JP2006258207A - Fixed type constant velocity universal joint - Google Patents

Fixed type constant velocity universal joint Download PDF

Info

Publication number
JP2006258207A
JP2006258207A JP2005077370A JP2005077370A JP2006258207A JP 2006258207 A JP2006258207 A JP 2006258207A JP 2005077370 A JP2005077370 A JP 2005077370A JP 2005077370 A JP2005077370 A JP 2005077370A JP 2006258207 A JP2006258207 A JP 2006258207A
Authority
JP
Japan
Prior art keywords
ball
constant velocity
ball groove
inner ring
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005077370A
Other languages
Japanese (ja)
Inventor
Kisao Yamazaki
起佐雄 山崎
Masazumi Kobayashi
正純 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005077370A priority Critical patent/JP2006258207A/en
Publication of JP2006258207A publication Critical patent/JP2006258207A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce heat quantity during rotation of a constant velocity universal joint without following cost increase due to coating treatment or improvement of grease. <P>SOLUTION: In this fixed type constant velocity universal joint, either or both of a pocket gap or a spherical surface gap between an inner ring and a cage are set in the optimum size among inner design specifications. For the pocket gap, an axial gap between a pocket 46 and a ball 30 is set in a range of 0 to +0.030 mm. For the spherical gap between the inner ring and the cage, a gap ratio of the spherical gap between the inner ring 20 and the cage 40 is set in a range of 0.60 to 2.60. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は固定式等速自在継手に関する。等速自在継手は自動車や各種産業機械の動力伝達系において、駆動側の回転軸と従動側の回転軸を連結して等角速度でトルクを伝達するもので、固定式と摺動式があって、摺動式が角度変位と軸方向変位を許容するのに対して固定式は角度変位のみを許容するタイプである。   The present invention relates to a fixed type constant velocity universal joint. A constant velocity universal joint is a power transmission system for automobiles and various industrial machines that transmits torque at a constant angular speed by connecting the rotating shaft on the drive side and the rotating shaft on the driven side. The slidable type allows angular displacement and axial displacement, whereas the fixed type allows only angular displacement.

固定式等速自在継手は角度のみ付与できる構造となっており、その角度には、自動車のドライブシャフト用の場合、車両取り付け時のタイヤとディファレンシャルギヤのレイアウトにより決定される常用角度と、ハンドルの操舵に伴って変化する操舵角とがある。近年、車両レイアウトの多様化により、高常用角度での使用に耐え得る等速自在継手が必要とされている。   The fixed type constant velocity universal joint has a structure that can give only an angle. In the case of a drive shaft for an automobile, the angle includes a normal angle determined by the layout of the tire and the differential gear when the vehicle is mounted, and the handle There is a steering angle that changes with steering. In recent years, with the diversification of vehicle layout, a constant velocity universal joint that can withstand use at a high common angle is required.

しかしながら、常用角度が大きくなると、それに伴って等速自在継手自体の温度上昇も大きくなる。また、プロペラシャフト用に使用される等速自在継手は、ドライブシャフト用に比べて非常に高回転域で使用されるため、発熱による温度上昇が厳しい。等速自在継手の温度上昇は、グリースの劣化や、熱処理状況の変化(表面硬度の低下等)による等速自在継手の寿命の低下、内部空気の膨張によるブーツの変形および破損を引き起こす。   However, as the service angle increases, the temperature rise of the constant velocity universal joint itself increases accordingly. In addition, the constant velocity universal joint used for the propeller shaft is used in a very high rotation range as compared with the drive shaft, so that the temperature rise due to heat generation is severe. The temperature increase of the constant velocity universal joint causes deterioration of the grease, a decrease in the life of the constant velocity universal joint due to a change in heat treatment status (decrease in surface hardness, etc.), and deformation and breakage of the boot due to expansion of internal air.

ボールタイプの等速自在継手の温度上昇は、ボールと外輪のボール溝および内輪のボール溝との接触、ボールとケージとの接触、ケージと外輪および内輪との球面接触で生じる摩擦力による発熱に起因する。従来、この温度上昇を抑制する方法としては、ケージまたは外輪、内輪に対摩擦性能にすぐれた物質をコーティングすることにより摩擦力を小さくするか(特許文献1、特許文献2)、より低摩擦のグリースを使用するのが一般的であり、内部の寸法精度を最適化することにより摩擦を抑制して発熱を低減させる方法については特許文献3で接触角について規定している程度であった。
特開2000−46061号公報 特開2000−145804号公報 特開平8−128454号公報
The temperature rise of the ball type constant velocity universal joint is caused by the heat generated by the friction force generated by the contact between the ball and the ball groove of the outer ring and the ball groove of the inner ring, the contact between the ball and the cage, and the spherical contact between the cage and the outer ring and the inner ring. to cause. Conventionally, as a method of suppressing this temperature rise, the frictional force is reduced by coating the cage, the outer ring, or the inner ring with a material having excellent friction performance (Patent Document 1, Patent Document 2), or a lower friction. In general, grease is used, and a method for reducing heat generation by suppressing friction by optimizing the internal dimensional accuracy is as specified in Patent Document 3 for the contact angle.
JP 2000-46061 A JP 2000-145804 A JP-A-8-128454

等速自在継手が角度を取って回転するときに発熱を生じ、この発熱により、等速自在継手の寿命低下および温度上昇による内部の空気の膨張により、ブーツの変形が生じ、最悪の場合にはブーツの破損に至ることがある。この発熱を抑制するために採られた上記従来の対策は、コーティング処理は処理時間とコスト面で不利であり、すべての等速自在継手で安価に利用できるものではなかった。また、同様の理由により、高価な低摩擦グリースへの切り替えもコスト面で不利である。   When the constant velocity universal joint rotates at an angle, heat is generated, and this heat generation causes deformation of the boot due to the decrease in the life of the constant velocity universal joint and the expansion of the internal air due to the temperature rise. The boot may be damaged. The conventional measures taken to suppress this heat generation are disadvantageous in terms of processing time and cost, and cannot be used inexpensively in all constant velocity universal joints. For the same reason, switching to an expensive low friction grease is disadvantageous in terms of cost.

本発明の主要な目的は、コーティング処理やグリースの改善のようにコスト増加を伴うことなしに、等速自在継手の回転中の発熱量を低減させることにある。   The main object of the present invention is to reduce the amount of heat generated during the rotation of the constant velocity universal joint without increasing the cost as in the case of coating treatment or improvement of grease.

本発明は、固定式等速自在継手の内部設計諸元の中で、ポケットすきま若しくは内輪/ケージ間球面すきま又は両方を最適な寸法に設定することによって課題を解決したものである。   The present invention solves the problem by setting the pocket clearance or the inner ring / cage spherical clearance or both to the optimum dimensions in the internal design specifications of the fixed type constant velocity universal joint.

