems to be solved by the invention]
By the way, the bearings having the above-mentioned excellent advantages are not necessarily universal, and there is still room for improvement. One of them is a problem that the amount of the lubricating oil drawn in is reduced due to the rotation of the shaft.
[0006]
When the sintered oil-impregnated bearing is used in an automobile, a civil engineering machine, etc., the shaft body 2 supported by the bearing 1 is normally used in a state where a load is applied in a certain direction (for example, the F direction shown in FIG. 5). The bearing 1 and the shaft body 2 are always pivotally supported in a state where they are closest to each other at a fixed point (for example, the point t1 shown in FIG. 5). However, when used as a bearing for a fan motor or a disk drive motor, the weight balance of a disk such as a music CD or DVD, a fan, etc. is unbalanced, and the shaft is directly connected to such an eccentric disk. When the body is rotated at a high speed by the drive motor, when viewed from the longitudinal section direction of the shaft body, the rotation of the shaft body 2 of the drive motor is relative to the ideal axis P1 of the shaft body 2 as shown in FIG. The shafts P2 and P3 are inclined so as to be inclined with respect to the inner diameter surface of the bearing 1 and rotated. Further, when viewed from the cross-sectional direction of the shaft body, as shown in FIG. 7, the shaft body 2 is moved so that the shaft center of the shaft body 2 moves from the shaft centers P11 to P12 and P13 along the inner periphery of the bearing 1. Rotating in the M direction, the bearing 1 and the shaft body 2 always move while being closest to each other at different points (for example, various points such as t11, t12, and t13 shown in FIG. 7). Such slewing rotation is a phenomenon generally seen in cantilever bearings. However, when this happens, the effect of drawing the lubricating oil 4 that has oozed out into the interface between the bearing 1 and the shaft body 2 in a wedge shape is reduced, and the amount of pull-in is reduced. On the other hand, since the ratio of the pushing amount of the lubricating oil 4 pushed into the bearing 1 is increased, an appropriate balance cannot be achieved and the lubricating oil pressure at the interface is lowered.
[0007]
To solve the above-described problem of lowering the lubricating oil pressure, it is conceivable that the viscosity of the lubricating oil 4 is increased to make it difficult to push the lubricating oil 4 into the bearing 1 (to make it difficult to return). However, in order to stabilize the reading accuracy of the optical pickup for a disk drive such as a CD, and to reduce the vibration noise of a fan motor, the clearance between the shaft body 2 and the sliding receiving surface 3 of the bearing 1 is reduced. On the contrary, it is desired to lower the viscosity of the lubricating oil 4.
[0008]
Accordingly, an object of the present invention is to provide a sintered oil-impregnated bearing capable of suppressing a decrease in lubricating oil pressure, an in-hole hydraulic pressure retaining structure, and a manufacturing method thereof.
[0009]
[Means for Solving the Problems]
  That is, the present invention has a cylindrical slide receiving surface that rotatably supports a shaft body, and surface layer voids that are exposed on a part or all of the outer surface of the bearing body excluding the slide receiving surface. The sintered oil-impregnated bearing that is packed is a secondary sintered body of a bearing body made of a primary sintered body and a metal powder that is pressure-bonded to the surface layer holes of the bearing body.TheIn the surface vacanciesPacked with a thickness of 0.005 to 0.015 mmA sintered oil-impregnated bearing is provided.
[0010]
According to this sintered oil-impregnated bearing, a part or all of the outer surface of the bearing body excluding the sliding receiving surface is formed as a clogging surface clogging the surface layer holes. Therefore, even if the lubricating oil in the pores of the sintered oil-impregnated bearing tries to escape from the surface other than the sliding bearing surface to the outside of the sintered oil-impregnated bearing, the surface layer pores that become the escape path are clogged, and the leakage to the outside Can be reduced. Therefore, it is possible to maintain high lubricating oil pressure on the sliding bearing surface, and it is possible to maintain smooth rotation of the shaft body over a long period of time.
[0011]
Since the lubricating oil pressure on the sliding bearing surface can be kept high as described above, an appropriate lubricating oil pressure on the sliding bearing surface can be exerted even when the shaft body rotates by sliding, and the sliding movement between the shaft body and the bearing is possible. There is no need to increase the clearance between the receiving surface and the viscosity of the lubricating oil.
[0012]
  In addition, according to this sintered oil-impregnated bearing, by adopting sintering as a fixing method, a predetermined bearing surface can be reliably clogged, and air holes opened on the bearing surface as a clogging surface can be formed. Since it is possible to clog, it is possible to provide a sintered oil-impregnated bearing that can maintain a high oil pressure on the sliding receiving surface and maintain a preferable lubrication state.
