WO2019003765A1 - Fixed-type constant-velocity universal joint - Google Patents

Fixed-type constant-velocity universal joint Download PDF

Info

Publication number
WO2019003765A1
WO2019003765A1 PCT/JP2018/020544 JP2018020544W WO2019003765A1 WO 2019003765 A1 WO2019003765 A1 WO 2019003765A1 JP 2018020544 W JP2018020544 W JP 2018020544W WO 2019003765 A1 WO2019003765 A1 WO 2019003765A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
joint
joint member
center
peripheral surface
Prior art date
Application number
PCT/JP2018/020544
Other languages
French (fr)
Japanese (ja)
Inventor
輝明 藤尾
雅司 船橋
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019003765A1 publication Critical patent/WO2019003765A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/224Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere

Definitions

  • the present invention relates to a fixed type constant velocity universal joint.
  • a constant velocity universal joint that constitutes a power transmission system of an automobile or various industrial machines connects two shafts on the drive side and the driven side in a torque transmittable manner, and transmits rotational torque at a constant speed even when the two axes operate at an operating angle. can do.
  • Constant velocity universal joints are roughly classified into fixed type constant velocity universal joints that allow only angular displacement, and sliding constant velocity universal joints that allow both angular displacement and axial displacement, for example, from an automobile engine
  • sliding constant velocity universal joints are used on the differential side (inboard side)
  • fixed constant velocity universal joints are used on the driving wheel side (outboard side) Ru.
  • the constant velocity universal joints of the structures of Patent Document 1 and Patent Document 2 have very high functions, but require high processing accuracy and dimensional accuracy, and the conventional Zeppa type constant velocity universal joints and undercut free There is a high possibility of cost increase compared with the mold constant velocity universal joint.
  • a track groove as in Patent Document 3 is formed by three arcs in the longitudinal direction, and a mechanism that achieves high efficiency by balancing the forces acting on the cage at a predetermined angle is also proposed. There is.
  • Patent No. 5138449 gazette Japanese Patent Application Publication No. 2007-503556 Patent No. 5634777 gazette Patent No. 4133415 gazette
  • the fixed type constant velocity universal joint described in Patent Document 3 switches the wedge angle of the central track groove portion formed of a small radius arc by the track groove portion on the opening side and the track groove portion on the back side, and exerts a force acting on the cage By balancing, high efficiency is realized in the normal angle range (low operating angle).
  • the fixed type constant velocity universal joint of Patent Document 3 is not intended to increase the efficiency of the high operating angle region and to reduce the heat generation accordingly, and in addition to the track groove being configured by three arcs.
  • the effect of reversing the wedge angle of the track groove portion is determined by the connection position of the central track groove portion, the opening side track groove portion, and the back side track groove portion, and therefore, it is necessary to finish with high accuracy.
  • the outer joint member as described in Patent Document 4 is in the state of the same wedge angle as that of the Zeppa type constant velocity universal joint and the undercut free type constant velocity universal joint at the high operating angle. And it becomes necessary to take design in consideration of the shear failure mode of the cage column by the biting in of the spherical edge of the inner joint member.
  • the present invention has an object to provide a fixed type constant velocity universal joint capable of solving the problems of low heat buildup and strength at a high operating angle while having a simple structure.
  • the present invention provides an outer joint member in which a plurality of track grooves extending in the longitudinal direction are formed on the spherical inner peripheral surface, and has an axially spaced opening side and back side.
  • An inner joint member in which a plurality of track grooves extending in the longitudinal direction are formed on the spherical outer peripheral surface so as to face the track grooves of the outer joint member; a torque transmitting ball incorporated between the opposing track grooves; Fixed type comprising a spherical outer peripheral surface which holds a transmission ball and is guided to the spherical outer peripheral surface of the outer joint member and a cage having a spherical inner peripheral surface which is guided to the spherical outer peripheral surface of the inner joint member
  • the track groove 7 of the outer joint member includes an arc-shaped first track groove portion 7a disposed on the back side and a linear second track groove portion 7b disposed on the opening side.
  • the track center line Y of the groove 9 has the joint center O at the operating angle of 0 ° and the track center of the track groove 7 which is the pair of outer joint members with reference to the plane P orthogonal to the joint axis NN. It is characterized in that it is formed in mirror symmetry with the line X.
  • the inclination angle ⁇ of the track center line Xb of the second track groove portion 7b with respect to the axis N-N of the joint is larger than the offset angle ⁇ .
  • the inclination angle ⁇ of the track center line Xb of the second track groove 7b with respect to the axis N-N of the above joint is preferably less than 15 °.
  • the center of curvature of the track center line Xa of the first track groove 7a is preferably offset in the radial direction with respect to the axis N-N of the joint. Thereby, the groove depth of the track groove at the high operating angle can be adjusted.
  • the center of curvature of the spherical outer peripheral surface of the cage and the center of curvature of the spherical inner peripheral surface are offset by an equal amount axially opposite to each other with respect to the joint center (O). Since the wall thickness is increased, the strength at high operating angles is improved.
  • FIG. 1 is a longitudinal sectional view of a fixed type constant velocity universal joint according to a first embodiment of the present invention. It is a right view of FIG. 1 a.
  • FIG. 2 is a longitudinal cross-sectional view of the outer joint member of FIG. 1a. It is a right view of Drawing 2a.
  • FIG. 1 b is a longitudinal cross-sectional view of the inner joint member of FIG. It is a right view of FIG. 3 a.
  • Figure 2 is a longitudinal cross-sectional view of the cage of Figure 1a;
  • Fig. 4b is a cross-sectional view taken along the line AA of Fig. 4a. It is a longitudinal cross-sectional view which shows the wedge angle of the state of operating angle 0 degree.
  • FIG. 1a is a longitudinal sectional view of a fixed type constant velocity universal joint according to a first embodiment of the present invention
  • FIG. 1b is a right side view of FIG. 1a.
  • the fixed type constant velocity universal joint 1 according to this embodiment mainly includes an outer joint member 2, an inner joint member 3, a torque transmitting ball (also simply referred to as a ball) 4 and a cage 5.
  • Eight track grooves 7 are formed on the spherical inner circumferential surface 6 of the outer joint member 2 at equal intervals in the circumferential direction and along the axial direction.
  • the inner joint member 3 is provided with a spline hole 10 on the inner periphery thereof and is connected to a shaft (not shown).
  • the outer peripheral surface of the outer joint member 2 and the outer peripheral surface of the shaft are covered with a boot (not shown), and grease as a lubricant is enclosed inside the joint.
  • the ball 4 is accommodated in the pocket 5 a of the retainer 5.
  • the spherical outer peripheral surface 12 of the cage 5 slidably fits on the spherical inner peripheral surface 6 of the outer joint member 2, and the spherical inner peripheral surface 13 of the cage 5 slides on the spherical outer peripheral surface 8 of the inner joint member 3 It fits freely and is guided.
  • the spherical inner circumferential surface 6 of the outer joint member 2 and the spherical outer circumferential surface 8 of the inner joint member 3 both have a curvature center at the joint center O.
  • the track center line X of the track groove 7 of the outer joint member 2 and the track center line Y of the track groove 9 of the inner joint member 3 are indicated by alternate long and short dashed lines.
  • the track groove 7 of the outer joint member 2 will be described based on FIGS. 2a and 2b.
  • 2a is a longitudinal cross-sectional view of the outer joint member of FIG. 1a
  • FIG. 2b is a right side view of FIG. 2a.
  • the track groove 7 of the outer joint member 2 is composed of a first track groove 7a located on the back side of the outer joint member 2 and a second track groove 7b located on the opening side.
  • the track center line Xa of the first track groove portion 7a has an arc shape with a radius of curvature R, and the center of curvature O1 is axially offset (offset amount f) from the joint center O toward the back side.
  • An intersection point of a plane P including the joint center O at a working angle of 0 ° and orthogonal to the joint axis N-N and the orbital center line Xa of the first track groove portion 7a is D.
  • An angle formed by a straight line connecting the intersection D and the curvature center O1 and a straight line connecting the intersection D and the joint center O is an offset angle ⁇ .
  • the track center line Xb of the second track groove portion 7b is linear, and is inclined at an inclination angle ⁇ so as to approach the joint axis N-N toward the opening side of the outer joint member 2.
  • the track center line Xa of the first track groove 7a and the track center line Xb of the second track groove 7b are smoothly connected at the connection point B.
  • Fig. 3a is a longitudinal sectional view of the inner joint member of Fig. 1a
  • Fig. 3b is a right side view of Fig. 3a
  • the track groove 9 of the inner joint member 3 comprises a first track groove 9a located on the opening side of the outer joint member 2 and a second track groove 9b located on the back side.
  • the track center line Ya of the first track groove portion 9a has an arc shape with a radius of curvature R, and the center of curvature O2 is axially offset (offset amount f) from the joint center O toward the opening side.
  • the plane P including the joint center O at a working angle of 0 ° and the track center of the first track groove 7a orthogonal to the joint axis N-N Let E be the point of intersection of the line Xa.
  • An angle formed by a straight line connecting the intersection point E and the curvature center O2 and a straight line connecting the intersection point E and the joint center O is an offset angle ⁇ .
  • the track center line Yb of the second track groove portion 9b is linear, and is inclined at an inclination angle ⁇ so as to approach the joint axis N-N toward the back side of the outer joint member 2.
  • the track center line Ya of the first track groove 9a and the track center line Yb of the second track groove 9b are smoothly connected at a connection point C.
  • the offset amount f of the first track groove portions 7a and 9a of the outer joint member 2 and the inner joint member 3, the offset angle ⁇ , and the inclination angle ⁇ of the second track groove portions 7b and 9b will be described.
  • the relationship between the offset amount f, the offset angle ⁇ and the inclination angle ⁇ is as follows in order to obtain the effects of low heat buildup, strength and durability at high operating angles. It is set to. ⁇ ⁇ ⁇ 15 °, ⁇ 5 5 °
  • sin ⁇ 1 (f / R).
  • the reason for setting the above relationship will be described next.
  • the offset angle ⁇ is less than 5 °
  • the operability of the joint is significantly reduced.
  • the wedge angle ⁇ acting on the ball 4 by the offset angle ⁇ is maintained, and the operability is not lost.
  • the force acting on the cage 5 at the high operating angle is reduced, and low heat buildup is obtained, and the strength deterioration of the cage 5 due to the biting in of the spherical edges of the outer joint member 2 and the inner joint member 3 is prevented. be able to.