すなわち、請求項1の固定式等速自在継手は、軸方向に延びる複数のボール溝を内球面に円周方向等間隔に形成し第一の回転軸とトルク伝達可能に結合する外輪と、軸方向に延びる複数のボール溝を外球面に円周方向等間隔に形成し第二の回転軸とトルク伝達可能に結合する内輪と、外輪のボール溝と内輪のボール溝との間に介在してトルクを伝達する複数のボールと、ボールを収容するためのポケットを円周方向に配設したケージとを具備し、
外側継手部材のボール溝の中心が内球面の球面中心に対して、内側継手部材のボール溝の中心が外球面の球面中心に対して、それぞれ、軸方向に等距離だけ反対側にオフセットさせてあり、
ポケットとボールとの間の軸方向すきまを0以上+0.030mm以下の範囲としたことを特徴とするものである。
In other words, the fixed type constant velocity universal joint according to claim 1 includes a plurality of ball grooves extending in the axial direction formed on the inner spherical surface at equal intervals in the circumferential direction, and an outer ring coupled to the first rotating shaft so as to be able to transmit torque, A plurality of ball grooves extending in the direction are formed on the outer spherical surface at equal intervals in the circumferential direction, and are interposed between the inner ring coupled to the second rotary shaft so as to be able to transmit torque, and between the ball groove of the outer ring and the ball groove of the inner ring. A plurality of balls for transmitting torque, and a cage in which pockets for accommodating the balls are arranged in the circumferential direction;
The center of the ball groove of the outer joint member is offset from the spherical center of the inner spherical surface, and the center of the ball groove of the inner joint member is offset to the opposite side by an equal distance in the axial direction, respectively. Yes,
The axial clearance between the pocket and the ball is in the range of 0 to +0.030 mm.

上記軸方向すきまはポケットの軸方向寸法とボールの直径との差で、ポケットすきまと呼ばれることもある。なお、締めしろを与える場合は−(負)の値となることから、軸方向すきまが下限値すなわち0のときは、締めしろがなく、すきまもない状態を意味する。   The axial clearance is sometimes called a pocket clearance due to the difference between the axial dimension of the pocket and the diameter of the ball. In addition, since a negative (-) value is given when the interference is given, when the axial clearance is the lower limit value, that is, 0, it means that there is no interference and no clearance.

請求項2の固定式等速自在継手は、軸方向に延びる複数のボール溝を内球面に円周方向等間隔に形成し第一の回転軸とトルク伝達可能に結合する外輪と、軸方向に延びる複数のボール溝を外球面に円周方向等間隔に形成し第二の回転軸とトルク伝達可能に結合する内輪と、外輪のボール溝と内輪のボール溝との間に介在してトルクを伝達する複数のボールと、ボールを収容するためのポケットを円周方向に配設したケージとを具備し、
外側継手部材のボール溝の中心が内球面の球面中心に対して、内側継手部材のボール溝の中心が外球面の球面中心に対して、それぞれ、軸方向に等距離だけ反対側にオフセットさせてあり、
内輪とケージとの間の球面すきまのすきま比を0.60以上2.60以下の範囲としたことを特徴とするものである。
The fixed type constant velocity universal joint according to claim 2 includes an outer ring that is formed with a plurality of ball grooves extending in the axial direction on the inner spherical surface at equal intervals in the circumferential direction and coupled to the first rotating shaft so as to be able to transmit torque, and in the axial direction. A plurality of extending ball grooves are formed on the outer spherical surface at equal intervals in the circumferential direction, and are interposed between an inner ring that is coupled to the second rotating shaft so as to be able to transmit torque, and a torque is interposed between the ball groove of the outer ring and the ball groove of the inner ring. A plurality of balls to be transmitted and a cage in which pockets for accommodating the balls are arranged in the circumferential direction;
The center of the ball groove of the outer joint member is offset from the spherical center of the inner spherical surface, and the center of the ball groove of the inner joint member is offset to the opposite side by an equal distance in the axial direction, respectively. Yes,
The clearance ratio of the spherical clearance between the inner ring and the cage is in the range of 0.60 to 2.60.

すきま比とは、内輪とケージとの間の球面すきま(直径値)を内輪の外球面基準径で割ったものに1000を掛けたものである。すなわち、
すきま比=(DKI−DI)/D×1000
ここに、
KI:ケージの内球面の直径
I:内輪の外球面の直径
D:内輪の外球面基準径
The clearance ratio is obtained by multiplying the spherical clearance (diameter value) between the inner ring and the cage divided by the outer spherical reference diameter of the inner ring by 1000. That is,
Clearance ratio = (D KI −D I ) / D × 1000
here,
D KI : Diameter of inner spherical surface of cage D I : Diameter of outer spherical surface of inner ring D: Reference diameter of outer spherical surface of inner ring

請求項3の固定式等速自在継手は、軸方向に延びる複数のボール溝を内球面に円周方向等間隔に形成し第一の回転軸とトルク伝達可能に結合する外輪と、軸方向に延びる複数のボール溝を外球面に円周方向等間隔に形成し第二の回転軸とトルク伝達可能に結合する内輪と、外輪のボール溝と内輪のボール溝との間に介在してトルクを伝達する複数のボールと、ボールを収容するためのポケットを円周方向に配設したケージとを具備し、
外側継手部材のボール溝の中心が内球面の球面中心に対して、内側継手部材のボール溝の中心が外球面の球面中心に対して、それぞれ、軸方向に等距離だけ反対側にオフセットさせてあり、
前記ポケットとボールとの間の軸方向すきまを0以上+0.030mm以下の範囲とし、かつ、内輪とケージとの間の球面すきまのすきま比を0.60以上2.60以下の範囲としたことを特徴とするものである。
According to a third aspect of the present invention, there is provided a fixed type constant velocity universal joint, wherein a plurality of ball grooves extending in the axial direction are formed on the inner spherical surface at equal intervals in the circumferential direction, and are coupled to the first rotating shaft so as to be able to transmit torque, A plurality of extending ball grooves are formed on the outer spherical surface at equal intervals in the circumferential direction, and are interposed between an inner ring that is coupled to the second rotating shaft so as to be able to transmit torque, and a torque is interposed between the ball groove of the outer ring and the ball groove of the inner ring. A plurality of balls to be transmitted and a cage in which pockets for accommodating the balls are arranged in the circumferential direction;
The center of the ball groove of the outer joint member is offset from the spherical center of the inner spherical surface, and the center of the ball groove of the inner joint member is offset to the opposite side by an equal distance in the axial direction, respectively. Yes,
The axial clearance between the pocket and the ball is in the range of 0 to +0.030 mm, and the clearance ratio of the spherical clearance between the inner ring and the cage is in the range of 0.60 to 2.60. It is characterized by.