[0013]
  The present invention can be a sintered oil-impregnated bearing in which the metal powder is a bronze alloy powder, and the bearing body can be a sintered oil-impregnated bearing made of a mixed powder of bronze alloy and iron-copper alloy. it can.
[0014]
  The present invention also provides a sintered oil-impregnated bearing in which an adjacent surface continuous with the sliding receiving surface of the outer surface of the bearing body is formed as a clogging surface.
[0015]
  According to this sintered oil-impregnated bearing, the adjacent surface that is continuous with the sliding bearing surface of the sintered oil-impregnated bearing is formed as a clogging surface. Leakage of the lubricating oil in the hole can be reduced, and the hydraulic pressure at the sliding receiving surface can be kept high. And a preferable lubricating state can be maintained.
[0016]
  Furthermore, the present invention forms a tapered edge that expands in diameter on one and other surface ends of the sliding receiving surface, and at least one of the tapered edges is formed as a non-clogging surface that does not clog the surface layer holes. A sintered oil-impregnated bearing is provided.
[0017]
  According to this sintered oil-impregnated bearing, it is possible to prevent leakage of the lubricating oil in the air holes from the outer surface of the clogged bearing body and to keep the hydraulic pressure at the sliding receiving surface high, Since at least one of the holes in the surface layer is formed as a non-clogging surface that does not clog the surface, the lubricating oil that overflows from between the inner diameter surface of the sintered oil-impregnated bearing and the shaft body and the bearing from the taper edge to the bearing. It is possible to return to the shaft body. Therefore, a decrease in the amount of oil in the sintered oil-impregnated bearing can be prevented, and a preferable lubricating state of the sintered oil-impregnated bearing can be maintained over a long period of time.
[0018]
  As another means for achieving the above-described object, the present invention provides a hole in the bearing body formed with a cylindrical sliding receiving surface that rotatably supports the shaft body along the axial direction. It is oil-impregnated and attached via a bracket to a predetermined position in the device.In the present inventionThe oil retaining structure in the hole of the sintered oil-impregnated bearing, wherein the outer surface of the bearing body excluding the sliding receiving surface and the contact surface with the bracket is formed as a clogging surface clogging the surface layer hole, The sintered oil-impregnated bearing characterized in that the oil pressure in the hole of the sintered oil-impregnated bearing is maintained by using the clogging surface and the contact surface of the bracket with the sintered oil-impregnated bearing as a return surface of the oil impregnated in the hole. Provide a hydraulic holding structure in the hole.
[0019]
According to this hydraulic holding structure in the hole, the outer surface of the sintered oil-impregnated bearing other than the inner diameter surface serving as the sliding receiving surface is clogged or the contact surface with the unclogged bracket is also connected to the bearing body. Since the bracket is in airtight contact, the bracket surface can act as a return surface for oil impregnation in the holes and reduce leakage of oil impregnation in the holes from the bearing body. As in the case of clogging, the lubricating oil pressure on the sliding receiving surface can be kept high. Therefore, it is possible to maintain smooth rotation of the shaft body over a long period of time.
[0020]
  Further, the present invention comprises an oil impregnation treatment in a hole of a bearing body formed with a cylindrical sliding receiving surface that rotatably supports a shaft body along an axial direction, and is provided at a predetermined position in an apparatus. Can be attached to bracket via adhesiveIn the present inventionThe oil retaining structure in the hole of the sintered oil-impregnated bearing, wherein the outer surface of the bearing body excluding the sliding receiving surface and the adhesion surface with the bracket is formed as a clogging surface clogging the surface layer hole, Provided is an in-hole hydraulic pressure retaining structure for a sintered oil-impregnated bearing, wherein the pore-sealing surface and the adhesive material surface are used as a return surface for the oil-impregnated pore interior to retain the oil pressure in the hole.
[0021]
According to this hydraulic holding structure in the hole, the outer surface of the sintered oil-impregnated bearing other than the inner diameter surface serving as the sliding receiving surface is clogged, or the adhesive surface with the unfilled bracket is also sintered and impregnated. The surface of the adhesive used to bond the bearing to the bracket serves as a return surface for the oil content in the air holes, so that leakage of the oil content in the air holes from the bearing body can be suppressed, and sliding of the bearing body As in the case where the outer surface other than the receiving surface is clogged, the lubricating oil pressure on the sliding receiving surface can be maintained high, and the smooth rotation of the shaft body can be maintained over a long period of time.