  • the inclination angle ⁇ is 15 ° or more, the track groove depth at the opening end of the second track groove portion 7b of the outer joint member 2 becomes too shallow, so that the strength and durability at the high operation angle decrease.
  • FIGS. 4a and 4b The cage is shown in FIGS. 4a and 4b.
  • FIG. 4a is a longitudinal sectional view of FIG. 1a cage
  • FIG. 4b is a transverse sectional view taken along line AA of FIG. 4a.
  • the cage 5 has a spherical outer peripheral surface 12 and a spherical inner peripheral surface 13, and the centers of curvature of the spherical outer peripheral surface 12 and the spherical inner peripheral surface 13 are formed at the joint center O.
  • the holder 5 is provided with eight pockets 5a at equal intervals in the circumferential direction, and accommodates and holds eight balls 4 (not shown) one by one.
  • a pillar 5b is formed between the pockets 5a adjacent in the circumferential direction.
  • the operation of the fixed type constant velocity universal joint 1 of the present embodiment will be described based on FIGS. 5a to 6b.
  • the fixed constant velocity universal joint 1 of the present embodiment takes an operating angle twice or more the inclination angle ⁇
  • the ball 4 moves to the opening side at the phase angle of 0 ° of the apex shown in FIG.
  • the direction in which the wedge angle opens is reversed from the back side to the opening side.
  • the opening direction of the wedge angle of the ball 4 is reversed to the opening side in the circumferential direction centering on the phase angle of 0 °, so that the force pushing the ball 5 to the opening side
  • the force acting on the cage 4 is balanced on the back side and the opening side, and the spherical force is reduced.
  • FIG. 5a shows the state where the operating angle is 0 °.
  • the wedge angles ⁇ of all the track grooves 7 and 9 including the phase angles 0 ° and 180 ° open toward the back side of the outer joint member 2. Therefore, all the forces of the ball 4 pushing the retainer 5 are directed to the back side. A large spherical force is generated.
  • FIG. 5b shows the state of a low operating angle ⁇ 1 (for example, about 8 °).
  • the wedge angles ⁇ of all the track grooves 7 and 9 including the phase angles 0 ° and 180 ° open toward the back side of the outer joint member 2 even in the state of the low operating angle ⁇ 1. Therefore, all the forces of the ball 4 pushing the retainer 5 are directed to the back side.
  • the contact point is located on the side surfaces of the track grooves 7 and 9 slightly away from the groove bottoms of the track grooves 7 and 9,
  • the wedge angle ⁇ is illustrated using the groove bottoms of the track grooves 7, 9 for the sake of simplicity.
  • the actual wedge angle at the contact point and the illustrated wedge angle ⁇ slightly differ in the size of the angle, the reversal behavior of the opening direction of the wedge angle is the same for both.
  • FIG. 6a shows the state of the middle operating angle ⁇ 2 (for example, about 20 °).
  • the wedge angle ⁇ of the track grooves 7 and 9 having a phase angle of 0 ° is close to 0 °.
  • the opening direction of the wedge angle ⁇ of the track grooves 7 and 9 having a phase angle of 0 ° is reversed and directed to the opening side.
  • FIG. 6b shows the state of high operating angle ⁇ 3 (for example, about 40 °).
  • ⁇ 3 for example, about 40 °.
  • the opening direction of the wedge angle ⁇ of the phase angle 0 ° is reversed and directed to the opening side.
  • the direction in which the wedge angle ⁇ of the track grooves 7 and 9 near the phase angle of 0 ° opens is also reversed and directed to the opening side, resulting in the state of the high operating angle in FIG.
  • the opening direction of the wedge angle of the ball 4 is reversed to the opening side in the circumferential direction range centered on the phase angle of 0 °, so the number of forces by which the ball 4 pushes the retainer 5 toward the opening side is As a result, the force acting on the cage 4 is balanced on the back side and the opening side, and the spherical force is reduced.
  • retainer 5 of the fixed constant velocity universal joint 1 of this embodiment and the inner joint member 3 is shown in FIG.
  • the offset angle ⁇ of the fixed type constant velocity universal joint 1 according to this embodiment is 5 °, and the inclination angle ⁇ is 8 °.
  • the conventional product is an 8-ball Zeppa type constant velocity universal joint.
  • the spherical force acting between the cage 5 and the inner joint member 3 of the fixed type constant velocity universal joint 1 according to this embodiment has a value in the high operating angle range of the low operating angle range. This value is smaller than the value and is significantly reduced compared to the value of the high operating angle range of the conventional product. Thereby, the heat generation at the high operating angle is suppressed.
  • the fixed type constant velocity universal joint 1 has a simple structure including the arc-shaped first track groove portions 7a and 9a and the linear second track groove portions 7b and 9b. It can solve the problem of low heat buildup and strength at high operating angles. Specifically, it can be manufactured with the same processing accuracy and cost as conventional Zeppa type constant velocity universal joints and undercut free type constant velocity universal joints, and since the heat generation is reduced at a high operating angle, the life of the joint is improves. In addition, since the force acting on the cage 5 is balanced at the high operating angle, the shear failure mode of the cage column 5b due to the biting of the spherical edge portion of the outer joint member 2 and the inner joint member 3 does not occur, and the strength is improved. improves.
  • the positions of the curvature centers O3 and O4 of the track center lines Xa and Ya of the first track groove portions 7a and 9a of the outer joint member 2 and the inner joint member 3 are first. It differs from the embodiment.
  • the other configuration is the same as that of the first embodiment.
  • the parts having the same functions are given the same reference numerals and only the main points will be described. The same applies to the embodiments described later.
  • the track center line Xa of the first track groove 7a of the outer joint member 2 is axially offset (offset amount f1) toward the back side of the outer joint member 2 with respect to the joint center O, and the axis of the joint It is formed in an arc shape with a curvature radius R1 having a curvature center O3 offset in the radial direction (offset amount f2) with respect to N-N.
  • the orbital center line Ya of the first track groove 9a of the inner joint member 3 is axially offset (offset amount f1) toward the opening side of the outer joint member 2 with respect to the joint center O, and the axis of the joint It is formed in an arc shape having a curvature radius R1 having a curvature center O4 offset in the radial direction (offset amount f2) with respect to N-N.
  • the relationship between the offset amount f, the offset angle ⁇ , and the inclination angle ⁇ in the fixed type constant velocity universal joint 1 of the present embodiment is the same as that in the first embodiment. This becomes the same as the operation and effect of the fixed type constant velocity universal joint of the first embodiment. Therefore, the contents described above for the fixed type constant velocity universal joint of the first embodiment apply mutatis mutandis, and the description will be omitted. The same applies to the embodiments described later.
  • the track center lines Xa and Ya of the first track groove portions 7a and 9a of the outer joint member 2 and the inner joint member 3 are the center of curvature O5 and O6 of the joint, respectively.
  • the second embodiment differs from the second embodiment in that it is offset to the radially opposite side with respect to -N.
  • the other configuration is the same as that of the second embodiment.
  • the track center line Xa of the first track groove portion 7a of the outer joint member 2 is axially offset (offset amount f3) toward the back side of the outer joint member 2 with respect to the joint center O and in the radial direction It is formed in an arc shape of a curvature radius R2 having a curvature center O5 offset (offset amount f4).
  • the track center line Ya of the first track groove 9a of the inner joint member 3 is axially offset (offset amount f3) toward the opening side of the outer joint member 2 with respect to the joint center O, and in the radial direction It is formed in an arc shape of a curvature radius R2 having a curvature center O6 offset (offset amount f4).
  • a fixed type constant velocity universal joint according to a fourth embodiment of the present invention will be described based on FIG.
  • the center of curvature of the spherical outer peripheral surface 12 of the cage 5 and the center of curvature of the spherical inner peripheral surface 13 are offset by an amount equal to the axially opposite side with respect to the joint center O It differs from the first embodiment in that it is performed.
  • the curvature center O10 of the spherical outer peripheral surface 12 of the cage 5 is offset by a small amount (offset amount f6) in the axial direction on the opening side of the outer joint member 2 with respect to the joint center O.
  • the curvature center O9 of the spherical inner circumferential surface 13 is offset by a small amount (offset amount f6) in the axial direction on the back side of the outer joint member 2 with respect to the joint center O.
  • the track center line Xa of the first track groove portion 7a of the outer joint member 2 is an arc having a radius of curvature R3 and the center of curvature O7 is axially offset (offset amount f5) from the joint center O toward the back side ing.
  • the track center line Ya of the first track groove 9a of the inner joint member 3 has an arc shape with a radius of curvature R3, and the center of curvature O8 is axially offset (offset amount f5) from the joint center O toward the opening side ing.
  • the fixed type constant velocity universal joint 1 has a simple structure including the arc-shaped first track groove portions 7a and 9a and the linear second track groove portions 7b and 9b while having high operation. It can solve the problem of low heat buildup and strength at the corner. Specifically, it can be manufactured with the same processing accuracy and cost as conventional Zeppa type constant velocity universal joints and undercut free type constant velocity universal joints, and since the heat generation is reduced at a high operating angle, the life of the joint is improves.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A fixed-type constant-velocity universal joint, comprising: an outer-side joint member in which a plurality of track grooves extending in a longitudinal direction is formed in a spherical inner peripheral surface, and which has an open side and a recessed side separated in an axial direction; an inner-side joint member in which a plurality of track grooves extending in the longitudinal direction is formed in a spherical outer peripheral surface so as to oppose the track grooves of the outer-side joint member; torque-transmitting balls fitted in between the opposing track grooves; and a holder which holds the torque-transmitting balls, and in which are formed a spherical outer peripheral surface guided to the spherical outer peripheral surface of the outer-side joint member and a spherical inner peripheral surface guided to the spherical outer peripheral surface of the inner-side joint member; wherein the fixed-type constant-velocity universal joint is characterized in that: the track grooves 7 of the outer-side joint member 2 are configured from an arcuate first track groove part 7a disposed in the recessed side, and a linear second track groove part 7b disposed in the open side; the center of curvature of a track center line Xa of the first track groove part 7a is axially offset from a joint center O toward the recessed side; a track center line Xb of the second track groove part 7b is formed at an incline in a direction such that the distance to an axis line N-N of the joint decreases toward the open side, the track center line Xb being smoothly connected to the track center line Xa of the first track groove part 7a; and track center lines Y of the track grooves 9 of the inner-side joint member are formed in mirror symmetry with the track center lines X of the pair of track grooves 7 of the outer-side joint member, the reference being a plane P that includes the joint center O at a working angle of 0º and that is orthogonal to the axis line N-N of the joint.