請求項4の発明は、請求項1ないし3のいずれかの固定式等速自在継手において、外輪のボール溝および内輪のボール溝が一部にストレート部を有することを特徴とするものである。本発明は、外輪のボール溝の中心を内球面の球面中心に対して、内輪のボール溝の中心を外球面の球面中心に対して、それぞれ、軸方向に等距離だけ反対側にオフセットさせた固定式等速自在継手(BJ)と、外輪のボール溝の中心を内球面の球面中心に対して、内輪のボール溝の中心を外球面の球面中心に対して、それぞれ、軸方向に等距離だけ反対側にオフセットさせ、かつ、外輪および内輪のボール溝に直線状の溝底を有するストレート部を設けた固定式等速自在継手(UJ)の両方に適用可能である。   According to a fourth aspect of the present invention, in the fixed type constant velocity universal joint according to any one of the first to third aspects, the ball groove of the outer ring and the ball groove of the inner ring partially have a straight portion. In the present invention, the center of the ball groove of the outer ring is offset from the spherical center of the inner spherical surface, and the center of the ball groove of the inner ring is offset from the spherical center of the outer spherical surface by the same distance in the axial direction. Fixed constant velocity universal joint (BJ) and outer ring ball groove center at the inner spherical surface center and inner ring ball groove center from the outer spherical surface center at equal distances in the axial direction. This is applicable to both fixed type constant velocity universal joints (UJ) that are offset to the opposite side and provided with straight portions having straight groove bottoms in the ball grooves of the outer ring and the inner ring.

請求項5の発明は、請求項1ないし4のいずれかの固定式等速自在継手において、プロペラシャフト用であることを特徴とするものである。   A fifth aspect of the present invention is the fixed type constant velocity universal joint according to any one of the first to fourth aspects, wherein the fixed type constant velocity universal joint is used for a propeller shaft.

請求項6の発明は、請求項1ないし5のいずれかの固定式等速自在継手において、8個のボールを用いることを特徴とするものである。トルク伝達要素としてボールを用いるこの種の固定式等速自在継手は6個のボールを用いるのが一般的であるが、8個のボールを用いることにより、継手の全負荷容量に占めるボール1個当たりの負荷割合が少なくなるため、同じ予備番号の6個ボール継手に比べてボールの直径およびピッチ円径を小さくすることができ、その結果、外輪外径も小さくすることができる。   The invention of claim 6 is characterized in that in the fixed type constant velocity universal joint according to any one of claims 1 to 5, eight balls are used. This type of fixed type constant velocity universal joint using a ball as a torque transmitting element generally uses six balls, but one ball occupies the total load capacity of the joint by using eight balls. Since the hit load ratio is reduced, the ball diameter and the pitch circle diameter can be reduced as compared with the six ball joints having the same spare number. As a result, the outer ring outer diameter can also be reduced.

本発明によれば、コーティング処理やグリースの改善のようにコスト増加を伴うことなしに、等速自在継手の回転中の発熱量を低減させることができる。すなわち、等速自在継手の内部設計において、ポケットすきまを0以上+0.030mm以下の範囲に設定し(請求項1)、もしくは、内輪/ケージ間球面すきま比を0.60以上2.60以下の範囲に設定し(請求項2)、または、ポケットすきまを0以上+0.030mm以下の範囲に設定するとともに内輪/ケージ間球面すきま比を0.60以上2.60以下の範囲に設定することにより(請求項3)、回転中の等速自在継手の発熱量を低減させることができる。   According to the present invention, the amount of heat generated during the rotation of the constant velocity universal joint can be reduced without increasing the cost as in the case of coating treatment or improvement of grease. That is, in the internal design of the constant velocity universal joint, the pocket clearance is set in a range of 0 to +0.030 mm (Claim 1), or the inner ring / cage spherical clearance ratio is set to 0.60 or more and 2.60 or less. (Claim 2) or by setting the pocket clearance to a range of 0 to +0.030 mm and the inner ring / cage spherical clearance ratio to a range of 0.60 to 2.60. (Claim 3) The calorific value of the rotating constant velocity universal joint can be reduced.

以下、図面に従って本発明の実施の形態を説明する。図1および図3に固定式等速自在継手の代表例としてツェッパ型等速自在継手(BJ)を示し、図5にアンダーカットフリーの固定式等速自在継手(UJ)を示す。BJタイプとUJタイプとでは横断面は共通するため、図2に一つの横断面図として示す。なお、図面ではすきまが誇張して示してある。   Embodiments of the present invention will be described below with reference to the drawings. 1 and 3 show a Rzeppa constant velocity universal joint (BJ) as a typical example of a fixed type constant velocity universal joint, and FIG. 5 shows an undercut-free fixed type constant velocity universal joint (UJ). Since the cross section is common between the BJ type and the UJ type, FIG. 2 shows one cross section. In the drawings, the gap is exaggerated.

まず、図1ないし図3に示すBJタイプの実施の形態について説明する。図示するように、固定式等速自在継手は、外輪10と内輪20とボール30とケージ40を主要な構成要素としている。   First, a BJ type embodiment shown in FIGS. 1 to 3 will be described. As shown in the figure, the fixed type constant velocity universal joint includes an outer ring 10, an inner ring 20, a ball 30 and a cage 40 as main components.

外側継手部材としての外輪10はカップ状で、閉じた端部側に、連結すべき二軸のうちの一方と接続するための軸部16を形成している。外輪10は球状の内周面すなわち内球面12を有し、その内球面12に、軸方向に延びる8本の曲線状のボール溝14が円周方向で等間隔に形成してある。   The outer ring 10 as an outer joint member is cup-shaped, and a shaft portion 16 for connecting to one of the two shafts to be coupled is formed on the closed end side. The outer ring 10 has a spherical inner peripheral surface, that is, an inner spherical surface 12, and eight curved ball grooves 14 extending in the axial direction are formed on the inner spherical surface 12 at equal intervals in the circumferential direction.

内側継手部材としての内輪20は、連結すべき二軸のうちの他方、ここでは軸5と接続するための歯型(セレーションまたはスプライン)28を有する。内輪20は球状の外周面すなわち外球面22を有し、その外球面22に、軸方向に延びる8本の曲線状のボール溝24が円周方向で等間隔に形成してある。   The inner ring 20 as an inner joint member has a tooth type (serration or spline) 28 for connecting to the other of the two shafts to be coupled, here the shaft 5. The inner ring 20 has a spherical outer peripheral surface, that is, an outer spherical surface 22, and eight curved ball grooves 24 extending in the axial direction are formed at equal intervals in the circumferential direction on the outer spherical surface 22.