[0024]
  As still another means for achieving the above object, the present invention provides a cylindrical slide receiving surface that rotatably supports the shaft body, and is provided on one outer surface of the bearing body excluding the slide receiving surface. Clogging surface vacancies in part or allTheRegarding the manufacturing method of sintered oil-impregnated bearings, a sintered compact bearing body is primarily sintered, and part or all of the outer surface of the bearing body excluding the sliding bearing surfaceIn the surface vacancies inCrimp metal powderEmbeddedAnd this metal powderEmbeddedSecondary sintering the bearing body, With a thickness of 0.005 to 0.015 mmCharacterized by cloggingCloggedA method for producing a sintered oil-impregnated bearing is provided.
[0025]
According to this method of manufacturing a sintered oil-impregnated bearing, a part or all of the outer surface of the bearing body excluding the sliding bearing surface can be formed as a clogging surface clogging the surface layer pores. The lubricating oil filled in the air holes of the bearing can be prevented from leaking to the outside of the sintered oil-impregnated bearing from the surface other than the inner diameter surface of the sintered oil-impregnated bearing that becomes the sliding bearing surface with the shaft body. Thus, it is possible to obtain a sintered oil-impregnated bearing capable of maintaining a high lubricating oil pressure.
[0026]
  And since metal is used as a packing material and the packing material is fixed by sintering, a predetermined bearing surface can be reliably plugged, and a hole opened in the bearing surface as a plugging surface can be formed. It is possible to clog, maintain a high hydraulic pressure on the sliding receiving surface, and maintain a preferable lubrication state. Further, the clogging material is hardly peeled off, and the clogged state can be maintained for a long time. Furthermore, it can be manufactured at low cost.
[0027]
  The pressure bonding of the metal powder can be performed by applying pressure to the metal powder and embedding it in the holes of the bearing body, the metal powder is bronze alloy powder, and the bearing body is made of a bronze alloy. And a method for producing a sintered oil-impregnated bearing made of a mixed powder of iron and copper alloy.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a sintered oil-impregnated bearing (hereinafter abbreviated as “bearing”) and an in-hole hydraulic pressure retaining structure of the present invention will be described with reference to the drawings. In the following embodiments, a bearing for a drive motor that rotationally drives a music CD in a CD player will be described as an example.
[0031]
FIG. 1 is a longitudinal sectional view showing a state in which a shaft body 13 of a drive motor that rotationally drives a music CD is supported by a bearing 12 attached to a bracket 11. The shaft body 13 is supported in the radial direction by the inner diameter surface of the cylindrical bearing 12 being a sliding receiving surface 14, and is supported in the axial direction by a resin thrust bearing 15. The resin thrust bearing 15 is attached to a recess 17 formed in the bottom 16 of the bracket 11.
[0032]
The bearing 12 has a cylindrical shape, and an inner diameter surface thereof is a sliding receiving surface 14 that receives rotational sliding of the shaft body 13. At the upper and lower surface ends of the sliding receiving surface 14, tapered edges 18 and 19 that expand outward are formed. The sliding bearing surface 14, the outer diameter surface 20 of the bearing 12, an upper surface 21 (adjacent surface) continuous to the upper surface end of the sliding bearing surface 14, and a lower surface 22 (continuous to the lower surface end of the sliding bearing surface 14 The “outer surface” of this bearing 12 is formed by the adjacent surface) and the tapered edges 18, 19. Of the “outer surface”, the outer surface 20, the upper surface 21 and the lower surface 22, and the tapered edge 19 except for the sliding receiving surface 14 and the tapered edge 18 are clogged with a packing material. It has a “clogging surface”.
[0033]
Next, the operation of the bearing 12 having the above schematic configuration will be described. When the shaft body 13 is rotated, a claw rotation as shown by a chain line in FIGS. 6 and 7 is performed. At this time, in the case of a conventional bearing, as shown in FIG. 2 (a), the upper surface, the lower surface, and the outer surface pores of the outer diameter surface of the bearing 1 are not clogged clogging surfaces. It will be pushed into the bearing. However, as described above, the surface layer holes of the outer diameter surface 20, the upper surface 21, the lower surface 22, and the lower taper edge 19 except for the sliding receiving surface 14 and the upper taper edge 18 are clogged with the packing material. In the bearing 12 of this embodiment having a “packing surface”, as shown in FIG. 2 (b), even if the lubricating oil is pushed in, the “in-hole lubricating oil” does not escape to the outside through the surface hole. Since it is in a state of being sealed with the “filling surface”, leakage of the lubricating oil in the pores to the outside is suppressed. Therefore, an appropriate lubricating oil pressure is applied to the sliding receiving surface 14 where the surface layer holes are not crushed. Therefore, in this bearing 12, the lubricating oil pressure of the sliding receiving surface 14 can be maintained high, and the smooth rotation of the shaft body 13 can be maintained over a long period of time.