Description

固定式等速自在継手Fixed type constant velocity universal joint
 この発明は、固定式等速自在継手に関する。 The present invention relates to a fixed type constant velocity universal joint.
 自動車や各種産業機械の動力伝達系を構成する等速自在継手は、駆動側と従動側の二軸をトルク伝達可能に連結すると共に、前記二軸が作動角をとっても等速で回転トルクを伝達することができる。等速自在継手は、角度変位のみを許容する固定式等速自在継手と、角度変位および軸方向変位の両方を許容する摺動式等速自在継手とに大別され、例えば、自動車のエンジンから駆動車輪に動力を伝達するドライブシャフトにおいては、デフ側(インボード側)に摺動式等速自在継手が使用され、駆動車輪側(アウトボード側)には固定式等速自在継手が使用される。 A constant velocity universal joint that constitutes a power transmission system of an automobile or various industrial machines connects two shafts on the drive side and the driven side in a torque transmittable manner, and transmits rotational torque at a constant speed even when the two axes operate at an operating angle. can do. Constant velocity universal joints are roughly classified into fixed type constant velocity universal joints that allow only angular displacement, and sliding constant velocity universal joints that allow both angular displacement and axial displacement, for example, from an automobile engine For drive shafts that transmit power to the drive wheels, sliding constant velocity universal joints are used on the differential side (inboard side), and fixed constant velocity universal joints are used on the driving wheel side (outboard side) Ru.
 近年、固定式等速自在継手は更なる高性能化を図るべく、保持器の球状内周面、球状外周面の接触力を低減させ、低発熱化を狙ったトラック溝交差タイプやカウンタートラック溝タイプ等の等速自在継手が種々提案されている(特許文献1~4)。これらの等速自在継手は、自動車に求められる環境性能への対応や産業機械の厳しい使用環境に対して有効な手段となりつつある。 In recent years, the fixed type constant velocity universal joint reduces the contact force between the spherical inner peripheral surface and the spherical outer peripheral surface of the cage in order to further improve the performance, and the track groove crossing type and counter track groove aiming at low heat generation. Various types of constant velocity universal joints such as types have been proposed (Patent Documents 1 to 4). These constant velocity universal joints are becoming an effective means for responding to environmental performance required for automobiles and for severe usage environments of industrial machines.
 特許文献1や特許文献2の構造の等速自在継手は、非常に高い機能を有している反面、高い加工精度と寸法精度が必要となり、従来型のツェッパ型等速自在継手やアンダーカットフリー型等速自在継手に比べてコスト増となる可能性が高い。それらを解決する手段として特許文献3のようなトラック溝を長手方向に3つの円弧で構成し、所定の角度で保持器に作用する力を釣り合わせて高効率化を実現するものも提案されている。 The constant velocity universal joints of the structures of Patent Document 1 and Patent Document 2 have very high functions, but require high processing accuracy and dimensional accuracy, and the conventional Zeppa type constant velocity universal joints and undercut free There is a high possibility of cost increase compared with the mold constant velocity universal joint. As means for solving these problems, a track groove as in Patent Document 3 is formed by three arcs in the longitudinal direction, and a mechanism that achieves high efficiency by balancing the forces acting on the cage at a predetermined angle is also proposed. There is.
 また、固定式等速自在継手では、高角時の損傷モードの一つである外側継手部材および内側継手部材の球面エッジ部が食い込むことによる保持器柱部のせん断破壊モードがあり、保持器の強度を確保するには、特許文献4に記載されているように、外側継手部材の球面エッジ部と内側継手部材の球面エッジ部の位置関係を調整するような設計とする必要がある。 In the fixed type constant velocity universal joint, there is a shear failure mode of the cage column due to the biting in of the spherical edge of the outer joint member and the inner joint member, which is one of the damage modes at high angles, and the cage strength is In order to ensure the above, it is necessary to design to adjust the positional relationship between the spherical edge portion of the outer joint member and the spherical edge portion of the inner joint member as described in Patent Document 4.
特許第5138449号公報Patent No. 5138449 gazette 特表2007-503556号公報Japanese Patent Application Publication No. 2007-503556 特許第5634777号公報Patent No. 5634777 gazette 特許第4133415号公報Patent No. 4133415 gazette
 特許文献3に記載の固定式等速自在継手は、小さな半径の円弧で形成された中央トラック溝部のくさび角を開口側のトラック溝部および奥側のトラック溝部で切り替え、保持器に作用する力を釣り合わせることで、常用角度域(低作動角)で高効率を実現させるものである。特許文献3の固定式等速自在継手は、高作動角領域の高効率化とそれに伴う低発熱化を意図したものではなく、また、トラック溝が3つの円弧で構成されていることに加えて、トラック溝部のくさび角を反転させる効果は中央トラック溝部と開口側トラック溝部、奥側トラック溝部との接続位置で決まるため、精度良く仕上げる必要がある。 The fixed type constant velocity universal joint described in Patent Document 3 switches the wedge angle of the central track groove portion formed of a small radius arc by the track groove portion on the opening side and the track groove portion on the back side, and exerts a force acting on the cage By balancing, high efficiency is realized in the normal angle range (low operating angle). The fixed type constant velocity universal joint of Patent Document 3 is not intended to increase the efficiency of the high operating angle region and to reduce the heat generation accordingly, and in addition to the track groove being configured by three arcs. The effect of reversing the wedge angle of the track groove portion is determined by the connection position of the central track groove portion, the opening side track groove portion, and the back side track groove portion, and therefore, it is necessary to finish with high accuracy.
 また、特許文献3の構造では、高作動角時はツェッパ型等速自在継手やアンダーカットフリー型等速自在継手と同じくさび角の状態であるため、特許文献4に記載のような外側継手部材と内側継手部材の球面エッジ部が食い込むことによる保持器柱部のせん断破壊モードを考慮した設計を取る必要が出てくる。 Further, in the structure of Patent Document 3, the outer joint member as described in Patent Document 4 is in the state of the same wedge angle as that of the Zeppa type constant velocity universal joint and the undercut free type constant velocity universal joint at the high operating angle. And it becomes necessary to take design in consideration of the shear failure mode of the cage column by the biting in of the spherical edge of the inner joint member.
 上記のような問題に鑑み、本発明は、シンプルな構造でありながら、高作動角時の低発熱性と強度の問題を解決できる固定式等速自在継手を提供することを目的とする。 In view of the above problems, the present invention has an object to provide a fixed type constant velocity universal joint capable of solving the problems of low heat buildup and strength at a high operating angle while having a simple structure.
 前述の目的を達成するための技術的手段として、本発明は、球状内周面に長手方向に延びる複数のトラック溝が形成され、軸方向に離間する開口側と奥側を有する外側継手部材と、球状外周面に長手方向に延びる複数のトラック溝が前記外側継手部材のトラック溝に対向して形成された内側継手部材と、対向する各トラック溝間に組込まれたトルク伝達ボールと、このトルク伝達ボールを保持し、前記外側継手部材の球状外周面に案内される球状外周面と前記内側継手部材の球状外周面に案内される球状内周面が形成された保持器とからなる固定式等速自在継手において、前記外側継手部材のトラック溝7は、前記奥側に配置される円弧状の第1のトラック溝部7aと、前記開口側に配置される直線状の第2のトラック溝部7bとから構成され、前記第1のトラック溝部7aの軌道中心線Xaの曲率中心は、継手中心Oに対して前記奥側に向けて軸方向にオフセットされ、前記第2のトラック溝部7bの軌道中心線Xbは、前記開口側に向けて継手の軸線N-Nとの距離が近づく方向に傾斜して形成され、前記第1のトラック溝部7aの軌道中心線Xaに滑らかに接続され、前記内側継手部材のトラック溝9の軌道中心線Yは、作動角0°の状態で継手中心Oを含み継手の軸線N-Nに直交する平面Pを基準として、前記外側継手部材の対となるトラック溝7の軌道中心線Xと鏡像対称に形成されていることを特徴とする。 As technical means for achieving the above-mentioned object, the present invention provides an outer joint member in which a plurality of track grooves extending in the longitudinal direction are formed on the spherical inner peripheral surface, and has an axially spaced opening side and back side. An inner joint member in which a plurality of track grooves extending in the longitudinal direction are formed on the spherical outer peripheral surface so as to face the track grooves of the outer joint member; a torque transmitting ball incorporated between the opposing track grooves; Fixed type comprising a spherical outer peripheral surface which holds a transmission ball and is guided to the spherical outer peripheral surface of the outer joint member and a cage having a spherical inner peripheral surface which is guided to the spherical outer peripheral surface of the inner joint member In the fast joint, the track groove 7 of the outer joint member includes an arc-shaped first track groove portion 7a disposed on the back side and a linear second track groove portion 7b disposed on the opening side. Composed of The center of curvature of the track center line Xa of the first track groove 7a is axially offset toward the back with respect to the joint center O, and the track center line Xb of the second track groove 7b is , Formed so as to be inclined toward the opening side in a direction in which the distance with the axis N-N of the joint approaches and smoothly connected to the track center line Xa of the first track groove portion 7a; The track center line Y of the groove 9 has the joint center O at the operating angle of 0 ° and the track center of the track groove 7 which is the pair of outer joint members with reference to the plane P orthogonal to the joint axis NN. It is characterized in that it is formed in mirror symmetry with the line X.
 上記の構成により、シンプルな構造でありながら、高作動角時の低発熱性と強度の問題を解決することができる。 According to the above configuration, it is possible to solve the problems of low heat buildup and strength at a high operating angle while having a simple structure.
 具体的には、上記の継手の軸線N-Nに対する第2のトラック溝部7bの軌道中心線Xbの傾斜角βが、オフセット角ηより大きいことが好ましい。これにより、作動性を損なわず、高作動角時の保持器に作用する力が減少し、低発熱性が得られると共に、外側継手部材および内側継手部材の球面エッジ部が食い込むことによる保持器の強度低下を防ぐことができる。 Specifically, it is preferable that the inclination angle β of the track center line Xb of the second track groove portion 7b with respect to the axis N-N of the joint is larger than the offset angle η. As a result, the force acting on the cage at a high operating angle is reduced without impairing the operability, and low heat buildup is obtained, and the spherical edge portions of the outer joint member and the inner joint member bite into the cage It is possible to prevent strength reduction.
 上記の継手の軸線N-Nに対する第2のトラック溝部7bの軌道中心線Xbの傾斜角βが15°未満であることが好ましい。これにより、外側継手部材の開口端部のトラック溝の深さを確保でき、高作動角時の強度、耐久性を確保することができる。 The inclination angle β of the track center line Xb of the second track groove 7b with respect to the axis N-N of the above joint is preferably less than 15 °. Thereby, the depth of the track groove at the open end of the outer joint member can be secured, and the strength and durability at the high operation angle can be secured.
 上記の第1のトラック溝部7aの軌道中心線Xaの曲率中心が、継手の軸線N-Nに対して半径方向にオフセットされていることが好ましい。これにより、高作動角時のトラック溝の溝深さを調整することができる。 The center of curvature of the track center line Xa of the first track groove 7a is preferably offset in the radial direction with respect to the axis N-N of the joint. Thereby, the groove depth of the track groove at the high operating angle can be adjusted.