外輪10のボール溝14と内輪20のボール溝24は対をなし、各対のボール溝14,24によって形成されるトラックに1個ずつ、トルク伝達要素としてのボール30が組み込んである。合計8個のボール30は、ケージ40によって軸方向に保持される。ケージ40は同心の外・内球面42,44を有し、外球面42は外輪10の内球面12と球面接触し、内球面44は内輪20の外球面22と球面接触する。   The ball groove 14 of the outer ring 10 and the ball groove 24 of the inner ring 20 make a pair, and one ball 30 as a torque transmitting element is incorporated in each track formed by the pair of ball grooves 14, 24. A total of eight balls 30 are held in the axial direction by the cage 40. The cage 40 has concentric outer and inner spherical surfaces 42, 44. The outer spherical surface 42 is in spherical contact with the inner spherical surface 12 of the outer ring 10, and the inner spherical surface 44 is in spherical contact with the outer spherical surface 22 of the inner ring 20.

この実施の形態において、ボール溝14,24の中心P,Qは、それぞれ、継手中心Oに対し、軸方向の左右に等距離(PO=QO=F)だけオフセットさせてある。すなわち、外輪10のボール溝14の中心(外輪トラックセンタ)Pは内球面12の球面中心Oに対し、距離POだけ、外輪10の開口側にオフセットさせてある。内輪20のボール溝24の中心(内輪トラックセンタ)Qは外球面22の球面中心Oに対し、距離QOだけ、外輪10の奥側にオフセットさせてある。   In this embodiment, the centers P and Q of the ball grooves 14 and 24 are offset from the joint center O by an equal distance (PO = QO = F) to the left and right in the axial direction. That is, the center (outer ring track center) P of the ball groove 14 of the outer ring 10 is offset from the spherical center O of the inner spherical surface 12 by the distance PO toward the opening side of the outer ring 10. The center (inner ring track center) Q of the ball groove 24 of the inner ring 20 is offset from the spherical center O of the outer spherical surface 22 by a distance QO to the back side of the outer ring 10.

ケージ40の外球面42の球面中心、および、ケージ40の外球面42の案内面となる外輪10の内球面12の球面中心は、いずれも、継手中心Oと一致している。また、ケージ40の内球面44の球面中心、および、ケージ40の内球面44の案内面となる内輪20の外球面22の球面中心は、いずれも、継手中心Oと一致している。したがって、外輪10のオフセット量(PO=F)は、ボール溝14の中心Pと継手中心Oとの間の軸方向距離となり、内輪20のオフセット量(QO=F)は、ボール溝24の中心Qと継手中心Oとの間の軸方向距離となり、両者は相等しい。   The spherical center of the outer spherical surface 42 of the cage 40 and the spherical center of the inner spherical surface 12 of the outer ring 10 that serves as a guide surface for the outer spherical surface 42 of the cage 40 are all coincident with the joint center O. The spherical center of the inner spherical surface 44 of the cage 40 and the spherical center of the outer spherical surface 22 of the inner ring 20 that serves as a guide surface for the inner spherical surface 44 of the cage 40 are all coincident with the joint center O. Therefore, the offset amount (PO = F) of the outer ring 10 is the axial distance between the center P of the ball groove 14 and the joint center O, and the offset amount (QO = F) of the inner ring 20 is the center of the ball groove 24. The axial distance between Q and the joint center O is the same.

外輪10のボール溝14の中心Pとボール30の中心O3を結ぶ線分の長さPO3と、内輪20のボール溝24の中心Qとボール30の中心O3を結ぶ線分の長さQO3は相等しく、図1に符号PCRで示してある。また、図3に示すように、外輪10のボール溝14の中心Pとボール30の中心O3を結ぶ線分と、継手中心Oとボール30の中心O3を結ぶ線分とがなす角度を外輪トラックオフセット角βoと呼び、内輪20のボール溝24の中心Qとボール30の中心O3を結ぶ線分と、継手中心Oとボール30の中心O3を結ぶ線分とがなす角度を内輪トラックオフセット角βiと呼ぶならば、外輪トラックオフセット角βoと内輪トラックオフセット角βiは相等しい。 The length PO 3 of the line connecting the center P of the ball groove 14 of the outer ring 10 and the center O 3 of the ball 30 and the length of the line connecting the center Q of the ball groove 24 of the inner ring 20 and the center O 3 of the ball 30. QO 3 are identical and are indicated by the symbol PCR in FIG. Further, as shown in FIG. 3, an angle formed by a line segment connecting the center P of the ball groove 14 of the outer ring 10 and the center O 3 of the ball 30 and a line segment connecting the joint center O and the center O 3 of the ball 30 is defined. Called the outer ring track offset angle βo, the angle formed by the line connecting the center Q of the ball groove 24 of the inner ring 20 and the center O 3 of the ball 30 and the line connecting the joint center O and the center O 3 of the ball 30 is the inner ring. If called the track offset angle βi, the outer ring track offset angle βo and the inner ring track offset angle βi are equal.

以上の構成において、連結すべき二軸の一方と外輪10を接続し、他方と内輪20を接続する。外輪10と内輪20とが角度をなすと、ケージ40に案内されたボール30は外・内輪10,20のなす角度の二等分線に垂直な平面内に維持され、したがって、ボール中心O3からボール溝中心P,Qに至る距離PO3,QO3も等距離となり(PO3=QO3=PCR)、継手の等速性が確保される。 In the above configuration, one of the two shafts to be coupled is connected to the outer ring 10, and the other is connected to the inner ring 20. When the outer ring 10 and the inner ring 20 make an angle, the ball 30 guided by the cage 40 is maintained in a plane perpendicular to the bisector of the angle formed by the outer / inner rings 10 and 20, and therefore the ball center O 3. The distances PO 3 and QO 3 from the center to the ball groove centers P and Q are also equidistant (PO 3 = QO 3 = PCR), and the constant velocity of the joint is ensured.

前述のように、ボール溝14,24のオフセット量(F=PO=QO)は、比の値R1=F/PCRが0.069≦R1≦0.121の範囲内になるように設定するのが、許容負荷トルクの確保、ケージ強度の確保、耐久性の確保、作動性の確保の諸点から好ましい。この実施の形態では、R1=0.104(または0.1038)に設定してある。6個のボールを用いる固定式等速自在継手におけるR1の一般的な値は0.14であり、この実施の形態のR1は比較品よりもかなり小さい。 As described above, the offset amount (F = PO = QO) of the ball grooves 14 and 24 is set so that the ratio value R 1 = F / PCR is in the range of 0.069 ≦ R 1 ≦ 0.121. This is preferable from the viewpoints of ensuring allowable load torque, ensuring cage strength, ensuring durability, and ensuring operability. In this embodiment, R 1 = 0.104 (or 0.1038) is set. A typical value of R 1 in a fixed type constant velocity universal joint using six balls is 0.14, and R 1 in this embodiment is considerably smaller than that of the comparative product.