[0034]
And since the lubricating oil pressure in the sliding bearing surface 14 can be maintained high in this way, even when the shaft body 13 rotates through a slit, the clearance between the shaft body 13 and the sliding bearing surface 14 of the bearing 12 can be increased. There is no need to increase the viscosity of the lubricating oil.
[0035]
1 shows an example in which the “outer surface” of the bearing 12 excluding the sliding receiving surface 14 and the tapered edge 18 is a “clogging surface”, but all of these surfaces must be clogging surfaces. is not. For example, if the lubricating oil in the hole does not leak from the outer diameter surface 20 of the bearing 12 because it is in airtight contact with the bracket 11, the outer diameter surface 20 can be not clogged. In such a case, the oil pressure of the lubricating oil contained in the air holes in the bearing 12 is maintained by installing the bearing 12 and the bracket 11 in an airtight manner. In addition, when the airtightness between the bearing 12 and the bracket 11 cannot be maintained, the bearing 12 is fixed to the bracket 11 with an adhesive so that the lubricating oil in the hole does not leak from the bearing 12. Is possible. However, it is preferable to provide as many clogging surfaces as possible from the viewpoint of improving the lubrication characteristics because the risk of leakage of the lubricating oil in the pores is reduced, and most preferably, the outer surface of the bearing body excluding the sliding receiving surface is preferred. The entire surface is a clogged clogged surface.
[0036]
Further, as shown in FIG. 2 (b), the upper tapered edge 18 removes lubricating oil overflowing from between the inner diameter surface of the bearing 12 and the shaft body 13, and the sliding receiving surface 14 of the bearing 12 and the shaft body 13. However, when it is necessary to further suppress the leakage of the lubricating oil in the pores to the outside, the upper tapered edge 18 may be clogged. Further, if there is a high demand for returning the lubricating oil overflowing from the bearing 12 to the sliding receiving surface 14, not only the upper taper edge 18 but also the lower taper edge 19 may not be clogged. However, when the bearing 12 pivotally supports the shaft body 13 so that the longitudinal direction of the shaft body 13 is oriented horizontally, both the one and the other tapered edges are often clogged or not clogged. When the bearing 12 pivotally supports the shaft body 13 so that the longitudinal direction of the shaft body 13 is directed vertically, the lower taper edge 19 is used to suppress leakage of the oil content in the holes below the bearing 12. It is preferable that the upper tapered edge 18 is not clogged in order to return the lubricating oil that has been packed and overflowed upward to the bearing 12 into the bearing 12. In the present embodiment, the taper edges 18 and 19 are provided at both surface ends of the sliding receiving surface 14 of the bearing 12, but there may be a case where the taper edges 18 and 19 are provided at only one of the surface ends. In this case, whether or not the tapered edge is clogged is determined by the relationship between the hydraulic pressure at the sliding receiving surface 14 and the necessity of returning the oil to the bearing 12.
[0037]
The raw material of the bearing 12 can be a raw material used for a general sintered oil-impregnated bearing. Examples of the powder metal include iron powder, copper powder, a mixture of iron powder and copper powder, and graphite powder. , Tin powder, zinc powder, lead powder, etc., or other alloys added, iron-based alloy powder, such as Fe-C, Fe-Pb-C, Fe-Cu-C alloy, etc. Alternatively, other alloys such as copper-based alloy powders such as Cu—Sn, Cu—Sn—C, Cu—Sn—Pb—C alloys, and the like can be used. Usually, it is preferable to use an alloy having both the advantages that the iron-based alloy has high mechanical strength, high hardness, and low cost, and the advantage that the copper-based alloy has excellent lubrication characteristics.
[0038]
The bearing 12 can be manufactured by using a general powder metallurgy method, and can be performed by adding a step of clogging the outer surface of the bearing 12 in the middle of the manufacturing process. For example, various metal powders as raw materials are mixed, filled in a mold, and then compressed by a press to a predetermined shape, which is held at a high temperature in a sintering furnace and sintered. Then, after adjusting the size and density of the sintered body by sizing, post-processing steps such as washing and oil impregnation are sequentially performed. Among these processes, the clogging process is performed at a stage after compacting and before cleaning.
[0039]
For example, a metal or a resin can be selected as the material used for the filling (a filling material), and the filling method can also be selected according to the material.