 上記の保持器の球状外周面の曲率中心と球状内周面の曲率中心が、継手中心(O)に対して互いに軸方向反対側に等しい量でオフセットされていることにより、保持器の開口側の肉厚が増すので、高作動角時の強度が向上する。 The center of curvature of the spherical outer peripheral surface of the cage and the center of curvature of the spherical inner peripheral surface are offset by an equal amount axially opposite to each other with respect to the joint center (O). Since the wall thickness is increased, the strength at high operating angles is improved.
 上記のトルク伝達ボールが8個であることにより、シンプルなトラック溝構造と相俟って継手が軽量、コンパクトとなる。 The eight torque transmitting balls described above, combined with the simple track groove structure, make the joint lightweight and compact.
 本発明によれば、シンプルな構造でありながら、高作動角時の低発熱性と強度の問題を解決できる固定式等速自在継手を実現することができる。 According to the present invention, it is possible to realize a fixed type constant velocity universal joint capable of solving the problems of low heat buildup and strength at a high operating angle while having a simple structure.
本発明の第1の実施形態に係る固定式等速自在継手の縦断面図である。FIG. 1 is a longitudinal sectional view of a fixed type constant velocity universal joint according to a first embodiment of the present invention. 図1aの右側面図である。It is a right view of FIG. 1 a. 図1aの外側継手部材の縦断面図である。FIG. 2 is a longitudinal cross-sectional view of the outer joint member of FIG. 1a. 図2aの右側面図である。It is a right view of Drawing 2a. 図1aの内側継手部材の縦断面図である。FIG. 1 b is a longitudinal cross-sectional view of the inner joint member of FIG. 図3aの右側面図である。It is a right view of FIG. 3 a. 図1aの保持器の縦断面図である。Figure 2 is a longitudinal cross-sectional view of the cage of Figure 1a; 図4aのA-A線で矢視した横断面図である。Fig. 4b is a cross-sectional view taken along the line AA of Fig. 4a. 作動角0°の状態のくさび角を示す縦断面図である。It is a longitudinal cross-sectional view which shows the wedge angle of the state of operating angle 0 degree. 低作動角の状態のくさび角を示す縦断面図である。It is a longitudinal cross-sectional view which shows the wedge angle in the state of a low operating angle. 中作動角の状態のくさび角を示す縦断面図である。It is a longitudinal cross-sectional view which shows the wedge angle of the state of a middle working angle. 高作動角の状態のくさび角を示す縦断面図である。It is a longitudinal cross-sectional view which shows the wedge angle in the state of a high operating angle. 保持器と内側継手部材との間に作用する球面力の解析結果を示す図である。It is a figure which shows the analysis result of the spherical force which acts between a holder | retainer and an inner joint member. 本発明の第2の実施形態に係る固定式等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the fixed type constant velocity universal joint which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る固定式等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the fixed type constant velocity universal joint which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る固定式等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the fixed type constant velocity universal joint which concerns on the 4th Embodiment of this invention.
 本発明の第1の実施形態に係る固定式等速自在継手を図1~図6に基づいて説明する。図1aは、本発明の第1の実施形態に係る固定式等速自在継手の縦断面図で、図1bは、図1aの右側面図である。本実施形態の固定式等速自在継手1は、外側継手部材2、内側継手部材3、トルク伝達ボール(単に、ボールともいう)4および保持器5を主な構成とする。外側継手部材2の球状内周面6には8本のトラック溝7が円周方向等間隔に、かつ軸方向に沿って形成されている。内側継手部材3の球状外周面8には、外側継手部材2のトラック溝7と対向する8本のトラック溝9が円周方向等間隔に、かつ軸方向に沿って形成されている。外側継手部材2のトラック溝7と内側継手部材3のトラック溝9との間にトルクを伝達する8個のボール4が1個ずつ組み込まれている。外側継手部材2の球状内周面6と内側継手部材3の球状外周面8との間に、ボール4を保持する保持器5が配置されている。内側継手部材3は、内周にスプライン孔10が設けられ、図示しないシャフトに連結される。外側継手部材2の外周面とシャフトの外周面とをブーツ(図示省略)で覆い、継手内部には、潤滑剤としてのグリースが封入される。 A fixed type constant velocity universal joint according to a first embodiment of the present invention will be described based on FIGS. 1 to 6. FIG. 1a is a longitudinal sectional view of a fixed type constant velocity universal joint according to a first embodiment of the present invention, and FIG. 1b is a right side view of FIG. 1a. The fixed type constant velocity universal joint 1 according to this embodiment mainly includes an outer joint member 2, an inner joint member 3, a torque transmitting ball (also simply referred to as a ball) 4 and a cage 5. Eight track grooves 7 are formed on the spherical inner circumferential surface 6 of the outer joint member 2 at equal intervals in the circumferential direction and along the axial direction. On the spherical outer peripheral surface 8 of the inner joint member 3, eight track grooves 9 opposed to the track grooves 7 of the outer joint member 2 are formed along the circumferential direction at equal intervals in the circumferential direction. Eight balls 4 for transmitting torque are incorporated one by one between the track groove 7 of the outer joint member 2 and the track groove 9 of the inner joint member 3. Between the spherical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 8 of the inner joint member 3, a cage 5 for holding the balls 4 is disposed. The inner joint member 3 is provided with a spline hole 10 on the inner periphery thereof and is connected to a shaft (not shown). The outer peripheral surface of the outer joint member 2 and the outer peripheral surface of the shaft are covered with a boot (not shown), and grease as a lubricant is enclosed inside the joint.
 ボール4は保持器5のポケット5aに収容されている。保持器5の球状外周面12は外側継手部材2の球状内周面6に摺動自在に嵌合し、保持器5の球状内周面13は内側継手部材3の球状外周面8に摺動自在に嵌合し、案内される。 The ball 4 is accommodated in the pocket 5 a of the retainer 5. The spherical outer peripheral surface 12 of the cage 5 slidably fits on the spherical inner peripheral surface 6 of the outer joint member 2, and the spherical inner peripheral surface 13 of the cage 5 slides on the spherical outer peripheral surface 8 of the inner joint member 3 It fits freely and is guided.
 外側継手部材2の球状内周面6と内側継手部材3の球状外周面8は、いずれも継手中心Oに曲率中心を有する。外側継手部材2のトラック溝7の軌道中心線Xと内側継手部材3のトラック溝9の軌道中心線Yを一点鎖線で示す。 The spherical inner circumferential surface 6 of the outer joint member 2 and the spherical outer circumferential surface 8 of the inner joint member 3 both have a curvature center at the joint center O. The track center line X of the track groove 7 of the outer joint member 2 and the track center line Y of the track groove 9 of the inner joint member 3 are indicated by alternate long and short dashed lines.
 外側継手部材2のトラック溝7を図2a、図2bに基づいて説明する。図2aは、図1aの外側継手部材の縦断面図で、図2bは、図2aの右側面図である。図2aに示すように、外側継手部材2のトラック溝7は、外側継手部材2の奥側に位置する第1のトラック溝部7aと開口側に位置する第2のトラック溝部7bとから構成される。第1のトラック溝部7aの軌道中心線Xaは曲率半径Rの円弧状で、その曲率中心O1は、継手中心Oから奥側に向かって軸方向にオフセット(オフセット量f)されている。 The track groove 7 of the outer joint member 2 will be described based on FIGS. 2a and 2b. 2a is a longitudinal cross-sectional view of the outer joint member of FIG. 1a, and FIG. 2b is a right side view of FIG. 2a. As shown in FIG. 2a, the track groove 7 of the outer joint member 2 is composed of a first track groove 7a located on the back side of the outer joint member 2 and a second track groove 7b located on the opening side. . The track center line Xa of the first track groove portion 7a has an arc shape with a radius of curvature R, and the center of curvature O1 is axially offset (offset amount f) from the joint center O toward the back side.
 作動角0°の状態で継手中心Oを含み継手の軸線N-Nに直交する平面Pと第1のトラック溝部7aの軌道中心線Xaの交点をDとする。交点Dと曲率中心O1を結ぶ直線と交点Dと継手中心Oを結ぶ直線とのなす角度がオフセット角ηである。 An intersection point of a plane P including the joint center O at a working angle of 0 ° and orthogonal to the joint axis N-N and the orbital center line Xa of the first track groove portion 7a is D. An angle formed by a straight line connecting the intersection D and the curvature center O1 and a straight line connecting the intersection D and the joint center O is an offset angle η.
 第2のトラック溝部7bの軌道中心線Xbは直線状で、外側継手部材2の開口側に向かって継手の軸線N-Nに近づくように傾斜角βで傾斜している。第1のトラック溝部7aの軌道中心線Xaと第2のトラック溝部7bの軌道中心線Xbは、接続点Bで滑らかに接続されている。 The track center line Xb of the second track groove portion 7b is linear, and is inclined at an inclination angle β so as to approach the joint axis N-N toward the opening side of the outer joint member 2. The track center line Xa of the first track groove 7a and the track center line Xb of the second track groove 7b are smoothly connected at the connection point B.
 内側継手部材3のトラック溝9を図3a、図3bに基づいて説明する。図3aは、図1aの内側継手部材の縦断面図で、図3bは、図3aの右側面図である。図3aに示すように、内側継手部材3のトラック溝9は、外側継手部材2の開口側に位置する第1のトラック溝部9aと奥側に位置する第2のトラック溝部9bとから構成される。第1のトラック溝部9aの軌道中心線Yaは曲率半径Rの円弧状で、その曲率中心O2は、継手中心Oから開口側に向かって軸方向にオフセット(オフセット量f)されている。 The track groove 9 of the inner joint member 3 will be described based on FIGS. 3a and 3b. Fig. 3a is a longitudinal sectional view of the inner joint member of Fig. 1a, and Fig. 3b is a right side view of Fig. 3a. As shown in FIG. 3a, the track groove 9 of the inner joint member 3 comprises a first track groove 9a located on the opening side of the outer joint member 2 and a second track groove 9b located on the back side. . The track center line Ya of the first track groove portion 9a has an arc shape with a radius of curvature R, and the center of curvature O2 is axially offset (offset amount f) from the joint center O toward the opening side.
 前述した外側継手部材2の第1のトラック溝部7aと同様に、作動角0°の状態で継手中心Oを含み継手の軸線N-Nに直交する平面Pと第1のトラック溝部7aの軌道中心線Xaの交点をEとする。交点Eと曲率中心O2を結ぶ直線と交点Eと継手中心Oを結ぶ直線とのなす角度がオフセット角ηである。 Similar to the first track groove 7a of the outer joint member 2 described above, the plane P including the joint center O at a working angle of 0 ° and the track center of the first track groove 7a orthogonal to the joint axis N-N Let E be the point of intersection of the line Xa. An angle formed by a straight line connecting the intersection point E and the curvature center O2 and a straight line connecting the intersection point E and the joint center O is an offset angle η.
 第2のトラック溝部9bの軌道中心線Ybは直線状で、外側継手部材2の奥側に向かって継手の軸線N-Nに近づくように傾斜角βで傾斜している。第1のトラック溝部9aの軌道中心線Yaと第2のトラック溝部9bの軌道中心線Ybは、接続点Cで滑らかに接続されている。 The track center line Yb of the second track groove portion 9b is linear, and is inclined at an inclination angle β so as to approach the joint axis N-N toward the back side of the outer joint member 2. The track center line Ya of the first track groove 9a and the track center line Yb of the second track groove 9b are smoothly connected at a connection point C.