図4は、図2の要部拡大図であって、外輪10、内輪20、ボール30の相互関係を示している。外輪10の内球面12に形成されたボール溝14は横断面がゴシックアーチ形状であり、内輪20の外球面22に形成されたボール溝24は横断面がゴシックアーチ形状である。したがって、ボール30は、外輪10のボール溝14と2点C11、C12で接触し、内輪20のボール溝24と2点C21、C22で接触する。ボール30の中心O3と継手中心Oを通る線分に対するボール30の中心O3と各ボール溝14,24との接触点C11,C12,C21,C22とのなす角度αが、接触角である。各接触点C11,C12,C21,C22の接触角αはすべて等しく、29°以上40°以下に設定される。この29°以上40°以下の接触角αは、従来の、6個のボールを用いるアンダーカットフリージョイント(UJ)、6個のボールを用いる固定式等速自在継手(BJ)などにおける37°以上45°以下に比較して小さい。接触角αを29°以上に設定することにより、ボール溝とボールとの接触面圧が抑えられ、従来品と同等以上の耐久性が得られる。 FIG. 4 is an enlarged view of the main part of FIG. 2, and shows the mutual relationship between the outer ring 10, the inner ring 20 and the ball 30. The ball groove 14 formed on the inner spherical surface 12 of the outer ring 10 has a Gothic arch shape in cross section, and the ball groove 24 formed on the outer spherical surface 22 of the inner ring 20 has a Gothic arch shape in cross section. Therefore, the ball 30 contacts the ball groove 14 of the outer ring 10 at two points C 11 and C 12 and contacts the ball groove 24 of the inner ring 20 at two points C 21 and C 22 . The angle α formed by the contact points C 11 , C 12 , C 21 , C 22 between the center O 3 of the ball 30 and the ball grooves 14, 24 with respect to the line segment passing through the center O 3 of the ball 30 and the joint center O is Contact angle. The contact angles α of the contact points C 11 , C 12 , C 21 , C 22 are all equal and set to 29 ° or more and 40 ° or less. This contact angle α of 29 ° or more and 40 ° or less is 37 ° or more in the conventional undercut free joint (UJ) using 6 balls, fixed constant velocity universal joint (BJ) using 6 balls, etc. Small compared to 45 ° or less. By setting the contact angle α to 29 ° or more, the contact surface pressure between the ball groove and the ball can be suppressed, and durability equal to or higher than that of the conventional product can be obtained.

次に、図5にUJタイプの実施の形態を示す。この実施の形態は、外輪10のボール溝14にストレート部16を設け、内輪20のボール溝24にストレート部26を設けた点と、ケージ40の外球面42と内球面44の球面中心p,qを軸方向に等距離fだけ反対方向にオフセットさせた点を除き、図1ないし図4に示した上述の実施の形態と変わるところはない。したがって、全図を通じて実質的に同じ部品または部分には同じ符号を用い、重複した説明は省略してある。   Next, FIG. 5 shows a UJ type embodiment. In this embodiment, a straight portion 16 is provided in the ball groove 14 of the outer ring 10, a straight portion 26 is provided in the ball groove 24 of the inner ring 20, and the spherical centers p, There is no difference from the above-described embodiment shown in FIGS. 1 to 4 except that q is offset in the opposite direction by an equal distance f in the axial direction. Accordingly, substantially the same parts or portions are denoted by the same reference symbols throughout the drawings, and redundant description is omitted.

UJタイプは、外輪10のボール溝14および内輪20のボール溝24にアンダーカットがなく、BJタイプに比べて大きな作動角を取り得る構造となっている点に特徴がある。近年、自動車の衝突安全性向上の観点からホイールベースを長くすることがあるが、それに伴って車両回転半径が大きくならないようにするため、固定式等速自在継手の高角化による前輪の操舵角の増大が求められている。この高角化のニーズに、外輪の開口側でのボール溝形状を軸方向と平行にしたUJタイプで対応することができる。   The UJ type is characterized in that there is no undercut in the ball groove 14 of the outer ring 10 and the ball groove 24 of the inner ring 20 and a structure that can take a larger operating angle than the BJ type. In recent years, the wheelbase may be lengthened from the viewpoint of improving the collision safety of automobiles, but in order to prevent the turning radius of the vehicle from increasing accordingly, the steering angle of the front wheels is increased by increasing the angle of the fixed constant velocity universal joint. There is a need for an increase. This need for higher angles can be met with a UJ type in which the ball groove shape on the opening side of the outer ring is parallel to the axial direction.

固定式等速自在継手の発熱は、継手回転中のボール30と外輪10のボール溝14との間、ボール30と内輪20のボール溝24との間、ボール30とケージ40との間、外輪10とケージ40との間、内輪20とケージ40との間の内部力により発生する摩擦熱に起因する。これらの内部力は、図2に示した各種内部寸法(ボール30とポケット46との間の軸方向すきま、外輪10とケージ40との間の球面すきま、内輪20とケージ40との間の球面すきま、PCDすきま、トラックオフセット量、接触率(内輪・外輪))によって変化する。ここで、PCDすきまとは、外輪10のボール溝14のピッチ円径PCDOUTERと内輪20のボール溝24のピッチ円径PCDINNERとの差をいう。接触率とは、ボール30の半径RBに対するボール溝14,24の横断面における曲率半径RTの比の値RT/RBをいう。 Heat generated by the fixed type constant velocity universal joint is generated between the ball 30 during rotation of the joint and the ball groove 14 of the outer ring 10, between the ball 30 and the ball groove 24 of the inner ring 20, between the ball 30 and the cage 40, and the outer ring. This is caused by frictional heat generated by an internal force between the inner ring 20 and the cage 40 between the inner ring 10 and the cage 40. These internal forces are represented by the various internal dimensions shown in FIG. 2 (the axial clearance between the ball 30 and the pocket 46, the spherical clearance between the outer ring 10 and the cage 40, and the spherical surface between the inner ring 20 and the cage 40. Varies depending on the clearance, PCD clearance, track offset, and contact rate (inner ring / outer ring). Here, the PCD clearance means a difference between the pitch circle diameter PCD OUTER of the ball groove 14 of the outer ring 10 and the pitch circle diameter PCD INNER of the ball groove 24 of the inner ring 20. The contact ratio refers to the ratio of the values R T / R B of the curvature radius R T of the cross section of the ball grooves 14, 24 to the radius R B of the ball 30.

そこで、これらの因子の中でどの因子を制御すれば内部力が低下するか、機構解析によって各因子を直交表(L8)に割り付けて、どの因子が内部力を低下させる効果があるか調査を行った。その結果を表1に示す。 Therefore, to investigate which of these factors controls the internal force decreases, assigns each factor to the orthogonal table (L 8 ) by mechanism analysis, and investigates which factor has the effect of reducing the internal force. Went. The results are shown in Table 1.