[0040]
When a metal is used for the filling material, there are a method of melting bronze, iron, copper or the like to coat the outer surface, or a method of filling using the metal for bearings pulverized into fine powder. The method of clogging with powder metal requires that the powder metal be buried in the holes of the bearing 12 and not fall off, and the metal powder is buried in the holes by applying mechanical pressure from the outside, There is also a method in which metal powder is attached to the outer surface of the bearing 12 and heated or melted or sintered. There is also a method in which metal powder is adhered to the outer surface of the bearing 12 with an adhesive. However, the method of utilizing the phenomenon that the alloy ground flows during the cutting process, or the method of clogging using the fact that the cavities are filled with the chips, has insufficient pores and the clogged holes are not clogged. In addition to remaining considerably, it is uneconomical and is not preferable as a clogging method.
[0041]
Various resins such as acrylic resins, polycarbonate resins, ester resins, ABS resins, polypropylene resins, amino resins, phenol resins, polyamide resins, epoxy resins, polyurethane resins, etc. Etc. can be used. When a thermoplastic resin such as an acrylic resin is used, it is possible to coat the outer surface of the bearing 12 with a resin layer by applying it to the outer surface using a coating solution in which the resin is dissolved in a solvent and drying it. Moreover, when using thermosetting resins, such as an epoxy resin, the method of hardening resin after apply | coating to the outer surface of the bearing 12 can be used.
[0042]
Whichever clogging method is employed, the outer surface of the bearing 12 may be clogged and the clogging material may be fixed to the outer surface of the bearing 12, and the thickness is not particularly limited. A thickness of about 0.015 mm is preferable from the viewpoints of durability and economy. In addition, the micrograph of the cross section of the bearing 12 clogged by the method of the present invention (the two photos on the left side of FIG. 3) is a micrograph of the cross section of the sintered oil-impregnated bearing that is not clogged (the two photos on the right side of FIG. This is shown in FIG. From the photograph of FIG. 3, it can be seen that the surface of the bearing 12 is clogged with a thickness of about 0.010 mm. In order to clearly show the clogged state in the photograph, a bearing is made using SBF type 1 (JIS B1581) made of pure iron, and copper powder is used for clogging.
[0043]
The degree of clogging is preferably 95% or more, preferably 99% or more, of the surface layer pores on the surface to be crushed. This is because if less than 95%, the clogging effect is also poor.
[0044]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to this Example.
[0045]
Example 1:(Compact molding → Sintering → Filling → Re-sintering → Secondary molding → Post-processing)
[0046]
  Bronze alloy powder (copper: tin = 9: 1 (weight)); 60 wt% and iron-copper alloy powder (iron: copper = 9: 1 (weight)); 40 wt% are mixed, compression molded, and cylindrical A green compact (inner diameter x outer shape x full length = 3 mm x 7 mm x 7 mm) was obtained. The green compact was subjected to primary sintering at 800 ° C. for 20 minutes in a hydrogen atmosphere sintering furnace. next, BlueThe copper alloy powder was pressure-bonded to the outer surface excluding the inner diameter surface of the green compact. This was subjected to secondary sintering (re-sintering) at 800 ° C. for 20 minutes in a hydrogen atmosphere sintering furnace. Thereafter, surface treatment such as deburring was performed, and washing and impregnation with oil (20 # synthetic oil) were performed to obtain Sample 1.
[0047]
  Example 2:(Compact molding → Filling → Sintering → Secondary molding → Post-processing)
[0048]
The green compact obtained in the same manner as in Example 1 was packed without sintering. The same material as used in Example 1 was used for filling. Thereafter, sintering was performed at 800 ° C. for 20 minutes in a hydrogen atmosphere sintering furnace. This was subjected to surface treatment such as deburring, washing, and impregnation with oil (20 # synthetic oil) to obtain Sample 2.
[0049]
  Example 3:(Compact molding → Sintering → Secondary molding → Filling → Post-processing)
[0050]
The green compact obtained in the same manner as in Example 1 was sintered in a hydrogen atmosphere sintering furnace at 800 ° C. for 20 minutes, and then subjected to surface treatment such as deburring. An acrylic resin varnish (resin content 15 wt%, balance toluene) was applied to the outer surface excluding the inner diameter surface of the sintered body and dried. This was washed and impregnated with oil (20 # synthetic oil) to obtain Sample 3.
[0051]
  Example 4:
[0052]
Sample 4 was obtained in the same manner as in Example 1 except that in the clogging step, the outer surface other than the inner diameter surface and the outer diameter surface of the green compact was clogged. For sample 4, an acrylic resin adhesive was applied to the outer diameter surface of sample 4 when mounted on the bracket.
[0053]
Comparative Example 1:
[0054]
Sample 5 was obtained in the same manner as in Example 1 except that the clogging step was omitted.