 外側継手部材2と内側継手部材3の第1のトラック溝部7a、9aのオフセット量f、オフセット角ηおよび第2のトラック溝部7b、9bの傾斜角βについて説明する。本実施形態の固定式等速自在継手1では、高作動角時の低発熱性と強度、耐久性という効果を得るために、オフセット量f、オフセット角ηおよび傾斜角βの関係を以下のように設定している。
 η<β<15°、η≧5°
 ここで、η=sin-1(f/R)の関係にある。
The offset amount f of the first track groove portions 7a and 9a of the outer joint member 2 and the inner joint member 3, the offset angle η, and the inclination angle β of the second track groove portions 7b and 9b will be described. In the fixed type constant velocity universal joint 1 of the present embodiment, the relationship between the offset amount f, the offset angle 強度 and the inclination angle β is as follows in order to obtain the effects of low heat buildup, strength and durability at high operating angles. It is set to.
η <β <15 °, η 5 5 °
Here, η = sin −1 (f / R).
 上記の関係に設定した理由を次に説明する。オフセット角ηが5°未満となると、継手の作動性が著しく低下する。傾斜角βをオフセット角ηより大きくすることにより、オフセット角ηによるボール4に作用するくさび角δが維持され、作動性が損なわれない。また、高作動角時の保持器5に作用する力が減少し、低発熱性が得られると共に、外側継手部材2および内側継手部材3の球面エッジが食い込むことによる保持器5の強度低下を防ぐことができる。傾斜角βが15°以上になると、外側継手部材2の第2のトラック溝部7bの開口端部におけるトラック溝深さが浅くなり過ぎるため、高作動角時の強度、耐久性が低下する。 The reason for setting the above relationship will be described next. When the offset angle η is less than 5 °, the operability of the joint is significantly reduced. By making the inclination angle β larger than the offset angle η, the wedge angle δ acting on the ball 4 by the offset angle η is maintained, and the operability is not lost. Further, the force acting on the cage 5 at the high operating angle is reduced, and low heat buildup is obtained, and the strength deterioration of the cage 5 due to the biting in of the spherical edges of the outer joint member 2 and the inner joint member 3 is prevented. be able to. When the inclination angle β is 15 ° or more, the track groove depth at the opening end of the second track groove portion 7b of the outer joint member 2 becomes too shallow, so that the strength and durability at the high operation angle decrease.
 図4a、図4bに保持器を示す。図4aは、図1a保持器の縦断面図で、図4bは、図4aのA-A線で矢視した横断面図である。保持器5は、球状外周面12と球状内周面13を有し、球状外周面12と球状内周面13の曲率中心は継手中心Oに形成されている。保持器5には円周方向等間隔に8個のポケット5aが設けられ、8個のボール4(図示省略)を1個ずつ収容し、保持する。円周方向に隣り合うポケット5aの間に柱部5bが形成されている。 The cage is shown in FIGS. 4a and 4b. FIG. 4a is a longitudinal sectional view of FIG. 1a cage, and FIG. 4b is a transverse sectional view taken along line AA of FIG. 4a. The cage 5 has a spherical outer peripheral surface 12 and a spherical inner peripheral surface 13, and the centers of curvature of the spherical outer peripheral surface 12 and the spherical inner peripheral surface 13 are formed at the joint center O. The holder 5 is provided with eight pockets 5a at equal intervals in the circumferential direction, and accommodates and holds eight balls 4 (not shown) one by one. A pillar 5b is formed between the pockets 5a adjacent in the circumferential direction.
 次に、本実施形態の固定式等速自在継手1の作動について図5a~図6bに基づいて説明する。要約すると、本実施形態の固定式等速自在継手1は、傾斜角βの2倍以上の作動角を取ると、図1bに示す頂点の位相角0°の位置でボール4が開口側に移動したときのくさび角の開く向きが奥側から開口側に反転する。さらに作動角を増すと、位相角0°を中心とする円周方向範囲において、ボール4のくさび角の開く向きが開口側に反転するため、ボール4が保持器5を押す力が開口側に向かう個数が増えて、保持器4に作用する力が奥側と開口側とで釣り合い、球面力が低減される。 Next, the operation of the fixed type constant velocity universal joint 1 of the present embodiment will be described based on FIGS. 5a to 6b. In summary, when the fixed constant velocity universal joint 1 of the present embodiment takes an operating angle twice or more the inclination angle β, the ball 4 moves to the opening side at the phase angle of 0 ° of the apex shown in FIG. The direction in which the wedge angle opens is reversed from the back side to the opening side. When the operating angle is further increased, the opening direction of the wedge angle of the ball 4 is reversed to the opening side in the circumferential direction centering on the phase angle of 0 °, so that the force pushing the ball 5 to the opening side As the number of the heads increases, the force acting on the cage 4 is balanced on the back side and the opening side, and the spherical force is reduced.
 図5a~図6bに基づいて具体的に説明する。図5aは作動角が0°の状態を示す。この状態では、位相角0°、180°を含むすべてのトラック溝7、9のくさび角δは、外側継手部材2の奥側に向かって開いている。したがって、ボール4が保持器5を押す力がすべて奥側に向かっている。大きな球面力が生じる。 A specific description will be given based on FIGS. 5a to 6b. FIG. 5a shows the state where the operating angle is 0 °. In this state, the wedge angles δ of all the track grooves 7 and 9 including the phase angles 0 ° and 180 ° open toward the back side of the outer joint member 2. Therefore, all the forces of the ball 4 pushing the retainer 5 are directed to the back side. A large spherical force is generated.
 図5bは低作動角θ1(例えば、8°程度)の状態を示す。低作動角θ1の状態でも、位相角0°、180°を含むすべてのトラック溝7、9のくさび角δは、外側継手部材2の奥側に向かって開いている。したがって、ボール4が保持器5を押す力がすべて奥側に向かっている。ここで、トラック溝7、9とボール4とは接触角をもって接触しているので、接触点はトラック溝7、9の溝底から少し離れたトラック溝7、9の側面上に位置するが、図5a~図6bでは、説明を平易にするために、トラック溝7、9の溝底を用いてくさび角δを図示している。接触点における実際のくさび角と図示のくさび角δは、その角度の大きさは若干異なるが、くさび角の開く向きの反転挙動は、両者同じである。 FIG. 5b shows the state of a low operating angle θ1 (for example, about 8 °). The wedge angles δ of all the track grooves 7 and 9 including the phase angles 0 ° and 180 ° open toward the back side of the outer joint member 2 even in the state of the low operating angle θ1. Therefore, all the forces of the ball 4 pushing the retainer 5 are directed to the back side. Here, since the track grooves 7 and 9 and the ball 4 are in contact with each other at a contact angle, the contact point is located on the side surfaces of the track grooves 7 and 9 slightly away from the groove bottoms of the track grooves 7 and 9, In FIGS. 5 a-6 b, the wedge angle δ is illustrated using the groove bottoms of the track grooves 7, 9 for the sake of simplicity. Although the actual wedge angle at the contact point and the illustrated wedge angle δ slightly differ in the size of the angle, the reversal behavior of the opening direction of the wedge angle is the same for both.
 図6aは中作動角θ2(例えば、20°程度)の状態を示す。作動角が増した中作動角θ2の状態では、位相角0°、180°を含むすべてのトラック溝7、9のくさび角δは、外側継手部材2の奥側に向かって開いているが、位相角0°のトラック溝7、9のくさび角δは0°に近くなっている。この状態から作動角を少し増すと、位相角0°のトラック溝7、9のくさび角δの開く向きは、反転して、開口側に向くことになる。 FIG. 6a shows the state of the middle operating angle θ2 (for example, about 20 °). The wedge angle δ of all the track grooves 7 and 9 including the phase angles 0 ° and 180 ° open toward the back side of the outer joint member 2 in the state of the middle operation angle θ2 where the operation angle is increased, The wedge angle δ of the track grooves 7 and 9 having a phase angle of 0 ° is close to 0 °. When the operating angle is slightly increased from this state, the opening direction of the wedge angle δ of the track grooves 7 and 9 having a phase angle of 0 ° is reversed and directed to the opening side.
 図6bは高作動角θ3(例えば、40°程度)の状態を示す。中作動角θ2から作動角を増すと、まず、位相角0°のくさび角δの開く向きが、反転し開口側に向く。そして、さらに作動角を増すと、位相角0°近辺のトラック溝7、9のくさび角δの開く向きも反転し開口側に向くようになり、図6bの高作動角の状態となる。この状態では、位相角0°を中心とする円周方向範囲において、ボール4のくさび角の開く向きが開口側に反転するため、ボール4が保持器5を押す力が開口側に向かう個数が増えて、保持器4に作用する力が奥側と開口側とで釣り合い、球面力が低減される。 FIG. 6b shows the state of high operating angle θ3 (for example, about 40 °). When the operating angle is increased from the middle operating angle θ2, first, the opening direction of the wedge angle δ of the phase angle 0 ° is reversed and directed to the opening side. Then, when the operating angle is further increased, the direction in which the wedge angle δ of the track grooves 7 and 9 near the phase angle of 0 ° opens is also reversed and directed to the opening side, resulting in the state of the high operating angle in FIG. In this state, the opening direction of the wedge angle of the ball 4 is reversed to the opening side in the circumferential direction range centered on the phase angle of 0 °, so the number of forces by which the ball 4 pushes the retainer 5 toward the opening side is As a result, the force acting on the cage 4 is balanced on the back side and the opening side, and the spherical force is reduced.
 図7に本実施形態の固定式等速自在継手1の保持器5と内側継手部材3との間の球面力の解析結果を示す。本実施形態の固定式等速自在継手1のオフセット角ηは5°、傾斜角βは8°とした。従来品は、8個ボールのツェッパ型等速自在継手である。図7から明らかなように、本実施形態の固定式等速自在継手1の保持器5と内側継手部材3との間に作用する球面力は、高作動角域の値が低作動角域の値よりも小さくなっており、また、従来品の高作動角域の値に比べて顕著に低減されている。これにより、高作動角時の発熱が抑制される。 The analysis result of the spherical force between the holder | retainer 5 of the fixed constant velocity universal joint 1 of this embodiment and the inner joint member 3 is shown in FIG. The offset angle η of the fixed type constant velocity universal joint 1 according to this embodiment is 5 °, and the inclination angle β is 8 °. The conventional product is an 8-ball Zeppa type constant velocity universal joint. As apparent from FIG. 7, the spherical force acting between the cage 5 and the inner joint member 3 of the fixed type constant velocity universal joint 1 according to this embodiment has a value in the high operating angle range of the low operating angle range. This value is smaller than the value and is significantly reduced compared to the value of the high operating angle range of the conventional product. Thereby, the heat generation at the high operating angle is suppressed.
 以上説明したように、本実施形態の固定式等速自在継手1は、円弧状の第1のトラック溝部7a、9aと直線状の第2のトラック溝部7b、9bからなるシンプルな構造でありながら、高作動角時の低発熱性と強度の問題を解決できることができる。具体的には、従来型のツェッパ型等速自在継手やアンダーカットフリー型等速自在継手と同等の加工精度、コストで製造できる上、高作動角において、低発熱化されるため継手の寿命が向上する。また、高作動角時に保持器5に作用する力が釣り合うことにより、外側継手部材2と内側継手部材3の球面エッジ部の食い込みによる保持器柱部5bのせん断破壊モードが発生せず、強度が向上する。 As described above, the fixed type constant velocity universal joint 1 according to the present embodiment has a simple structure including the arc-shaped first track groove portions 7a and 9a and the linear second track groove portions 7b and 9b. It can solve the problem of low heat buildup and strength at high operating angles. Specifically, it can be manufactured with the same processing accuracy and cost as conventional Zeppa type constant velocity universal joints and undercut free type constant velocity universal joints, and since the heat generation is reduced at a high operating angle, the life of the joint is improves. In addition, since the force acting on the cage 5 is balanced at the high operating angle, the shear failure mode of the cage column 5b due to the biting of the spherical edge portion of the outer joint member 2 and the inner joint member 3 does not occur, and the strength is improved. improves.