Figure 2006258207
Figure 2006258207

表1中の数値は継手内部にかかる内部力の一回転当たりの総和であって、この値が大きくなると内部力増加で摩擦熱が多くなり発熱量が増える。ここでは、内輪20とケージ40との間の球面すきまMax.品の値を100として、その他の結果を整理した。   The numerical values in Table 1 are the total per one revolution of the internal force applied to the inside of the joint, and when this value increases, the frictional heat increases due to the increase of the internal force and the heat generation amount increases. Here, the value of the spherical clearance Max. Product between the inner ring 20 and the cage 40 was set to 100, and other results were arranged.

この解析結果より、内部力低減すなわち発熱量低減に優位と出たポケットすきま及び内輪20とケージ40との間の球面すきまに着目し、二元配置(繰返し有り)の分散分析により実際に実験を行い、これらの要因が発熱に及ぼす影響を調査した。その結果を表2ならびに図6および図7に示す。   From this analysis result, paying attention to the pocket clearance and the spherical clearance between the inner ring 20 and the cage 40, which are superior in reducing internal force, that is, in the amount of heat generation, the experiment was actually conducted by a two-way analysis with variance. The effects of these factors on fever were investigated. The results are shown in Table 2 and FIGS. 6 and 7.

Figure 2006258207
Figure 2006258207

二元配置の分散分析結果の優位もしくは高度に優位という判定より、ポケットすきまと、内輪20とケージ40との間の球面すきまとが、発熱に影響していることが分かった。また、図6および図7のグラフより、発熱量を低減させるには、ポケットすきまを大きくし、内輪とケージ40との間の球面すきまを大きくすればよいことが分かる。   From the determination of superiority or superiority in the two-way analysis of variance results, it was found that the pocket clearance and the spherical clearance between the inner ring 20 and the cage 40 have an effect on heat generation. Further, the graphs of FIGS. 6 and 7 show that the pocket clearance is increased and the spherical clearance between the inner ring and the cage 40 is increased in order to reduce the heat generation amount.

しかしながら、これらのすきまを大きくすることにより、等速自在継手の機能である等速かつ滑らかにトルクを伝達する機能が損なわれるおそれがある。そのため、機構解析により、等速自在継手の等速性および内部力とすきまの感度線図(図8および図9)を作成し、すきまの最適値を決定した。図8および図9において、内部力の和は機構解析から計算で求めた値であり、この値が小さいほど内部力による摩擦によって発生する発熱量も少なくなると推定できる。また、等速性については値が小さいほど等速性がよいことを示している。   However, by increasing these clearances, the function of the constant velocity universal joint, which is the function of the constant velocity and smooth torque transmission, may be impaired. Therefore, by analyzing the mechanism, the constant velocity universal joint constant velocity and the internal force and clearance sensitivity diagrams (Figs. 8 and 9) were created, and the optimum clearance value was determined. 8 and 9, the sum of internal forces is a value obtained by calculation from mechanism analysis, and it can be estimated that the smaller the value, the smaller the amount of heat generated by friction due to the internal force. In addition, as for the constant velocity, the smaller the value, the better the constant velocity.

ポケットすきまについては、先に示した実験結果と感度線図の内部力のグラフ(図8)から、ポケットすきまを大きく設定した方が発熱に対して有利である。同図より、ポケットすきまが−0.020mmより小さくなると急激に等速性が悪くなり、−0.020mm〜+0.030mmの領域ではほぼ一定の等速性を確保できる。しかし、ポケットすきまがマイナス側の締めしろ範囲では、最初からボールとケージとの間に締めしろ分の圧縮力が働いており、ボールとケージとの間の摩擦力が増加してしまう。そのため、ポケットすきまの下限は0とした。以上より、ポケットすきまの最適範囲は0以上+0.030mm以下である。   As for the pocket clearance, it is more advantageous to generate heat when the pocket clearance is set larger from the experimental results shown above and the internal force graph (FIG. 8) in the sensitivity diagram. According to the figure, when the pocket clearance is smaller than −0.020 mm, the constant velocity is rapidly deteriorated, and a substantially constant constant velocity can be secured in the region of −0.020 mm to +0.030 mm. However, when the pocket clearance is in the minus side tightness range, a compression force corresponding to the tightness is acting between the ball and the cage from the beginning, and the frictional force between the ball and the cage increases. Therefore, the lower limit of the pocket clearance is set to zero. From the above, the optimum range of the pocket clearance is 0 or more and +0.030 mm or less.

内輪とケージとの間の球面すきまについては、感度線図(図9)ではすきま比を横軸にとっている。これは大サイズ〜小サイズの等速自在継手のすきまを同一尺度で表現するためで、既述のとおり、球面すきまを内球面基準径(=内輪外球面基準径)で割ったものに1000を掛けたものをすきま比とした。   Regarding the spherical clearance between the inner ring and the cage, the horizontal axis is the clearance ratio in the sensitivity diagram (FIG. 9). This is to express the clearance of large-sized to small-sized constant velocity universal joints on the same scale. As described above, 1000 is obtained by dividing the spherical clearance by the inner spherical reference diameter (= outer ring spherical reference diameter). The multiplied ratio was used as the clearance ratio.

すきま比と等速性の関係をみると、すきま比が0.60以上2.60以下の範囲で等速性が良好な範囲を持っており、この範囲外では等速性が悪化する傾向にある。等速性は等速自在継手にとって重要な機能であるため、等速性を確保でき、かつ、量産での公差を考慮してすきま比を大きくとれる範囲として、すきま比の最適範囲を0.60以上2.60以下に設定する。   Looking at the relationship between the clearance ratio and the constant velocity property, the constant velocity property has a good range when the clearance ratio is in the range of 0.60 to 2.60, and the constant velocity property tends to deteriorate outside this range. is there. Since constant velocity is an important function for constant velocity universal joints, the optimum range of the clearance ratio is set to 0.60 as a range in which constant velocity can be secured and the clearance ratio can be increased in consideration of tolerance in mass production. The value is set to 2.60 or less.

以上より、固定式等速自在継手の低発熱仕様について内部設計値の最適範囲は次のとおりである。
ポケットすきま: 0以上+0.030mm以下
内輪〜ケージ間球面すきま比: 0.60以上2.60以下
From the above, the optimum range of the internal design value for the low heat generation specification of the fixed type constant velocity universal joint is as follows.
Pocket clearance: 0 or more + 0.030mm or less Inner ring to cage spherical clearance ratio: 0.60 or more and 2.60 or less

上記範囲に対して、従来品(比較例)と内部設計の低発熱仕様品(実施例)との温度上昇比較確認試験を実施したので、その結果を図10に示す。試験条件については、継手の取付角θを12°に固定し、負荷トルク同一条件で、回転数200rpm、600rpm、1000rpmについて試験したものである。温度上昇量は、運転中の外輪表面温度を測定し、試験中の雰囲気温度との差で表したものである。同図から明らかなように、実施例は比較例に対して約10ないし20%低発熱である。   A temperature rise comparison confirmation test was performed on the above-mentioned range between a conventional product (comparative example) and an internally designed low heat generation specification product (example), and the results are shown in FIG. As for the test conditions, the fitting angle θ of the joint was fixed at 12 °, and the test was conducted for the rotation speeds of 200 rpm, 600 rpm, and 1000 rpm under the same load torque conditions. The amount of temperature rise is the difference between the temperature of the outer ring surface during operation and the ambient temperature during the test. As is apparent from the figure, the heat generation of the example is about 10 to 20% lower than that of the comparative example.