[0055]
Torque test:
[0056]
Sample 1 and Sample 5 obtained in Example 1 and Comparative Example 1 were each mounted on a hard resin bracket. A shaft body with a clearance of 2 μm was passed through each of the samples 1 and 5 attached to the bracket, and the operating torque of the shaft body was measured. The measurement of the operating torque assumes a fan motor bearing, and the peripheral speed applied to the shaft body is 75 m / min. (8000 rpm); assuming that the surface pressure applied to the bearing is 0.85 kg / cm and a bearing of a disk rotation motor of a CD-ROM drive device, the peripheral speed applied to the shaft body is 113 m / min. (12000 rpm): It was performed under two conditions when the surface pressure applied to the bearing was 0.85 kg / cm. The results are shown in FIGS. 4 (a) and 4 (b), respectively. Under any measurement condition, the sample 1 that has been clogged (“cuffed product” in FIG. 4) has a torque that is greater than that of the sample 5 that has not been clogged (“uncapped product” in FIG. 4). The value is low. As a result, it can be seen that the clogged bearings are superior in operational stability and have a longer product life than non-clogged bearings.
[0057]
【The invention's effect】
According to the sintered oil-impregnated bearing of the present invention, the hydraulic retaining structure in the hole, and the method for producing the sintered oil-impregnated bearing, the lubricating oil filled in the holes of the bearing body clogs the surface holes. This suppresses leakage from the outer surface other than the sliding bearing surface to the outside of the sintered oil-impregnated bearing, so that the lubricating oil pressure on the sliding bearing surface is kept high, and a preferable lubrication state can be maintained. In addition, the oil pressure retaining structure in the hole can be obtained.
[0058]
Moreover, according to the sintered oil-impregnated bearing of the present invention, the hydraulic pressure retaining structure in the hole, and the method for producing the sintered oil-impregnated bearing, it can be manufactured at a low cost and the product life is extended.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an installation state of a sintered oil-impregnated bearing of the present invention.
FIG. 2 is a conceptual diagram showing the flow of lubricating oil in holes in the sintered oil-impregnated bearing of the present invention.
FIG. 3 is a photomicrograph of a cross section of each of a clogged surface and an unclogged surface of a sintered oil-impregnated bearing of the present invention.
FIG. 4 is a graph showing the results of an operating torque test, and a partial diagram (a) shows a peripheral speed of 75 m / min. The partial diagram (b) shows that the peripheral speed is 113 m / min. It is a case where it measures on condition of this.
5 is a schematic diagram corresponding to the section taken along the line SA-SA in FIG. 6 for explaining the operating principle of a general oil-impregnated bearing.
FIG. 6 is a conceptual diagram showing, in a longitudinal section, a state in which a shaft rotates in a sawtooth manner.
FIG. 7 is a conceptual diagram showing a state in which a shaft rotates in a sawtooth manner in a cross section.
[Explanation of symbols]
1,12 Sintered oil-impregnated bearing ("Bearing" or "Bearing body")
2,13 shaft
3,14 Sliding bearing surface
4 Lubricating oil
11 Bracket
15 Thrust bearing
16 Bottom of bracket
17 recess
18 Upper taper edge
19 Lower taper edge
20 Outer surface
21 Upper surface (adjacent surface)
22 Lower surface (adjacent surface)

Claims (11)

軸体を回転可能に軸支する円筒状の摺動受け面が形成され、該摺動受け面を除く軸受本体の外表面の一部又は全部について表層空孔を目詰めし焼結含油軸受の製造方法において、
圧粉成形した軸受本体を1次焼結し、該軸受本体の摺動受け面を除く一部又は全部の外表面における表層空孔に金属粉末を圧着して埋め込み、そしてこの金属粉末を埋め込んだ軸受本体を2次焼結して、0.005〜0.015mmの厚みで目詰めすることを特徴とする目詰めした焼結含油軸受の製造方法。
Cylindrical sliding receiving surface for rotatably journaling the shaft body is formed, an oil impregnated sintered bearing in which plugged the surface pores for some or all of the outer surface of the bearing body with the exception of sliding bearing surface In the manufacturing method of
The sintered compacted bearing body is primarily sintered, and metal powder is pressure-bonded and embedded in the surface layer voids on the outer surface of a part or all of the bearing body except for the sliding receiving surface, and this metal powder is embedded. A method of manufacturing a packed sintered oil-impregnated bearing, wherein the bearing body is secondarily sintered and packed in a thickness of 0.005 to 0.015 mm .