 次に、本発明の第2の実施形態に係る固定式等速自在継手を図8に基づいて説明する。本実施形態の固定式等速自在継手1は、外側継手部材2と内側継手部材3の第1のトラック溝部7a、9aの軌道中心線Xa、Yaの曲率中心O3、O4の位置が第1の実施形態と異なる。その他の構成は、第1の実施形態と同様である。同様の機能を有する部位には同一の符号を付して、要点のみ説明する。後述する実施形態においても同様とする。 Next, a fixed type constant velocity universal joint according to a second embodiment of the present invention will be described based on FIG. In the fixed type constant velocity universal joint 1 of the present embodiment, the positions of the curvature centers O3 and O4 of the track center lines Xa and Ya of the first track groove portions 7a and 9a of the outer joint member 2 and the inner joint member 3 are first. It differs from the embodiment. The other configuration is the same as that of the first embodiment. The parts having the same functions are given the same reference numerals and only the main points will be described. The same applies to the embodiments described later.
 外側継手部材2の第1のトラック溝部7aの軌道中心線Xaは、継手中心Oに対して外側継手部材2の奥側に向かって軸方向にオフセット(オフセット量f1)され、かつ、継手の軸線N-Nに対して半径方向にオフセット(オフセット量f2)された曲率中心O3を有する曲率半径R1の円弧状に形成されている。 The track center line Xa of the first track groove 7a of the outer joint member 2 is axially offset (offset amount f1) toward the back side of the outer joint member 2 with respect to the joint center O, and the axis of the joint It is formed in an arc shape with a curvature radius R1 having a curvature center O3 offset in the radial direction (offset amount f2) with respect to N-N.
 内側継手部材3の第1のトラック溝部9aの軌道中心線Yaは、継手中心Oに対して外側継手部材2の開口側に向かって軸方向にオフセット(オフセット量f1)され、かつ、継手の軸線N-Nに対して半径方向にオフセット(オフセット量f2)された曲率中心O4を有する曲率半径R1の円弧状に形成されている。 The orbital center line Ya of the first track groove 9a of the inner joint member 3 is axially offset (offset amount f1) toward the opening side of the outer joint member 2 with respect to the joint center O, and the axis of the joint It is formed in an arc shape having a curvature radius R1 having a curvature center O4 offset in the radial direction (offset amount f2) with respect to N-N.
 本実施形態の固定式等速自在継手1におけるオフセット量f、オフセット角ηおよび傾斜角βの関係は、第1の実施形態と同じである。これにより、第1の実施形態の固定式等速自在継手の作動、作用効果と同様となる。したがって、第1の実施形態の固定式等速自在継手について前述した内容を準用し、説明を省略する。後述する実施形態においても同様とする。 The relationship between the offset amount f, the offset angle η, and the inclination angle β in the fixed type constant velocity universal joint 1 of the present embodiment is the same as that in the first embodiment. This becomes the same as the operation and effect of the fixed type constant velocity universal joint of the first embodiment. Therefore, the contents described above for the fixed type constant velocity universal joint of the first embodiment apply mutatis mutandis, and the description will be omitted. The same applies to the embodiments described later.
 次に、本発明の第3の実施形態に係る固定式等速自在継手を図9に基づいて説明する。本実施形態の固定式等速自在継手1では、外側継手部材2と内側継手部材3の第1のトラック溝部7a、9aの軌道中心線Xa、Yaの曲率中心O5、O6が、継手の軸線N-Nに対して第2の実施形態と半径方向の反対側にオフセットされている点が異なる。その他の構成は、第2の実施形態と同様である。 Next, a fixed type constant velocity universal joint according to a third embodiment of the present invention will be described based on FIG. In the fixed type constant velocity universal joint 1 of the present embodiment, the track center lines Xa and Ya of the first track groove portions 7a and 9a of the outer joint member 2 and the inner joint member 3 are the center of curvature O5 and O6 of the joint, respectively. The second embodiment differs from the second embodiment in that it is offset to the radially opposite side with respect to -N. The other configuration is the same as that of the second embodiment.
 外側継手部材2の第1のトラック溝部7aの軌道中心線Xaは、継手中心Oに対して外側継手部材2の奥側に向かって軸方向にオフセット(オフセット量f3)され、かつ、半径方向にオフセット(オフセット量f4)された曲率中心O5を有する曲率半径R2の円弧状に形成されている。 The track center line Xa of the first track groove portion 7a of the outer joint member 2 is axially offset (offset amount f3) toward the back side of the outer joint member 2 with respect to the joint center O and in the radial direction It is formed in an arc shape of a curvature radius R2 having a curvature center O5 offset (offset amount f4).
 内側継手部材3の第1のトラック溝部9aの軌道中心線Yaは、継手中心Oに対して外側継手部材2の開口側に向かって軸方向にオフセット(オフセット量f3)され、かつ、半径方向にオフセット(オフセット量f4)された曲率中心O6を有する曲率半径R2の円弧状に形成されている。 The track center line Ya of the first track groove 9a of the inner joint member 3 is axially offset (offset amount f3) toward the opening side of the outer joint member 2 with respect to the joint center O, and in the radial direction It is formed in an arc shape of a curvature radius R2 having a curvature center O6 offset (offset amount f4).
 本発明の第4の実施形態に係る固定式等速自在継手を図10に基づいて説明する。本実施形態の固定式等速自在継手1は、保持器5の球状外周面12の曲率中心と球状内周面13の曲率中心が、継手中心Oに対して軸方向反対側に等しい量でオフセットされていることが第1の実施形態と異なる。 A fixed type constant velocity universal joint according to a fourth embodiment of the present invention will be described based on FIG. In the fixed type constant velocity universal joint 1 of the present embodiment, the center of curvature of the spherical outer peripheral surface 12 of the cage 5 and the center of curvature of the spherical inner peripheral surface 13 are offset by an amount equal to the axially opposite side with respect to the joint center O It differs from the first embodiment in that it is performed.
 保持器5の球状外周面12の曲率中心O10は、継手中心Oに対して外側継手部材2の開口側に軸方向にわずかな量(オフセット量f6)でオフセットされている。球状内周面13の曲率中心O9は、継手中心Oに対して外側継手部材2の奥側に軸方向にわずかな量(オフセット量f6)でオフセットされている。これにより、保持器5の奥側の肉厚が増すので、高作動角時の強度が向上する。 The curvature center O10 of the spherical outer peripheral surface 12 of the cage 5 is offset by a small amount (offset amount f6) in the axial direction on the opening side of the outer joint member 2 with respect to the joint center O. The curvature center O9 of the spherical inner circumferential surface 13 is offset by a small amount (offset amount f6) in the axial direction on the back side of the outer joint member 2 with respect to the joint center O. Thereby, the thickness on the back side of the cage 5 is increased, so that the strength at the high operating angle is improved.
 外側継手部材2の第1のトラック溝部7aの軌道中心線Xaは曲率半径R3の円弧状で、その曲率中心O7は、継手中心Oから奥側に向かって軸方向にオフセット(オフセット量f5)されている。内側継手部材3の第1のトラック溝部9aの軌道中心線Yaは曲率半径R3の円弧状で、その曲率中心O8は、継手中心Oから開口側に向かって軸方向にオフセット(オフセット量f5)されている。 The track center line Xa of the first track groove portion 7a of the outer joint member 2 is an arc having a radius of curvature R3 and the center of curvature O7 is axially offset (offset amount f5) from the joint center O toward the back side ing. The track center line Ya of the first track groove 9a of the inner joint member 3 has an arc shape with a radius of curvature R3, and the center of curvature O8 is axially offset (offset amount f5) from the joint center O toward the opening side ing.
 以上説明した各実施形態の固定式等速自在継手1は、円弧状の第1のトラック溝部7a、9aと直線状の第2のトラック溝部7b、9bからなるシンプルな構造でありながら、高作動角時の低発熱性と強度の問題を解決できることができる。具体的には、従来型のツェッパ型等速自在継手やアンダーカットフリー型等速自在継手と同等の加工精度、コストで製造できる上、高作動角において、低発熱化されるため継手の寿命が向上する。また、高作動角時に保持器5に作用する力が釣り合うことにより、外側継手部材2と内側継手部材3の球面エッジ部の食い込みによる保持器柱部5bのせん断破壊モードが発生せず、強度が向上する。 The fixed type constant velocity universal joint 1 according to each of the embodiments described above has a simple structure including the arc-shaped first track groove portions 7a and 9a and the linear second track groove portions 7b and 9b while having high operation. It can solve the problem of low heat buildup and strength at the corner. Specifically, it can be manufactured with the same processing accuracy and cost as conventional Zeppa type constant velocity universal joints and undercut free type constant velocity universal joints, and since the heat generation is reduced at a high operating angle, the life of the joint is improves. In addition, since the force acting on the cage 5 is balanced at the high operating angle, the shear failure mode of the cage column 5b due to the biting of the spherical edge portion of the outer joint member 2 and the inner joint member 3 does not occur, and the strength is improved. improves.
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 It goes without saying that the present invention is not limited to the embodiment described above, and can be practiced in various forms without departing from the scope of the present invention, and the scope of the present invention And the meaning of equivalents described in the claims, and all changes within the range.
1     固定式等速自在継手
2     外側継手部材
3     内側継手部材
4     トルク伝達ボール
5     保持器
5a    ポケット
6     球状内周面
7     トラック溝
7a    第1のトラック溝部
7b    第2のトラック溝部
8     球状外周面
9     トラック溝
9a    第1のトラック溝部
9b    第2のトラック溝部
12    球状外周面
13    球状内周面
N     継手の軸線
O     継手中心
O1    曲率中心
O2    曲率中心
O3    曲率中心
O4    曲率中心
O5    曲率中心
O6    曲率中心
O7    曲率中心
O8    曲率中心
P     平面
R     曲率半径
R1    曲率半径
R2    曲率半径
R3    曲率半径
X     軌道中心線
Xa    軌道中心線
Xb    軌道中心線
Y     軌道中心線
Ya    軌道中心線
Yb    軌道中心線
f     オフセット量
f1    オフセット量
f2    オフセット量
f3    オフセット量
f4    オフセット量
f5    オフセット量
f6    オフセット量
β     傾斜角
δ     くさび角
η     オフセット角
θ     作動角
Reference Signs List 1 fixed type constant velocity universal joint 2 outer joint member 3 inner joint member 4 torque transmission ball 5 cage 5a pocket 6 spherical inner circumferential surface 7 track groove 7a first track groove 7b second track groove 8 spherical outer circumferential surface 9 track Groove 9a First track groove 9b Second track groove 12 Spherical outer peripheral surface 13 Spherical inner peripheral surface N Joint axis O Joint center O1 Joint center O1 Center of curvature O2 Center of curvature O3 Center of curvature O4 Center of curvature O5 Center of curvature O5 Center of curvature O6 Center of curvature O7 center of curvature O8 Curvature center P Plane R Curvature radius R2 Curvature radius R3 Curvature center Xa Orbital centerline Xb Orbital centerline Y Orbital centerline Ya Orbital centerline Yb Orbital centerline f Offset amount f1 Offset amount f2 Offset amount f Offset f4 offset amount f5 offset amount f6 offset amount β inclination angle δ wedge angle η offset angle θ operating angle