本発明の実施の形態を示す固定式等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the fixed type constant velocity universal joint which shows embodiment of this invention. 図1の継手の横断面図である。It is a cross-sectional view of the joint of FIG. BJタイプの実施の形態を示す図1の要部拡大図である。It is a principal part enlarged view of FIG. 1 which shows BJ type embodiment. 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2. UJタイプの実施の形態を示す図3と類似の要部拡大図である。It is a principal part enlarged view similar to FIG. 3 which shows UJ type embodiment. ポケットすきまと温度上昇量の関係を示す線図である。It is a diagram which shows the relationship between a pocket clearance and a temperature rise amount. 内輪とケージとの間の球面すきまと温度上昇量の関係を示す線図である。It is a diagram which shows the relationship between the spherical clearance between an inner ring | wheel and a cage, and a temperature rise amount. ポケットすきまと等速性または内部力との関係を示す線図である。It is a diagram which shows the relationship between pocket clearance and constant velocity or internal force. 内輪とケージとの間の球面すきま比と等速性または内部力との関係を示す線図である。It is a diagram which shows the relationship between the spherical clearance ratio between an inner ring | wheel and a cage, and constant velocity or internal force. 回転数と温度上昇量との関係を示す線図である。It is a diagram which shows the relationship between a rotation speed and the temperature rise amount.

符号の説明Explanation of symbols

10 外輪
12 内球面
14 ボール溝
16 ストレート部
20 内輪
22 外球面
24 ボール溝
26 ストレート部
28 セレーションまたはスプライン
30 ボール
40 ケージ
42 外球面
44 内球面
46 ポケット
10 outer ring 12 inner spherical surface 14 ball groove 16 straight portion 20 inner ring 22 outer spherical surface 24 ball groove 26 straight portion 28 serration or spline 30 ball 40 cage 42 outer spherical surface 44 inner spherical surface 46 pocket

Claims (6)

軸方向に延びる複数のボール溝を内球面に円周方向等間隔に形成し第一の回転軸とトルク伝達可能に結合する外輪と、軸方向に延びる複数のボール溝を外球面に円周方向等間隔に形成し第二の回転軸とトルク伝達可能に結合する内輪と、外輪のボール溝と内輪のボール溝との間に介在してトルクを伝達する複数のボールと、ボールを収容するためのポケットを円周方向に配設したケージとを具備し、
外側継手部材のボール溝の中心が内球面の球面中心に対して、内側継手部材のボール溝の中心が外球面の球面中心に対して、それぞれ、軸方向に等距離だけ反対側にオフセットさせてあり、
ポケットとボールとの間の軸方向すきまを0以上+0.030mm以下の範囲としたことを特徴とする固定式等速自在継手。
A plurality of ball grooves extending in the axial direction are formed on the inner spherical surface at equal intervals in the circumferential direction, and an outer ring coupled to the first rotating shaft so as to be able to transmit torque, and a plurality of ball grooves extending in the axial direction are circumferentially formed on the outer spherical surface. An inner ring formed at equal intervals and coupled to the second rotating shaft so as to be able to transmit torque, a plurality of balls that are interposed between the ball groove of the outer ring and the ball groove of the inner ring and transmit the torque, and for accommodating the balls A cage with circumferentially arranged pockets,
The center of the ball groove of the outer joint member is offset from the spherical center of the inner spherical surface, and the center of the ball groove of the inner joint member is offset to the opposite side by an equal distance in the axial direction, respectively. Yes,
A fixed type constant velocity universal joint characterized in that the axial clearance between the pocket and the ball is in the range of 0 to +0.030 mm.
軸方向に延びる複数のボール溝を内球面に円周方向等間隔に形成し第一の回転軸とトルク伝達可能に結合する外輪と、軸方向に延びる複数のボール溝を外球面に円周方向等間隔に形成し第二の回転軸とトルク伝達可能に結合する内輪と、外輪のボール溝と内輪のボール溝との間に介在してトルクを伝達する複数のボールと、ボールを収容するためのポケットを円周方向に配設したケージとを具備し、
外側継手部材のボール溝の中心が内球面の球面中心に対して、内側継手部材のボール溝の中心が外球面の球面中心に対して、それぞれ、軸方向に等距離だけ反対側にオフセットさせてあり、
内輪とケージとの間の球面すきまのすきま比を0.60以上2.60以下の範囲としたことを特徴とする固定式等速自在継手。
A plurality of ball grooves extending in the axial direction are formed on the inner spherical surface at equal intervals in the circumferential direction, and an outer ring coupled to the first rotating shaft so as to be able to transmit torque, and a plurality of ball grooves extending in the axial direction are circumferentially formed on the outer spherical surface. An inner ring formed at equal intervals and coupled to the second rotating shaft so as to be able to transmit torque, a plurality of balls that are interposed between the ball groove of the outer ring and the ball groove of the inner ring and transmit the torque, and for accommodating the balls A cage with circumferentially arranged pockets,
The center of the ball groove of the outer joint member is offset from the spherical center of the inner spherical surface, and the center of the ball groove of the inner joint member is offset to the opposite side by an equal distance in the axial direction, respectively. Yes,
A fixed type constant velocity universal joint characterized in that the clearance ratio of the spherical clearance between the inner ring and the cage is in the range of 0.60 to 2.60.
軸方向に延びる複数のボール溝を内球面に円周方向等間隔に形成し第一の回転軸とトルク伝達可能に結合する外輪と、軸方向に延びる複数のボール溝を外球面に円周方向等間隔に形成し第二の回転軸とトルク伝達可能に結合する内輪と、外輪のボール溝と内輪のボール溝との間に介在してトルクを伝達する複数のボールと、ボールを収容するためのポケットを円周方向に配設したケージとを具備し、
外側継手部材のボール溝の中心が内球面の球面中心に対して、内側継手部材のボール溝の中心が外球面の球面中心に対して、それぞれ、軸方向に等距離だけ反対側にオフセットさせてあり、
前記ポケットとボールとの間の軸方向すきまを0以上+0.030mm以下の範囲とし、かつ、内輪とケージとの間の球面すきまのすきま比を0.60以上2.60以下の範囲としたことを特徴とする固定式等速自在継手。
A plurality of ball grooves extending in the axial direction are formed on the inner spherical surface at equal intervals in the circumferential direction, and an outer ring coupled to the first rotating shaft so as to be able to transmit torque, and a plurality of ball grooves extending in the axial direction are circumferentially formed on the outer spherical surface. An inner ring formed at equal intervals and coupled to the second rotating shaft so as to be able to transmit torque, a plurality of balls that are interposed between the ball groove of the outer ring and the ball groove of the inner ring and transmit the torque, and for accommodating the balls A cage with circumferentially arranged pockets,
The center of the ball groove of the outer joint member is offset from the spherical center of the inner spherical surface, and the center of the ball groove of the inner joint member is offset to the opposite side by an equal distance in the axial direction, respectively. Yes,
The axial clearance between the pocket and the ball is in the range of 0 to +0.030 mm, and the clearance ratio of the spherical clearance between the inner ring and the cage is in the range of 0.60 to 2.60. A fixed type constant velocity universal joint.
外輪のボール溝および内輪のボール溝が一部にストレート部を有することを特徴とする請求項1ないし3のいずれかの固定式等速自在継手。   4. The fixed type constant velocity universal joint according to claim 1, wherein a ball groove of the outer ring and a ball groove of the inner ring have a straight portion in part. プロペラシャフト用であることを特徴とする請求項1ないし4のいずれかの固定式等速自在継手。   The fixed type constant velocity universal joint according to any one of claims 1 to 4, wherein the fixed type constant velocity universal joint is used for a propeller shaft. 8個のボールを用いることを特徴とする請求項1ないし5のいずれかの固定式等速自在継手。   The fixed type constant velocity universal joint according to any one of claims 1 to 5, wherein eight balls are used.
JP2005077370A 2005-03-17 2005-03-17 Fixed type constant velocity universal joint Pending JP2006258207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005077370A JP2006258207A (en) 2005-03-17 2005-03-17 Fixed type constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005077370A JP2006258207A (en) 2005-03-17 2005-03-17 Fixed type constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2006258207A true JP2006258207A (en) 2006-09-28