前記表層空孔の95%以上を目詰めする請求項1記載の目詰めした焼結含油軸受の製造方法。The method for producing a packed sintered oil-impregnated bearing according to claim 1, wherein 95% or more of the surface layer holes are packed. 前記金属粉末が青銅合金粉である請求項1または請求項2記載の目詰めした焼結含油軸受の製造方法。The method for producing a packed sintered oil-impregnated bearing according to claim 1 or 2, wherein the metal powder is bronze alloy powder. 軸受本体が、青銅合金と鉄銅合金の混合粉よりなる請求項1〜請求項3何れか1項記載の目詰めした焼結含油軸受の製造方法。The method for producing a packed oil-impregnated bearing according to any one of claims 1 to 3, wherein the bearing body is made of a mixed powder of a bronze alloy and an iron-copper alloy. 軸体を回転可能に軸支する円筒状の摺動受け面を有し、該摺動受け面を除く軸受本体の一部又は全部の外表面に表出する表層空孔を金属粉末で目詰めしてある焼結含油軸受において、
1次焼結体でなる軸受本体と該軸受本体の前記表層空孔に圧着する金属粉末との2次焼結体でなり、0.005〜0.015mmの厚みで前記表層空孔を目詰めしていることを特徴とする焼結含油軸受。
It has a cylindrical sliding bearing surface that rotatably supports the shaft body, and the surface layer holes that appear on the outer surface of part or all of the bearing body excluding the sliding bearing surface are packed with metal powder. In a sintered oil impregnated bearing,
Becomes a secondary sintered body of metal powder pressed to the surface pores of the bearing body and the bearing body made by the primary sintered body, 0. A sintered oil-impregnated bearing characterized by clogging the surface layer pores with a thickness of 005 to 0.015 mm.
前記金属粉末が青銅合金粉である請求項5記載の焼結含油軸受。  The sintered oil-impregnated bearing according to claim 5, wherein the metal powder is a bronze alloy powder. 軸受本体が、青銅合金と鉄銅合金の混合粉よりなる請求項5または請求項6記載の焼結含油軸受。  The sintered oil-impregnated bearing according to claim 5 or 6, wherein the bearing body is made of a mixed powder of bronze alloy and iron-copper alloy. 軸受本体の外表面のうち摺動受け面と連続する隣接面を目詰めしてある請求項5〜請求項7何れか1項記載の焼結含油軸受。  The sintered oil-impregnated bearing according to any one of claims 5 to 7, wherein an adjacent surface continuous with the sliding receiving surface is clogged among outer surfaces of the bearing body. 摺動受け面の一方及び他方の面端に拡径するテーパー縁を形成し、該テーパー縁の少なくとも一方については、表層空孔を目詰めしない非目詰め面としてある請求項5〜請求項8何れか1項記載の焼結含油軸受。  A taper edge that expands in diameter is formed on one and other surface ends of the sliding receiving surface, and at least one of the taper edges is a non-clogging surface that does not clog surface layer holes. The sintered oil-impregnated bearing according to any one of claims. 軸体を軸方向に沿って回転可能に軸支する円筒状の摺動受け面が形成された軸受本体の空孔に含油処理を施して成り、器機内の所定位置にブラケットを介して取付けられる請求項5〜請求項9何れか1項記載の焼結含油軸受の空孔内油圧保持構造であって、
前記摺動受け面及びブラケットに対する接触面とを除く軸受本体の外表面が表層空孔を目潰しした目詰め面として形成されており、該目詰め面と前記ブラケットの焼結含油軸受との接触面とを空孔内含油の返し面として焼結含油軸受の空孔内油圧を保持するようにしたことを特徴とする焼結含油軸受の空孔内油圧保持構造。
The bearing body hole is formed with a cylindrical slide receiving surface that rotatably supports the shaft body along the axial direction, and is subjected to oil impregnation treatment, and is attached to a predetermined position in the machine via a bracket. A structure for retaining hydraulic pressure in pores of a sintered oil-impregnated bearing according to any one of claims 5 to 9,
The outer surface of the bearing body excluding the sliding receiving surface and the contact surface with respect to the bracket is formed as a clogging surface clogging the surface layer holes, and the contact surface between the clogging surface and the sintered oil-impregnated bearing of the bracket Is used to hold the oil pressure in the hole of the sintered oil-impregnated bearing, and the oil pressure return surface of the oil-impregnated hole in the hole.