Claims (6)

  1.  球状内周面に長手方向に延びる複数のトラック溝が形成され、軸方向に離間する開口側と奥側を有する外側継手部材と、球状外周面に長手方向に延びる複数のトラック溝が前記外側継手部材のトラック溝に対向して形成された内側継手部材と、対向する各トラック溝間に組込まれたトルク伝達ボールと、このトルク伝達ボールを保持し、前記外側継手部材の球状外周面に案内される球状外周面と前記内側継手部材の球状外周面に案内される球状内周面が形成された保持器とからなる固定式等速自在継手において、
     前記外側継手部材のトラック溝(7)は、前記奥側に配置される円弧状の第1のトラック溝部(7a)と、前記開口側に配置される直線状の第2のトラック溝部(7b)とから構成され、
     前記第1のトラック溝部(7a)の軌道中心線(Xa)の曲率中心は、継手中心(O)に対して前記奥側に向けて軸方向にオフセットされ、
     前記第2のトラック溝部(7b)の軌道中心線(Xb)は、前記開口側に向けて継手の軸線(N-N)との距離が近づく方向に傾斜して形成され、前記第1のトラック溝部(7a)の軌道中心線(Xa)に滑らかに接続され、
     前記内側継手部材のトラック溝(9)の軌道中心線(Y)は、作動角0°の状態で継手中心(O)を含み継手の軸線(N-N)に直交する平面(P)を基準として、前記外側継手部材の対となるトラック溝(7)の軌道中心線(X)と鏡像対称に形成されていることを特徴とする固定式等速自在継手。
    A plurality of track grooves extending in the longitudinal direction are formed on the spherical inner peripheral surface, and an outer joint member having an opening side and a back side separated in the axial direction, and a plurality of track grooves extending in the longitudinal direction on the spherical outer peripheral surface The inner joint member formed opposite to the track grooves of the members, the torque transmitting ball incorporated between the opposing track grooves, and the torque transmitting ball are held and guided by the spherical outer peripheral surface of the outer joint member A fixed type constant velocity universal joint comprising a spherical outer peripheral surface and a cage having a spherical inner peripheral surface guided on the spherical outer peripheral surface of the inner joint member;
    The track groove (7) of the outer joint member includes an arc-shaped first track groove (7a) disposed on the back side, and a linear second track groove (7b) disposed on the opening side. And consists of
    The center of curvature of the track center line (Xa) of the first track groove portion (7a) is axially offset toward the back with respect to the joint center (O),
    The track center line (Xb) of the second track groove portion (7b) is formed to be inclined in a direction in which the distance to the axis (N-N) of the joint approaches toward the opening side, and the first track Smoothly connected to the track center line (Xa) of the groove (7a),
    The track center line (Y) of the track groove (9) of the inner joint member is based on a plane (P) including the joint center (O) at an operating angle of 0 ° and orthogonal to the joint axis (N-N) The fixed type constant velocity universal joint is characterized in that it is formed in mirror symmetry with the track center line (X) of the track groove (7) as a pair of the outer joint members.
  2.  前記継手の軸線(N-N)に対する前記第2のトラック溝部(7b)の軌道中心線(Xb)の傾斜角(β)が、オフセット角(η)より大きいこと特徴とする請求項1に記載の固定式等速自在継手。 The inclination angle (β) of the track center line (Xb) of the second track groove (7b) with respect to the axis (N-N) of the joint is characterized in that it is larger than the offset angle ()). Fixed type constant velocity universal joint.
  3.  前記継手の軸線(N-N)に対する前記第2のトラック溝部(7b)の軌道中心線(Xb)の傾斜角(β)が15°未満であることを特徴とする請求項1又は請求項2に記載の固定式等速自在継手。 The inclination angle (β) of the track center line (Xb) of the second track groove (7b) with respect to the axis (N-N) of the joint is less than 15 °. Fixed type constant velocity universal joint as described in.
  4.  前記第1のトラック溝部(7a)の軌道中心線(Xa)の曲率中心が、継手の軸線(N-N)に対して半径方向にオフセットされていることを特徴とする請求項1~3のいずれか一項に記載の固定式等速自在継手。 The center of curvature of the track center line (Xa) of the first track groove (7a) is offset in the radial direction with respect to the joint axis (N-N). The fixed constant velocity universal joint according to any one of the preceding claims.
  5.  前記保持器の球状外周面の曲率中心と球状内周面の曲率中心が、継手中心(O)に対して互いに軸方向反対側に等しい量でオフセットされていることを特徴とする請求項1~4のいずれか一項に記載の固定式等速自在継手。 The center of curvature of the spherical outer peripheral surface of the cage and the center of curvature of the spherical inner peripheral surface are offset by equal amounts on opposite sides in the axial direction with respect to the joint center (O). The fixed constant velocity universal joint according to any one of 4.
  6.  前記トルク伝達ボールが8個であることを特徴とする請求項1~5のいずれか一項に記載の固定式等速自在継手。 The fixed type constant velocity universal joint according to any one of claims 1 to 5, wherein the number of the torque transmitting balls is eight.
PCT/JP2018/020544 2017-06-29 2018-05-29 Fixed-type constant-velocity universal joint WO2019003765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-127782 2017-06-29
JP2017127782A JP6899716B2 (en) 2017-06-29 2017-06-29 Fixed constant velocity universal joint