Family

ID=37097691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005077370A Pending JP2006258207A (en) 2005-03-17 2005-03-17 Fixed type constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2006258207A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096558A1 (en) * 2007-02-02 2008-08-14 Ntn Corporation Fixed constant velocity universal joint
WO2010052985A1 (en) * 2008-11-06 2010-05-14 Ntn株式会社 Fixed constant velocity universal joint, method of manufacturing fixed constant velocity universal joint, and bearing device adapted for use in driving wheel and using fixed constant velocity universal joint
WO2015141548A1 (en) * 2014-03-17 2015-09-24 Ntn株式会社 Stationary constant velocity universal joint
JP2018126834A (en) * 2017-02-09 2018-08-16 株式会社Sumco Rotation device, double side polishing device and single side polishing device comprising the rotation device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119930A4 (en) * 2007-02-02 2012-04-25 Ntn Toyo Bearing Co Ltd Fixed constant velocity universal joint
JP2008190596A (en) * 2007-02-02 2008-08-21 Ntn Corp Fixed type constant velocity universal joint
EP2119930A1 (en) * 2007-02-02 2009-11-18 NTN Corporation Fixed constant velocity universal joint
WO2008096558A1 (en) * 2007-02-02 2008-08-14 Ntn Corporation Fixed constant velocity universal joint
US8172689B2 (en) 2007-02-02 2012-05-08 Ntn Corporation Fixed-type constant velocity universal joint
WO2010052985A1 (en) * 2008-11-06 2010-05-14 Ntn株式会社 Fixed constant velocity universal joint, method of manufacturing fixed constant velocity universal joint, and bearing device adapted for use in driving wheel and using fixed constant velocity universal joint
US20110212788A1 (en) * 2008-11-06 2011-09-01 Masazumi Kobayashi Fixed constant velocity universal joint, method of manufacturing fixed constant velocity universal joint, and bearing device adapted for use in driving wheel and using fixed constant velocity universal joint
JP2010112469A (en) * 2008-11-06 2010-05-20 Ntn Corp Fixed-type constant velocity universal joint, and method of manufacturing the same and driving wheel bearing unit using the same
US8499457B2 (en) 2008-11-06 2013-08-06 Ntn Corporation Fixed constant velocity universal joint, method of manufacturing fixed constant velocity universal joint, and bearing device adapted for use in driving wheel and using fixed constant velocity universal joint
WO2015141548A1 (en) * 2014-03-17 2015-09-24 Ntn株式会社 Stationary constant velocity universal joint
JP2015175475A (en) * 2014-03-17 2015-10-05 Ntn株式会社 Fixed type constant velocity universal joint
CN106104039A (en) * 2014-03-17 2016-11-09 Ntn株式会社 Fixed-type constant-velocity Hooks coupling universal coupling
US10309464B2 (en) 2014-03-17 2019-06-04 Ntn Corporation Fixed constant velocity universal joint
CN106104039B (en) * 2014-03-17 2020-02-21 Ntn株式会社 Fixed constant velocity universal joint
JP2018126834A (en) * 2017-02-09 2018-08-16 株式会社Sumco Rotation device, double side polishing device and single side polishing device comprising the rotation device

Similar Documents

Publication Publication Date Title
US10260569B2 (en) Fixed-type constant velocity universal joint
JP5101430B2 (en) Fixed constant velocity universal joint
JP5507061B2 (en) Fixed type constant velocity universal joint
US8162766B2 (en) Fixed type constant velocity universal joint
JP5634777B2 (en) Fixed constant velocity universal joint
US20140080613A1 (en) Fixed constant velocity universal joint
US8029374B2 (en) Fixed constant-velocity universal joint
US20140073441A1 (en) Fixed constant velocity universal joint
US7951009B2 (en) Fixed constant-velocity universal joint
JP2012017809A5 (en)
US9581206B2 (en) Fixed type constant velocity universal joint
JP2006258207A (en) Fixed type constant velocity universal joint
JP2005188620A (en) Stationary type constant velocity universal joint
JP5615873B2 (en) Fixed constant velocity universal joint
JP2009174639A (en) Fixed type constant velocity universal joint
EP3067582B1 (en) Stationary constant velocity universal joint
JP2009079684A (en) Fixed type constant velocity universal joint
JP6591223B2 (en) Fixed constant velocity universal joint
JP5340548B2 (en) Fixed constant velocity universal joint
JP2008196635A (en) Fixed type constant velocity universal joint
US10066674B2 (en) Fixed-type constant velocity universal joint
JP5031397B2 (en) Cross groove type constant velocity universal joint
WO2019003765A1 (en) Fixed-type constant-velocity universal joint
JP2023080854A (en) Slide-type constant velocity universal joint
JP2007271040A (en) Fixed type constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A977 Report on retrieval

Effective date: 20090910

Free format text: JAPANESE INTERMEDIATE CODE: A971007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A02 Decision of refusal

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A02