軸体を軸方向に沿って回転可能に軸支する円筒状の摺動受け面が形成された軸受本体の空孔に含油処理を施して成り、機器内の所定位置に接着材を介してブラケットに取付けられる請求項5〜請求項9何れか1項記載の焼結含油軸受の空孔内油圧保持構造であって、
前記摺動受け面及びブラケットとの接着面とを除く軸受本体の外表面が表層空孔を目潰しした目詰め面として形成されており、該目詰め面と前記接着材表面とを空孔内含油の返し面として空孔内油圧を保持するようにしたことを特徴とする焼結含油軸受の空孔内油圧保持構造。
An oil-impregnated treatment is applied to the holes in the bearing body formed with a cylindrical sliding bearing surface that rotatably supports the shaft body along the axial direction. The oil retaining structure for pores in a sintered oil-impregnated bearing according to any one of claims 5 to 9, which is attached to
The outer surface of the bearing body excluding the sliding receiving surface and the adhesive surface with the bracket is formed as a clogging surface clogging the surface layer voids, and the clogging surface and the adhesive material surface are included in the voids. A structure for holding oil pressure in a hole of a sintered oil-impregnated bearing, wherein the oil pressure in a hole is held as an oil return surface.
JP2001356157A 2001-11-21 2001-11-21 Sintered oil-impregnated bearing, its hydraulic holding structure in the hole, and method for manufacturing sintered oil-impregnated bearing Expired - Lifetime JP3879906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001356157A JP3879906B2 (en) 2001-11-21 2001-11-21 Sintered oil-impregnated bearing, its hydraulic holding structure in the hole, and method for manufacturing sintered oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001356157A JP3879906B2 (en) 2001-11-21 2001-11-21 Sintered oil-impregnated bearing, its hydraulic holding structure in the hole, and method for manufacturing sintered oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JP2003156044A JP2003156044A (en) 2003-05-30
JP3879906B2 true JP3879906B2 (en) 2007-02-14

Family

ID=19167732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001356157A Expired - Lifetime JP3879906B2 (en) 2001-11-21 2001-11-21 Sintered oil-impregnated bearing, its hydraulic holding structure in the hole, and method for manufacturing sintered oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP3879906B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283810A (en) 2007-05-11 2008-11-20 Minebea Motor Manufacturing Corp Stepping motor for generating oscillation
JP5551478B2 (en) * 2010-03-15 2014-07-16 奇▲こう▼科技股▲ふん▼有限公司 Method for manufacturing fan frame structure in which powder metallurgy bearing containing lubricating oil is integrally molded with bag
JP5881975B2 (en) * 2011-05-16 2016-03-09 Ntn株式会社 Manufacturing method of sintered bearing

Also Published As

Publication number Publication date
JP2003156044A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
JP5384014B2 (en) Sintered bearing
JP5085035B2 (en) Sintered metal material, sintered oil-impregnated bearing, fluid bearing device, and motor
JP5318619B2 (en) Sintered metal bearing
CN110043564B (en) Method for manufacturing sintered bearing, and vibration motor
JP5619550B2 (en) Sintered bearing, fluid dynamic pressure bearing device including the same, and method for manufacturing sintered bearing
WO2006073090A1 (en) Sintered metallic material, oil-retaining bearing constituted of the metallic material, and fluid bearing apparatus
JP4995534B2 (en) Refrigerant compressor
CN1961162A (en) Grease for sliding bearing
JP3879906B2 (en) Sintered oil-impregnated bearing, its hydraulic holding structure in the hole, and method for manufacturing sintered oil-impregnated bearing
JP3774614B2 (en) Sintered oil-impregnated bearing material using copper-coated iron powder and manufacturing method thereof
US20050259898A1 (en) Production method for sintered bearing member, fluid dynamic pressure bearing device, and spindle motor
WO2010026941A1 (en) Sintered bearing and process for producing same
JP5558041B2 (en) Fe-based sintered metal bearing and manufacturing method thereof
JP5214555B2 (en) Sintered oil-impregnated bearing
JP6026123B2 (en) Sintered metal bearing
CN109890539B (en) Sintered bearing and method for manufacturing same
CN109642611B (en) Sliding bearing
US6623542B2 (en) Slide member
JP7184583B2 (en) Intermediate manufacturer of hydrodynamic bearing devices, motors and bearings
JP2017078183A (en) Sintered shaft bearing
JP2003130053A (en) Method of manufacturing fluid bearing
JP2808374B2 (en) Oil-impregnated bearing
WO2018186221A1 (en) Porous dynamic pressure bearing, fluid dynamic pressure bearing device, and motor
WO2010134458A1 (en) Sintered metal bearing, shaft member for a plain bearing unit, and plain bearing unit provided with said shaft member
JP5107108B2 (en) Sliding bearing and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061101

R150 Certificate of patent or registration of utility model

Ref document number: 3879906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term