Publications (1)

Publication Number Publication Date
WO2019003765A1 true WO2019003765A1 (en) 2019-01-03

Family

ID=64740563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020544 WO2019003765A1 (en) 2017-06-29 2018-05-29 Fixed-type constant-velocity universal joint

Country Status (2)

Country Link
JP (1) JP6899716B2 (en)
WO (1) WO2019003765A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291945A (en) * 1996-04-26 1997-11-11 Ntn Corp Fixed type constant velocity joint
JP2001153148A (en) * 1999-11-30 2001-06-08 Ntn Corp Cage of fixed constant velocity universal joint and method for manufacturing thereof and fixed constant velocity universal joint
JP2004518083A (en) * 2000-12-04 2004-06-17 ジー・ケー・エヌ・オートモーティヴ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Constant velocity fixed joint

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291945A (en) * 1996-04-26 1997-11-11 Ntn Corp Fixed type constant velocity joint
JP2001153148A (en) * 1999-11-30 2001-06-08 Ntn Corp Cage of fixed constant velocity universal joint and method for manufacturing thereof and fixed constant velocity universal joint
JP2004518083A (en) * 2000-12-04 2004-06-17 ジー・ケー・エヌ・オートモーティヴ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Constant velocity fixed joint

Also Published As

Publication number Publication date
JP2019011793A (en) 2019-01-24
JP6899716B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP5101430B2 (en) Fixed constant velocity universal joint
US10260569B2 (en) Fixed-type constant velocity universal joint
US9169877B2 (en) Fixed constant velocity universal joint
WO2012165096A1 (en) Fixed constant velocity universal joint
JP5634777B2 (en) Fixed constant velocity universal joint
JP2012017809A5 (en)
WO2014069210A1 (en) Stationary constant velocity universal joint
JP5840463B2 (en) Fixed constant velocity universal joint
WO2015068536A1 (en) Stationary constant velocity universal joint
JP5615873B2 (en) Fixed constant velocity universal joint
JP5885997B2 (en) Fixed constant velocity universal joint
JP5882050B2 (en) Fixed constant velocity universal joint
JP2017172765A (en) Fixed type constant velocity universal joint
JP2009079684A (en) Fixed type constant velocity universal joint
WO2019003765A1 (en) Fixed-type constant-velocity universal joint
JP2006258207A (en) Fixed type constant velocity universal joint
JP5885998B2 (en) Fixed constant velocity universal joint
US11047425B2 (en) Stationary constant-velocity universal joint
WO2017013993A1 (en) Fixed type constant velocity universal joint
JP7458712B2 (en) Fixed constant velocity universal joint
WO2023100522A1 (en) Sliding-type constant-velocity joint
JP7071854B2 (en) Constant velocity universal joint
WO2014208241A1 (en) Fixed-type constant velocity universal joint
CN118284751A (en) Sliding constant velocity universal joint
JP2007139064A (en) Sliding type uniform motion universal joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824781

Country of ref document: EP

Kind code of ref document: A1